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Preface

The purpose of this study was to compare several

techniques for the prediction of mass-loaded natural

frequencies and mode shapes. Of special interest in

this study was the recovery of the unloaded mass, stiff-

ness, and damping matrices from measured modal data

using a non-square modal matrix and subsequent solution

for mass-loaded modal data.

This study was somewhat limited in scope in that

only one panel with three discrete mass loadings was

experimentally tested and analysed. It is hoped the

technique using pseudoinverses will be explored further

to determine the general validity of this method. Appen-

dices A, B, and C should be helpful in this endeavour.

I would like to thank my advisor, Capt. H. C. Briggs

of the Air Force Institute of Technology, Mr. R. D. Talmadge

of the Air Force Flight Dynamics Laboratory, and Dr.

P. W. Whaley of the University of Nebraska for their

support and guidance in this effort. Additionally, I

would like to thank my wife, Janice, for her constant en-

couragerment and inspiration. Finally, and most of all,

I would like to thank my Savior, Jesus Christ, tor that

"Peace which passeth all understanding (Phillipians 4:7)."

In keeping with Proverbs 3, versus 5 and 6,
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"Trust in the Lord with all thii,: heart,
And lean not unto thine own understanding;

In all thy ways acknowledge Him,
And He will direct thy paths",

I dedicate this thesis to Him.

Frank B. Atkinson
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Abstract

The purpose of this investigation was to compare the

results obtained from three modal prediction techniques.

The first technique was an algorithm developed by Whaley

for lightly damped structures (Method 1). Results using

this algorithm were extracted from a thesis by Glenesk.

The second method was the finite element method using

NASTRAN (Method 2). The final method was the recovery of

unloaded mass and stiffness matrices from the general ma-

trix-vector differential equation of modal analysis using

modal data obtained from an unloaded test item (Method 3).

Once these matrices had been recovered, a quantity of mass

was added to the mass matrix to simulate a mass-loaded

case. The generalized eigenvalue problem was solved for

mass-loaded frequencies and mode shapes which were com-

pared to experimental results for the same test item.

Both square and rectangular modal matrices were consider-

ed in Method 3. The same test item and three discrete

mass-loaded configurations which Glenesk used were tested.

Percentage frequency deviations from the unloaded test

item to the mass-loaded predictions ranged from -7.2-00

to +7.4-% in Method 1, from -20.3-% to +17.84-% in Method

2, and from -20.6-% to +8.4-% in Method 3. Several dis-

crepancies in each technique prevent a direct comparison

of these results. The most noteworthy discrepancy was

xi



the fact that the modal measurement prncedure generated

nonorthogonal modes. The first method assumed the

mode shapes to be unaltered between the unloaded and mass-

loaded cases while the second method generated mutually

orthogonal modes. The unloaded nonorthogonal mode vectors

were used in Method 3 to generated mass-loaded modal quan-

tities. Detailed procedures, results, and conclusions

are obtained in the body and appendices of the report.
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A COMPARISON OF VA2IOUS TECHNIQ- , FOR
THE PREDICTION OF MASS-LOADED MODE

SHAPES AND NATURAL FREQUENCIES

I Introduction

Background

The ever-expanding performance envelopes of today's

highly complex fighter aircraft subjects them to increas-

ingly severe vibration environments. Coupled with these

severe vibration environments is a desire to rapidly in-

corporate newly-developed weapons system technologies into

the existing fleet of fighter aircraft. One such example

is the application of laser physics technology to vibration-

sensitive electro-optical equipme.t which would subsequent-

ly be installed in high-performance fighter aircraft.

The installation of electro-optical equipment in an

aircraft presents a complex design problem in that it is

necessary to know the post-installation modes of vibration

and natural frequencies of the aircraft prior to the actual

installation of this hardware. Frequently, the only modal

data available to the designer are the pre-installation

modal data. Thus, due to the vibration sensitivity of

the electro-optical hardware, the designer must consider

how to properly utilize the pre-installation vibration



data to correctly predict the pot-ii:i t ]lation modes o:

vibration, damping, and natural frequencies. Whaley (Ref

12) summarized three analytical techniques to accomplish

this task. Additionally, Glenesk (Ref 3) utilized an

algorithm developed by Whaley for lightly damped struc-

tures (Ref 13) to predict the influence of added lumped

masses on the vibration characteristics of unloaded struc-

tures.

According to the research conducted by Glenesk (Ref

3), as the size of the added mass increased relative to

the mass of the unloaded structure, the accuracy of Whaley's

algorithm was significantly affected. This degradation

in algorithm performance might be attribute~d to the assump-

tion that the unloaded mode shapes are unaffected by the

addition of the lumped mass. Another possibiity involves

the fact that the effect of damping was ignored in this

algorithm. Thus, an added mass might have significantly

contributed to the overall structural characte -istics in

such a way as to modify the mode shapes and natural fre-

quencies.

In addition to the various analytical techniques, a

numerical technique, finite element analysis, has been

widely used to predict mass-loaded naturctl frequencies,

damping ratios, and mode shapes. This technique requires

the construction of a computer model in which the continuous

2
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structure is idealized as a corbinatio )C a finite

number of various structural components (i.e., beams,

rods, plates, etc.). Although accurate n2sults can be

obtained using the finite element method, one problem

with this technique is the significant expenditure of

human and computer resources necessary to build, debug,

and run the finite element code.

The rapid development of portable modal analysis

equipment has made it possible to eliminate the con-

struction of a finite element model entirely. With

this equipment one can lay out a suitable grid on the

portion of structure to be modified, conduct standard

modal analysis tests, and reduce the data so obtained

to determine the desired unloaded modal data. The

question then becomes how to properly use this data

to determine the mass-loaded modal quantities for the

modified structure. One approach to this dilemma has

been suggested by Briqgs and Whaley (Ref 1) whereby one

uses the general matrix-vector differential equation of

structural analysis, its solution using a generalized

coordinates approach, and the resulting definitions

[u]T[M] [U] = [I] (1)

[u]T[K] [U] = 10 (2)

[uTc] [u] 0 nl0 (3)

3
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to analytically determine the mass-ic i modal data

when only the experimentally determined unloaded modal

data are known.

At the present time, the usual solution to equa-

tions 1 through 3 requires that the modal matrices, 'U7

and [U] T , be square matrices. If the mass, damping,

and stiffness matrices, [M], [C], and [K], are n x n

Tmatrices, [U] and [U] must also be n x n matrices

(where "n" is the number of measurement points). If

one measures fewer than ''n" modes in the frequency

range of interest, he must either extend this frequen-

cy range to accomodate "n" modes, or reduce the grid

size to "n" grid points. As either of these approaches

may be undesirable, a third approach using the method

of pseudoinverses introduced by Penrose (Ref 10) may be

used to isolate the mass, stiffness, and damping ma-

trices on the left hand side of equations 1 through 3,

respectively. Appendix A contains a sample problem

for the reader who is unfamiliar with this technique.

The resulting solution will be an approximate solution

to the mass, damping, and stiffness matrices for the

unloaded structure. Then, to find the corresponding

matrices for the mats-loaded structure one would add

appropriate mass, damping, and stiffness quantities at

the proper locations in their respective matrices to

4



simulate the structural modification, ,::d resolve equa-

tions 1 through 3 for the mass-loaded modal information.

If damping is not a factor one wishes to consider in

tihis analysis, one need only consider the solution to

the standard eigenvalue problem

[K] - 2 [M] = [0] (4)

to determine the mass-loaded natural frequencies and mode

shapes.

Purpose

The purpose of this investigation is to obtain data,

and compare the modal data obtained, using several modal

prediction techniques. The techniques chosen for this

comparison are those discussed previously, namely: (1)

Glenesk's use of Whaley's algorithm (Ref 3'; (2) the

finite element method; and (3) the method suggested by

Briggs and Whaley (Ref 1). Since a basis for comparison

is needed, the results obtained from modal prediction

software developed by Brown (Ref 2) will be used as a

datum in error precentage calculations for methods 2

and 3 presented later in this report. However, it is

felt by the author that to recalculate error values for

D.ethod 1 which would be based on a different datum would

be unfair to both Glenesk and Whaley's algorithm. Thus,

all values presented in reference to the use of Whaley's

5



algorithm will be directly extracted f>or Reference 3.

The same complex, rib-stiffened panel and several of

the discrete mass-loading configurations investigated by

Glenesk (Ref 3) will be used in this comparison.

Objectives

The objectives of this investigation are:

(1) Experimentally measure the natural fre-

quencies and mode shapes of a complex test panel in

the frequency range from 0-500 hz.

(2) Construct finite element models of this

panel and conduct a modal analysis on both unloaded and

mass-loaded configurations.

(3) Use equations 1, 2, and 4 along with

unloaded experimental data to obtain mass-loaded nat-

ural frequencies and mode shapes for the test panel.

(4) Present a comparison of the results of

Objectives 1 through 3.

6
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II Modal Analysis and Tf-;t ' -Os

Test Item

The test item was a panel fabricated using draw-

ings of an upper fuselage panel of a C-140 aircraft

(Figure 1). The curved panel consisted of the follow-

ing components:

1. An outer skin

2. Five longerons of two different cross sections

3. Two curved main frame ring segments

4. Four edge doublers, and

5. Various attachment hardware and bonding to

maintain structural integrity.

Mass-Loading Configurations

Based on the worst case errors presented by Olenesk

(Ref 3) for the mass-loaded panel, four test configur-

ations were chosen for comparison of the three methods.

These were the unloaded panel and Glenesk's mass-

loaded configurations2, 6, and 7 (Table I and Figure 2).

The unloaded panel was included as a means of compar-

ing the change in mode shape with natural frequency

which occurred between the unloaded case and each

mass-loaded configuration. Plots of unloaded versus

mass-loaded mode shapes allowed visualization of this

7
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Ref 2..)

Confiquration M!ass (ib) x (ft)

2 0.2420 1.168 1.16q
6 0.4158 1.667 1.,747 0. 1144 0,199 0,915

Fiqure 2. Mass-loading locations (after Clenesk, Ref 2)

F 0.279

.BAY I------------

0. 184-
--- ----BAY 2----------

2

- -- - BA 3----

6
-------... BAY 4 --- 0----

Notes:

1. Dimensions in feet.

2. C spocifies ,nnfiguraliton 7 ma s-loadinq loca-
tion.

3. BAY 1 spocifms internal unsupported bay.

9
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change in mode shape (Fiquie ).

Structural Models

Three grid sets were chosen to model this panel.

The first grid set was utilized in an effort to verify

Glenesk's results by using C-lenesk's grid set and

modal analysis procedure. Glenesk's model did not

consider the discrete components as separate members.

Instead, it accounted for the total panel mass and

smeared this mass over the grid which was inset some-

what from the panel edges. The result was a homogene-

ous, constant thickness flat plate with 25 grid points.

This model will be referred to as the Smeared Stiffener

Uniform Model (Figure 4).

The second grid was chosen to coincide with a

finite element model which accurately modelled the

discrete structural components by allowing for panel

curvature, discrete member cross-sectional geometry,

and offsets of component neutral axes. This model aLso

consisted of 25 grid points. It will be referred to

as the Discrete Stiffener Nodel (Figure 5).

The final model was chosen to investigate the

modes of vibration of each of the internal bays (Figure

2 ). This grid was necessary because Lhe prvious

two models basically ignored the motion of the unsupported

10
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internal bays. This model, which con;. -:ed of 65

grid points, will be referred to as the Bay Modes

Model (Figure 6). This model contained the previ-

ous two models as subsets.

Modal Analysis Test Procedures

The Smeared Stiffener Uniform Model was tested

first. The Modal Assurance Criterion (MAC) developed

by Brown (Ref 3) along with discrete Transfer Function

data were used as the basis for identifying candidate

frequency ranges from which the natural frequencies

for each configuration were determined. The MAC

function is defined as (Ref 3)

k~yr(W)l 
2

MAC Srr(W)Syy (W)

where Syr = the stable average of the cross power
spectrum between two response measure-
ment points

Srr the stable average of the auto power
spectrum of the stationary accelero-
meter response

Syy the stable average of the auto power
spectrum of the moveable accelero-
meter response.

Note that the M.AC Function differs from the more commonly

used Coherence Function in that the two measurements

in question in the former are two responses to an im-

pulse excitation whereas like quantities for the latter

14
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would be an impulse excitation inrput -:,! the forced re-

sponse. In both cases, the existence of a mode is indi-

cated by a region of closely spaced frequencies where the

MAC or Coherence Function is essentially equal to one.

Since the MAC and Transfer Function data were essen-

tially identical with Clenesk's results, these data were

not reduced to obtain natural frequencies and mode shapes.

Instead, Glenesk's results (Ref 3) will be used in the

techniques comparison. Table 2 contains a summary of the

pertinent data. Sample MAC and Transfer Function plots

and data are contained in Figures 7, 8, 9, and 10.

The Bay Modes Model was tested next using modal

analysis software developed by Brown (Ref 2). This soft-

ware allowed the user to select any subset of the model

being tested and consider only the data relative to that

subset. Thus, it was not necessary to repeat this test

for either the Smeared Stiffener Uniform Model or the

Discrete Stiffener Model. Representative mode shape

data obtained for these models are contained in Figure

11.

Modal Analysis Data Reduction

To determine the natural frequencies of a given

model and configuration, one qrid point was selected

which was believed to contain all of the modes in the

frequency range from 0-500 hz. That is, it was believed

16
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that. the pointi did ,)t, 1i,, n: > . . n)d, Iine re

any mode. Examination of the reol oid irnaqinarv parts

of the Transfer Function for thaft or id po(int revoaled

the natural frequencies for th.,t prticular model aind

confiquration. Detailed modal analysis and test pro-

cedures are contained in Appendix B. Data acquisi-

tion programs for use in the ewlett- Packard PP-5 - lB

Fourier Analyser arc presented in Appendix C.

Once the natural frequencies for a particular modeJ/

configuration had been identified, the Transfer Function

data from each point on the grid in question were reducd

to yield mode shape vectors for each mode. For purposes

of comparison with the finite element method the discrete

mode shape vectors were converted to a format identi-

cal to NASTRAN output. NASTRAN data were processed using

a standard graphics package, CCSNAST (Ref 6), which was

used to display plots of the undeformed versus deformed

mode shapes in both unloaded and mass-loaded confiouratl'0.1.

Results

Modal Assurance Criteria Function ts,-;t results are

presented in Table 2. Correspondinca results from the

Modal Analysis testing are shown in Table 3. Compai-ison

of the data in these two tables reveals numerous areas

of disagreement in the natural frequencies of each con-

figuration. This apptrent discrepancy (-,an be explained
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when one considers tho tost C--or which each

set of data were obtained. The MAC tts ing used response

data from a fixed reference acceleromete- and a moveable

accelerometer, and 15 impulse excitations which were

randomly spaced over the entire panel. The spatial

randomness of the excitations enhanced the probability

that every mode in the structure would be excited in

that not every excitation would lie on a node line. In

contrast, the Modal Analysis testing used a fixed ex-

citation point in conjunction with a moveable accelero-

meter to measure the structural forced response. Inherent

in the latter technique is the assumption that the chosen

excitation point never lies on or near to a node line

and thus the mcde shapes obtained from this techriqu&

represent a unique set of modal data. Therefore, if

the chosen excitation point lies on or near to a node

line, some modes may be "missed" during examination of

Transfer Function data because these modes were never

excited to begin with. In this respect it would appear

that the MAC function data may be the more accurate data.

Since a comparison of modal prediction techniques is the

thrust of this report this comparison will be carried out

only on those data for which corresponding results in

the MAC Function data are available. This comparison

method will be used throughout the remainder of this

report.
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III The Whaiov Alqonriin Vol mc

Overview

The algorithm developed by Whaley (Ref 13) and sub-

sequently used by Glenesk (Ref 3) substitutes suitable

expressions for the kinetic and potential energy of a

flat plate into Lagrange's equations of motion. Then,

taking the first variation of the expression for the

virtual work of the applied inertial loads with respect

to the generalized coordinate, the expression for the

generalized force, Qi, is obtained. The final form of

this expression is

6P DO )dqj
Qi ni=-M oi(xo, Y ) Z (X YO 2

qJ=l J( 0 dt

00i doa
-m 2 Oi  A I_ , d~j

-M R -(x , y) Z (xO .9-j_
Xx 0 j 1 9x x' Ydt

02i d2a
-M 0R -~y(xo, y0 ) F- _(x 0, YO 2- (5)

j 1 3y o dt

Equation 5 contains the effects of the inertial forces

due to the added lumped mass (Mo, Rx, Ry, Xo, and yo)

which are proportional to the second derivative of the
d 2 qj

generalized coordinate, d or 4j. These effects, in
dt

2

turn, become additions to the mass matrix when the

eigenvalue problem Ls solved for natural frequencies

and mode shapes.
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Results

The results from Whaley's algorithm are summarized

from Glenesk (Ref 3) in Tables 4, 5, and 6. The data

generated using the MAC Function were merged with Whaley's

algorithm (Ref 13) to yield the Whaley Algorithm results.

Glenesk (Ref 3) noted that a comparison of unloaded versus

mass-loaded mode shapes was the means of determining the

unloaded/predicted mass-loaded frequency pairings.

Examination of the data in Tables 4, 5, and 6 reveals

the largest percentage error between actual and predicted

values occurred on Configuration 7 (Table 6, Mode 1) where-

as the smallest percentage error value occurred on Con-

figuration 2 (Table 4, Mode 9). With the exception of

Mode 1, Configuration 7, all predicted frequency values

were within + 7.5,o of the experimentally measured values.

Table 7 presents a comparison of the absolute per-

centage in frequency shift from the unloaded panel to

each of the three mass-loaded configurations. The largest

percentage frequency shifts occur when the largest mass

was located on an unsupported portion of the panel skin.

With the exception of modes 8 and 9 for Configuration 6,

all frequency shifts were within + 3%" of the unloaded fre-

quency.
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Table 4. Data Results - Configuration K[xtracted from Ff
3).

Testinq Techniau ,s Percent
Mode Modal Assurance Criteria haler AgnrithIm ,rror

1 ( 167.79 ( )
2 174.08 180.15 3.49

3 187.62 191.13 1.87

4 204.00 206.43 1.19

5 225.31 237.37 5.35

6 243.32 251.86 3.51

7 263.80 279.61 5.99

8 282.45 A91.95 3.36

9 363.08 362.76 -0.09

Table 5. Data Results - Configuration 6 (Extracted from Ref
3).

