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SECTION |
INTRODUCTION

A. OVERVIEW

Rapid advances have been made during the past several years in large-scale integrated cireuit
(LSIC) technology. These advances have had a significant impact on many military signal processing
functions found in such applications as forward-looking infrared (FLIR) radar. guidance and control,
and ECM gystems. In particular, image processing system studies for video bandwidth reduction,
FLIR automatic cueing, 3-D target classification, and image understanding have consistently recom-
mended using LSIC technologies to perform critical image processing functions. A general-purpose
algorithm! which uses the linear operation

on a single video line or on an n by n block of picture elements is an ideal cundidate to be tmple-
mented with LSIC technologies.

While such algorithms can be executed casily at low data rates using general-purpose mini-
computers or even commercial microprocessors. it is usually not possible to execute them in real
time in an airborne environment because of excessive size. weight, power dissipation. and cost. The
key to effective system design is to apply LSIC technology to minimize the overall component
count and variety of components while absorbing as much as possible of the contral and timing
logic onto the information processing chip themselves. The solution is optimum when the same
chips can be used for a multitude of other applications to provide a high volume markct. These
requirements have lead to the desire for a programumable chip architecture, and in turn. to the con-
cept of a parallel/serial input bus. The discovery of the read-only memory (ROM) accumulate™*?
algorithm to implement the above-mentioned linear operator could have significant impact on image
processing systems.

B. OBJECTIVE

The objective of this 12-month exploratory development cffort was to develop a general-
purpose digital LSIC device called the programmable image processing element (PIPE), which cun
be programmied to perform a variety of signal processing functions such as Cosine and Hadamard
transforms. edge extraction. unsharp masking. pole-zero filtering. and signal smoothing on 8§ by 1
or 3 by 3 element data blocks at full TV data rates of 10 megasamples per second. Such a device
should find widespread application in anti-jam video data links, FLIR automatic cuers. target
classifiers. and digital filter processors. Hence, the PIPE LSIC is suited for those airborne applica-
tions where data rate, size. power and weight restrictions prohibit the use of gencral-purpose
microprocessors or high-speed digital multipliers. This contract will address only the design and
photomask fabrication of the PIPE LSIC.

C. SUMMARY

During the design phase of this contract. investigations of ROM technologies and designs to
ensure a user-oriented image processing LSIC were conducted. The results of this investigation are




detailed in the PIPE LSIC design discussion given in Subsection ILAL A brief summary of the PIPE
LSIC tollows.

Texas Instruments was particalarly well qualified to execute this contract successtully
because of its Tow risk implementation approach. This low risk implementation approach is a
result ol

° User-oriented PIPE LSIC architecture

° Established. cost-ettective LSIC technology
o Proven erusable, programmable ROM design
° Breadbouard emulator of PIPLE LSIC.

Several architectures were investigated as candidates for implementing the PIPE LSIC. The
architecture selected maximizes tleibility in algorithm implementation and minimizes external
control and tining logic.

I'he N-channel metal-oxide-semiconductor (NMOS) technology was selected to implement
the PIPE LSIC because it is an established. cost-effective technology capable of providing the high-
circuit density. low speed-power product, and user erasable programmable read-only memory
(I PRON) needed tor the user-oriented PIPE LSIC architecture.

The NMOS crasable programmable read-only memory was judged to be the best technology
to meet the goals of the PIPE 1LSIC. The advantages of NMOS FPROM technology are:

° User-programmable (electrically)
° Erasable (ultraviolet light)

° Nonvolatile

L Single supply voltage operation
L Static on-chip NMOS logic

® Military grade

L Established technology.

Texas Instruments has available in production quantities a family of military-grade EPROMs
ranging in size from 8K (1K = 1024 bits) to 32K. This, along with the features of EPROMs, makes
the FPROM technology ideal for the PIPE LSIC program.

The PIPE LSIC design completed during this contract is shown in Figure 1. As illustrated in
this figure. there are five major sections of this integrated circuit:

° Input latch/parallel-to-serial shift register
. EPROM

[ Shitt-and-accumulate

L] Tri-state output latch

L Controller.




INPUT LATCH
PARALLEL TO
SERIAL SHIFT |

REGISTER

CONTROLLER —

SHIFT AND

ACCUMULATE

TRI-STATE

OUTPUT
LATCH

Figure 1. PIPE LSIC Layout

Fach of these functions s discussed i detail in Subsections 1.AL2 through T1LA 6L respec-
tively. The total bar size is approximuately 240 by 270 mil* . with a total estimated power of 600
milliwatts.

Fexas Instruments belicves the proposed Phase T PIPE program is very relevant and timely
tor the development of a programmable image processing element and has carefully considered the
applications ot the PIPE LSIC. The PIPE LSIC isideal tor 3 by 3 window operations and 8 by | or
9 by 1 matrix operations. A more detaited discussion ot the applications of the PIPE LSIC is pre-
sented in Subsection 11.B.
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SECTION 11
TECHNICAL DISCUSSION

A.  PIPE LSIC DESIGN

Pexas Instruments has dosigned o programmable image-processing-clement (PIPL) Jarge-scule
integrated circuit (LSIC) during Phase 1 of the PIPE program. contract F33615-79-C-1763. Details
of this design are discussed in this section.

1. Introduction

Many image-processing algorithms' require a sum of products operator of the form

M

Y = E WI.\'l (1

=1

where the Worepresents a set of tixed programmauble weighting coefticients, X, Tepresents i set o1
sequence ot input values, and M represents the number of inputs. This mathematical tunction can
be used to caleulate the cocetticients of various transforms used in many image-processing applica-
tions such as Fourier. Cosine, Hadamard, Haar. and others. The sum of products expression can
also be used in determining many neighborhood operators which perform such operations as noise
smoothing. edge enhancement. and edge crispening. For many image-processing applications such
as video bandwidth reduction. torward-looking infrared (FLIRY autocneing. target classitication.
and image understanding, algorithms based on the sum of products operator are required.

The sum of products operation of Equation I can be implemented using digital integriated
circuit (1Cy multipliers and an accumufator, as shown in Figure 2. However. the size and power
required to perform the multiplications with digital 1C multipliers at video data rates are prohibitive
for many  airborne image-processing apphications. Hence, investigations have been performed
recently on techniques for the realization of the sum of products operation without using digital
multiphiers * These distributed arithmetic techniques are a table look-up procedure to perform
the multiplication in Fqguation T This table fook-up operation replaces the digital multipliers with o
read-onhy -memory (ROM) function. The principle of operation ot the ROM-accumulote algorithims
is discussed below.

As noted in Fquation 1. the weighting coefficients. W o are fixed and known while the mput
words. N Lare variable. Tn binary arithmetic, the input variable, X o can be expressed as

':_ N | hl
N, E - (0

N




By substituting Fquation 2 into EBquation |, the following expression is obtuined:
\ L | 1 g Uxy

Rearrangimg the terms vields

Y=E E wiC5 2 (4)

Frammation of the bracketed  term in
Uit beeceals only 2N possible vadues tor
this term Sinee the Woare known o prrrori and 1 2 3 M
the teim ¢, can be only avalue ot T or 0. the
bracketed  term v e u.llcul;n‘cd for all W X |w,— x|[wi— x [wy—f x
possible combimations and stored in an ROM.
Theretores the “purticalar ¢ from the

—
—
—
e

mcotinty data can be used to address the
ROM and tetel the associated value of the

bracheted term. Once the particular value of N
the bracketed term is obtained. Equation 4
can be computed by shitting this bracketed
term by one brt position betore accumulating Y

the previons sum. A block diagram of this . i o
ROM-accumulate  alsorithm i hown in Figure 2. Block Diagram of the Multiplier-

' ‘l‘\‘“'?l At M as - sho! } Accumulator Algorithm for Implemcnting Sum
Figure 3. Note that the X terms are bitserial of Products Operator
due to o the reartaneement ol terms  in
Faguation 4 The siee ot the ROM required
e Ficure 3 2M words, where Mois the maximum number of input values, as given in Equation 1.
Iie numiber of bits per word in the memory is the sum ot the word lTength of W,oand the value ot
love M.