Testing Technicues Percent
Mode Modal Assurance Criteria Whalev Algorithim error
1 169.71 166.22 -2.06

2 180.72 175.34 -2.98

3 199.30 191.23 -4.05

4 208.27 205.63 -1.27

5 238.22 235.20 -1.27

6 252.20 251.18 -0.40

7 279.95 278.44 -0.54

8 292.20 271.14 -7.21

9 360.20 338.70 -6.11
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Table 6. Data Results - Confiquration - (3xtracted from ii -f
3).

Testing Techniqun Percent
Mode Modal Assurance Criteria Whalov Algorithm error
1 143.10 167.77 17.24

2 175.09 180.20 2.91

3 184.83 191.16 3.44

4 204.30 206.98 1.31

5 238.22 237.33 -0.37

6 257.50 250.45 -2.73

7 279.88 278.70 -0.42

8 292.76 292.48 -0.09

9 361.71 364.39 0.74
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I

IV The Finite Element -1

Overview

Several excellent finite element codes for struc-

tural analysis are presently in existence. One such

widely used program, NASTRA N (NAsa STRuctural ANalysis,

Ref 9,11 was selected for use in the finite element

modelling and modal analysis of the structure. This

code includes the general 20 degree-of-freedom quadri-

lateral elements (CQUAD2) and 12 degree-of-freedom bar

elements (CBAR) of which the test structure was con-

structed. NASTRAN also contains provisions to allow for

the offset of the neutral axes of the bar elements from

the grid points which were defined at the midsurface of

the panel skin. Thus, the cross-sectional and spatial

properties of each component stiffener could be included

in the analysis. Only the out-of-plane component of the

vibration (i.e. - radial component for curved models

and z-component for the flat model) was investigated.

Finite Element Models

Three finite models were constructed to coincide

with the test grids described in Section II. The Smear-

ed Stiffener Uniform Model considered the panel to be

a flat plate (Ref 3). This model did not extend to the

panel extremities but was inset somewhat from the panel
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FI

edges (Figure 2) to coincide ,,with the grid used by

Glenesk (Ref 3). The mass of the entire panel includ-

ing stiffeners was smeared over this grid to provide

a uniform thickness model with homogeneous material

properties. Although the mass of this model was identi-

cal to the overall structure mass, this model was more

dense than had it been extended to the geometric test

panel boundaries. It consisted of 25 grid points from

which data were obtained and 16 quadrilateral elements.

The Discrete Stiffener Model (Figure 4) was con-

structed to allow for panel curvature, discrete stiff-

ener geometries (i.e. - different cross-sections), and

the offset of the stiffener neutral axes from the panel

surface. This model was designed to faithfully repre-

sent the panel frcn a structural standpoint while main-

taining the 25 grid points of the Smeared Stiffener

Uniform Model. Forty-four bar elements, 25 grid points,

and 16 quadrilateral elements were used in this model.

The Bay Modes Model (Figure 5) was included to in-

vestigate the motion of each of the four internal bays.

This model was an extension of the Discrete Stiffener

Model in that two extra sets of five grid points per

bay were added to that model to derive this model. This

model was constructed of 65 grid points, 48 quadrilateral

elements, and 76 bar elements.

Appendix C contains a sample of the Bulk Data Decks
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which were used to qenrit, !r'j c d o t!I' r1(), J.1

Results

Only the Bay Nodes >Iodel results; (T able:- 8 throuqh

11) will be discussed since this model yielded Lhe be t

representation of the overall panel motion. As in the

use of the Whaley Algorithm, a pairinq of unloaded v\rsus

mass-loaded mode shapes (Figure 12) was used to track the

change in natural frequency between the unloaded panel

and each mass-loaded configuration. Upon observation of

Figure 12 it is seen that this process is somewhat subjec-

tive in nature in that the mode shapes do not remain com-

pletely unaltered. It is left to the discretion of the

engineer to properly select the mode pairings, and herein

lies a potential source of error. In an attempt to have

this mode pairing as uihbiased as possible, the author con-

sulted another engineer to independently aid him in this

process. Mode pairings which were not in agreement- between

the author and the other engineer were discussed and a

consensus of opinion arrived at. The results from this

mode shape pairing exercise are presented in Table 12.

Here absolute changes in natural frequency from the un-

loaded to mass-loaded panel range from essentially zer-",

(Mode 20, Configuration 2) to-20.3-, (Mode 16, Confinura-

tion 6). Out of 57 such pairings, the frequency shift

from the unloaded to the mass-loaded panel in was within

+7.5-,, of the unloaded panel in 79 percent of the pairino,
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and within + 3-f, of the unlouidec ptlrP () percent of t~h

time.



V The U- o- i', uda :. . t , "\'rV of
the Discrete >!a- , Sal ncs, and ... nin;

Matrices and Solut ion of tb.
Mass- Loaded Proiblem

Overview

The method suggested by Briggs and Whaley (Ref 1)

solves the general matrix-vector differential equation

using generalized coordinates to obtain the definitions

of equations 1 through 3. Then, using modal data ob-

tained from standard vibration test methods, and suit-

able matrix manipulations (See Appendix A), equations

1 through 3 are solved for the mass, stiffness, and

damping matrices. The usual method of solution re-

quires a square modal matrix which is inverted in the

solution for these matrices. However, in general,

this mati-ix may be rectangular with more rows (grid

points) than columns (mode vectors). Thus, one would

like to have a means to solve equations 1 through 3

when the modal matrix is non-square. The ps(udoinverse

(Ref 8) presents such a method for inverting rectangu-

lar matrices and thus potentially for a more general

solution to these equations.

Data Reduction

A computer proqram was developed to take the (,x-

perimentally determined unloaded modal data, compute
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the unloaded modal matrix and requird :nverses, and

solve for the unloaded mass, stiffness, and damping

matrices. Since only the natural frequencies and their

resulting mode shapes were of interest in this study,

the standard eigenvalue problem posed by equation 4 was

solved with suitable additions of mass in the mass matrix

for the mass-loaded natural frequencies and mode shapes.

Appendix B contains a more detailed explanation of the

data reduction process; Appendix C contains a copy of

the program used for data reduction.

Results

An extremely simpl:<fied experimental set up consist-

ing of nine grid points was used for each mass-loaded con-

figuration (Figure 13) to demonstrate the validity of the

computer program before extension to the more general

pseudoinverse case was attempted. The structure was test-

ed in both unloaded and three discrete mass-loaded con-

figurations from which nine frequency/mode shape pairs

were identified for each unloaded/mass-loaded configura-

tion (Figure 14). The nine modal vectors were used to

form a square 9 X 9 modal matrix; the nine natural fre-

quencies werc used to form the matrix cn the right side

of equdtion 2. Then, using the technique described in

Appendix B, the unloaded mass and stiffness matrices were

recovered, and a cudlntity of mass equal to the added mass
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was added to the 5,5 term (i.e., thi ss loading :o

See Figure 13) of the mass matrix. Finally, equation 4

was solved using a generalized eiqenvalue routine, EICZF

(Ref 5), for the mass-loaded natural frequencies and !.ode

shapes. These predicted mode shapes were then compared

to the actual measured mode shapes to verify that the

program had successfully predicted both the correct natu-

ral frequency and its corresponding mode shape. From

this mode shape comparison (Tables 13, 14, and 15) it

was determined that the program using a square modal ma-

trix had correctly predicted the frequency within + 5- o,

error 24 out of 27 times, and with + 10% error 26 out

of 27 times. These data arc presented in Tables 13, 14,

and 15.

Next, the last column of the modal matrix and the

last row and column of the matrix of natural frequencies

squared were deleted to simulate a case where fewer than

"n" modes were measured where "n" is the number of grid

points (or rows in the modal matrix). The modified 9 X

8 modal matrix was then inverted, and 9 X 9 mass and

stiffness matrices were generated. The mass matrix was

perturbed by addition of a quantity of mass equal to the

mass loading conffi-"iration at the 5,5 location, and ti,,

general eiqenvalu(e poblom was again s olved using E>Z.

Upon examination oF the actual unloaded and predicted

mass-load,,d pseu'Ioinvr:se frequency data, it was found
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Table 13. Frequency Prediction - ,rc aurd Rccta.,igu--
Modal Matrix, Concjra - 2.
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Table 14. Frequency Prediction - Square and Rectanqular
Modal Matrix, Conflqamation 6.
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that these data are identical to six cl cimal places.

Of even more concern is the fact that the predicted

mode shapes were quite different from the measured mode

shapes. Thus, from this preliminary investigation, it

did not appear that the method employing pseudoinverses

would yield valid results and further attempts at its use

were abandoned.

However, it was demonstrated that the method using

square modal matrices will yield valid results. One draw-

back in the use of square modal matrices in this method

is that when one increases the dimension of the modal

matrix (i.e. - the number of grid points or rows), a

corresponding number of mode shape vectors and natural

frequencies must be generated. At the outset of this re-

port it was poinLed out that for larger numbers of grid

points this may be both undesirable and that it may not

be possible to obtain a large number of natural frequen-

cies. Thus, there is a need to limit the number of grid

points when one models the structure in question. Un-

fortunately, there is at present no qeneral method to

predict the number of natural frpqunnic<'/mod ,! within

a given frequency range. The solut.ion to this problem

may be to initially begin with a simpl fied nine point

grid, test the unloaded structure ,and rduce the Tr-an-

fer Function data to obtain the numblr )f nritural fr-

quencies/modes in the sper i f- i f rcq'u,n(-y ranqe of intf,res!;i

,17



This number of natural frecqueiicies/ . K will give an

indication of the maximum number of grid points avail-

able if one wishes to refine this grid and use the square

modal matrices. Since the Transfer Funetion data theoret-

ically contain the same information for any grid point

unless the response accelerometer for a particular grid

point was situated on a node line, it is not required

to initially increase the number of grid points above

nine. During data reduction to determine the maximum

number of natural frequencies (or grid points), it will

thus be advantageous to reduce the data from more than

one grid point to insure that no modes were "missed" due

to a given accelerometer being inadvertently placed on

a discrete node line.
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VT Disc'ussion of the >ot .

General

As with any endeavour of this type, a learning curve,

is associated with one's ability to use unfamiliar equip-

ment, software, and testing/modelling techniques. This

was especially true for the author who had no previous

experience in modal analysis testing, with the associaited

data reduction techniques, nor with finite element model-

ling procedures. Thus, the author was in a uniaue po5i-

tion to be able to e valuate the three modal analysis t, -

ques which are the subject of this report. Admittedly

this assessment of the three methods will be only one

person's viewpoint and, as such, is somewhat subjective

in nature. Howe'er, it represents the viewpoint of one

who was previously uninitiated in this area of expej-t sO.

The evaluation of each method will be presented separa,,e-

ly in the successive paraqraphs of this section.

At the outset of this investigation it was cited

that the Modal mnalysis Software developed by Brown (..ef

2) would be used as a datum for comparinq the metfhodi:.

However, because the mode shapes P win Brown's software

and NASTRAN were quite different, such a comparison

between experimental data and NASTP. A data wast not poss i-

ble. Furthermore, s 'ncr( the method us inq peudo .

was abandoned in favor of square, invert ibl, ( X 0 modil
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matrices, and oxt~ns ion to ithr 2 r 65- arid poi

was not possible due to a lack of a sufficient number of

natural frequencies in the specific range from 0-500 a ,

a comparison of this method to Brown's software was like-

wise not possible. Neither was it possible to tie Glenes.'s

modal data to corresponiding modal data generated by Brown's

software due to lack of sufficient modal data in Glenesk s

report (Ref 2). Thus, each method will be discussed as

fully as possible while keeping these limitations in mind.

The Whalev Algorithm

The results obtained from use of the Whaley Algorithm

were extracted directly from Reference 3 and are presented

in Tables 4 through 6. Because the author did not direct-

ly use this algorithm, the author is unable to present

an evaluation of the difficulties encountered in obtain-

ing results from this method. However, when one consider.<

the modes which were predicted by the algoritihm when modal

testing did not reveal such a mode, on- can onvsion sri-

ous limitations to its use. As previously not ,d, -l,, *,

reported a degradation in alqorithm performanc- s th,

size of the added I umpld matos inereas ,d re].±tlvt t i}

overall structurp s,< . Thu-, aas -'(t undeIt(rmi 1,"d

upper bound axis I-a, bw vond whici thl, pre(dict d modf, p

and natural frfqu, oci:-; w] iil cI ,, t o have an accepi k ,

degree of accuracy.



The use of this algorithim, requ: one to obt .,in

modal data on the unloaded structure before the mass-

loaded modal quantities can be predicted. This requires:-

modal testing facilities, test hard'..:re, and the ne,?>sarv

software for conducting the required Fourier analysis

on the Transfer Function datat. This caen mean a siqni-

ficant commitment in terms of resources (manpower, money,

testing facility, etc). However, with the advent of

portable modal ,nalysis equipment, this investment in

resources is expected to decline rapidly. One factor

not as easily evaluated is the level of expertis-o re-

quired to successfully conduct the required modal test-

ing and subsequent data reduction in order to obtain

valid results. It was the authcr's experience that one

must rely heavily upon "experts,, in this field to avoid

the pitfalls of questionable test procedures or of an

invalid data analysis. The knowledge required to suc-

cessfully conduct the testing and data analysis is one

of those intaingible factors upon which it is extremely

difficult to placo an evaluation.

The on(, s;orious limitation inherent in the use of

this atq r .h-it it t,.ll not cr.di ct ma -s-l1 ad ,d

mod,, -;h ,,,. in f -ad, it cons idoss th, mode shap 's to

be unait1,r,d by ,, addition of mass i the structure,.

Alt hOUurr~1 llmd shaipes we're IDrvd thor sor
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It is the opinion of the author upon review of the ox-

perimental data that. even with a freque'ncy shift the

mode shipes were altered far more often than not. This

is not believed to be a Function of exper:imental i,,ethodo-

logy or questionable data, but rather an actual occurr,>nc,

in nature.

The Finite Element Method

Again, as in the case of the modal analysis testinq,

a learning curve was associated with the use of the

finite element method as presented in NASTRXN. Unlike

modal analysis testing where the methodology used to

obtain and reduce the data is all important, the author

fotund the structural modelling technique, especially

modelling of the boundary conditions, to be critical in

obtaining good results. Since the structure was support-

ed by bungy cords, the support conditions fell somwho-o

between the "free-free" case and the "clamped-clanped"

case at the panel boundaries. Thus, it was not po >ikle

to clamp the finite element model at the ,dn(-;, n)t ws

it possible to allo- the painel to be iotaliv unre< f:riinnd.

Several methods of ,m(do llinq the bounr rddl rendIt ion

were used to deti, u,-no the mod'-l whinos t c Io ;elv ,-

proximated the act Li n I boundary ,:i n . thoq the

methods tried worr , the restraint of 1 i q d bo)dy misd ,:; by
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mod al I inq t i, buncqv -er d- I (w It r rods ith-

stiffness, the use of th, SU'OT ard ()r SPCI cards to

restrain su i. table degree.--f-freedon:t three non-col 11101 -

grid points on the panel edges, and the use of the SUPU-''

card to restrain all six deqree-ol-fr(,edom at one se-t-

ed grid point. In the latter caise a COM.P[2 card :as used

with small mass and inertia value: at the selected arid

point to alleviate the singularity in the mass mattrix im-

posed by restraining six dearees-of-freedom at the samite

grid point. The technique using SPC! cards was chosen as

the best method to model the supports.

In general, each finite element model generated a

greater number of natural frequencies (Tables 8 through

12) than the NAC function test results (Tables 2, -1, 5,

and 6) indicated were present in the frequency range from

0-500 Hz. However, when the finite element results (Tacle

12) were compared to Modal Analysis test results (Table

7), approximately the same number of natural frequencies

were obtained using these two methods. Although the quani-

ty of frequencies obtained using tie finite element method

was approximately the same as those obtained from ,Nodal

Analysis results and the frequencies were numerically

similar, it became apparent upon compar ison of the mode,

shapes from numerically similar frequecies that mere,

numerical similarity of the natural frequencies was in-

adequate by itself as a criterion for comparing th,

5 3



Modal Analysis to(;t results w th sim] results from

NASTPRAN. As the desired means of comparison of these t.o

sets of data was ai "pairing" of "like" mode shapes, it

was unfoedtuntte that this was not possible due to the

large discrepancy in mode shape versus nAtural frequoncy

when the two sets of data were compared. Thus, a better

means of comparing analytical to experimental data is

needed and should be the subject of further research.

This failure in ability to compare experimental to

analyti cal data presents a perplexing problem for the de-

signer who wishes to minimize the vibrational effects on

the hardware to be installed by placing the associated

attachment hardware at points of minimum vibration. Which

mode shapes does the designer believe? Even more distres-

sing are the "add.tional" modes which were computed by

NASTRAN. Do these modes really exist? Are they heavily

damped modes which exist not far from the noise floor?

Were these modes missed in the experimental testing due

to an inadequate sampling bandwidth? Or are these "addition-

al" modes pur-vly "synthetic" modes generated by the solution

software in NASTP.VN but not actually existing in nature?

These questions remain unanswered and are seen as a seve,-e

limitation of the "state-of-the-art" in vibration analysis.

Although a pairing of experimental versus analytical

(finite elem(ent, NASTh AN-generated) mode shapes was not suc-

cessful, i) uch lack of success was encountered when

51



pairing either NASTRAN-qonerat-etd un](. . dat i to NIST..-

generated mass-loaded data (Table 12 and Figure 12) or

when corresponding Modal Analysis Software data (Table 3)

were compared. Thus, both methods appear to be internally

consistent when data generated by a particular method are

compared.

Since the thrust of this investigation has been the

comparison of techniques for predicting mass-loaded natu-

ral frequencies and mode shapes, and not to argue the vali-

dity of the experimental baseline data versus .. AST..a data,

one would be inclined to agree that NASTRA-\N presents the

easiest technique for the experienced designer to predict

mass-loaded modal data. The basis for this is that if

all the NASTRAN-predicted modal quantities really do exist,

the designer has at his disposal all such data without the

need for testing which might lead to incomplete results.