As noted mothe above discussion, the input data to the ROM is bit-serial. However, i most
apphications. the mput data in o tvpical image-processing application 1s given i a parallel word
tormat. Henceo the block diagram of Figure 3 is moditied to change the input data from parallel
tormat to bitsserial format. as shown in Figure 4. This input data can be retormatted with a parallel-
to-serind st register circuit. Also shown in Figure 4 s an output butter. which butfers the outputs
ot the tattand-accumulate function. and « controller tunction. which provides the necessan
controls 1o the other functions. A briet discussion ot the design of the PIPE T SIC tollows,

The tollowmye design goals were used in the development of the PIPE LSIC. The PIPE
FSIC witlh aceept mpuat data bemg <=8 bits ata 20-MH 7 data rate. Data entry can bein 3 > 3 blocks
or 9«1 blocks defined by the user. Datacis entered via an input strobe ata 20-MH/ rate. Output
data s presented on o trestate bus bemg <220 bits parallel, Output tinung is compatible with the
mpat allowime device g Al inputs and outputs are TTT- and CMOS-compatible with g
panont of three A master clock controls all data sequencing and timing, The PIPE TSIC will be
ser-proetanimable
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Figure 3. Block Diagram of the
ROM-Accumulator Algorithm for
Implementing Sum of Products Operator

The simplified block diagram of the
PIPE LSIC architecture is shown in Figure 5.
As shown in Figure S. the input data S, T, and
P are parallel words that can be loaded into
the input latches serially or in parallel. The
particular mode of operation is controlled by
the user through the use of one of the control
mput lines. This allows the PIPE LSIC to
operate on 9 X 1 blocks or 3 X 3 blocks of
data. In the serial mode, all data is loaded
through the P input pins and latch, and then

PARALLEL INPUT WORDS

i ‘ {oooIoooi & {oooi

PARALLEL-TO-SERIAL
SHIFT REGISTER

Xo | %y le o o

X
oM

(BIT
SERIAL)

ROM

CONTROLLER

SHIFT-AND-
ACCUMULATE

BUFFER

OUTPUT

:

Y

Figure 4. Block Diagram of ROM-Accumulator
Algorithm With Parallel-to-Serial Shift Register,
Buffer Qutput. and Controller

is sequentially clocked through the other latches. In the parallel mode, the data is loaded through
the SO T. and P input pins into three separate input latches. The input data is then sequentially
clocked into the other Latches. In the serial mode, nine sample periods are required to load all of the
input latches: in the parallel mode. three sample periods are required. This method of data entry
climinates the need for latch address pins and facilitates convolution and sliding-window operations

with a single part.

The bit-parallel words in the input latches are converted into bit-serial words by the parallel-
to-serial registers. The outputs of the parallel-to-serial registers form the 9-bit memory address. The
menmory outputs are shifted and accumulated to complete the sum of products operation. Tri-state

|
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T INPUTS ety T |
. | SERIAL SHIFT REGISTER |
- P INPUTS ~fmetpy |
{ l
i CONTROL l
z
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! . Figure 5. Simplified Block Diagram of the PIPE LSIC Architecture
i
output latches are provided for off-chip buffering. All timing and control pulses for the parallel-
o to-serial registers, the memory. the shift-and-accumulate, and the output buffers are generated
on-chip using a simple shift register controller with a load pulse and master clock as inputs. The
. shift-and-ac umulate circuitry will operate with cither unsigned magnitude data or 2's complement
data as selected by the user. The design is very user-oriented. both from the memory technology
) considerations as well as the number ot control lines required to operate the chip. Table 1 defines
3 the control inputs of Figure 5.
The PIPE LSIC design and layout have been completed. Figure 6 is the diagram of the 1C
barmap which is representative of the actual layout. Figure 7 is the CALCOMP plot of the PIPE
LSIC. The major sections of this layout are:
. ] Input fatches/parallel-to-serial shift register
e ) EPROM
v ° Shift-and-accumulate
. ] Tri-state output latch
; L Controller.

The arca and estimated power for cach of these sections is given in Table 2. The arca for cach funec-
tion in this table dovs not include the arca used for lead routing. The total bar size is approximately
240 X 270 mils® with a total estimated power of 600 mW. Each of the functions listed above is




Control Line(s)

Word length (3-bit BCD code)

Parallel serial

Master clock

Load

input strobe

2's complement

TABLE 1. USER-DEFINED CONTROLS

Function

Defines the word length in bits of the input data.

Determines mode of chip operation: 3 X 3 or

9 X | operations.

(<20 MHz).

A S(glurc-w;we clock provided tor system timing

Initiates the parallel-to-serial data conversion

(<20 MHz)

Indicates valid input data and latches it in the

input latches (<20 MHY).

Defines signed or unsigned magnitude data

operation.
Enable Used to tri-state or enable the output bus.
Vib Single +5-V operating supply
Vpp Normally at 5V but taken 10 25 V for EPROM

et e A e ———— e ia & e e

programming.

Data valid An output signal indicating a complete computation.

Two's complement coefficients Used to set the sign bits of the output word when

<8-bit input data is used.

i '————- —————————————— ———--—-——‘1i—
: S INP
R uTs —r—b ’ |
T iNPUTS INPUT LATCHES PARALLE L-TO- |
H SERIAL SHIFT REGISTER I
. P INPUTS —1 P |
: ! L I |
|- |
CONTROL _ | CONTROLLER |
INPUTS EPROM | 270 MILs
' |
e
\ |
A g B! |
' SHIFT-AND-ACCUMULATE |
v * l
: OUTPUTS
v TRI-STATE OUTPUT LATCH +—& MEMORY
A | | COEFFICIENTS
' e 1
L 240 J
™ MiLS 7

NOTE: NOT TO SCALE

Figure 6. Diagram of the PIPE LSIC Barmap




INPUT LATCH

PARALLEL TO

SERIAL SHIFT
REGISTER

CONTROLLER

EPROM

SHIFT AND
ACCUMULATE

TRI-STATE

Figure 7. CALCOMP Plot of PIPE LSIC

TABLE 2. AREA AND ESTIMATED POWER OF THE PIPE LSIC

Function

Inputlatch P-10-S shift register

EPROM memory
Shift-and-accumulate
Tri-state outpnt fatch

Control and timing

Area
(mil- )
8400
12.000
101800
3.600
2400

Power
(mW)

175
150
4)_{

70
1o




discussed v detatl in Subscections IEAL 2 through TEA oL respectively A parallel eftort of o hardwaie
demonstration of the sum o products operator asimg the ROM-accumulate algonithm o discussed
in Subsechon 1LA7

2. Input Latch Parallel-to-Serial Shift Register

This subsection discusses the input latch parallel-to-senal sttt register tunction of the PIPE

LSIC. The block diagram of this iput structure is shown in Figure 80 The mam parts of this
structure ure:

L Input maltiplexer and latch

] Parallel-to-serial shift register

° Memory address drivers

® Memory address select.

A Tunctiona! block diagram of a single input stage (1 ot 9y is shown in Figure 9. Transistors (M
through M16) form the input multiplexer: tatches LO through LTSy form the mput latch: registers
Reg 1 through Reg 14 form the parallel-to-serial shift register: Reg 0ds the memory driver register
with increased drive capabilities: and M1T7 15 the address select multiplex transistor used in pro-
gramming the EPROM. The input multiplexer switch transistors (M1 through M1o) select ¢ duta
path tor serial or parallel data input operation. This selection is made possible by the parallel or
serhtl (PAR/SER) select line €TTL eveh which is buttered to an MOS level by inverter I us shown
1w Figure 9. Inverter 12 provides the complement of the PAR 'SLER line for selecting the multuplexer

P INPUTS T INPUTS S INPUTS
N S
/! N/ AN 4 Y
b Yttt vt dvdbebdd bddvYY Y
PA ER INPUT INPUT INPUT INPUT
; Ec —» LATCHES LATCHES AND LATCHES AND STROBE
SELECT MULTIPLE XER )

MULTIPLEXER

PARALLEL _
LOAD

PARALLEL-TO-
SERIAL SHIFT

PARALLEL-TO-
SERIAL SHIFT

PARALLEL-TO-
SERIAL SHIFT

44— ¢ CLOCK

REGISTERS REGISTERS REGISTERS
ADDRESS MEMORY MEMORY MEMORY o
ADDRESS ADDRESS ADDRESS 40 CLOCK
SELECT
DRIVERS DRIVERS DRIVERS
AO AOA A A AZ Ny A4 — A A A A

Figure

R. Block Diagram of the Input Structure
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switch transistors (M1 through M16). Once a data path has been selected. the data proceeds through
latchies, LO through L7 and awaits entry to latches L8 through L1S. The data is latched into these
registers when o strobe pulse is given. This lateh takes place on the rising edge of the strobe
(STROBE) pulse. The data is held in these latches regardless of changes appeuring on the input duta
line since latches LO through L7 are disabled on the rising edge of the strobe pulse. The strobe
pulse (TTL level) is buftered by inverter I3 and complemented by inverter 14 to provide the proper
levels. After the duata is latched (19 through L1S), it is then ready for the parallel-to-serial The
parallel-to-serial conversion takes place in registers RI through Ri4. On cach phase shift (bS)
clock, data is transterred upward toward the memory address driver. Figure 10 shows a timing
diagram of this function.

A detailed discussion of the input multiplexer and latch. parallel-to-serial shift register, mem-
ory address drivers, and memory address select circuits follow. The last topic discussed in this
subsection is the level converter and input protection circuit.

a. Inpur Multiplexer and Latch

Figure 11 shows a single-input multiplexer. Transistors M1 and M2 provide two difterent
data paths (A or B). The SELECT line is presented to the gate of M1 und its complement to M2,
A high logic level on the SELECT line will turn transistor M1 on and allow data on the A line to
propagate to point C. Similarly, taking the SELECT line low will produce a logic high on the gate of
M2: then. data on line B is allowed to propagate to point C.

STROBE 1

|
Blo VT II T I

|
Bl, | r- TS TS T AT T T T T T T TS E ST
i

pata | Bls [ TITTIIIIITTT Il

i
P U S
INPUTS ﬂ :
]
1}

N
BI | b e e e e e - m tr it e e -t = e o - —
1

7

Feloek LU

PARALLEL LOAD 11

¢SCLOCK /| M M. My o uws
SERIAL ouTPUT — 1 L] | e

(o] 1 2 3 4 5 6 7

Figure 10. Timing Diagram of the Input. Load. and Shift Sequences
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The input latch circuitry is imple-
mented by using two N-chunnel MOS (NMOS)
latch structures. Since  the NMOS  lateh
structure is the basic building block thut is
used in the input fatch circuitry as well as in
other portions of the PIPL LSIC. a brief
discussion of this circuit is given.

The block diagram and schematic of an
NMOS fatch are shown in Figure 12, This
latch s composed of an input data path,
transistor M1, tollowed by two NMOS invert-
ers (M2, M3) and (M4, M5, and a feedback
path  through  transistor - M6, These  two
inverters are constructed with depletion loads
(M2, M4y und enhancement drivers (M3, MS).

M1
A2 L
— c
M2
B >—
SELECT )

Figure 11. Circuit Diagram of the
Input Multiplexer

The operation ot the lateh circuit is as follows. Data enters the latch through M1 and appears

at node 1 when the LATCH line is high (logic

1), If the data entering is high, then M3 will conduct.

pulling node 2 low (logic 0). Since the gate of M5 is connected to node 2. M5 will turn off transistor
and let transistor M4 pull node 3 high. which is the sume information at the input. The LATCH line
can now be pulled low, causing the LATCH line to go high. This high level on the gate of M6 will
cause Mo to conduct. providing a feedback path from node 3 to node 1. Since M1 is now in a

LATCH

DATA m‘“DO—‘DO‘——) outPut Y

L_J
"1 CATcR

(A) BLOCK DIAGRAM

LATCH
OUTPUT

DATA }—‘;‘——

DATA '-‘____[_'_| oo

LATCH

LATCH

ouTPUT _’;_____]— ]

(C) TIMING DIAGRAM

Figure 12. Typical NMOS Latch Circuit
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nonconducting state. data changing on the input DATA line will have no effect on the latched
data. It the data initially entering the latch is low. u low level will be latched similarly. A timing dia-
gram of possible inputs and latching pulses is also shown in Figure 12.

The input latch circuitry incorporates a D-type latch action. as shown in Figure 13. This
cdge-triggered circuit provides greater noise immunity and shorter data-valid lengths than a level
trigger latch. The D-type lautch function is implemented by using two NMOS latches, as discussed
above, clocked on opposite phases of the strobe (STROBE) pulse. The STROBE pulse is provided

by the user while STROBE is generated on the LSIC.

Figure 14 is a partial block diagram of the PIPE input structure. The input data can enter this
structure either through the S input lines or from a previous stage determined by the parallel or
serial (PAR/SER) control line. Data enters latch DL2 when the strobe line is pulsed. On each succes-
sive strobe pulse, data shifts to the next latch. For example, consider that the strobe line is puised
high and data enters trom the S inputs to latch DL2. On the next strobe pulse. the data now in DL2
will shift to DL1 and the new data will enter DL2. On the next strobe pulse. data in DL1 enters
DLO. data in DL2 enters DL, and the new data enters DL2. Once all of the input latches have been
loaded, the parallel-to-serial conversion can be initiated.

h. Parallel-to-Serial Shift Registers

A partial block diagram of the parallel-to-serial shift registers is shown in Figure 15. Parallel
mput data enters through a control multiplexer when the parallel load (PARALLEL LOAD) line is

v TO NEXT
DD STAGE
Iy
STROBE )
STROBE )—— L I
-l TO
1 L PARALLE L
, I - — SERIAL
DATA L SHIFT
)—J—L —{ REGISTER
INPUT
L 4 L 1

Figure 13. Schematic Diagram of the Input D-Latch




INPUT D-LATCH
Do

INPUT D-LATCH

DLI

INPUT D-LATCH

DLZ

1

STROBE

MULTIPLE XER

|

PARALLEL
INPUT
DATA

L CONTROL L DUAL — ]
MULTIPLEXER REGISTER
I .
(O S N CONTROL | DUAL —
MULTIPLE XER REGISTER
PARALLEL PREVIOUS :
LOAD 0e STAGE .

l@muen S INPUTS

PARALLEL-TO-SERIAL SHIFT REGISTER

®» PARALLEL-TO-SERIAL SHIFT REGISTER

®» FARALLEL-TO-SERIAL SHIFT REGISTER

j@m— INPUTS FROM PREVIOUS STAGE

l«—— PARALLEL SERIAL SELECT

Figure 14. Partial Block Diagram of the Input Stage Architecture (3 Stages of 9)

——» MEMORY
CONTROL DUAL ADDRESS
MULTIPLEXER REGISTER =
DRIVER
CONTROL | DUAL
MULTIPLEXER REGISTER

d

T

|

Figure 15 Partial Block Diagram of the Parallel-to-Serial Conversion
{4 Bits of One 8-Bit Word)




pulsced. and enters the dual register (two NMOS Litches). Once the PARANLLEL LOAD Iine tetaans
to a low logic state. the phase shitt (bS) clock will shift data bies trom the previous tegister ot
next register. The phase shitt clock is generated on-chip by OR-ing the parallel Toad. & clock anid
the Vi, voltage level This operation is syuchronous with the two-phiase nonoverlipping locks b

and ) These clock pulses are generated on-chip trom the master cock supplicad by the user
¢ Memory Address Drivers

The memory address driver is the last stage in the parallel-to-serial shitt register. The circunt
diagram ol the memory address driv 1 is shown in Fieure 1o This circuit receives cach shifted input
data it and latches this data for one clock cycle. The Latched data is butfered to drive the memony
address decoders.