One area which has not been explored is the fact that

the Modal Analysis Software uses a least-squares algorithm

to fit the Transfer Functions for residu(s and phase angles

in a given frequency range. In the generation of the Modal

Analysis Software mode shapes, any phaso anql(s jenerated

due to a frequency s-hift be, t,-oen Transf(,r Functions wor',

ignored. This, by i'lslf, will result in non-orthoqonal

modal vectors. Since NASTRAN qenerat,,s a set of mutually

orthogonal modal vector:, it may be pos:ible to complre

the Modal Analvs;i,; ,iaa to the NASTPAN data if the effo-t

%5
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of phase angle (i.e. - frequncy slii§ Aith qrid point

within a given mode) is included in the display of the

Modal Analysis mode shapes. This capability is not pre-

sently available on the HP5451B Fourier Analyser used in

the experimental phase of this effort. Should this capa-

bility be added in the future, the apparent discrepancy

between the Modal Analysis and NASTP,AN results may be

eliminated.

The percentage in absolute freqaencv shift from the

unloaded panel to the mass-loaded ddita are presented in

Table 12. Unlike Whaley's Algorithmn where all but two

cases were within + 3%. of the unloaded panel results,

17 out of 58 (29.3%1") were greater than this + 3% frequency

shift. Even more disturbing is the wide range of frequen-

cy shift indicated by mass-loading for some configuration-

(refer to Table 12, Modes 12, 16, and 22). Thus, it woull

appear that at least part of the NASTRAN data may be ques-

tionable.

A considerable expenditure of the author's time and

computer resources was made in obtaining these results.

For comparison purposes, the author kept records of the

computer resources used to obtain the modal data for each

of the three finite element modols as well as for designing,

debugging, and running the pseudoinvorse program. These

data are presented in Table 16. It should be emphasized

that the author was totally inexperienced in the use of
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NASTRAN at the outset of this fforL;the exp, nd "urr

of resources for the finite element data using NASTh.AN

can be expected to be reduced by up to 75% by an engineer

who is more experienced in the use of NASTRAN.

In view of the fact that the finite element method

results did not compare favorably with the experimental re-

sults, one must answer the question whether the time and

effort invested in obtaining these data was commensurate

with comparable investments from the other two methods

vis-a-vis their respective results. The answer lies in

the accuracy required by the structural modification, and

by the vibration sensitivity of the hardware to be install-

ed. In the case of electro-optical devices which are

known to be inherently vibration sensitive, it would ap-

pear that, time permitting, this investment of resources

would be justified. However, one must weigh the desir,d/

required results with the method used in each individual

case. Thus, one of the other two methods (Whaley Algoiithin

or Matrix Recovery) may, with other less vibration sensi-

tive installations, be optimal when all factors are con-

sidered.
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Table 16. Computer Resources Used L ;)tain ':udltl

Finite Elr7 u:t Pseudoinvers,
Parameter Models1  Matrix

Pecc)Ove ry 2

Total Ave rage Total Averaae
Per Run Per Run

Central Pro-
cessor Unit
Time (sec) 37590 178.16 3660 19.26

Input/Output
Time (sec) 75155 356.18 4640 24.56

Computer Cost $4461.46 $21.14 $280.92 $ 1.49

1These data include post-processor time using GCSNAST for
models up to 158 grid points.
2The data are for primarily nine grid point models and

include post-processor time using DISSPLA.

The Use of Pseudoinverses In the Recovery of the Di crete

Mass. Stiffness, and Damping MIatrices, and Solution of

the Eigenvalue Problem

The recovery of the mass and stiffness matrices and

solution of the eigenvalue problem was considered by

Whaley (Ref 1) for a two degree-of-freedom system and tho

case of a square modal matrix. When one extends this pro-

cedure to the case of a non-square modal matrix, the pro-

blem becomes more " mplicated becausr, lio rnas s matrix

will in general be -uLly populated and thus th, problim

becomes a gener,i i :, ci eigenvalue probm (Ref ,' ). A

simple examplo f (:- i ! ree decree-of- freedom !-; y:; T11
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presented in Appendix A. There it is >own that, when

only two mode shapes and corresponding natural frequencies

are considered, the resulting mass-loaded natural fre-

quency and mode shape do not closely approximate the

analytical solution. Thus, it does not presently appear

that this method will yield accurate results for the case

of a non-square modal matrix. Further research into this

area is needed as an algorithm (technique) for predicting

mass-loaded natural frequencies and shapes for tho gener,l

(non-square modal matrix) case would be extremely useful.

Summary

The time invested in each method (including the u:se

of Brown's software, Ref 2) was approximately equal.

Although the author does not have such data on Whalev,'s

method, it is assumed since Glencsk completed an indepoid-

ent study effort leading to a Master's dearee that the

effort expended in the use of Whaley's Algorithm would be

comparable to the other methods. Each method has both

drawbacks and good points, and the use of' any one method

over another will have to be seasoned with a qreat amount

of engineering judgment.
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VII Recomnend, t ons

In retrospect, it appears that the test item selected

was much too ambitious for the comparison of the three

modal analysis techniques. One suggested test item would

be a uniform thickness flat plate. Many experiments have

been performed on such an item and analysis of the uni-

form flat plate is included in many elementary vibrations

textbooks (Ref 5). Once the methods have been tied to-

gether using this simplified model, modifications to the

structure could be added one at a time and the process

would be repeated. Thus one would gain faith in the three

methods and, at the same time, gain valuable experience

concerning the interactions between the various struc-

tural ccmponents.

Along the same line of the gradual increase in struc-

tural complexity is the incremental increase in the added

point masses. It is envisioned that this small incre-

mental change in added mass would significantly aid in

tracking frequency shifts during the method comparjison

phase by allowing better visual compa rison of the various

unloaded and mass-leaded modn shapes.

The fact that ph so angles different from zero were

present in the expe, i -entatl data gives ris4e to the ques-

tion "Were these real modes:?" Sp ,(i 'i 1]]y , thi s qu( o rn

is precipitaIted b c(u"a 'e a mode !;,1'1p1' whi('h , -In be visual lv
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observed is inherently real-valu(-d w: no phase angle

between the peaks in the Transfer Functions at a given

frequency. If, in fact, a complex mode did exist, a com-

plex display would be necessary to properly observe the

behaviour of the structure. Further research on the sub-

ject of complex-valued mode shapes is beyond the scope

of this report but should be pursued in the future.

One area using the square/rectangular modal matrix

which has not as yet been investigated is the addition of

a structure such as a tripod which connects three or more

grid points. Hence, off-diagonal terms are generated in

the mass and stiffness matrices which further complicate

the issue because the subjec't of finite element modelling

of the tripod structure (or any other added structure)

enters the picture. It is the author's opinion that this

would be an interesting problem for one who is interested

in furthering the research in this area.
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APPENDIX A



Mathematical Considerations and R':mp] Drob!e'
In the Calculaton r ind I' 17 of t}' RCd'inve-

Mathemat la 1 C(nsI do.-. t i ns

In the paper by Penrose (Ref 8) it is shown that

for any matrix A there is one and only one matri .+

satisfying the four conditions:

(1) AA+A A (A-ia)

(2) ATAA+ =A +  (A-ib)

(3) (AA + ) * (A-ic)

(4) (AA) A+A (A-id)

The itatrix A+, called the pseudoinverse of A, is the

matrix such that for the inconsistent set of equationms

A R b, the solution R = + B represents the optimil

solution to the least squares problem A x b.

Now, consider the problem (posed by Nobl., e

A x = b where A = BC, and A, B, C are, respectively,

m x n, ,,ix k, and k x n, and all three matrices are rD:

rank k, then the solution of A x = b which minimizes

a) the sum of the squares of the residuils p

where r B b - A R, and

b) the sum ,f ho squar-; of th unknos T x

is given by R I " P-

A +  C T (ccT) - I (13"13) - i D"' (A-2)

When orie Jceompi i , - Jecompos ;ition ol - the Aatrix A
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in 'Ie form A = yr' wloro i_- iri !, iitsi-x, is;

an m x m matrix, and U is an m x n 91tIx, B, C,

and CT in equation A-2 can be -epla,'ed ty L, 1-, U, and

T respectively, Equation A-2 than bceromes ( e 10)

A+ = UT (UT)-I (LTL)- I (A-3)

Example Problem I Ca1cu, ati en of '<c u n'r

Armed with equation A-3, le- us consider an ex-

ample problem. let the matrix A be represonted by

A 2. 0 1.j
3 0 0.

Following the procedure of Strang (Ref-10), the follow-

ing procedure is_ used to decompose A into L and U facters.

Using an elementary matrix, E, to accomplish multipli-

cation/addition of rows in matrix A, and a permutation

matrix, P, to interchange rows to achieve non-xero pivot

elements in U as needed,

PEA = U, and (A-4)

A (PR) - 1 U LU. (A-5)

Th(, '- decompos'tion of the given matrix will nenw

be calcul .d.

.0 0 1 0 , 'A.0 0. 1
A = 2. 11 t )i~ -

Notirqf Lat tie send row of EA centiins a nn-za.0ro

pivot olement, ,-t a-()%% exchance w ith tiho thi.r-d roow of

(o )



EA is accomplishe_,d using a permutati matrix as

o 0 .0 1.0 5]

0 .0 0. =P (EA) = 0 -4 .
0 1 0 .0 -_ 1 0 0.

L

To get L, augment the m x m PE matrix with an m x m

identity matrix on the right side and perform ele-

mentary row operations until an identity matrix is ob-

tained in place of the original position of PE. The

matrix now occupying the previous location of the

original identity matrix is the inverse, (PE -1 .1 o0 0o  0  0 1 0 0 1 0 0[ P E , I 1 3 0 i 0 1 0 1 3 1 ]21 0 0 0 1 0 2 0

10010 ]
---- 1 0 2 0 .

00 1 3 1

Thus, A = LU becomes

[1 0 0 1.0 0 .5 1 .0 0.
LU 2 0 0.0 [15 0 1.0

1 0.0 0.0 0 0.00J

According to Reference 14 if the matrix U con-

tains rows consisting of all zero elements, one can

delete those rows in U and the corresponding columns

of L to obtain new factors L and U such that

A LU (A-6)

Thus,

A = LU .0 -1.5 2.0 1.0
.0 0.0
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The psoudoinvorse of A becom(s

TIT (T)-1 -T-)-1 -T. (A-7)

Continuing to obtain A

-1 -1

-~ [0 [

_0. 1. -) -0. -11 3
= .5 -i. 0.7 5 2.25 3 ] [ 0

4 18 36 -

Once the matrix A has been calculated, one must veri-

fy that equations A-ia and A-lb hold. Since A and A contain

only real numbers, conditions A-lc and A-ld need not be

checked. In general, all four of conditions A-ia throuqh

A-id must be checked. Checkinq,

+ i .0 ! [0 0 10][1:0°! Oj[1.°  .]
AA A = 1.0 - 3 36 -301 )i. , 2.C 1. .

3.0 0.0 45 3 0 0. O . 0.0

Simularly,

0 0 ] 1.0 0. 0 0 I
A AA 8 35 - 3 0 0 3 1

[0 0 1] 0
_1 836 -3 0 -- A
45 1

+

Thus, tho matrix A repr-esn( tt; hi p-;svdoinwvrsi, of tlio
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original. matrix A.

If we take B AT and compute B + , we find

10 361 (A+

If we let A = U, B U T , equation 3-a becomes

U 1u = BMA = I. (A-8)

Premultiplication of equation A-8 by B+ and postmultipli-

cation by A +yields

+ + + + + +.9B+BMAA BIA =BA. (A-9)

The solution to equation A-9 is

M = B !A (A-10)

provided the consistency condition

BB IA +A I (A-Il)

holds. The reader can verify equation A-il is valid.

Thus, the mass matrix becomes

+ + + + 1 [0 1831[ 0 i]0 38 18 -301M:BIA B+A+ = -  [0 36- 836-345 15 _-3 4

1 [324 648 - 5401
4 648 1296 -1080-540 -1080 1125]

= 0.32 0.61 -0.533 (A-12)
0.267 -0.5733 0.556J

Before one can be sure equation A-12 reprosents the lal t

squares solution to the mass matrix, orie, f"inal chock mut
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I

be made;

B M A I. (A-13)

The reader can verify that equation A-I3 holds. A simi -r

procedure is followed to calculate the unloaded stiffne ss and

damping matrices using equations 2 and 3, respectively.

Example Problem 2. Calculation of Mass-Loaded Mass and

Stiffness Matrices

Following the procedure cf Example Problem A-i, consider

the three degree-of-freedom system of Figure A-I. Let M1 =

M 2 = M 3 = 1 and K1 = K2 = K3 = 100. Neglecting damping and

the forcing functions, the equations of motion become:

0 0 200 -100 0
Sx 2  + -100 200 -0 x? 0 (A-li)

0 0 XB -o o _x3

These equations are the three degree-of-freedom eigenvalue

problem for this system. Upon solving equation A-14 for its

eigenvallaes (natural frequencies) and eigenvectors (mode

shapes), the results in column two of Table A-I are obtained.

Table A-i. Analytical Data From Three Degree-of-Freedom
Spring-Mass-Damper-System

Parameter Mi=12=13-,
KI=K 2=K 3=100 KI-K 2 =1\ 3 =100

Unnormalized 1. -.802 .,'1 1. -.675 .161

Modal Matrix .415 1. .8021 -. J52 -. 103 .
-. 802 -.,45 1. .311 1. 1.J

Natural w 1 =4. 4 5  T1 =3.813
Frequencies T2= 12. 17 W2= .8-15

13 18.019 33:15. 6 ,18
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f1(t) :- (t)

2 "3

Equations of Motion:
Mass Matrix Damping Matrix

Ml 0 o 0 11+ [Cl+C 2  -C2  0 'K)
M 2  0 + L -C) (C 2 +C 3  +

0 M 3  0 - C3

Stiffness Matrix Forcing Function

0 -3 K3 (x3!  3t)

Figure A-I. Three Degree of Freedom System

Next, let a mass of magnitude one be added to mass M2 sucl

that M 2 is now equal to two. This will simulate a mass-

loaded configuration. Data for this configuration are listed

in column three of Table A-i. Note that the mass additior,

lowered the natural frequencies and modified the mode shapes.

Now, consider the first two natural frequencies and cor-

responding mode shapes (Table A-i, column 2) to be the m,as-

ured modal data in the frequency range of interest. Us ina

the procedure of Example Problem A-I to recover the mas:-i nd

stiffness matrices, the "generalized inver. 10' equations ()f

motion become:
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L -. 105 "- I2 1
342 17.009 2

:23 .491%)+ 11:.719 -22.723 12. 871K

~0) (A15)

After adding a unit of mass to the "122 term, and resolving

the eigenvalue problem, the following results were obtain-j

ed:

1 = 0.02

_11

, 3 3 12.4.6

Comparison of these results with column two of Table A-I

reveals that, with the exception of the values arec

nearly identical with the unloaded results. and that the

magnitude of the frequency shift was nowhere near that

which was encountered in column three of Table A-1.
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APPENDIX B

Detailed Modal Analysis and Test P-ocedures

Modal Assuranre Criteria (MAC) Function Testing

The test panel was suspended from a ceiling-mount-

ed conduit in the Structural Vibrations Branch (Bldg 24C)

of the Air Force Wright Aeronautical Laboratories (FBG/

AFWAL) by bungy cords which were approximately four feet

in length. These bungy cords were attached to the panel

through holes in the skin located near each of the four

edges. The test grid used by Glenesk (Ref 3) was marked

on the upper surface, and a reference accelerometer was

mounted on the skin (see "x" on Fig 2) using double-backed

tape. The reference accelerometer and moveable accel-

erometer responses were individually amplified and filt-

ered through a pair of matched filters before their sionals

were input to the HP-5451B Fourier Analyser (Ref .1).

The reference accelerometer was used to provide the lriq-

ger signal for data sampling.

With the panel configured as describod, the move-

able accelerometer was mounted at qrid point number on, .

The panel was then excited (tapped) 1- ti',es it !-rndOm] -

selected locations. Followinq each ttp, ind pr-ior t()

computations us inc those, ditl in the Pour or An( 1, v

each du4t-( sample was; viewe-d soiiteyon a e va-tr'
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oscilloscope to insure the tapping i: a1 ot ov rlod d

the internal electronics, or that multiple excitations

had not occurred during tho data sample. :AsumIg 11fn

acceptable data sample had been obtained, these data

were stored in the Fourier Analyser. Each time a good

data sample was processed, the response data for that

sample was averaged with the previous sample(s) such that

after 15 iterations the stable average for each channel

was computed. Using these average response data with

the reference accelerometer as the input and the move-

able accelerometer as the system forced response, the

Fourier Analyser calculated both the MAC and Transfer

Functions for that grid point and displayed the Transfer

Function on the oscilloscope. At this point the user

had the option tc either accept the data, or reject the

data and reaccomplish this process for that grid point.

If accepted, hard copies, includinq plots and dicitial

iniormation, were made of Transfer Function and MAC

Function data. The Transfer Function data were stored

for later use.

The next step was to ITuCc5ikri mount Lhe mn'o-

able accelercometer at each o, th( rol rlninq grid point'

and repeat this procedur(e. ()nc, the rn[ ire g i- d h d

been su rv,yod, thr .MAC "unct i()n d 1 , ',,- xan , d itI

determine cind d, to .'reg u,,n , For h, ,l a r r\, -i
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of the Transfer Function dot ',,<culd Le Ci e. Prior to

curve-fitting the Transfer Function data, each discrete

Transfer Function was examined at the qivewn frequency

range to determine the data with the "clenest" spike.

This spike was fit first using a least-squares algorithm

to determine the natural frequency and dimping ratio to

be used in each of remaining Transfer Functions to deter-

mine the mode shape at that frequency. This proce-ss wac;

repeated for each candidate frequency ranq(e identified by

by the MAC Function data in the range of 0-500 11z.

Modal Analvsi- Test Procedure

Several grid sets were used in this testing: the

25 grid point scheme of Glenesk (Ref 3, Figure 2), a 25 grid

point scheme (Figure 5) to coincide with the addition of

structural components, and a 65 grid point model with fine

meshes superimposed on each of the four internal bays (Figure

6) to investigate the modes of vibr-ation of each of these

bays. Since the test procedure is identical for each grid

set, it will only e discussed for the 25 qrid point s'-',,m,.