ﬁ Von
s A, ] MEMORY
INPUT - . A ADDRESS

DATA 7 ' 1 >0

I EJ_,
]
Figure 16. Circuit Schematic for Memory Address Driver and Latch
d. Programming Address Select

Fhe Vi dine s taken to 25 volts during the progrumming of the EPROMUA special M op YOIt
age divider (Figure 17) enables the programming address select multiplexer so that the input data
lines van be used as memory address inputs (Figure 18). The \"m‘ voltage divider circuit also pro- 3
vides the program enuable (PE) for the EPROM. This will make the memory casy to program and no
special mput bit shitting is required. In normal operation. the \ Iine s kept at o S—volt Tevel

pe

e Level Converter and Input Protection r

The PIPL IC operates on g single +5-volt supply (V) and all inputs and outputs are CMOS
I'TL-compatible. Most of the on-chip circuitry requires a 0- to S-voli level for logic tows and highs,
respectively . Therefore, a level inverter is necessary to convert TTL levels to the MOS devels necded
A TTL-to-MOS 1nput bufter is shown in Figure 19,1t consists of two inverters i series. Afso. mpuat
protection from static damage is provided on the mput M1 and R This Tevel butter is used on the
approprigte mputs
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3. EPROM

Severadd senvonductor ROM echnol Vpp (5 TO 25 VOLTS)
auices were considered oy candidates Tor
unplementing the memory  function of the
RON-Gccumulate lgorithne Prime consider-
ations 1 the selecton of e optimum ROM
technology tor the PIPE LSIC are:

L] L ser-programmable __1

L Fase ot reprogramming

L] Mibitary cuvivonment construmis

® Single supphy voltage operation .—-{

L Static on-chap logie

* b ~tabhished rechnology

__‘ Vp (0 TO 5 VOLTS)

L Nonvolath
N o l » TO ADDRESS SELECT
lh: :.‘lL\k(ll\..l‘“.\ crasi »Ic\A Pr(‘)gl\\\l‘?l\lnuljlc ROM MULTIPLEXER AND
(FPROND \.-kh\ml.d 1OS (NMOSH  tech- PROGRAM ENABLE ‘PE)
nology  was judeed to be the best technol- I—{
ogy to meet the requirements of the progran:. A

]

The advantage o an FPROM wechnology s

that 1t v user-programmed and not mask- Fig,urcl?.\'m, Voltage Divider Circuit
programiued. Another meportant advantuge of

the EPROM s that the program can be

clectrteadly erased A transparent quartz window covers the EPROM package. rasing the FPROM &S
dosimple muatter of expostne the window to ultraviolet lighto Atter erasing, the FPROM can be

progriaanmed arain

The FPROM technoiogy allows tor a common chip m the inventon to be personghized tor g
particular algortthn bttt G also be casihy reused Tater faran entively different algonthm

P
J
ADDRESS [
INPUT MULTIPLE XER
FROM PARALLEL-TO- L » A
ADDRE S% 0
INPUT-—® SERIAL SHIFT " oRIVER TO EPROM
LATCH REGISTER oA

Figure I8 Programming Multiplever
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X-DECODE

ADDRESS INPUTS

> 512X12 MEMORY MATRIX

Ap — A

8 Y GATING

Y-DECODE

*

OUTPUT LATCH

PROGRAM —=—-] PROGRAM LOGIC [

READ MODE

! - AND DATA INPUTS
e VT
Q --O"2

— = — PROGRAM LOGIC

Figure 21. Bloch Diagram of the 512 -

8 STORAGE DEVICES

00000000

A. BIT PLANE CELL

FLOATING GATE GATE
DRAIN SOURCE

P

G

P- TYPE
B. CROSS-SECTION OF EPROM

TRANSISTOR DRAIN
GATE - |
FLOATING _—"

C. MEMORY STORAGFE DEVICE

Figure 22 EPROM Cell Structure

DATA OUTPUTS (PROGRAM INPUTSI

12 EPROM Configuration

By supplying the correct addresses 1A
through Ag ) the X- and Y-decoders select the
proper 12 memory storage devices where logic
highs or logic lows hune been previonshy
stored. These 12 Togic fevels (bisy are then
latched mto the memory data Tatch, winch
teeds the sini tand-accumulate airgitry,

Fhe N and Y decode circantiy s shown
m brgure 23 The mpnt address and 1y data
-.'nmplcmcm are hard-wned 1o the decode
drver transistors (MO thioueh NN providing
the necessany BOD o decmal decode The six
drnvers tor the N decode will provide 2"
ditterent combmation. aesultiog e o4
possible selections A the same times the Y
decode provides 77 combmations, resulting m
clvhit posseble selections: thus. by sy 9-hit
acddrosss s possible to oselecr 20 ar 52

~tored locations

Once the address s supphed and the

proper storave location Jus been selected. itis
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iivm A Y -

Lgrmts

o s

*
-

stracture 01 the

then necessary to determine the logie fevet
stor L bemg erthier a togic ngh o a logie Tow.,
Phis tunction s pertormed by the sense
aupliier shown in Figure 240

When the proper selection has been
tade by the decode aircuttry s the sense
atapliner deteriomes the Jogie state stored
trere oy measuriine the clharge stored on the
doating wate ot the stotage transistor. Onee
Hes deved s dewected, 1t s buttered 1o drive
the o output memory latch that teeds the
AL and-cccarmulae corcuntry

Bejore programmme. the memory s
crieed oy oxvpositie the chip o through the
transparcnt o window  to high-density olira-
violet fight owavelength 2537 angstroms).
[ he recommended wania exposure dose is
Py aattseconds per square contuneter, After
crasute Call bits are e togic high statey, logic
fovws are programmed tinto the desired loca
vons. A low Jevel can oonly be erased by
ultraviolet hight The programming mode s
achicved when v ds taken to 25 volts, Data
i presented mooparadlel T2-bit words on (3
through Q- of Tigure 21, The corresponding
fow bits are programme-d ireto the memory by
tak iy the hies fow tor SO s

-4, Shift-and-Accumulate

Ficure 25 s a0 block diagram of the
dettand-accumulate cwrcattry whiich con-
St o sai-ot-products from o bit-by-bit
parallel scnal arithmetic operation.,

Fhere are 12 data mputs that come
Pron the FPROM sccuion. X control Tines. and
ooutpat hiness Smee the ROM-accumulate
toomgee produces na rotnd-of U error, all 20
Bt are saved and presented o outpats
Fraure 26 shows  the  operational
shift-and-sccumulate
Ciouitry

Pwelve-bit memory data s presented to
e ol adder AT mputs on the rising edge ot
the phse clocks doand datched on the falling

i
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A. X-DECODE
{1 OF 4!

M14 PP

e ]
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o 2

e 2 3
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B. Y-DECODE
(1t oF 8)

Figure 23. Schematic Diagram of the X and Y
Matrix Decoders
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TCcC MEMORY DATA
¥ I F R R TR
0 Dyy Do fe— TRUE
P ¢ COMP
SHIFT-AND~-ACCUMULATE 4— CLEAR ACC
4— LATCH ACC
Dig Dy |& LATCH ACC

VYV YT T IYVIIYYYYYIYYIY Y

OUTPUT DATA
Figure 25. Block Diagram oi the Shift-and-Accumulate Section

edge of d. The sum-and-carry results are latched into a master-slave register on the next rising edge
of d. By feeding the sum-and-carry latch outputs torwurd (left) to remaining tull adder inputs. a
binary multiplication is performed per cach clock cycle.

The sum-and-carry latches are cleared on the rising edge of the clear accumulator (CLEAR
ACC) pulse which initiates the shift-und-accumulate operation for a given input data block. Sign
magnitude or 2's complement memory data can be used by activating the true (TRULE) pulse or
complement (COMP) pulse full adder control lines, respectively. Individual sums and carries are
latched into the output adder on the falling edge of the latch uccumulate (LATCH ACC) pulse. and
the final result is valid on the next rising edge of the LATCH ACC pulse.

The total computation requires 2B clock cycles per input data block. where B is equal to the
number of bits/input word.

The logic implementation and truth table for the PIPE LSIC full adder function are shown in
Figure 27. Note thut the outputs of this circuit are complemented sum (QS) and carry (QC), allow-
ing a minimum number of components. The full adder (FULAD) schematic diagram is shown in
Figure 28. The addend input includes o lateh from which the true or complemented data may be
selected. Transistors M. M2 through M5, Mo, and M7 and M8 are a puss gate, g two-stage inverter.
a feedback gate. and select gates, respectively. Transistor M 14 s the load device for the carry NOR.
with the series string of transistors. M9 and M10. ANDing the addend and augend inputs, the
paralleled devices, M12 through M 13, ORing the addend and augend. and the series device, M1,
ANDing the OR result with the previous stage carry. Comprising the sum NOR are the following:
the load device, M22, the paralleled transistorse M1S through M 17, that OR the three inputs: the

series transistor. M18. that ANDs the OR result with the CARRY output: and the series string of

transistors. M 19 through M21. that ANDs the three inputs. This circuit requires only true level
inputs and a total ot 16 devices. excluding the latch.