This testing used a rov-ahle acco] ,rome t or[to -:ur-,';

the grid. How,-ever, unlike the ;<AC futn(' on t-t 211, 1

second ,stat ionarv acceleromt,,r f )l used. n:toad,

one grid point was selected (numhbr on, f()r thi- qr ,d)

at which th( structure would b, fo:ceiid hv an isp- ,'t

hammer con f igu rojd with a load c to 1 ma:; o-r, tho ,I2p] I ud

7,1



of the impact. The output i t , AD -ell u,.; se

the trigger source with the moveable acceolerometer neas-

urinq the forced system response. Again, unlike the M'AC

function testing, the structure wa., excited only five tin{es

at each grid point. The number five was chosen for two

reasons: first, it was noticed during the MIAC function

testing that more than five data samples had no sigjnfi-

cant impact on increasing the accuracy of the average IISD;

and second, due to the large number of grid points use2d In

the larger models, including more than five iterations per

grid point would cause excessively long testing while pro-

viding little, if any, improvement in the quality of the

data.

The process began by r-ounting the accelerometor at

grid point number one and exciting the structure usincT

the impact hammer five times at the splected excitation

point. As in the ,L-%C function testing, the data were

examined following each discrete sample to determine

if an overload of the internal electronics or a multipl(,

excitation had occurred. A>-Utlminq acceptable data -,ere

obtained, the discrete force input wa rc]ltiplljd a

force window (Figure B-I) to artifici-ally- for(', it tc)

die out rapidly a: .)d be the cse for an impulse ex-

citation. Similar]':, 'h, structural re'd response

was multipliod by an e<pontially dc winq window ( i ua

B-2) to si-mulate tie off ft of darpLnq (ti thei : rwtLI(J F,1
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rI

HP5451 U-rr Program

1 L 0
4 MS !1

7 MS 31 C9 1
1.0 12 MS 1 1

16 MS 31 -100 1
21 - 1 512
25 CL 1 0 511
30 CL 0 512 1024
35 A+ 1
38 D
40 J 0
43.

01
Time

Figure B-i. Force Window.

HP5451 User Proaram

1 1, 0
4 MS 31 2
8 L 1

1.01 11 MIS 1
14 MS 11 1
18 Y 88 1 1 0 630
25 # 1 66 0
30.

0

P igurn -2. 11p-r 2.tia D ' I n<V.:
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response. The average, of c*:. t. hprceeir

samplos was computed after ea,-ch of thei five discrete W.

samples, was; accepted. As b(-fOrO, IrnfrFnto

computed for each point. U'pon e OT'pl(j on of he fifth

iteration, the average Trans_-fer Functijon and a riohcrrce

Function were compute-d and iJ.ndividually dioe.:%A

decision whether to accept the data was b-czed on a- Coher-

ence Function with manv of isvalues at or near one in

the 0-500 H~z range. This proces-,s -,-a s repeatecd until the

entire grid had been surveyed.

Once the Survey was co!uplete, a grid Point was elct

ed which was believed to contain all the modts of the

structure. Several methods for examininq the Transfer

Function data at thait grid poinL -,:re available in the

So ft wa re . Among h'er;e methods wer a Kennedv-Plancu, Ci rclf

fit, a leas t-squares algorithmuT, and a-n option whic-hmeil

cor',pute-d the m-agnitude_ of the Transfer 7nto tx ce

f rec, fen,-ies where the real and im~ ar at fteTran--

fer Fancl ion we-re 9O decree 0 o-, pl o £ e c ot i,-

Tni tLilly the athor select-ed 1,1,,()CJI i t4 17OtLe :i

ignores, dar-p incT. !Iowe,-tver ,t -j4 r -(I SQ_ nak I0a1QS11n

eventual1ly usdto navr tled(

modaI da,,t a F r LI t -i o u i dfd P, o i w e In ,fe 1 Fed)-
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Analysis Section presented earlier in tBi3 Appendix. The

mathematical portion of this procedure begins with the

general matrix-vector differential equation used in modal

analysis,

[M] ; + [C] x + [K] x = f(t), (B-i)

where [M] is the mass matrix, [C] is the damping matrix,

and [K] is the stiffness matrix, all of which are square

and symmetric matrices. A generalized coordinates solu-

tion to this equation results in "n" uncoupled equations.

Assuming the solution to equation 1 can be written in the

form

x(t) = [U] q(t) , (B-2)

where [U] is a square matrix consisting of mode shape

vectors as its columns (i.e.-the modal matrix), then it

follows that q(t) is the generalized coordinate. Following

the derivation of Meirovich (Ref 5) after substitution of

equation B-2 into equation B-I and premultiplication of

equation B-i by [U]T, the following definitions are made:

[u]T[M] [U] = II] (B-3a)

[][K] [U] = 10Wn" (B-3b)01

[o]T[c] [U] = 2[nnJ (B-3c)
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With these definitions equation B-I bec mes

qr'T r2 r " fr , r= 1, 2, 3, ... (B-4)

where fr(t) = [U]T f(t) is the generalized force.

Equation B-4 can be solved for at most 'n" natural

frequencies. However, there are often less than "n"

natural frequencies in the frequency range of interest

such that the modal matrix contains fewer columns than it

contains rows. It is proposed to premultiply each of the

equations B-3 by(U]T)l and postmultiply each of these

equations by [U] 1 in such a way as to isolate the mass,

damping, and stiffness matrices on the left side of equa-

tions B-3 which involve these respective matrices. In

general, [U]T and [U] will be non-square (rectangular)

matrices necessitating the use of the pseudoinverse devel-

oped by Penrose (Ref 8) to find their inverses. Using

a superscript "+" to indicate a pseudoinverse and after

the previously mentioned pre- and post-multiplications,

equations B-3 become

U]T) [U]T [m] [u] [U]+ = ([U]T [I] [U]+ (B-5a)

[U] T  [U]T [K] [U] [U]+ = ([U] +T) (> 2) [U] (B-5b)

+ T[ ]) _ Plo u]+ (B-5c) .
[U]7T)9
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Equations B-5 can be further reduced us:iq standard linear

algebra matrix manipulations (Noble, Ref 7) to yield the

mass, stiffness, and damping matrices respectively as

[M] = ([UT)+ [I] [U] + (B-6a)

[K] = ([U] T)+( nO) [U]+ (B-6b)

[C] = ([U]T)( 2 nWn )[U]+ (B-6c).

Reference 8 (Penrose) contains the basic theory of the

pseudoinverse.

With these definitions for the mass, damping, and stiff-

ness matrices, and the experimentally determined modal data

for the unloaded panel gathered in the Modal Analysis Section

presented earlier in this report, one can calculate the

mass, damping, and stiffness matrices. Appendix A contains

a simple example of the technique.

Since the thrust of this procedure is to accurately

predict the mass-loaded natural frequencies and mode shapes

of a complex structure when only the unloaded modal data

are known, the procedure must be continued to recover mass-

loaded modal data (in,T n. Un). For example, consider the

mass matrix. When the designer has made his decision re-

garding the placement of the additional mass (hardware) in

the structure in question, he need only add an appropriate

80
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mass in the mass matrix at the proper grid location to

obtain the modified mass matrix. A similar procedure is

followed to obtain the modified stiffness and damping ma-

trices. Assuming one is only interested in mode shapes

and natural frequencies, the modified mass and stiffness

matrices are substituted into equation 4. Equation 4 is

then solved for the mass-loaded natural frequencies and mode

shapes.

Finite Element Modelling Procedure

Finite Element Models. The three finite element models

used in this analysis were described in Section TI. Because

the development of a finite element model is described in

Reference 11, the main question became how to add a quanti-

ty of mass to the mass matrix which would be used to solve

for the modified natural frequencies and mode shapes.

NASTRAN provides this capability in the form of a CONM2

card which adds a finite-valued point mass, including its

inertia properties and neutral axes offset, to a particular

location in the mass matrix. Another card, the ASETI card,

was used to discard all but the out-of-plane translation

from the analysis set in the solution for mode shapes and

natural frequencies. Appendix C contains listings of a sam-

ple NASTRAN deck used in the modal analysis of each con-

figuration.

Analytical Procedures. NASTRAN (Ref 11) uses several
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rigid formats to provide flexibility to the user in the

analysis at hand. Rigid Format 3 was chosen for the modal

analysis of the test panel. This format neglects damping

and solves equation B-I with the forcing function and damp-

ing matrices set equal to zero. The output from this For-

mat is a table of the "n" natural frequencies and tables of

the 'n" eigenvectors (mode shapes). These data were then

post-processed using GCSNAST to be displayed on a standard

computer terminal.
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.IsRRYR.ISL .nISSPLA.
FTN.PL-1OODO.

ATTACH I PL T103RID-A78O28 I*SN .ASn.

PLT 1038.REWIND .TAPFq.

I OUTE,TAPERDTIO.AF,FID.FRI.ST-CSA.DC.PR.
- EN D OF RECORD

PROGRAM 4 ATR IXI NPUT,nUTPUT. Pt.F ItE-0, TAPE5- INPUT, TAPE 6.OUTPUTI

C.

Cs

Ce THIS IS A TEST VERSION OF "ATRIX USING THE NINE GRID POINT MODEL AND THE
CO RESULTING MI'DE SHAPES AND N4ATURAL FREQUENCIES TO VERIFY THE VALIDITY OF IHV 4
C* PROGRAM TO CALCULATE MASS-LOADED NATURAL FREQUENCIES AND "DOE SHAPES. NINE *
C* SEPARATE "ASS-LOAPED CASES ARE CONSIDERED IN ACCORDANrE WITH THE CASES
C* TESTED qY GLFNESK. SEVERAL CASES FOR EACH CONEIGURATION ARE CONSIDERED?
CC THAT IS. 'SEVERAL "STARTING POINTS" ARE CONSIDERED FOR THE RANCE OF NATUR- *
C0 AL FREQUENCIES TO SIULATF A REAL-WORLD CASE WHERE ONE 1S ONLY INTERESTED *
CO IN A SPECIFIC FREQUENCY RANGE. 0
Cs
CC
Cs

C.
C*THIS PROGRAM SOLVES THE CENERAL MATRIX-VECTOR DIFFERENTIAL EQUATIONC
C*FOR THE MASS, DAMPING, AND STIFFNESS -ATR ICES USING, GENE RALlIED
C*COORDINATES. THE FOLLOWING DEFINITIONS ARE MADE:
C.
Co UT * AM4 C U . At
C# UT * AC A U - ZETAC
CC UT 0 AX 0 U - OMEGA
Cs
C* WHERE U - THE "ODAL MATRIX

CeUT - THE TRANSPOSE OIF THE MODAL MATRIX
Cs AM - THE MASS MATRIX C
C* Al - THE IDENTITY MATRIX A
CC Ac - TrlE DAMrPING OtArRIX
CC AN - THE STIFFNESS MATRIX
Co ZETA - A DIAGONAL -ATRIX WITH THE PRnnDICT OF THE

CsNATURAL FREOIJENCY AND THE DAMPING RATIO FOR
Co EACH MODE ORDERED IN INrEASING' "ODE NUMBER
C* ALONG THE MAIN DIAGONAL ANP lEROES ELSE WERE
Cs OMEGA - A DIAGONAL "ATRIX WITH THE SQU)AqE Of THE.
Ce NATURAL FREQUJENCY FOR EAC4 MODE ALONG T'HF
Ce MAIN OIAC.ONAL. OROEREP IN4 INCREASING MODf
Cs MUMMER AND IEROES ELSEWHERE.C
CC

Ce

C*SOLVING THFSE EQUATIONS USING STANDARD MATRIX -ANIPULATIrNS YIEIDS? C
Cs
Ce AM - UGITN s At C UrIN
Co AG - UrGITN * IETA C I)IN
CC AX - UGITN C P-EGA CifGIN

C.
Cs WHERE UGIN - THE CGENERALIZED INVERSE Of THE NORMALIfED
Cs MODAL MATRIXC
Co UGITN - THE TRANSPOSE OF UGIN
Co
C*NOTE TO THE USER- IF J ES THT NU"MER OF GRID POINTS AND L ES THE
Cc NURER OF "ODES IN THE FREOtIFNCY RANCGE OF INTEREST,C

CoTHE MATRICES DEFINED AROVE SHOU)LD 4E DIMENSIONEDC
Cs AS FOLLOW':
Ce AMAC,&X,AI.ZETA, AND OMEFGA: OI-MENSION J X J
CC UG14 DIMENSION L XI C
Cs UGIT04 DIMENSION J X LC
CC U O DMFNSIrIN J % LC
Co lETAS,noEAs#AL DIMFNS ION Lc

Figure C-1. Program Matrix Listing.
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C:,%1,9 Z,4JF 9 rL 01 M IKNS I nN

C 0 C 1 4UMRFR cr COLUMNS
C$INI114LtlP TH4f M ATRI CES:

CI MENS IOn .x IX q *j .71 ?;"1

0I"ENSION LALPlqI
OIMINsMiN t,51Q99 ,U6(9;91,U719.9) UnI9.91
DIMENSIO N W" R AIQI. O:LPI9I .A q; , ERR 61 9I
DIMENSION AAIqq,qI:." 9 90C I ,qI. *I(9 , ME":A,9g1tJ(Q.9f,UT(9.9#

O!"MNS TON 1:CR ;OR " I f;,'

ci:1FNs11nN wiAOA9 .UCI TNt q,ql
DIMENSION SU::q *5Uplq)*U.?(qj,SUMJfq)
D~I-F Ns~o a 5U 4q

EAL £MMIq.qI U3p(:I.q)j,SIj).iK3 1,Uq ,)MFTAZqf9 1(.t 162 1

19,93*NX21A6lAAM9,9V.AAtKtQ.9; RETAlt9 qWKI 1~62IUII%:9L .E
CO.,LfW ALFA:qI ,119.9,A'LEAIIO,, 7llQ.9IOMECAO(9i.RLAMRO9A 1"A"
COMPLEX *Fq 11.)Apq
DfIMENS:IaN OME G I ""IofME AllI *AIICC19,81,U3Tp~q,8j.AMA4q9,

CALL Cn1MPRS

DO ASEX.l,NCASES

Co
CO READ STRUCTURAL GRID POINTS
C*

1i 0 EDESIINPUT1 N .01 STOV'
202 PRtp4TO*t(I l.YfI ;1;f(j 1,

Cs
C: INITIALIZE THE1 MATRICES
C.

DO 1I1 I-l.NR

00 111 :i-.NC
1I I I-.0

UGI I, -O0

UGINfIJ1-.

ZETAS( 110.0
AL IJ -.

00 ? 1.NC

2 ZETAII.J)-0.O

DO 333 f-1.NR

Da 333 I-l,NR

AK II,J3 1*0 .0
333 ACIIVJI)-

O0 ? I NO
Do 70 J-1 ,N)
All) . Jp- -. 0

?0 O'r GlI.Jl-0.0
PRTN#0. NE INfIALIIED NATPICES ARE.*
PRINT."- TH4E MODAL "ATRIX:"

6l vRIT*,I'JII .jI1. NC0

Figure C-1. Program Matrix Listing (continued).
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PC 1NT' P HE NTA L 4AATQ IT T h SPO %I
00 " 2 :1 .C1

6? PRINT9.IUTI J.I g * .L.NA
PRINT$." THE GENFRALirfn TNvfRst--
en 61 1.1.NC

61 PRINTS * UGINI J.1 1, 1.1.N4R)
PC TNT* .' THE GENERALIZED INVF OSE IRANsprisfE
O0 64 l.1.NR

64 PRINT',IUGI'NC 1.JI .1-1.NCI1

PRINT*." THE ZETA MATRIX'"
rDn 65 l-1,NC

65 PRINT6,IZETAI I, II*J-t.NC1

PQINT*." THE O1'EGA MATRIX-'

no 66 I.1,NC
66% PRINTO,(CMECAII ,JI. i-1.NCI

PRINT6." THE 'CUM4YY -&TQICES"

POINT*." THE AL "ATRIX"

on III T-I.NC
131 PRINT0'.4II

PRINT*," THE MASS MATRIX:"
00 111 I-l,NR

13? PIT.AII*i.j1.A
POINT$." THE OA-P1Nf MATPIX-

Do 1II I-1.NR
133 PQTNT*,,ACII,J).J.11Q1

PRINT*." THE STIFFNESS MATQIw:"
00 134 I-l.NQ

134 PQIN7*.(AKII-*I 1*INQ1
PPINT*' TfHE I'rNTITY -ATQIw:"

00 135% ?-1.NC

Cs
CA

C 0 REAP ZETA £60 n-EC.A VALUES nq UNLOADED PANEL
Ce
Cs

Co
C* OPTIONS: LLL-l ; THIS OPTIIN Wit L ALLOW THE PREDVICTED -'OE SHAFfF POM THE
C # SOUARC nOAL MATRIX TO RE PLOTTED.
Co LLt-2; THIS OPTION REQUIRES THAT THE USER n"ADER THE ACTUAL MASS-
C4 LOADED rREQIIENrtES AND P-]Of SHAPE'; WITH TtE IR CnRRFSPON4-

C* DING UNLOADED nATA TO PLOT THF ArTJAL -IATA.
Co ILL-3; THIS OPTIoN ALLOWS, PLOTS F02 THE PSELID(OINVERSE -ODE SHAPES.
C0

LIE-1
IPILLL.EO.?f GO TO 258
0n 1016 TINC

1016 RE4AOis.1C1 T ('RECAtI IaETRSI II

on 80 EOAT (??.E .3Et.

so aN'CAIIII.DPECASII/100.

FAINTO."TPESE ACE T1'C VALUE, OF CmEGAI:*

C' READ MODE SHAPE VECTORS ANT) NORMALIZE
Co

or) 101A I-1.'dR

1015REAC~0" Ali.)?
lolq EoR'ATII3Y.EIO.21

on 411 I-I.Nk
0n 411 J..R

41 All. Il-Al I.11/1OO.
00 ?11% J-.Nr
SUml iI-.O.

nTo ?19 T-1.mv

219 J"I.llJ.I.I'

F icure C-1 . Prociram1 Xa trix ,i-;tii. iq (atilt
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SURIJI.SORIISUM4,Jil

0n ?10 !-I.NR
26A( I,)I -A II. J I /Sut JIi

00 271 t-1,NR
71 PRINYO.IAIT.JI. I-1.NCI

or) 22nl I-.NP
00 220 J.1.NC
Of I.))-a& I I. )I

220 UTtJ.t i-Atl. i

CA
CO DELETE TH9" L AST CPLU"% FR10~ TI.T MODAL MATRIX U TO F nk" TH4E RE CTANGUI AR
C* MATRIX U3.
C. 0

DO 81 f-.1NR
on at J.1.NO

a1 U111.JI-AII.iI
PRINT4.-THIS IS THE U -ATRIX:-
DO 911 I.1.NR

911 PRTNT*.IU(l.JI .J-1,NRI
PRINTO.,IHIS IS T14F A MATRIX:"

tin 91 i-1.NRl
01 PRINT0,(Al 1 JI, J-I.NRI

PRINT*.-T~tS 5 TH4E UT MATRIX:-
On 97 I.1.NR

9z PRINT*.IlTll.jl, J-INRI
PR!NTS.1N15S IS THE 'It MATRIX:"

n0 a? I-1.NR
92 PrINT*.IUSII,JIj-1 *NnI

cc, 71 I-l.NR
71 ALP(II*.O

0n 113 I-I.N9
OMA Gil. ts-OME GA1ICM

63 A111.11-1.0
PRINT*."THIS IS THE 014FGI MATPIX:M
on00 8. 1.ND

64 PRI4T*.EI1MEG1I 1.3*Jp.1.NOI
PRINTO."THIS IS THE At M4ATRIY:"

CA

C*CONPUTF THE GENFRALIffn INVFRSF (IF T14E MODAL '4ATRIX AND ITS TRANSPOSE

CsR 0.

PEC-9

TOL.-0.0
20 CALL LCINEV A.NROPER.Nr.TTOL.,IP.NQ01.S ,)IK.IERI

PRIPTO."IHIS IS THE MATRIX UGIN:"
no 77 I1.'NC

77 PQIPET*.IU.IPEI .3 IJ-I ,NRv
00 1235 I1.PER
00 121" J-I.PEC

1?35 UGITN(I ,JI-IICNI 1.1
POINT0,ITHIS IS THE 4ATRPR UGITN:"

414 PRINT*.IIPCITN1I .Jl *-I.PECI
PVIPT."HF VALUIS nf IETA ANIT nOECA ARE, RESPECTIVELY"-
00 IS I-tNf

is PRINTC.?P TATE I EP" 1 ITI

Ce 0

CA COMPUTF 114 ffAERA'LI?fD 14NYXRE OP THE -"RIT t~l. THIlS IS THE MATRIX UIP. 4
CA C

Ni -9

Figure C-1 . Plroc1 yarn MI-r x 11 .t it iq ((,()lit ilnueci
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NRK 1:1

VOL .0.'0

CALL LrOT IU3.NR03,NQ3.,Nt3.TflL.U1P.NDl4,S3.w'( 3.11211
PIT I1.T I S IH. ~A'x I(1p"

'30 PRINT*.IU 3P(Il. ii i..NcI

C.

00 31 T-1.'4Q
00 31 1-1'00

31 U3TPII. I)-UIP( 1,11
PRTNT*,T4I IS THE MATRIX U)TP:"
00 3? 1 -1 . NQ

32 PRINT*.IU3YPfII*JI , 31,N3)

Co
Ce
CAFORM THF 7ETA. OMEGA. AND At MATRICES:
C.
Cs

PRINT6,TE ACTUAL MATRICES ARE:"
00 5 T-1.NC

AI(T.Ti-1.0
s CONT'NUE

PRIT*." THE ZETA MATRIX:*
DC?S I-T,NC

75 PRINT*,lZFTA(I.TI I.II.I.NCl
PRINT$'" THF OMEGA MATRIX:"
00 71% t-1.HC

26 PITOEATI .I.t
PRINT*," THE IDENTITY -AYQIXE:
00 27 f-INC

7? PRIT*,IAIII,Jl, iI.NCV
f)O %I1 1-..6
00 41 IT-1.NC
C1I .111-0.0
00 41 K-1,NC
CI 1.1! i-Cl 1,11 .UCTN( I.Ri *A lK. IlI

41 CO'JTVfNI)E
of0 42 1-1.6K
00 4? 1 E-1.NT
A"11. *111-0.0

0O 42 K.1.NC

42 CONTINIE
DO 43 I1.1NQ
DO 41 Il-l.VNC
01i.!11-0P.0
00 41 N-I.NC

43 CnNTTNlIF
00O 44 t-1,NR
00 44 11-1.6K
AC I1,111-0.0
00 44 K-I,NC
A01 1.111-ACt 1.111.0(1 *K IAIGINEK, IlI

4$4 cnNTINUE
00 45 fjI,NK

00 45 Il-I.NC
Eft.!! -0.0
00 41) K-..C

45 CONTINUE

00 46 1-1,6K

or) 46 TI-t.NRI

Figure C-1. Program M1atrix Listinq (Continued)-
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46 CONTINUE
00 1 1-1.148
Onl I J..E.NC
IFIA8SIAmI,JIl.Lf.IO.E-81 A"1I * 1-0.0

IIF(APSIAC(I.JII.LE.I0.E-8) AAI IJI-0.0

PRINT*." THE DAMPtNC. "ATRIX:"

00 48 1-..14
48 PRIT#,IAC(IJI 1,48kR

PRINT*." THE s TIFFNESS ?ATRIX:.

Do 49 I-1.Np

49 PRINTO.AKII iI,11.NRI
PR IN I A.CH(CK CONSISTEN4CY CONOITION FOR THE IOENTITY MATRIX:'

00 990 J-I.NR

00 990 K-1.NC
990 FII.11-F11.JI UGITNITKIOUCINIK,Jl

00 99? 1.1.141
00 992 i-I.NC
H(I.1I-O.0

00 99? K1..14
992 H419I. -H(I. Il FlI.,K,*U(K. i

00 993 t.I.NC*
on 993 lI.NC
A Ii. 2 I-0 .0
00 993 K.1,141

993 AAIIIJ)IAAtIIgiI # UTI.KI*HIK,1I
DO 9993 t-I.NC

00 9q93 J-1.14C

00 9q4 I.1.NC

PRINTO.CHECK CONSISTENCY CONDITION FOR THE ZETA MiATRIX:"

00 995 r-I.NC
DO 995 i-1,NC
FF11. 11-0.0
00 995 11.141

995 FFII,JI-FEII.JI # UTII.Kl*uCITNIKJl

00 996 I.1.NC

00 996 J-1,NC
GGtI.I-OI.O

996 CCII.J)-CrIIj) -EEII.RI#ZFTAKx,1I

OD, 99? I*.NC
or, 99? I-l.NC

00 997 K-1.1N1

997 1H11,Jl-HHII,JI * UrCINIIKl0UIK.Jl
00 9Q6 t-I,NC
00 998 j-INC

H4*11.11-0.0
Of0 998 K-19NC

998 HAII,--htI,1l - GG(I,KIOHIEK,1

00 9994 I-I.F4C
00 9994 J-1.NC

9994 IFfARS(HAII,ilI.LE.10.E-a1 HAlII-0.0
n0 999 I-I.NC

999 PRINT#,fHA(I.Jl. j-E.NC)

PRINTO."CHF(K CONSISTENCY CONDITION FnQ THE OMEGA MATRIX:-

00 1003 I-l.hC
00 1001 J-I.NC
PEE (1. 1-0.0
00 1001 K.t.NC

t003 fF(EI.Jl-EFF1.Ilj # f91I.KIlflNECA(K.Jl
00 1001 I-E.NC
Do 1001 J.E.Nr

GCCII. 11.0.0
00 1001 I(1.NC

1001 GCC(IJl-C(.CIIJl - FFFII.Kf*HHfK,Jl
00 9995 I-E.NC

9995 IFfA"%ICCII,JSI.LE. 10.E-PI CCCtI .jI-0.0

Figure C-i . 1Prograin >latrix Listinq (Conltinlued)
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00 1 00 4 lt

C$
C.
C'
C* SiNCE THE MASS heOAS AOCED ,TO GRID POINT YUMoER F IVEI ONTHE ACTUAL PANEL, THE *

cMAS MATIR 1IL 111_E PERTUR1ED IN THE 5. POSI IN A~ 'DOING A QUANTITY OF *
C' MASS EQUA TTHE ASS LODN OTHE ACTUAL PANL THI ILSIUAE.H

C"REAL WORLDS" CASE. NOTE THAT THE MASS WAS PLACED ON ONLY ONE pRI POJINT.( IF.
C * THE M ASS WAS A STRUCTURE SUCH AS A TRIPOD WHICH CflNNiCTED TO THREE GRID *

C: POINTS, THE ADDED STRUCTURE WOULD HiAVE TO B(R MDEILrO INDTHAT IT WOULD ADD *
C' ROTH MA;SS 4ND STIFFNESS TO THE PANEL. THIS AD)ED 04ASS AND4 STIFFNESS wOULD 0

CO GENERATE ADGIT IONS TO OFF DIAGONAL TERMS OlF LIKE NU";PER TO THE TWO0 CONNECT-*
Co ED f.RIDP FIN T S. AS PREVIOUS LY NOTEDn. T HIS P ROGR AM' SOLVES T H E G E NERALIZED
CO EIGENVALIJE PROBLEM. THUS, THERE IS NO NEED TO CRFATE A SIMOLAR "I3DEL FOR A

CO ANY ADDITIONAL DAMPING INCIERFEP BY THE ADDITIONAL STRUCTURE *

Ce
Ce

PAINTA,"FNTER THE 10CP TO PFRTUwR THE MASS MATRIR:

IFIRE.EO.'I AMIS.NI.-AAMI%.Ni*..20
IF fko.EQ. 31A(.IAMI,?O45
PRINT#." THE MASS "ATRIV:"

00 50 I-INRp
s0 PRINT*.IAA"(I,I,J.4Cl

PRINTO."THE MODIFIED %ASS MATRIX:-
DO 47 I-1,NR

47 PRINT', IAmII. is *J.1,NR I
PRINT',"TE STIFFNESS -ATRIX:'
on Se I-.NR

58 PRINT'.IAKfI.iI. J-1.NCl

Cs

Ct SOLVE THE GENERALIZED EIGENVALUF PROBLEM FOR THE MASS-LOADED NATURAL FEE- *

CO QUENCIES AND DOE SHAPES WITH THE SQUARE -9ODAL MArRiR u.A
C*

1AM 9
IAK-9
NAM AK-9
11-9

CALL EIGZEIAECIAK.AM,IAM.NAMAR(,I JDB.ALFA.,3ETA.,11I,WK2,IER2I
N-.9
PRINTA,'THESE ARE THE VALUES OF RLAMBDA:"
00 1234 I-IN

RL ARBDA III-CSQ VT ALFAIT If RE T AlI)
PR!NTO,RLA"BDAI II

1234 CONTINUE
PRITY'"THESE ARE THE VALUES OF TEE I MAiRIRI
D0 1009 T-I.N

1009 PRINT*, El I I, i*J-1,Nl
PRINT*."THE PREDICTED 'ODE SHAPES AND NATURAL FREQUENCIES FOR AM15

00 ?1 tINC
21 WAMEDAWI ICSQRTERLAMRDAET I'*21

PR INT' .1W AM8DAtII, I- I. Nd
LA-9
CALL VSRTA(WAMPDA.LAD
PR INT .1W AMMOA(IfIP, .m Cl
00 Z2 1.NC
00 22 1.I,NC
IEEABSEWAMPAIP-RFALILR'OAJ)I.LE.1O.E-8) GO TO 21
IFIARSEWAMBDAEEI-RFALEMLAMBIUAEJI)P.GT.1O.E-8) GO TO 22

23 010 24 RlI.NR
U7IE. 11-0.0

24 U7SK,I).UZER,11*REAL(ZERJll
22 COINTINIJE

00 15? i-lNC
SUM4I iI-O.0
On 153 T-l.NR

153 SUMAR It.SU'RI II *U2I 1, J10*2

Figure C-1. Program 'latrix Listing (continued)
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SUM. 11 SORT tS UM4(RI l
0O 1 52 I-1.NR

152 u211 I .. ' 1. "U I 4'( it
PRINT-."COMPU~tE SUM OF SOS OF DIFFERENCES BETWEEN LOADED ACTUAL AN

10 LOAODF0 PREDICTED MODAL VECTOR5:-

Co
CO READ MASS-LIOAD(O MODAL VECTORS
Ce

DO 250 i-INC
00 250 I-1.NA
OulIl., 1 -0.0

2S0 PRINTA.uUII.Jl4
00 O~T 0XEI.. 252 I.1.NR

00 252 J1,'NC
252 UUII.jl-uUII.J)*UUI I, JI/10D.

Do 263 J.1,NC
SUP41 () J-0.0
00 Z64. l1.NR

264. SUMl(JI-SPII JI.UUII ,Jl0#2
SUMIIJI-SORTISUMIJII1
00i 263 l.1.NR

263 UI~IIUIJ/UIJ

Co
CO COMPUTE THE SUM OF THE SQUARES OF THE DIFFERENCES BETWEEN ACTUAL AND PRE- A

CO DICTED LOADED MODAL VECTORS

DO 253 i-l.NC
DiI 1-0.0
00 2S3 I-1.NR

253 DlPIJI-tIIF(Jl.IUUI 1,JI-UZII.il l'42
DO 259 I-1.NC
CIVIl 11-0.0

260 DIFIIII-DIFIII
259 CONTINUE

DO ?61 I.I,NR
2b1 DIFIII )-SORTIDIFIfIlII

PRINT4,-fHESE ARE THE VALUES Of THE MODE ;NAPE VECTORS..
DO ?'.S !.1.NR

24.5 PR1IT*,(U21 1,J#,J-1,NCI

DO 86 I-1.NR
00 86 J-1040

00 86 K-l.ND
86 CCI IoiI-CCII.JI.U3TPII.K*KI'AII,J)

of) a? I-1,NR
00 87 J-INC
AMA II.*J 1-0.0
£mM101.0.0
00 67 KC.1,40
A41-AMMII IANI I.CCII.KiAU3P IKJIi

B? AMAIT. JI.AMMI I ,i
00 as I-I.NR
00 88 J-I,ND

oni 88 X-I,ND
88 0011, il-DDll. Jl.U3TPlixiROmEciIKJI

00i 89 l-lNR

Do 89 1-I.NO
69 AAKI1, 11-0.0 ,tr,1.IU3I.J

CO THIS IS THE tfAST-SQU~hSrS SOLUTION TO THE MASS MATRIX BEFORE THE MASS HAS A

Figure C-1. Pro1l-iii Ylatrix Listing (Continued).
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P iINTO.T H IS IS THE A AIX A -%q

00 ?73 1I. NR
13 P 0T.1! 1. 1 I.NCI

PRINTO."THIS IS THE MATRIX AAK:-

00 ?1l-.N

Cs

C: SOLVE THE CCEhERALIZ1E IIGE NVAL UE PRORL EM F OR T HE -AiS-LOADCOUNATURAL FRE- C

C QUENCTES ANO MODE SHAPES US ING CTHE RECTANGULAR MnoLL MATRtIX U3.

I F KK.EO.11 AMMI S.MAIS.1O. 141

I F I.. EQ.3 AMMI,S 5.'MA'S.S .0.4158

I iOMl.z
IA-9

PRINTC,:THEOMODIFIED MAS5S MATRIX ANN:"
DO 6 7 II.NR

67 PRN*IN I.3 J-.C
CALRI;I;, .K ,MI.. O.AFZRTP.Iiw.EN

C CCAC*CCLCCCCACC#CCCCCCCCCCCCn.e.FA2,CFTA21.11W. IER.C..........

Co
Co TH4ESE ARE THE LEAST-SCUARES SOLUTIONS FOR THE NATURAL FREQUENCIES WITH THE *
CO THE AnDED MASS IN THt 5.S POSITION OF THE MASS MATRIX. 0
Co

PRtNTC."IHESE ARE THE VALUES OF THE 13 MATRIX:"
no ?46 1 I.NR

PRITCHES AR TH VAUESOF ALP:-
DO 31 I-T.N R
ALPIIlCSORT(ALFAZfI/AETAZIIl1

M ALPITI.CORTIALPIII**ZI
33 PRINTC,. A LPt I ).MAL pill

CALL VSRTAIWALP.LAI
PRINI*.THESE ARE THE VALUIES OF VALP*-

PRNT.IiLpI lI-I.Ncl
On 26 C-.I

IFW Q IAALP 49;, WALP IIl
IFI.GT.T OT
Go TOT 265

266 K- ;I -I
ALP IXI-N ALP Pil

265 PRI NT...A L pIRI

00 19 8 11N1

IFIANSIAAtP(I-RE*LIALP1jll.1 .1~8 GO TO 191?
IF 1:"11 AALPTT -E LTLP JIIGT 10 E-8I GO TO 198

19? 00 1960K;1,NR

196 UNIRI:t1Rl.I I.REALtr3IK.Ill
198 PRI NTO.U4:11. I

on 19"0 J-.N
SUMI IC.;

OUMIIJI * SORTIIM I

On 19s0 II.NR
m5 U411;.1I~1 I * Jil15itM4l 11

PR N CCPTE THE SUM OF SA OF nfI k~cf $0ECE 9 Twit IN :U4 11% 1)N ACTIJA
IL ANO PRIDICTft) LOADED 40DAL V(CTORS% U'sING Tiltf ~Nt R AL I I I I NVERSEt

200 I'll 11,NC

155 0IF F I I I -ntI F I J I I UJ I, J1 -U4 II . ES 1 C07
DO ?11h !,INc

?S? DIF~ftI F.illII
256 CONT IN"UE

0O ?62 I.NR
262 DFIISRIIZII

Figu re C-. Ilroqr~rnm dr ix IAst itiq (''orit iriuod).