A TCC (2's complement coetficient) control line is provided by the user. When operating
with signed magnitude input data Jess than ¥ bits in word length, the TCC line can be taken to a
digitat low to ensure that the upper sign bits are set correctly.

2324
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Figure 29. Schematic Diagram of the Carry /Sum Latch

he sum-and-carry latch shown i Figure 29 s an inverting dual master-slave contiguration
which accepts duata on the fatting edge of &, presents complemented data at the output on the next
rising edge of doand latches the output on the subsequent tatling edge of b, Pass transistors M1 and
MY and feedbock trunsistors M23 and M24 are enabled by b while pass devices M3 and M4 and
feedback devices MY and M 10 are enabled by . Transistors M3 through Ms and M and M2
implement the dual master two-stage inverters, and transistors M5 and M1o. M9 through M 22
and M 25 and M 26 implement the dual slave two-stage inverters. Devices M7 and M IS are paralleled
with M3 and M 1o, respectively. in the dual first-stage slave inverters to provide a clear capabihity

The output adder circuitry uses the charge storage capabilitics of NMOS devices to implement
a compact. high-speed. look-uhead carry tunction. Figure 30 shows a 4-bit 2's complement adder.
The exclusive OR (XOR) circuitry is static NMOS logic.

The NOR gates shown are a subset of the XOR gates and. theretore, require rio extra deviees
to realize a carry decode. The fast carry is done with dynamic ratioless circuitry (M3 through M 15,
where capacitive nodes ng, through ny, can temporarily store clocked signals. A TATCH AC(
pulse precharges nodes n,, through ny to a logic high voltage through transistors M3 through MS
When LATCH ACC pulse goes low, nodes ng, through ny are selectively discharged. based on the
ottput voltages of the input NOR and XOR gates existing on nodes ny through ny . When nodes ng,
through n, have scettled. the complemented sum. S ot A and B appears at the outputs ot the tinal
XOR gates. The dynamic ratioless carry allows the adder to operate at high speeds with a mmimum
number of transistors and low power dissipation.
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Fhe specd o the adder Grcunt s Iimated by the tme requunred to precharee nodes ng through
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transistors MY frouehs NP s on Thass nodes o thiroush oo oast ol dis baree throngh o series
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) Output Latch Tri-State Butter

Fronre 32 08 o tunctional diagran o the stiic oatput Taloin trestate buttor, Data trom
shitand-aecumulate circwt enters the imput Lotch when the TATCH OUITPUT hine goes hngh Dty
i~ Latchied o the mpat latch when the OUTPUT TATCH e s taken baoch Tow An ENARBLE e
tapphicd to o NOR sates whnch enabic two ontputdrin e NOR s Phese two outpat dree
NOR citcuts control the push-pull output-diner transetors A proctan cnabde (PE hine s albse
prostdod tor programmimyg the FPROM  Fhos e will vo lnels dunmy the procramnnne of G
FRPROM swhich, i turn. will trestate the output bas o Toos enables the ouiput bus to e ased as data
mputs o the menrery thas reducme the pamber of B O s requined Prgnre 33 05 0 wchamati,
dravram or e outpat lateh trsstate hutter The outpat Loach testate butter o oo banont of tire

I ll I \ l‘)‘l\l\
o Controller

A sinhibied controller Block diagran s shoser e brasre S Theocontiobier bas three mpat
tword fength st Cock and Toady amd seven ontpais gpaatied foad oo slear aocemulator Tat b
accwmuhator. ltch output. and data vadidy The shitt pepister controdlor has the tunction ol pro

Ordiny the correct pipehine tumig tor the PIPE TSI
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MUN. and will produce o LATCH OUTPU
vid NOR wite Nooon the same & clock. The
output of NOR gate N:ooiv dabso buftered
through butter BE. to provide an external
DATA VALID pulse. A tming diagram of this
function is shown in Figure 370 The lateh
aecumulator and latch ovtput wavetorms are

shown tor 1= through 8-bit input words.

The  control multiplexer s shown
schematically in Figare 38 This multiplexer
comsists ot three input stages (FTL leveh
which provide the necessary control fogic to
drive  the  decode circuitry. The  decode
circuitry selects  the proper data path by
turning  on the associtated  transistor (M 20,
M2SOMIO0 MAISONMA0. MAS)MS0L and MSSy,

A block diagram of u D-controller lutch
i~ shown in Figure 39, This lateh s imple-
mented by ousing two NMOS  latches in
cascade, clocked on opposite phases (Figure
9By which produces a D-type latch function.

A arrcuit schematic ot the clock butter
BEY is shown in Figure 40. This buftter

Q

T

A) BLOCK DIAGRAM

VDD

-'1 M3 M6

Aot Yl

SET RESET

B) CIRCUIT SCHEMATIC

Figure 36. Controller Set/Reset Latch Diagram

receives the master clock (TTL levely oft-chip und derives the two phases 0 to S volts necessary to

drive the on-chip circuitry. fnput protection is

LOAD 1

provided by M 14 and R1.

g JULUUMLUUNUrUrUrruruyuruUuUnuUIruUL

PARALLEL LOAD I I n
CLEAR ACC L I —rl-
LATCH AGC MA@D@ARR QAR o

m

22 I (<) [ ) NN 3 I [ W vd W )

LATCH OUTPUT
AND DATA VALID

*20 MHZ MAX

LATCH ACC AND LATCH OUTPUT WAVE FORMS ARE SHOWN

FOR SEVERAL POSSI

BLE 8 BIT WORDS. ALONG WITH SEVERAL

POSSIBLE LOAD WAVE FORMS.

Figure 37. Controller Timing Diagram
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Figure 39. Controller D-Latch Diagram
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Figure 40. Schematic Diagram of the Clock Driver
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Figure 41. NOR Gate Bus Driver Diagram

I'he NOR gates. N NSO NG and Naoare required to drive internal buses and., therefore. not
onfy provide an NOR function but also provide required buftering. A logic operation and circuit
schomatie s shown in Figure 31

7. Programmable Sum-of-Products Operator

Fo tully explore the architectural implications of a programmable sum-ot-products operator.
a hardware implementation of Equation 1 has been designed and fubricated under a parallel
contract with Camegic-Mellon University. The breadboard can operate on cither shiding or fixed
blocks ot data. A block diagram of the hardware implementation is shown i Figure 420 The bread-
board vonsists of nine input latches. nire paratlel-in‘seriad-out shift registers, o fust 512 X 1 2-bit
memory for temporary storage of the partial products, an EPROM tor permanent storage ot the
partial products. shittand-accumulate circuitry, tri-state output latches, and control circuitry

Phe wmput fateh structure s hardware- or software-selectable for cither senal data entry i
DATA INPUT P or purallel data entry at DATA INPUT S, DATA INPUT T, and DATA INPUT P,
This facilitates the implementation ot o nine-point transversal Gilter or a 2 by 3 sliding window
operator. respectively, The input data word length is hardware-selectable trom 1 bit to & bits and s

hardware- or software-selectable as 2’ complement ar sign magnitude tormat.

The weighting coetlicients. W, determine a set of partial products which are stored i a 512
A1 2-bit high-speed radom access memory (RAM)Y. Partial prodacts may be down-loaded on the
data bus from an external source by a controlling processor. The partial products are hardware-

selectable as 2 complement or sign magnitude format. The partial products obtained from the

40
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ks

RAM dunng operation are summed inoa carry-save aceumulator with data shitting to weight the
stgrticanee of cach partal product. Output data (20 bits) is butfered by a trisstate output lateh

Fhe data input section consists ol nine kitches connected to form a 9-stage-tong-by -X-bit-wide
st register. The outputs of cach stage are afso connected to nine paraliel-to-serial conversion
registers which form the data for ROM-uccumulate operation. The data input operation Is con-
trolled by the INPUT CONTROLLER. The controller has a hardware- or software-selected BOD
value count as oie of ats mputs. The INPUT RESET line o pulsed low to initiddize the controller.
The INPUT STROBE line shitts data through the input fatches and clocks the controller on its
leading edge. Atter cnough strobe pulses. the INPUT CONTROLLER gencrates o LOAD pulse
which latches the data trom the input latches into the parallelto-serial registers and starts the hngh-
speed asynchronous CONTROLLER. The LOAD pulse also resets the INPUT CONTROLLER so
that new data can be shitted into the input latches while the ROM-accumulbiate operation is taking
plice. A second INPUT RESET pulse is not required.