PR INT0.7TIE EICENVECIORS Apt:

28 PRINT0. (U21 ( l 1.CPRINTO,'THE fENRALI ED INVER pSe EICENVECIORS ARF:-
on 79 1I I NR

79 PR I NY*,U$ . IIJ*.NCI
no 54 I1 NC
AALPIIl;-AALPIIIRI:(OO.ID

S544 WAMSo A tI All I IO
00 52 LR1N C
READES5031 WMRDOAfL8)

53 1ORMATI27X,F8.314
CO 31 1-1 '%C

Co
C. COMPUTEMTHE OPT PRODUCT OF THE ACTUAL MASS-LOADED VfQSUS PREDICTED MASS-
C' LoADEn MODAL VECTORS FOR THE SQUARE MODAL MATRIX (U71 AND FOR THE RECTAN-
C 0 ULAR MODAL MATRIX IUBI
Cs

00 145 I1.1NR
DO 14.5 J-1.NC
US(I.I *A .0
URI , 1.10.0
U5fT.JI-US(I.lUZIJII

14.5 U611IjlU6I IAIUUIJII
0O 1468 I-1.NP
ne t4.6 A.1.Nc
UlI I.01-0.0
UstI * 1.0.0
DO 10.6 K-.NC

14.6 U811,J)-uEII. JI.UUEI,RI'IJ6IR.AI
on 14.7 I-I.NR

14.7 PRINTIOh,144R, 10711~. JI,NC)

14.49 PRIAIT(6,144M 1UI~I, .C
1448 FOPM.ATZX,9IX,E 7.3))

PRYNT#,TF EIGENVALUES ARE:-
PRINTO,"THF COMPARISON OF EICENVALUES:-
PRINT*," UNTOADED PREDICTED ACTUAL PERCENT SOUA

IRE PREDICTED PFRCF4T SQUARE"
PRINT*." EXPERIMENTAL 

M
ASS-LOADFD MASS-LOADED ERROR R00

IT mASs-LnOED, ERROR ROOT"
PRINT'," DATA USING E XPERIMENTAL PREDICTED OF

1 USING PRFOTCTFD) OF.

'R INT#,- SU ARE " ODAL DATA VERSUS 01FF
I S PSEUDDINVERSE VERSUS DIFF'S"
PRINT*," MATRIX ACTUAL Sao

to (q~flws,8C0LSI ACTUJAL SOID"
On 29 I"1.NC
I3MEGAsiti) "mEGAs itwioo1.

29 PRINT16,511 OMFGASIIIWANPIDAIII.WMRDAI:I.FRRO)RIII.n[Flgrl,AALPEi ,
IERRnRTII )vDIFZIII

51 RAT4XF..XF..XP.,XF. 4,F..XF.. XF* 4X
IFS.? I

IFILLL.FQ.II G0 TO 269
IFILLL.E0.31 GO TO 269

C#

C$ IF ILL EQUALS ONE THIS STFP WILL ME IGNORED AND THF PROGRAM WILL GD TO *
CO STATEM4ENT 2169, HOWEVER, IC LIL EQUALS ?, TI4F MAS .Lf]Anfr 0 "GOAL VECTORS
C* fACTUALI WILL Be READ 1IN AND THEIR MoE SHAPES PLDT7EO.

258 00 26M J-1.NC
on 2.58 1I.NR

267 FORMSTI X,F70.21
268 UIt,zI-U fI.AsfIOO

Figure C-1. Program '!atrix Listing (Continued).
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D0 140 J-l.NC
SUMMl J0.0
00 141I t..NR

SUM21JI-SORTISU.M23j))
00 140 I-I.NP

140 U2ll.II-U2t!,JlfsumzIji
289 CONTINUE

on 211 LL-I,NR

CALL RCNPL~I)
CALL TITL3nf-NOOE .CnNFICURATION VSl....01

CALL VUARSI-ZO..70..S0.I
CALL CA3IZ..O.0.1,0.0,O51.5.
LI(.LL
CALL 0!uD4:11
00 2?K-,
IFIKL.FO.1I CO TO 704
IFIKL.GT.11 CO TO Z01

204 o0 206 1.1.3
9-30 1-1101

206 CALL CUQY3PIXIK, *YlK3.l1K3 .3.13
00 Z07 J-1,3

KYc3 1I - KI

11111-Z(33K

Xv2l -ZIK31

X31-YtX'bI
VY 33)-VIK .61

PRINTA.KY(IlI, yI 13 , Pil) .WE3 21,yy 6l2).X X(33 .YY(3 3) .73)
207 CALL CUQY3nlyX,'yy,lZ.3.lI

IFIXL.fO.11 CO TO Z05
201 0f) 203 L-1.NR

VYWIL).XI LI

IF( L L L f.E CO TO 119
IFILLL.EO.21 GO TO 199
IFILLL.EC.31 2113L)-f03LI3 4(L LL 3*5.
CO TO 203

199 77231 )!OILI+Ull.-LL*,
20 3 PRINT* , XX (I -I .y ,y tL1,11I
205 DO 209 1-1,3

209 CALL CURV30IXXYIKI ,YYYtK), 1273K) 3,1)
00 210 J-1,3
K.i
XA3I)-WXKIK)
YAIII.VVVIKo
1AI1I-1711KI

2A32)-ZUZIX.31

YAg 31:YYYIK4tI

WA TK3),YA(13.7A313.XA323,VA323,?A32),133YA31,ZAII

210 CALL CURV3O1XA,YA,7A,3.1I
IFIKL.rT.11 C0 TO 216

208 CALL NOIHIOV
CALL NJrWPENdl13
IF(KL.E0.1) GO 1n0217

216 CALL NFWPENtil
217 CONT INUP

CALL 0*114

ENO

Figure C-1. Frogi ai >',Atrix Listing (continued).
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-19. Z4 375 1?.

1q. Z4.375 10.5

1. 6 10 .S

-19. 01;.,
-5.5 0. 1?.,,

19. 0. t0.%
; 4 1 1 69.41 .599

2 90 2 151.75 ?.7507813 5

1 103 0 ?06.3"6 .7570Z44 s

4 103 0 706.643 .7313859 5 4

2 119 0 2301.039 .6190009 5 7

s 119 0 23M.21Z .767R094 5 5

4 139 L 279.993 .75391196 5 4

2 22S 1 451.669 .776340? 5 2
3 4? 1 484.40? 070672S2 5 3

1 1 168. O0008.00 .0008.00 30.5 .0 .0

1 2 ?.69 .000f400 OOOF .00 72.6 .0 .0

1 3 -24.6 .000E.00 .0008.00 94.5 .0 .0

4 %3.3 000EO00 .00O8O00 63.1 .0 .0

1 5 -44.7 .0008400 .0008.00 69.5 .0 .0

t 6 -31.7 .000E.00 .000EO00 ?7.7 .0 .0

1 ? 10.5 .0008.00 .000F.00 105I.9 .0 .0

a 5.30 .000f#00 .000f.00 55i.1 .0 .0

t 9 -11.3 .000EO00 .000E*00 90.7 .0 .0

2 1 132. .0008400 .000F-00 171.4 .0 .0

2 2 2.41 .0008.00 .00f0o .3 .0 .0

? 3 -77.6 .0008400 .0008400 165.7 .0 .0

2 4 1277. .000f*00 .00O8*00 105.1 .0 .0

2 5 -49.9 .ooof*00 .000f.00 177.5, .0 .0

z 6 -73.5 .000f.o0 .000800 78.1 .0 .0

2 7 15.41 o000F.00 o000E400 177.1 .0 .0

2 a M.39 .000f8.00 .0008.00 4.3 .0 .0

2 9 -19.5 .0008*00 O0008*00 139.7 .0 .0

I 1 80.8 .0008.00 .000E*00 1277.3 .0 .0

1 2 -14.6 .0008400 O000E.00 122.1 .0 .0

1 3 153. O000f-00 .0008-00 171.5 .0 .0

1 4 790. 00O8O00 .000E*00 141.6 .0 .0

1 5 207. OOOF-O() .0O0E.00 140.4 .0 .0

1 6 -780. .0008400 .000F*00 135.8 .0 .0

? -142. .0008.00 .0008.00 137.3 .0 .0

t S -24.1 .000f*00 .0008.00 170.3 .0 .0

1 9 143. o000f.00 .0008 400 170.6 .0 .0

4 1 48.9 .000F.00 .0008*00 45.? .0 .0

4 2 -11.0 .000(#00 O000E.00 U-3-5 .0 .0

4 3 14S. .000F.00 .000E*00 10A.5 .0 .0

4 4 737. .0008.00 .000E400 134.', .0 .0

4 5 728. O000f*00 .00bf*00 131.6 .0 .0

4 6 -275. .00O8400 O0008.00 126.7 .0 .0

4 7 -171. .000O00 .0008400 177.6 .0 .0

4 a -75).4 .0008.00 .0008.00 119.2 .0 .0

4 9 140. .000c#00 .0O08400 113.4 .0 .0

2 1 764. o00f^00 .000F.00 64.5 .0 .0

2 2 -14.0 .0008*00 .0008+00 150.7 .0 .0

2 3 14. .0008*00 .0008O00 141.9 .-1 .0

2 4 77.2 .000(#00 .0008400 98.5 .0 .0

2 5 -131. o000f,00 .0008+00 145.9 .0 .0

2 6 -5302. c000t.00 .0008.00 140.0 .0 .0

2 7 -96.4 .0008.00 .000E.00 149.7 .0 .0

2 8 -1'A.8 .0008.00 .0008.00 149.7 .0 .0

2 9 117. .0008.00 .0008*00 142.6 .0 .0

5 1 346 . .0008.00 .000C.00 56.R .0 .0

5 2 8.511 .0008400 .000E.00 79.0 .0 .0

5 P18.7 .00C8.00 .000C.00 161.5 .0 .0

5 4 13.6, .(,If0OF 00 .0001.00 96.7 . % .0

5 5 -101. .0008.f), *0or.no 16-,.6 .0 .0

5 6 -437. _100.no .000f -,() '31.60 .0 .0

5 7 6. .000f4010 oo0n800 11.5 .0 .0

5 8 7. .. I008 .00 .000E .00 153.? .0 .0

5 9 t)OOF.008.O .0008.00 160.4 .0 .0

4 1 421. O0008.00 .000(-00 77.1 .0 .0

4 2 -11.9 .0008.e0 .OOOr .00 121.9 .0 .0

'q 3 72. *.0008.00 .0008.00) 174. .0 .0

4 4 P.. .0008400 .000o -?1.1 .0 .0

Figure- C-i. Progr-am~ >atrix Listing (Continue-d).
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4 5 -6c.8 oOOOr.:0 .UU') , 64.9 o0 .0
4On 6 ).~ .0 :0' " 69. .0 .0

4 7 82.O .000F.00 .O00;-or, 11.4 .0 .0
a S -64.0 .000F*00 .OOOF00 175.8 .0 .0

4 9 107. .00f0.00 .000f.00 174.7 .0 .0
2 1 -724. .00FO0 .OOOF.00 177.7 .0 .0
2 2 -27.7 .00O00 .00F.00 88.0 .0 .0
2 3 201. .O00F*00 .OOFUO 36.3 .0 .0
2 4 33.7 .000E-00 .0001.00 116.8 .0 .0
2 5 68.0 .000E*00 O00E.00 155.6 .0 .0
2 6 -50.8 .0001.00 .00OF010 ?.9 .0 .0

2 7 -89.3 .O000O0 .000(.00 94.7 .0 .0

2 a -1P.O .000OOO .O00O0 0 6.5 .0 .0
2 9 16.0 .000E00 .O00.O00 14.6 .0 .0

3 1 qq. .000E00 .O00O.0 L.1 .0 .0
3 2 -16.9 .O00E00 .O00E00 57.6 .0 .0
3 3 185. .000100 .OOOE*00 4?.8 .0 .0
3 4 -81.6 OO00 0 .O00EfO0 91.8 .0 .0

3 5 64.5 .00fe010 .000.00 53.9 .0 .0
3 6 -68.2 .O000O00 .O00E00 44.9 .0 .0
3 7 119. .O00E00 .O00E00 60.8 .0 .0
3 8 -61.5 .000F.00 .000[.00 42.7 .0 .0

3 9 124. .00O#00 .00E*00 47.6 .0 .0

1 1 1A6. .0001*00 .O00E00 118.6 .0 .0
1 2 5.R6 .O00.00 .O00E00 112.O .0 .0
1 3 -25.0 .000F-00 .O00E00 118.9 .0 .0
1 4 47.8 .000C00 .0001E00 111.8 .0 .0
1 5 -115. .0001.00 .000.00 82.5 .0 .0
1 6 -13.2 .0001.00 .O00E00 IZ5.1 .0 .0
1 7 22. .O00E100 .000F.00 125.7 .0 .0

1 8 16.6 O000*40 .0001.00 10q.q .0 .0
1 9 -14.9 .000F.00 .OOE0 0 125.8 .0 .0
2 1 167. .O00Ef0 .0001.00 q9.0 .0 .0
2 2 -9.11 .000*00 .O00E00 88.4 .0 .0
2 3 -44.0 .000F-00 .000(.00 9Z.3 .0 .0

2 4 146. .000*00 .O00.00 62.7 .0 .0

2 5 -20.9 .000+00 .0001E00 147.0 .0 .0
a 6 -26.0 .0001.00 .000.00 122.7 .0 .0

2 7 37.6 .O00O00 .O000E00 15t.4 .0 .0
2 8 -5.06 .000f.00 .0001.00 32.9 .0 .0

2 9 -46.0 .000fo0 .O00E.00 85.9 .0 .0
I 1 67.1 .000C100 .O000E00 -7.3 .0 .0
4 2 34.L .000*00 .000O00 114.8 .0 .0

4 3 118. .000F100 .O00EO0 93.q .0 .0
4 4 576. .000F.00 .O00E00 176.4 .0 .0
4 5 186. . F000 .O00F00 I2.7 .0 .0
4 6 -230t. .0001.00 .OOO00 118.h .0 .0
4 7 -140. .O000E00 .O00E00 119.4 .0 .0
4 a -q.84 .OOnroo0 .000O00 145.6 .0 .0
4 9 136. .0001.00 .00,E.0o IZ.2 .0 .0
I 1 q7.7 .000100 .JO~r.00 110.0 .0 .0

1 2 32.4 .000F10 .OU1 0O0 10R.1 .0 .0

1 3 136. .000E00 .0001.00 00.3 .0 .0
1 4 f64. .000r.00 .OOOE0.0 110.5 .0 .0
I 5 215. .000C-00 .0001.00 114.? .0 .0
1 6 -275. .O00100 .0001.00 113.6 .0 .0

1 7 -II. .0001F00 .O000.00 103.1 .0 .0
I 8 -8.25 .00O00 .000O00 101.? .0 .0
I q 158. .000F-00 .OOOF00 117. .0 .0
3 1 Z02. .0001*00 .O00*00 71.6 .0 .0
3 2 -1.11 .000E400 .O00E00 81.2 .0 .0
3 3 116. .00O.00 .O00.O00 145.6 .0 .0

3 4 103. .000.00 .001.00 105.2 .0 .0
3 5 34.8 .000F100 .O00E.00 154.1 .0 .0

3 6 -449. .00OF.0 .00OF.00 134.0 .0 .0
3 7 -68.2 .000*00 .000(00 15q.0 .0 .0

3 8 -27.6 .O00O00 .00E.00 157.1 .0 .0
3 9 q2.4 .0001400 .000F.00 149.0 .0 .0
6 1 2q6. .OOOF00 .0001.00 55.5 .0 .0
6 2 R.24 .000O00 .0001.00 83.7 .0 .0
6 3 115. .00F.00 .O00.00 114.4 .0 .0

6 4 45.4 .00000 .000[.00 85.1 .0 .0
6 5 37.9 .000FO .0001.00 180.0 .0 .0
6 6 -3q5. .000*00 .OOOF00 132.6 .0 .0
6 ? 73.6 .O00F*O0 .O00O.00 13.9 .0 .0
6 6 -31.3 .0001.00 .000F.00 167.9 .0 .0

Figure C-i. Program Matrix Listing (Continued)
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6 9 84.9 .0O10 00 .OQU 175.4 .0 .0
5 360. .000f.00 .Of00*CJ 44.0 .0 .0
5 2 S.1 .000O0 .O000.O0 83.3 .0 .0

S 3 -901 . .000E.00 .0001400 14.1 .0 .0
5 4 121. .000f*00 .000E.O0 69.0 .0 .0

5 -21.2 .O00E*00 .000F*00 168.6 .0 .0
5 6 14M. O00F*00 .000C400 179.9 .0 .0
5 7 63.3 *O00E*00 .O00E*00 50.4 .0 .0
5 a -35.5 .O00EO0 .O00E*00 177.6 .0 .0
5 9 -82.1 O00E#00 00E*00 13.3 .0 .0
z 1 -393. .O00OO .000fO0 136.0 .0 .0
2 2 -Z2.8 .000E 00 .0001.00 20.8 .0 .0
2 3 -197. O000O.00 O00E00 130.4 .0 .0
2 4 57.9 .O00F00 .O00E00 118.0 .0 .0
2 5 -11.8 .000OO0 .000*00 174.9 .0 .0
2 6 29.7 O000E.00 .0001.00 177.9 .0 .0
2 7 -M8.1 .00F*00 .OOPE*oo 90.6 .0 .0
2 8 17.8 .000E.00 .OOE*00 152.1 .0 .0
2 q -34.8 .00F#00 .0001*00 165.8 .0 .0
3 1 493. .00E*00 .000C.00 3.4 .0 .0
3 2 -33.6 .0001.00 .000F*0 104.3 .0 .0
3 3 -2%8. *000F.00 O00E*00 177.2 .0 .0
3 4 -42.2 ,00F*o0 .00O00 107.6 .0 .03 5 29.4 .0001E00 .0001*00 115.0 .0 .0
3 6 27.8 ,O00EO0 O00F*00 41.8 .0 .0
3 7 20.8 .00F#0 .000E.00 26.7 .0 .0
3 8 -44.6 .000.00 .O00E*00 129.0 .0 .0
3 q 31.9 .O00F*00 .0001.00 85.2 .0 .0
1 69 1 139.975 2.0175446 5 1
2 89 2 179.93Z 3.0957055 s 2
4 102 0 204.245 .7355951 5 4
1 10 0 Z04.655 .6540360 5 1
3 119 0 230.610 .6101t71 5 3
6 119 0 230.660 .6657898 5 6
5 140 0 780.646 .706)019 5 5
2 226 2 453.66M 1.0136?7q 5 2
3 233 2 466.016 1.1651139 5 3

-19. 24.375 17.5
-1. 24.375 12.5
19. 24.375 105

-19. 14. 12.5
-1. 14. 12.5
19. 14. 10.5
-19. 0. 12.5
-1. 0. 12.5
19. 0. 10.s

1 64 3 137.27 4.7611160 5 1
5 103 0 207.035 .7830667 5 5
3 119 0 239.l42 .78a7224 5 3
5 140 1 280.553 .9846845 5 5
6 147 4 294.848 2.7664447 5 6
3 163 2 327.44i 1.2368145 5 3
7 197 4 394.224 2.2474298 5 7
4 207 2 414.164 1.0396776 5 4
6 226 2 453.6M8 1.2014689 5 6

1 1 214. .0001.00 .000E.00 97.4 .0 .0
1 2 1.49 .000*00 .000E.00 72.1 .0 .0
1 3 -37.9 0001.00 .O00F.00 103.5 .0 .0
1 4 -37.5 .0001.00 .0001.00 56.q .0 .0
1 5 -6.65 .0001.00 000E00 133.3 .0 .0
1 6 45.1 .000c*00 .0001.00 132.1 .0 .0
1 ? 41.5 .000[#00 .O00E+00 11.? .0 .0
I 8 2.71 .000C.00 .000F.00 78.2 .0 .0
1 9 -24.5 .000F.00 .0001-00 110.4 .0 .0
5 1 -61.8 .000F.00 O00E00 96.6 .0 .0
5 2 -17.7 .000t.00 .000F00 111.4 .0 .0
5 3 150. .00OV.00 .000O100 100.8 .0 .0
5 4 "10. .000F.00 .O00EO0 46.1 .0 .0
5 5 276. .000F.00 .000F.00 120.4 .0 .0
5 6 -4m?. .000F.00 ,0001-00 111.0 .0 .0
5 7 -143. .000t.0 .000F.00 116.0 .0 .0
5 a -19.9 .000F.00 .00E*00 118.3 .0 .0
5 9 172. .000F.00 .0001.00 10I42 .0 .0
3 I 61.9 .000F.00 .0001.00 159.6 .0 .U
3 2 -?4.4 O00t*00 .000(.00 117.3 .0 .0
3 3 139. .*OOF0 .000F.00 116.5 .0 .0
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3 4 8?.I .000(*00 .oo *- 91.9 .0 .0
3 5 153. .100.00 .OO'*t 20.1 .0 .0
3 6 -611. .000E.00 .O000OLC 88.2 .0 .0
3 7 -112. .00E40 .0001-00 13Z.8 .0 .0
3 a -31.1 .00F*00 .O00O.0 127.7 .0 .0
3 9 128. .000F.00 .000F.00 118.3 .0 .0
5 1 -266. .00F*00 .000F.00 176.7 .0 .0
5 2 -11.8 O00F*00 .0001-00 62.6 .0 .0
5 3 117. .000[*00 .OOOF*00 137.7 .0 .0
5 4 107. .O00F*00 .O00E00 .3 .0 .0
5 5 124. .000F.00 .000E.00 111.9 .0 .0
5 6 310. .000F.00 .000*00 149.8 .0 .0
5 7 -103. .000E.00 .O00F.00 110.0 .0 .0
5 8 -42.8 .O00E*00 .000E*00 148.6 .0 .0
5 9 lq. .000E.00 .O00F00 134.0 .0 .0
6 1 SOQ. .OOOF*00 .OOOF0 0 41.3 .0 .0
6 2 -41.0 .fOOF0.0 .000E.00 166.0 .0 .0
6 3 -180. .OOOF.0 .O00Oo 16.6 .0 .0
( 4 145. .000 00 .000F.00 16 .7 .0 .0
6 5 ?7M. .O00F0o .000E.00 Ikq.8 .0 .0
6 6 -7 . .000F.00 .0001.00 24.7 .0
6 ? 321. .000F.00 .000F.00 2.3 .0 .0
6 a 26.8 .000F.00 .000E.00 .R .0 .0
6 9 -163. .9001.00 .000E.O0 9.7 .0 .0
3 1 3 0. .O00O00 .000E.00 118.1 .0 .0

3 2 -15.5 .000[-00 .000F*00 50.2 .0 .0
3 3 -4.53 .000C.00 .003F.00 137.2 .0 .0
3 4 48.5 .000F100 .000E.00 32.? .0 .0
3 5 -28.7 .000F.00 .000E.00 94.7 .0 .0
3 6 20.9 .0001.00 .0001.00 q7.q .0 .0
3 7 32.3 .000F.00 .O00E00 104.4 .0 .03 8 20.0 .00OE.00 .O00F00 29.4 .0 .0
3 9 27.8 .000F.00 .000E.00 179.8 .0 .0
7 1 432. .000f.00 .000F'00 67.9 .0 .0
7 2 -9.72 .000F.00 .000+00 Q8.1 .0 .0
7 3 41.9 .00F*00 .O00E-00 42.7 .0 .0
7 4 28.5 .000F.00 .O00E-00 82.3 .0 .0
7 5 -29.2 .00E#00 .000.00 6.4 .0 .0
7 6 -22.1 .00E400 ,001.00 50.3 .0 .0
7 7 18.4 .O00E*00 .00.O00 96.2 .0 .0
7 8 -9.62 .000.00 .O001O0 143.7 .0 .0
7 q -24.5 .00E.00 .O00E*00 147.0 .0 .0
4 1 437. .000E.00 O00E00 25.4 .0 .0
4 2 -12.3 .000F.00 .0001'00 24.2 .0 .0
4 3 114. .000E.00 .00E#0 63.0 .0 .0
4 4 43.1 .000E.00 .000E.00 40.2 .0 .0
4 5 -17.4 .00E*00 .O00E00 145.9 .0 .0
4 6 -51.0 .0001.00 .000E.00 68.5 .0 .0
4 7 15.7 .00E*00 .0001*00 157.5 .0 .0
4 8 13.0 .OOOE*00 .000E*00 128.2 .0 .0
4 9 28.6 .00E00 .OOE0 0 64.0 .0 .0
6 1 -3qO. .00F*00 .000E.00 169.3 .0 .0
6 2 -24.3 .000E*O0 .O00E00 7.7 .0 .0
6 3 87.3 .00E*00 .0001+00 64.2 .0 .0
6 4 42.0 .O00F*00 .000f100 3.5 .0 .0
6 5 16.1 .0001*00 .000E.00 3.6 .0 .0
6 6 350. .0001.00 .000E.00 50.3 .0 .0
6 7 -85.2 .00O00 .O00E*00 84.4 .0 .0
6 8 33.9 .00E*00 .OOOE00 131.9 .0 .0
6 9 -23.1 .000F00 .O00O00 166.9 .0 .0
I I 15%. .000E.00 .0091.00 98.2 .0 .0
1 2 -2.83 .00O00 .000F.00 151.2 .0 .0
1 3 -9.O9 .0noE.00 .00OO 67.7 .0 .0
1 4 -27.2 .0001.00 .O00O00 86.1 .0 .0
I 5 18.9 .000F-00 .000F100 64.2 .0 .0
1 6 -1q.7 .000C.00 .000 .00 132.2 .0 .0
1 7 5.23 .0001*00 .0001.00 88.4 .0 .0
1 8 -. 579 .000.00 .O00O00 136.4 .0 .0
1 9 -6.20 .001.00 .000F100 86.2 .0 .0
4 1 -11?. .000*00 .000F'00 160.9 .0 .0
4 2 -41.4 .0001.00 .000F.00 139.2 .0 .0
4 3 161. .O00F*00 .O0OF'O0 L33.8 .0 .0
4 4 1030. .O00F*00 .000F.00 103.8 .0 .0
4 5 163. .000[1O .000F.00 117.1 .0 .0
4 6 -878. .000 00 .000-.00 125.5 .0 .0
4 7 -17. .n00f.o0 .0001f0 134.? .0 .0
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4 8 -)', oI)n" .0 ° .25.8 .u .0
4 9 IQI. 0)oi ,t ,To Y' 11.4 .0 .0
S t Z2. .fl000

1 
-00 .000 .u( 3A.5 .0 .0

5 2 16.3 ,O00O00 .000t00 17%.5 .0 .0
5 3 169. .O00O00 o0001.00 1?4.? .0 .0
5 4 226. .000F*00 U00UE-00 160.2 .0 .0
5 5 -84 .4 .000F1o0 .O00100 144.2 .0 .0
5 6 -710. .0001.00 .,00O10 141.3 .0 .0
5 7 113. .0001"00 .0O00F00 z. .0 .0
5 a 31.q .O00F00 .OOO*O0 149.8 .0 .0
s q 175. .00O0400 .000(-00 158., .0 .0
I I -4A5. .O00O00 .O00E00 172.8 .0 .0
1 2 -39.1 .000fo0 O00F00 144.4 .0 .0
1 3 Z84. 0001.00 .O00E00 176.8 .0 .0
1 4 365. .000F00 O00E*00 145.5 .0 .0
1 5 1q7. .000".00 .000C.00 152.4 .0 .0
1 6 518. .0001.00 .O00E00 143.9 .0 .0
1 7 -410. O00O.00 .0001.00 162.8 .0 .0
I 8 -99.5 .000EO0 O00E*00 159.6 .0 .0
1 9 307. .O000E00 .000E.00 153.0 .0 .0
3 1 294. .O00O.00 .O00E00 70.7 .0 .0
3 2 -17.7 .0On-0' 0 .000C.00 165.2 .0 .0
3 3 96.5 .O00Eo0 .O00E00 15q.7 .0 .0
3 4 I5. .O00E+00 .000O00 34.? .0 .0
3 5 -7.66 .O00E00 .O00O00 125.9 .0 .0
3 6 68.3 .00E*00 O00E00 14.q .0 .0
3 7 140. .0OF000 .O00E00 4.6 .0 .0
3 8 4.84 .000O400 .0001.00 145.1 .0 .0
3 9 162. .O00F*00 .000E.00 174.1 .0 .0
4 1 305. .O00E00 O00E+00 71.Z .0 .0
4 2 -23.1 .000t.00 .O00E00 68.3 .0 .0
4 3 q9.1 .000F00 .O00O00 141.6 .0 .0
4 4 136. .Oof0 0 .OCOE#00 22.7 .0 .0
4 5 -32.3 O00E*00 .O00E00 165.1 .0 .0
4 6 -123. .OOOFO0 .O00E00 18.4 .0 .0
4 7 -72.4 .0001.00 .000C-00 138.' .0 .0
4 8 q.92 .000.00 O00oO00 144.4 .0 .0
4 9 10?. .O00F#00 .O00E00 148.4 .0 .0
4 1 560. .0001.00 .O00E00 53.7 .0 .0
4 2 -14.9 .o00FO0 .O00E00 78.n .0 .0
4 3 29.5 .O00E00 .OO-0.0 72.3 .0 .0
4 4 54.4 O00E00 .O00F00 58.1 .0 .0
4 5 8.63 .000E00 .O00E00 75.7 .0 .0
4 6 %.37 .O00O00 .O00E00 132.4 .0 .0
4 7 -Z7.5 .0001.00 .000O00 34.1 .0 .0
4 8 -q.25 .0001O00 .O00EO0 144.2 .0 .0
4 9 18.1 .0001E00 .O00E00 52.5 .0 .0
6 1 563. .900F00 .O00O00 75.5 .0 .0
6 2 -11.9 .000F00 .O00F00 151.7 .0 .0
6 3 q8.O .O001F0 .OOO00 31.4 .0 .0
6 4 80.2 .000 00 .0001O0 103.1 .0 .0
6 5 4.46 0001.00 .O00F00 92.4 .0 .0
6 6 -115. .O000F00 .0001F00 56.4 .0 .0
6 7 -29.0 .00000 .000O.00 89.8 .0 .0
6 8 -16.1 .0001.00 .O00E00 151.5 .0 .0
6 9 41.9 .O00O .000O.00 106.8 .0 .0
7 1 -305. .0001O0 .000f.00 1574 .0 .0
7 2 43.7 .O00F*00 .0001.00 170.9 .0 .0
7 3 107. .0001F00 .0001.00 7.0 .0 .0
7 4 36.9 .O00FO .0001.00 101.0 .0 .0
7 5 -11.6 0001E00 .0001.00 16A.3 .0 .0
7 6 130. 000c00 .00F-00 15.9 .O .0
7 7 -80.0Ooof ,000F-00 24.? .0 .0
7 p 17.1 .0O "0no .00t .0fl) 64.q .0 .0
? 9 -11.9 .000 00 .0001*00 37.3 .0 .0

1 74 1 149.8 1.7321522 5 1
4 l01 0 20.5 .6890LL 5 4
5 119 2 39.41S 1.2031478 5 5
I 138 ??2',.14? .743031111
3 150 0 301.511 .581h044 5 3
4 161 2 323.245 1.7010649 5
4 200 1 401.5?8 .9915557 5 4
6 ?17 2 414.504 1.0331837 5 6
7 224 1 456.5?4 ,s59r6O 5 1

-9. 24.375 1.5
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19. 24.375 i0.-
-1q. 20. 17.%
11. 20. I?.S
19. 20. 0.o.

-19. 0. 1?.S
11. 0. I°S
1q. 0. 10.1
1 83 1 1&1.261 1.3821552 5 1
2 go 0 110.424 .60q0055 5 Z
4 103 0 207.?88 .609t039 5 4
5 114 A Z2.543 3.7508655 5 5
6 119 0 28.530 .5621088 S 6
8 13q 0 279.684 .5192603 5 8
1 149 1 Zq9.23? .6977379 5 1
2 151 2 301.621 1.7963026 5 2
3 164 0 329.5Z3 .5889673 5 3

1 1 12.2 .00E-00 .00O00 129.9 .0 .0
1 2 42.7 .000[00 .O00E00 149.4 .0 .0
1 3 -33.8 ,00F*00 .0001400 132.5 .0 .0

I 4 13.3 .000f.00 .0001.00 116.7 .0 .0
1 5 34.S .0001F00 .O00E00 47.1 .0 .0
1 6 -8.16 .OOFO00 .O00E.00 78.0 .0 .0
1 7 7.65 .00O00 .0001.00 1Z5.5 .0 .0
1 a -10.5 .0n0.00 .000OF00 9q.6 .0 .0
1 9 -13.4 .O00F00 .00E.00 139.7 .0 .0
2 1 24.7 .000000 .O00F00 163.0 .0 .0
2 Z 62.8 .00E.00 .0001F00 150.9 .0 .0
2 3 -30.4 .O00F00 .00E.00 124.q .0 .0
2 4 34.6 .00O-00 .00E-00 86.6 .0 .0
2 5 -10.9 .000C.00 O00E00 141.0 .0 .0
2 6 29.0 .00F.00 .0001.00 39.4 .0 .0
2 1 -1Q.6 .0001.00 .00E00 35.5 .0 .0
2 8 -7.19 .O00F-00 .O00O00 87.9 .0 .0
2 9 -14.2 .0001.00 .000O.00 165.5 .0 .0
4 1 60.4 .000.00 .000F00 59.9 .0 .0
4 z 60.7 .0001.00 .O00E00 123.6 .0 .0
4 3 -79.3 .000*00 .00E.00 60.3 .0 .0
4 4 -10?. .o00Eno .O00O00 44.9 .0 .0
4 5 -54.9 .0001.00 00OE-00 62.8 .0 .0
4 6 42.5 .000 *00 .O00E00 49.9 .0 .0
4 7 66.0 .0001F00 .00E00 62.4 .0 .0
4 8 -24.9 .00O00 .000C.00 51.4 .0 .0
4 q -P3.0 .0001.00 .000E0 39.1 .0 .0
5 1 9.54 .OOOF00 .000100 '?.0 .0 .0
5 2 107. .OnE.00 .OOl0O0 103.0 .0 .0
5 3 -17.7 .0001+00 .O00O0 98.4 .0 .0
5 4 -. 76q .0001-00 .O00E00 27.4 .0 .0
5 5 -P.47 .AO01.00 .O00F-00 10.1 .0 .0
5 6 -14.0 .00nF-00 .0001.00 gO.9 .0 .0
5 7 2.35 .0001.00 .00E-00 97.? .0 .0
5 a A.65 .00,f.no .O00E00 112.4 .0 .0
5 q 9.09 .00Or.00 .0001.00 120.9 .0 .0
6 1 65.5 00F#O0 .00E.00 65.4 .0 .0
6 2 -110. .000T.00 .O00O00 ?0.S .0 .0
6 3 -104. .00FO0 .OonF.0 67.9 .0 .0
6 4 23.1 .000EO .OOUE+00 63.1 .0 .0
6 5 -21.1 .00000 .0001.00 91.9 .0 .0
6 6 137. ,00F-00 .000E00 5h.' .0 .0

6 7 f2.7 .0001.00 .O00E00 62.3 .0 .0
6 8 -. 7.9 .00F-00 .0001.nO 51.2 .0 .0
6 9 -11?. .nooF) .O00E.00 49.Q .0 .0
8 1 A9.6 .O00O00 .0001.00 100.? .0 .0
8 2 55.8 .0001.00 .0001.00 h5.7 .0 .0
8 3 -107. .00O00 .O00F00 101.1 .0 .0

8 4 75.3 .00 F00 .001.00 .4. .0 .0
8 5 -64.5 .00.0 .00O0 R0.0 .0 .0
A 6 -144. .00O00 .000F00 98.5 .0 .0
8 7 4.4 .OOOF00 .0001.00 106.1 .0 .0
8 8 -90.4 qOOfO0 .0001.00 110.? .0 .0
8 9 -62.8 .00O00 .00O00 1),. .0 .0
1 1 21. .onoo0 .0001-00 117.4 .0 .0
1 2 85.9 .0001.00 g00.00 13.8 .U .0
1 3 -2qo. .O0000 D0001Oo SR., .0 .0
1 4 6#.4 .OOO00 .O00F00 100.q .0 .0
1 5 100. .OOql.O0 .0001C00 141.5 .0 .0
I 6 -O8.6 .00F.00 .O00F.o0 I's.? .0 .0

Figure C-i. Program Matrix Listinq (Continued).
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1 7 18%. .OOOO .-0.0 0 144. 7 .0 .0
1 8 -7q.0 .000f 00 .0C0,