Fhe ROM-accumulate CONTROLLER operates from an asy nchironous internal 16.7-MH/
oscillator £60-ns pertod). This is the maximum clock rate for the componcnis selected tor the shirt
registers and accumulator. Atter a LOAD pulse is received from the INPUT CONTROL LR, the
CONTROILER sequences the operations of the PARALLEL-to-SERTAL REGISTERS, the PAR
HAL PRODUCT MEMORY the SHHET-AND-ACCUMULATE tinctionsand the OUTPUL LATCH
It abso provides signals which can be monitored by an external processor i desired. Adter the fina!
INPUT STROBL pulse. the resuft of the ROM accumulate catculatron is avanlabie at the TREISTATL
OUITPUT LATCH i 1B+ o 2] internal clock ey cles The addidonal of s clock oveles s due to the
pipehined archutecture. Fhus,

UROM e umiulare — [60 < B, + 3901 ns

WHCTC Uy e 1S e tmie required 1o provess the data and B s the naneer ot sieatcan
bits o cach mput data word For § it data, this s X700 s The ROM-wcmslate CONTROTTER
will bring the READY hme hagh when the output s soadable and will not aliose another residt o
averwrite the output ateh data unnd the READ ANCK mipeos pudlod e le b e oneaaln e ron s
sor. The OUIPUT BUFEFER FULL line goos Tighy the INPE T STROBE T o~ oubsbaitod gt
mternal oscllator is stopped it an overswete condition cxasts The o aate anpts RS B
polhing the external OUTPU T ENABLE ine Tow,

Owing 1o the pipehne orgamization o the ROM-Gccumutator hardw o v PARNTLE
SERTAT REGISTERS can be Toaded as soon s Boobits of dhta Bave becm st fo ol ot e,
B, internal clock cveles of 60 - Bo nanoseconds atter e List INPU T STROBE palse bor S
duatas this s 480 poo which gives o throughput rate of aboant 2 Mz Lidhic INPLTCONTROLTER
senerates 0 LOAD pulse betore the PARALETT SERIAL REGISTERS a0 crapted the INPLU
BUFEFER PULTL hine will vo tneh and the INPUT STROBE Tie ot Beomladtea nntad the roeatoas

arc emplicd to prevent ovenwnitimg any data

From the above discossion at can be seen that the masimam mpat date e do s on 1o
nomber or s an the mput data words B o and the om0 INPU T S TROB AP
number of INPUT STROBE pulses €Ny hetween paradlel toosonnd amnersions o b g,
operations pertormed. Forshidimg 300 3009 - b nlter apph atems o o srat s e e d
between paraflel-to-secial conversions For nonsidiy 300 35w den oo e e L
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are needed ands tor a2 b ranstorm, mine strobe pulbses are needed. The masanam mput daty sat
ivgnven by

Ay OV B a0y

Forshdimy wandow or transversal tilter apphications with 8-t data, 14y 5, N T S MBZ Forapplicy
ton stich asan S b transtormy with 8-bit data. fay 4\ N S Ho MY

Fhe naxamunm output data rate is wlway s given by

Iang = P B2 olny

Fhe breadboard abvo can operate in porddicl with two other breadboards o provide throaeh
put at real tuoe NV dati ntes Vhree control lines. shown dashed in Freure 420 are provided 1o
ssinchromze thus operativn These Tmes TV RESET OUTPUT. TV STROBE . and CHEAR OU TPLU
ENABLE are normalhy - o connected when operating o single breadboard

T'he programpuable-sume-ot-products breadboard is 12 2 12 ¥ Synches, werehs 7 pounds. and
dissipates TS warr o Picare 43 s a photogruph ot this breadbhoard. Por size compuarson. o 40-pin
duabi-hne package s shown adiscent 1o the electronies boards. With the exception of the mput
controller. output controller. and the EPROMs for program downloading, the entire clectroni
boards have been inteerated onto the PIPE LSIC This represents monolithically antegrating
approsimately T3 disereteanteerated circuits

B. PIPE LSIC APPLICATIONS

This subsection s o discussion of applications of the PIPE LSIC described in the precedmy
section. The types ol operations as well as operational constraints are discussed.

I Introducuon

Many digital signal-processing and image-processing algorithms require operations ot thie torm

M O]

Y = E WX, (5

1 0

where the Worepresents aset ot Bixed weghting coetficients and the X, represents a sel of sequence
ot mput values. Fquation S can be used to caleulate the coefficients of various transforms such as
Fourter. Cosine, Hadamurd, Haar, ctes Where two-dimensional transforms are necded. successive
one-dimensional transtorms can be used it the transtorms are separable. For image-processing appli-
cations. Fguation S detines the diserete convolution of a two-dimensional input image with a con-
solution wray - These mathemancal operations are based on the adjacent pixel vatues and are termed
neighborhood operators  Fxamples of neighborhood operators include noise smoothing, cdge
crispenime. hnear edee enhancement. ete

The tollowimg subsections discass the applicability of the PIPE 1 SIC to matrix operations for
calcubatinge transtorm coetticients and neighborhood operator calculutions.
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Input Quiput Considerations

Koo to the tall ase of the PIPE TSIC a8 o aondersand e o thie it outpat solationsbips

Frore 44 shows the mpuat output pies of the PIPE PSTC The PAR SER seleot pindeter-
innes whicther the LSIC operates on 9 x Foor 3+ 5 blocks of dotas etthier of which may be shdiny
of nonshiding. The input word fength iy designated By the St WORD PENG T pins Fachie-bi
patallel mput words S0 T or Poare loaded mto the mpuat Litchies by the INPUT STROBE and
comerted into bitsserial words by the MASTER ¢ TOCK aond TOAD The PIPE TSIC s capable oi
cpetatimne on 2 complement or sign magmitade data as derermmed by the state ot thie 275 COMP
P A DATA VALID pulse intorms the user whoen 1l PIPE TSI has completed o cilculation. The
20-t parallel output is obtained by brimgmy the crabde (BN pin low o activate the trisstate

Oulpuls,
Ihe PIPE LSIC requires o o sinele Swvolt power sappes ands durmg programmimg ot the ‘
" FPROM, 4 25-volt prograruming voltage
A totad of 35 pans s requared tor tall S-hit mput and 20-bie output operations. It the input
word ength s reduced to 6 bits and only 8 bits of the output are used. o total of 40 pins are
\ necdad. The pins required tor word-length selection mpuat 1y pe tparallel or serabh and data tormat
* (2~ complement or magnmitude) can be elminated by on-chip bondimg to the V| or ground pm
Lo tor turther pin reduction on tfived application.
5
\
L]
Voo Vep GND EN
l¢———- TCC
S oy
8 PIPE 20
9
. T ve ¥ xow ¢~<— OUTPUTS
| P —A—» =1
" 4 i
3
WORD __2 DATA VALID
v LENGTH
p PAR/SER | L — 2 S COMPLEMENT
STROBE _ — L—— LOAD
MASTER .
' CLOCK “

Figure 44. PIPL LSIC 1:0 Considerations
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Pie operational Characterstios op the PIPE TSIO are discused v a Later subsection §hiese
Chatactenstios rosult i part trom the archutecture selected to tapleinent the PIPE LSIC and i part
fron tre varcutt design ot the architecture Atter a discussion o1 the types of calcutations the PEPL

USIC s capable ot these characterstios are castly understood and appreciated
3 Matrin Operation

Lhe PIPE TSEC is ideally sunted tor nmatris operations of the torm

v )

YoE WL, WL W WL W, WL W, W W

v

3

Vo s s s

|
|
|
|
i
N
J

~

/Z{V

coore Y represenis the prodact o oorow vector Woand aocolunm vectors NN oS sjrnal-processing
ophications require the product of o werghting matris and an mpuat sector This can be reprosenited

YW\ T
tar the PIPE T ST oS

o\ W, W,ooW Wo.oo A
N W, W, W

N b4 * ‘ N-
L PN
‘ Vo . N
N N

i L L] L] ‘\
[y ‘ | AN |‘
\\_j WO Ww Voo UNL

v dravram o of the PIPE ESIC continarad to miploment Fognations 7 s shown m apnge 40
N PIPE TSTOS wre aseds waith cac PIPE programomed with the werrhtme cociticionts ol ane tow
AW s climinates reprogrnnimy the PIPE T STC thos o reasing the spead of the calealation
A the Pompats ot the PIPE ESICS are connedted and data s entored secntiallv Nme s
poniodds are required to load the PIPE ESICS The s vector s calesdated i paralicd tor the particalag

vattew of N\ salid output s avardable every sample penod operatine onshdine @ b T duata whale

s sample perods are regqoired 1o produce an answer it the operation ot b guation 7 s perterind

g nonshidime 9y b data blocks
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Fhe conpporation showns an breare 46 can be used o caleulate coethicients ot

Transtorms
o Cre-Idmicrnsian [ransforms

Fhodiorete cosme transtor o adata sequence s detimed as

AT

(VN (21t faks
\ E N E N T S
S ‘ o\

Assttnye g poant transtornie s destred s b quation S stiaplifies to
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\ ";,q (o o7 o 0177 | Ay
v (0.245 0208 0S| N,
v 0.231 . 0.231 | Ix,
v, B 0.208 . (. 208 X,
v, I TR R 0177 | 1N,
Ly, 013 0. 139 Ne
v, 0.096 0.090 | |X,
v 0.049 . 0040 Ix.
L . — =

Fhe diserete cosine transtorm cun be implemented using Fieure 45

P he weiehting cocefticient matrices tor 8-byv-1 Hadamard. Walsh, and Haar transtorms are
shown i Figure 410 The transtforms described above all huve real coctticients,

I'he Fourner transtorms produces compley coctticients because ot g compley weighting
matrin. The discrete Fourter transform ol a scquence is defined by

MO

. . 2mik
Y, = X ¢! kK=0.1.20 .. M-I th
! M

1- 0

Assuining an S-point transtorm and detining
Wo=o¢ ! = CoN isin 2

bguation TT can be rewritten as

Y, = E N Wt k=012 .7 R

10

wiich i the same torm as bquation 30 The weighting coefficients are now complen. requiring addi-
tional PIPT [SICS to calealate the real and imaginary Fourier coefficients. This 1s shown in
Ficure 47
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Figure 47 Implementation of Eight-Point Fourier Transform Using PIPE LSICs

I I'wo-Dimensional Transforms

For applications where  two-dimensional data is used. two-dimensional transforms are
required I the transtorm s separable. a two-dimensional transtform can be implemented by using
aone-dimensional transtform, tirst on the rows ot the data and then followed by a transtorm of
the columns of the cocefficients of the tirst transform. Figure 48 shows an implementation of an
s K two-dimensional transtorm using PIPE 1 SICs Data is loaded sequentially. one row at a
tune, into the row transform and. at the end of cach row. the transform cocefficient for that row
appears as parallel output. These coetticients are parallel-loaded into a reformatting memory. The
reformatting memory accumulates the 64 coetlicients of the cight rows of the image and loads
themn sequentially into the columm transtorm. Each cight coefficients ol the row transtorm produces
bt output coefticients
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Figure 48 Implementation of Two-Dimensional Transform Using PIPE LSIC

. Pole-Zero Filtering

Another unportant application of the PIPE LSIC is pole-zero filtering. Consider a system
whose transfer tunction is given in the Z-domain by

M
Zztn z "
ngy= "0 YA (14)
N X(Z)
n=1

The difterence equation relating the input samples X, to the output samples ¥ is given by

N M
Y, = E by Yo ot E a, Xi (15)
n=1

n=]

Using the PIPE LSIC to implement a pole-zero filter requires M to be less thun or equal to & and N
to be less than or equal to 9. As an example. consider a second-order filter with transter function

Qg ta, 2 vay L-
1 b 2" +by, 7"

Iz = (1o

g0
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v, o- A A A 1 + !
K TRAE I Xk [B1B2) | Yo,
XK1 Yi-2
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PIPE PIPE
‘ ) ( ) K
x AO‘ A]. A ‘Bl' 82
Figure 49. Using PIPE LSIC to Implement Second-Order Filter Function
Yhe ditference equation is
Yo Ty Ngrap Nty Np Y by Y, (e
ar
Y, = Iy, 4y iy b, b:] X,
'\k |
‘\k 2
\k 1
\k 2

Iquation 17 is the same form as Fquation 6 and can bhe implemented using PIPE LSICs as
shown in Figure 49, The X data sequence is loaded sequentially into the first PIPE LSIC containing
weighting cocetlicients ag . a,. and a,. The output of the tirst PIPL LSIC is loaded sequentially into
the second PIPE LSIC to complete the calculation of Lquation 17.

4. Neighborhood Operators

Many image-processing algorithims such as noise cleaning. cdge detection, and edge enhance-
3

ment can be implemented with the PIPE LSIC operating on shiding 3 < 3 pixel blocks of the input

AR
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Figure 50 Two-Dimensional Spatial Convolution for 3 X 3 Neighborhood

image. A 3 X 3-nput array is spatially convolved with a two-dimensional weighting array. as shown
1

in Figure 50. This 3 X 3 two-dimensional spatial convolution is a very powerful image-processing
calculation and one tor which the PIPE LSIC is ideally suited.

The tollowing subsections discuss some commonly used neighborhood operators and present
some experimental results of the programmable sum of products breadboard described in Subsection
AT

a. Noise Cleaning

Many images contain discrete pixel variations that are a result of noisy sensors and very
objectional from 4 user viewpoint. Simple low-pass spatial filtering can climinate or smooth most
such noise siee the noise is decorrelated spatially from its surrounding pixels. Figure 81 shows
these low-pass weighting arrays that can be used as weighting cocfficients tor the PIPE LSIC. As
can be oseen. the weighting arrayvs are normalized to unit weighting to prevent an intensity bias
into the processed mage.

b. Edge Fnhancement

Ldge erhancement is used to accent edges ol an image to provide a more subjectively pleasing
image. Since arcas ot high frequency (edges) are to be highlighted. the logical operation is a high-
pass tilter. [his can be done spatially. using the PIPL LSIC as a 3 X 3 neighborhood operator. Some
weighting arravs that are of the high-pass form are shown in Figure 52 There is no need to nor-
nadize these arrays since their »lenients sum to unity.

I I dee Detectors

One ot the most distingaishing features of an image are cdges because they provide informa-
tion on the physical extent of objects within the mage. Edges are defined as Jocal discontinuities
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Figure 52. High-Pass Weighting Arrays

i the amage Juminance or amplitude Tevel. There are hasically two methods of edge detection: edge
cabuncement tollowed by thresholding and edge filtering. ="

tn the edge enhancement thresholding method. the input image is spatially convolved with a

ol tincar weighting arrayvs to produce u set of gradient functions which are. in turn. combined

by hinear or nonlinear function to create an edge-enhanced array. o improve edge visibility - the

sran lovel map s compared to a threshold. Tt the gray level is greater than I'oan edge s assuraed

prosent it the gray level is less than T. the deaision is no edge. The selection of the threshold is

taportant. if it s too high. some edges will not be detected: it it is too low. noise will he
detected as edges.

T

Fhere are two types of edge-enhancement operators: differential edge detectors. such as
Roberts, Prewitt. and Sobel: and template-matching edge-detection such as compass gradient.
Kirso b three-level, and five-level.

In edge fitting edge-detectors. subregions ot the input image are fitted to a two-dimensional
model of an edge. I the it s close. an edge is assumed to exist with the same parameters as the
dec model Bdgee titting cannot be implemented with the PIPI

LSIC and 15 not discussed turther
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Figure 33. Weighting Arrays for Various Differential Edge Detectors

d. Ditferential Idge Detectors

Fhe Roberis edge detector is applied to a 2 X 2 neighborhood of pinels and can be imple-
mented as two spatial convolutions of the input array with a weichting array . The outputs of the
two comolutions are combined to produce an edge magnitude to be compared with the selected
edge threshold. T The orientation of the edge can also be caleulated from the outputs of the two
convolutions.

Fhe Sobel and Prewitt edge operators are applied to 3 X 3 windows of pinels and are anple-
mented by two sutial ¢onvolutions of the input image with o 3 C 3 weighting darray. Again. the
. } : by & A &

nuenitude and orientation of the edge can be calculated rom the two comvolutions.

Another differential edee detection is the Laplacian operator: however, because of 1ts sen-
sitivity to points and lines. it is not a very officient edge detector.™ "

Fhe weighting arrays used for the Roberts. Sobel and Prewitt edge detectors are shown in

Ficure S3. For cach operator. the amplitude ot the edge is given by
A= LY o 1YY (I8
o1
Ay =0 G Y

where Yo as the comolution of the input array and the horizontal weighting array and Y 0iy
is the comvolution ot mpat array and the vertical weighting array

NE
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Figure 54 Implementation of Differential Edge Detectors Using PIPE LSIC

P or the Roberts operator. the edge orientation is given by

Gl =+ tan ! (YV(W 19
ij)= an o (19
4 YH (i)

b or the Sobel and Prewitt operator. the edge orientation is given by

YV i
OO = tan ! H (201
YI (i)

Fhe PIPE LSTC can be used to implement the Roberts, Prewitt. or the Sobel edge detector. A
block diagram of the implementation of these operators is shown in Figure 54, The input data is
loaded as three sets of three parallel words. Three sample periods are required to initially Toad the
PIPE LSIC and provide the first output. Succevding outputs occur cach sample period. For the
Roberts operator. the weighting coctticients would be rearranged to take into account the 2 a2
welghtimg array .

. Template Matching Edge Detectors

In template-matching edge detection. a et of wetghting wrravs corresponding to the cight
maior compass directions tnorth. northeast. cast. cteor is convolved with the input image. The edge
orientation is determined by the direction producing the masimum gradient response greater than
the setected threshold, Fxamples of template-matchimg weighting arrays are given in Bigure 33 for
the compass-gradient. Kiesch. three-fevelsand five-level template-matching operators.

The PIPE LSIC can implement the template-matching edge detector casily. as shown n
Faovre o0 Phe mput array s Toaded as three sets ot three parallel words meoalt cight PIPE LSO
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Figure 56. Implementation of Template Match Edge Detectors Using PIPE LSIC

Ihe outputs are compared to determine the muxinium response and. hence. the orientation ot the

<t ]}_‘ O
1. Fdge Detector Performance Analysis

In an attempt to determine the relative performance ol the edge detectors discussed above o
svalugtion has been performed comparing edge response as a function o actual edee orentation
i he probability of correct detection as a tunction of the probability of false detection, and o tigare

ot erit as a function of signal-to-noise ratio ©°

frigure 57 shows cdge detector response tumiplitude and orientationy as o fanction ot o tuad
cdee orientation.® For the Roberts, Prewitt. and Sobel amplitude response, both the square root
sun ot the squares and the sum of the absolute values tF quation 181 responses are shown A can by
seen. the Prewitte Sobeland template matching amphtade response is relatively mvariant to cdgey
oricntation while the Sobel operator has the most Linear response between actuad edee onentation
and detected edge ortentiation. For the template-muatching operators, the ditterence between actadl
and detected edge ortentation as Jarge becanse the template-matdung operators measure edee
orientation in a quantized step.

Lhe performance of various edge detectors i the presence ot additive, white Gaussian noise
can he compared using parametric curves ot corrected detection probability versus talse detection
prehahility i terms of the detector threshold” Figure 88 shows such cunves Tor vertical and
Leonal edges tor both difterential edee detectors and template-matching detedtors with signal to
aose tatios of 1O and 10.0 For the diterential detectors, the Sobel and Prewitt pertorm better
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the wdvantave of hoovine the s petiormin o tor cal cdee orrentations whalo the Prow 1r e
Sobel regiire less computation

s, Experimental Resulis

Ihe procrammable sume ob prodoc to padboonsd discus o Sebseciion v s e

interiaeed to Fevas Tostriments Toaee Procesanis Taboratoiy to provide o vparinent ol
hoard tor the PIPE ESTC The hardware mtatace to the laboratory s Lot compat 1owas nph

moented with o standard To 1 O daty module ands - onsenenth s relatn el stone The o o
breadboard s down-loaded trom the Tmave Procossine alionatory s extensine data s

Puares ot through 62 show the operation ar the bresdboad as w300 5 o aridorhoad
operator with vartons sserehiting coctfoent Fronne 20 shones the tosatt of Jow pascaod Bl pass
Pterine dn the ooy pass cases the mraye Is sorew bt Vinrrcd wine e the Tighe prass coees onine areas
with togh frequency content are preserved. Bigire G shows thic cosult ot the Prowatt and i Sobdd
ditterentiad edoe detectors, asime the e o the abeobate caloes mcthiod to cbiae the edi

nugnitude. No theasholdime was perfornied The resultc ot comvolvime the Nortiowcisbiine stray ol
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Figure 60. Operation of Programmable Sum of Products 1
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6. Operational Characteristics

Several key parameters detime the operati
operations Osered or parallel sliding or nensho
FPROM Gecoss fimesaccuamadator time s and the - 1iod

Since the PIPE TSIC must access the ooty
imput wordy to calculate one term of the ansao
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Figure 61. Sobel and Prewitt Edge Detection Using Programmable Sum-of-Products Breadboard

oy . . -

luul "IA'\(’;\ B\ l\um ! (-1
where T s the on-chip EPROM access time. and 1, is the time required by the aecumulator
['o prevent addressing the memory incorrecthy. the time between load pulses must also satisty
Lquation 22.

Recalling that the number of input strobe pulses hetween load puises determines whether a
shiding or nonsliding type of operation is performed. the tune between strobe pulses (g gy, 1 odn
be piven as

1P
)

1 SMAN Ly, 0N ) ‘

STROBLE FATCH
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where Nois the number ot input strobes between load pulses. By s the time between load pulses

as deterimined by bquation 22 and Ty oy s the operating time tor the input Latehies

l'o maintain proper on-chip timing. the master clock €1 must be greater than B
times the load frequency. or

,ll()\l)

'(lml\' B

RS

Fable 2 summarizes Equations 22 through 24 i terms of input and output data rates tor

difterent types of operations. word length. and EPROM access time tasstming 200-ns accuniulator
timer. 20-MHz input lateh. and 20-MHz master clock tdesign gouls,

In the serigd 8 = 1 sliding type ot operation. one strobe pualse is necded between cach foad
pulse. und the load frequency is caleulated from bEquuation 22 to be 1T.25 M1z tor s-bit datu and
167 NHZz tor o-bit data. assuming 100-ns EPROM access time. For serial 8 < 1 nonshiding ty pe ol
operations, cight strobe pulses are required betweo s cach load pulse: therefore. the masimum load
Irequency is 125 Mz however. since data can be loaded in the PIPE input Latches independent
of thie paralel-to-serial registerse the maximum input data rate s determined by the inpat strobe
trequency . This can be caleulated from Equation 23 to be 10 MHz Tor both & und o-bit duta tor
N1 nonshiding ty pe ot operations,

5

For the parallet 3 - 3 shiding 1y pe ot operation. only one strobe pulse is needed betvween
load. thus, tfrom Equations 22 and 230 the Toud frequency and input duty rate cinput strobe tre-
quency b ocan be calealated to be 125 MEz tor S-bit data and 1.o7 MHz for o-biv datas with an
EPROA gocess time of 100 ns. For parallel 3 < 3 nonstiding 1 pe of operations, thiree strobe palses
are required between load pulses: therefore. the input data rate s 10 MHz tor both 8- and 6-bit

.

data. The etfect of EPROM daocess time onmput duta rate is also shown in Table 3.

-

~

Ihe output data rate is given by Lquation 220 regardiess of the type ot operation. and s
23 M tor s-hit data and 1.67 MHZz tor 6-big data with 100-ns EPROM docess time

Lo uchieve real-time (10-MIlzy operation on S-bit data with S0-ns EPRON access tine. tour
PIPE | SICs can he operated in parailel as shown in Figure 03 for transform calculations and Figure
nd tor neighborhood operators. In both timplementations. the input data is demultiplesed by the
input strobe pulse of the PIPE LSIC into the four parallel PEPLS and the trisstate outputs are multi-
plexed. using the enable pulse of cach PIPL LSIC. A block disgram ot the PIPE LSIC Demonstia-
tion Brasshouard is shown in Figure 65,
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Figure 64. Block Diagram of Parallel PIPE LSIC to Implement Real-Time Neighborhood Operator Calculations
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