'
* 68.S .0 .0

I q -100. .0006.00 .000F 9 84.? .0 .0
2 1 103. .0006.00 .00000 24.9 .0 .0
2 z 141. .000F.00 .O00E00 163.1 .0 .0
2 3 -R5.6 .00E'00 .OOO0.0 119.8 .0 .0

2 4 109. .0006.00 .00F-00 38.1 .0 .0
2 5 A.0 .00O*00 .0006E00 7.3 .0 .0
2 6 -24.1 .00F*no .O00F*0 63.2 .0 .0
2 7 q.0 .O00F6( .000F.00 42.9 .0 .0
2 8 8.73 .000.o00 .O00E.00 117.1 .0 .0
2 9 24.1 .006.00 .UOOF0O0 16R.1 .0 .0
3 1 33.2 0006 F00 .OOO-00 70.9 .0 .0
3 2 26.9 .0006E00 .0006.Ofl 112.' .U .0
3 3 -lt. .00F.00 .OUOE-00 q4.7 .0 .0
3 4 368. .0001-00 .00E.00 0.2 .0 .0
3 5 -8q.0 O00E.00 .00F.00 91.0 .0 .0
3 6 155. .000F300 .000F.00 104.1 .0 .0
3 7 -92.7 .000O00 .0006F00 81.5 .0 .0
3 p -27.6 .00OF*00 .0006F00 90.1 .0 .0
3 Q -xe's. .0006.00 .O00F00 A4.? .0 .0
3 1 q8.8 .O000F00 .0006.00 164.2 .0 .0
3 2 5.22 .OOO0O0 .0006E00 11.1 .0 .0

3 3 -24.3 .O00F*00 .00E+00 175.? .0 .0
3 4 12.1 °O00*00 .000F600 138.7 .0 .0
3 5 6.46 .000 00 .O00F00 106.6 .0 .0
3 6 -q.28 .0100£00 .0006*00 151.2 .0 .0
3 7 13.3 .0006.00 .0006E00 116.) .0 .0
3 8 q.g .000F00 .O00FOC 3.4 .0 .0
3 9 13.Q .O00600 OUUI-o0 Q.h .0 .0

4 1 -151. .0006.00 .0006E00 41.3 .0 .0
* 2 -101. .GCOF.0o .000F'00 111.? .0 .0

& 3 -68.6 .000.0o0 .O00FUO 144o4 .0 .0
4 195. C)006F00 ,OOOE- . ')8.1 .0 .0

5 12.9 .00F00 .O00E0 74.0 .0 .0
4 6 185. .OOOF00 .O00O00 98.0 .0 .0
4 7 -104. .000F00 .O00E00 S9.0 .0 .0
4 8 -90.2 .0006.00 .O00E+00 90.0 .0 .0
4 9 -82.4 .0006.00 .O00F00 105.7 .0 .0
5 1 -223. .000r*00 .O00E00 139.4 .0 .0
5 2 66.6 .0006.00 .0006E00 131.3 .0 .0
5 3 207. .O00F*00 .000 -O 114.2 .0 .0

5 4 215. .000(.00 .O00O00 117.3 .0 .0
5 5 -35.7 .000E00 .000(.00 112.9 .0 .0
5 6 -121. .0006E00 .0006.00 120.0 .0 .0
5 7 -121. .00.0OO .000.00 117.2 .0 .0
5 8 51.0 ,0006.00 .O00E00 128.1 .0 .0

5 9 178. .O00F00 .0006.00 L19.6 .0 .0
6 1 lO8. .O00F00 .O00E00 93.8 .0 .0
6 2 -15.R .000.00 .O00E00 115.7 .0 .0
6 3 -'5.6 .O00F00 .O00E00 114.1 .0 .0
6 4 -19.5 .000C.00 .O00E00 58.6 .0 .0
6 5 1.6Z .000C.00 .O00E00 16.2 .0 .0
6 6 -13.h .000.00 .O00.00 59.7 .0 .0
6 7 40.4 .O000*00 .OOOF00 116.6 .0 .0
6 8 -21.6 .000*00 .0006.00 1?6.2 .0 .0
6 9 -39.6 .0006.00 .O00E00 111 .0 .0
7 1 1?9. .O00F.00 .0006.00 74.2 .0 .0
7 2 31.9 .000.00 .00E.00 169.q .0 .0
7 3 63.1 .000E.00 .000600 136.q .0 .0
7 4 -37.5 .000C.00 .O00E00 156.8 .0 .0

7 5 7.96 .O000*O .O00F00 121.6 .0 .0
7 6 -33. 00F+0 .0006.00 144.4 .0 .0

7 7 -21.4 .0006.00 .000[.00 158.4 .0 .0
7 8 41.5 .000C.00 .000.00 151.0 .0 .0
7 9 5%.4 .000.00 .0001-00 138.2 .0 .0

5 1 246,. .000.00 .O00.O0 31.9 .0 .0
5 2 -64.0 .0OF000 .O006o0 7.6 .0 .0
5 3 -q6.g .0006.00 .00O00 6.7 .0 .0
5 4 -103. .O00O00 .O00F00 16A.8 .0 .0
5 5 -19.6 .00F.00 .OOOE00 167.5 .0 .0
5 6 144. .000C.00 .UOOE'0O 173.h .0 .0
5 7 -F4.5 .00o.00 .0006.00 174.2 .0 .0
5 8 -72.3 .O000oO .O00.00 .8 .0 .0
5 9 -q6.I .0006.00 OOOF0O0 .1 .0 .0

6 1 177. .O00F00 .000F00 51.7 .0 .0

Fiqure C-I. Profra a >itrix Listing (continued).
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6 2 28.3 . 000f -00 .0004 0 1 70. 9 .0 .0
6 3 -33.8 .00G -00 °oor,. 106.3 .0 .0
6 4 -A2.2 .O00fO0 .000F.00 109.1 .0 .0
6 5 8.72 .O00O00 .000f.00 29.5 .0 .0
6 6 -51.1 .000F00 .000E.00 19.t .0 .0
6 7 -oe. .O000E00 .O00E00 178.1 .0 .0
6 8 -25.? .000F00 .000f.00 52.6 .0 .0
6 9 -76.0 .00f1.0 .oofeoo ?Z.2 .0 .0
? 1 432. .On0o.o .000E.00 6.6 .0 .0
7 2 -274. .000F.00 .00-)E-00 28.1 .0 .0
7 3 -564. .000F.00 .O00.O00 .7 .t .0
7 4 44M. .00F-00 .O00F0O0 15.5 .0 .0
7 5 -15.4 .00 E100 .000E00 15.8 .0 .0
7 6 -130. .O001.C9 .UDOF-00 15.3 .0 .0
7 7 562. .000.0 .000C.00 27.3 .0 .0
7 8 -223. .000r.00 .0OOr-00 1.1 .0 .0
7 9 520. .O0OF-00 .O00FOO 167.3 .0 .0
3 1 364. .O00O00 .000F00 112.0 .0 .0
3 2 7.72 .000.n0 .0001.00 18.3 .0 .0
3 3 53.A .OOOF0O0 .000[*00 98.3 .0 .0
3 A -#8.3 .O00 00 .0OO0-0 162.1 .0 .0
3 5 -3.q97 .O00E00 .0001.00 35.5 .0 .0
3 6 14.4 .O00O.o0 .000E.00 34.9 .0 .0
3 7 -55.0 .000F.00 .0001.00 21.4 .0 .0
3 8 20.6 .00E00 .000E.00 50.0 .0 .0
3 q 26.1 ,00EO0 .O00E00 73.2 .0 .0

3 94 2 168.285 2.8288817 5 3
4 90 0 180.711 .6866900 5 4
5 104 0 208.393 .7893097 5 5
6 ItO 5 220.q72 4.8140106 5 6
7 11q 1 238.822 1.0497084 8 7
5 139 0 279.764 .5510013 5 5
6 146 1 293.175 1.0753403 5 6
7 150 0 300.294 .592q505 5 7
3 162 4 324.819 2.8444567 5 3

END OF RECORD
ORAW-I-ENO$ S

Figure C-I. Program Matrix Listing (Concluded).
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28C.84t

b66 C 76

-2 1 0. 4 1 4 
.

U 
.4 7 - - 21 -

-4U1 1.t~ 11~ -. 12 .1 -ju-2 -1.y t 2

-81 .2 12 -. 5 41.9 -. y .'' .001 6 C0852. 1316 0 ..,5 22.903 -4.3 .ll '' 16 3 2*'4 5

173 08 1 4J .1 o0 .. 5 8.t~ -. 1 -13' 17 2 122 .'9C3 .40 b 12.5 1' -2.95 ? I.. -3.: 7 21 .11 110 .2-4.31 .30 -. 9~ 4.62 .193 1.,M -1.621 .173 -. 2?
-6.920 -. 253 -3.739 -1.681j -.1165 7.531 -. 173 .5b5 -1.941
10.783 .580 46.842 -1.821 -. 0l) -. 113 Z .t,9 7 .O5b .614.-2. 4 48 -. 117 - I.1IC ? . 173 -. 18. *,h5 ~ 155 -. ?704.35 3 .2b5 Z.b25 -2,j ? 112 -. 4 .04 -. 210 .9'THE EICENVALJ1S ARE :

THE COP'
8

ARISON OF EIGLNVALUES:
UNLOAnFD PREDICTEDl ACTUAL PERCENT SO0846 P'EDICTED PFRCENI SQUAREEXPERIMENTAL MASS-LJAOE0 "ASS-L0ADED ERRL)R R 00 T 4ASS-LOADEO EK~ROR K L3TDATA US ING E XP FII8F N IAL P84(3ICTED '11 FUSING PREDICTEO 0OF- ---- SUA8E 'QlJ.J... DaTA Yf1.j'j DI1F5S P5600111646456 VE ZSUS I F F S4ATR I ) ACTUAL 5010 1f960W. dCOL 5 ACTUAL so0Df169.1437 15 9 .4,51 139.975 -13. 02 .39 169.1,37 -21.05 2.59181.2s1 176.554 1 yq. f02 1.82 .81) 181.251 -. 79 2.6t5206.396 197.t,87 204,.215 3.21 .39 20). 396 -1.0 .44206.64,3 206.499 2 04. h55 -. 90 .4.2 206.64.3 -. 97 1.49

-2-3.03 2.11 238.62o ? .32 3.87 23ti.039 - .25 3.80238.212 238.144 1383.6tc0 .22 1 .3)1 1138.112 . 19 3.27279.993 278.87Z 250.-.6 .b3 .01. 279.9,43 *23 1.26451.669 450.286 453.t,68 . 75 8.6s 4,51.56t9 .4 8. 71%8..487 483.7 466.076 -3.60 .72 0.000 100.00 1. 79

-0393526 3272610'.

-16 701334- ,l11
.09739474.9,4')15

-0370 117 37 7 37'. 1
- . 10 6 3 2 9 Ft4)00 S
*62419Q0f?77s4R,S
-. 045?7048e.740 359

-. Sa 88571713678t
.024680'9 t0AS 134

112 1140?s,,86,

-. 0024pC9b82A4'v'2tb
06594101t3701.'?

1.

15 3358671,2,81SIR

Figure C-2. Editel (thiLput From Prograom Matrix.
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S np1 I , L~. t P, It 1- on fI *1):':1>-

woQ a-,Q v1 - rI -t i N

-- --- ---- - - ----

* VI FWPn TNT

X VU.-2.QCE-tA
* 'VU- 7.000C .0

* ZVU* 5.0001 .,)1
* IN ASS. 3-D UNITS

* CAPH SFT-U. I CA%30 I

IlRI Gq 14

Y* n %3lIc IN-1 o~jcE #i~

* Z3D[IJRI GN-S.Q U(E-0 I

-STEP SIZE -

* YIIVsTp. 1.oooE.ol

* Z3LVTP. I.CuD~tl~O

3r .4l~X. 5.O000E.01

Z 304AX- T.0OOL.O1

X. s-*o Y. .1 FIE
* FPfl; LnwfA LFF T COYNF, nF PACE

Figure C-2. Editod Output From Program Matrix (Continued).
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27h. 142
101 . I 9
313. 245
401 .:78
434.50A
45.524

1.409 .05 -. 1'2 .562 -. 1?2 38 .du .fl2 -. 163j.8 ..'' .4.3 1 .t,04 *3* t *j . " 95 1 *44 -.16j
-. 00% -. O.l -5- ' -.1II, .2S2 .V2 .4 * 0.32 .0us
1.213 -.12I -.1st -2.93o mt.1 -2.ji2 .?1 -.217 -. 03?-. 282 .044 -151 . OH1 -3?' -134 .,)u .118 -. 213..leg .024 -O4 .029 -. 115 -. 1?)4 .0 .00'. .001

.,& I .? - -. 401 . /.63 .W -. 042 .874 . 4t4 .118 -. 32a
11. 393 -. 04 1 -1,41 .4,3 -. 450 -6.227 Z.?36 -. 010 1.2 9-. 843 .13? .222 -. 013 -. U75 .175 -. C1. .065 -. 094
-1.041 .212 1.(11 1.619 -. 67 -. 358 -. 473 .073 .9

6 2.45) -. 013 1.639 2.862 .U78 -1.879 -. J49 -. 040 1.594-. 450 -.U75 -. Ub? .07h .294 .943 -.40o -. 132 .0Z2
-- .2 I - . I -----. 154 -1.829 .941 9.361 -1 . a35 -. 301 -1.2472.23b -. 041 -. 473 -. 349 -. 400 -1.835 1.257 .159 -. 047

-. 010 .cb5 .073 -. l4u -. 132 -. 30? .15y .J72 -. 0408
1.129 -. (,g8 .962 1.594 .022 -1.247 -. 047 -. 048 1.214

THF fIrFNVALtIrS ARF:
THE CO"PARfSN OF FICENVALUES:
--UNLOADED -- P&fICTEU ACTUAL PERCENT SQUARE PREOICTED PERCENT SOUARF
FXPFRI-FNTAL "ASS-LOAOFD "ASS-LOAOEO ERROR R)Qro .ASS-LOADED ERROR R00TDATA USING EXPERIMENTAL PREDICTED OF USING PREOICTEO OF

SQUARE O0AL 0ATA VERSUS OIFF*S PSEUOUINVERSF 1FRSUS OIFF$SMATRIX ACTUAL SQD 19RO.S.8COLSI ACTUAL SQO
137.275 137.085 149.M72 8.53 .45 137.275 4.41 .43
20 7-011S -181.20 _ 2U2.598 - 10-56 . 1. 2 0 7. 8 5 -Z.21 2.5?239.182 227.943 238.415 .. 3q 3.96 239.182 -. 32 4.28
Z90.553 260.788 216.142 5.56 Z.85 280.553 -1.00 3.0"294.84M 286.278 301.Ilq 5.05 1.62 Z94.848 Z.21 2.53
327.881 32.150 323.245 -1.21 .71 327.881 -1.43 .893q4.2?§ 393.434 401.578 2.03 .17 394.22k 1.83 .35

- -.04 4.24 ~-L 14,. 164. 4_.68 .26t453.680 453.491 456.52- .bb 4.08 .001 100.00 2.991.

.008 15 7103 5i2 768

-. 18170 3 79t.'21) 1
-.1973h7',P4?911
-. 0460852583?128 . .. .. ..

.226M I980 3 45. .

.195q7423 7t67

.01445647107235

-. 1195120692261

.038q72?64141q
-. 0513527.290I2

.205764160OP71
I.

.5 553I1943n,-A1
-. 725C695747328
-. I~ql';4L0Sl1f

-. 01121916414i 8
.2303771717;47

-. 3241635s9,?q l

.092t-5010147 9I
-. 20C52L1f?-in j

730604.71? 74?

Figure C-2. Edited Output From Program Iatrix (Continued).

104

= • . .. . •_ .... .. .. ... .. . . il . . . . . . . . . . . n - .. . .. ... 11A



79. 764

30.94

.62 .I ? .2' .J-j .96, 1.04 3-*%00l -1 :~ 7 .4 199J .'. 3 -. 2N .J I .1h66

.333 -1.14 -. 1) *I C .2 74 *176.2

.- 3 I .702 1. I 2? -65 - .01 R .8 O22 .65 .49

1 1 3.02 1.1 .49 Zlb~# -1.2") -. 122 .749 1.544

_:Il-. e0 -1.171 111" .04 1 -. '2 1.803 -. 184 .458
-. 064 .702 1.072 -. 629 .005 -. 887 -.292 .645 .1111-. 171 1.014 2 .0I7)2 -. 439 - .069. -1.091 . 1 '4 .419 1.042

-1.2R41Na - .A P 7 - I ~. 09 S-f~fr 3RO .00 8
A507IPE eU04 z 63 .9 )1 -I ,3

105.0.92 91 . I N9 Op k .6 .4 - "?1 1.53 84 "l,
-064 .6 95 6 .9 1 -. 5s O58 . 214 .180 .21 .1 .1

- 2.4% .12 .0743 1.10. ~ -3069 1.S1 2 .4 -.43 .6

3XPERMENTA 301.309n~ -3C'.29'.r f.3 .'.62 30.o -1.1 r 2.66P~ RO

2.4 19 .1 82 8I 2 q .1"9?J .1 34 1. 1 20 . 18. 3 2
3 M ,0 302 23 . 4 IA.% 2 a I h4 2 A 5 0 1 .1

-320936 1 3 1 0 C)2 43 '4h 0 .2 1.II Z b

.0376037544.'?
.5373CQN~??

1.
-. 3294%hSloi

.0364774171

.374?96.o934?

-. 55q644114I
-. 414 784714 7.
-. 27135400014

-.83 09% 80 7 4? 806

114 ?4 30 ?If, I,,,

Figure C-2. Edited Output From Program Matrix (Concluded).
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REUFST. nFFPWrsPr .
ATTACH.NASTO IN .NAS TRAN IP.NA5 RAN. N.Afn FfL." L.

LITIT,700".
At TAU", N AS I NAS I. Ifl. TR AN. SN. AS fAA.

LIBRARY.NASt.NASZ.
RFL*O165000.
N&STRANI..PUNt ATTA&C

RE TUR h.NASTR AN.
AlTA b4NASTPP.NASIPP lD.CCSAST.SN-&PPFL.Am.1

REWI NDPUN.
R~t.165000.
NASTPPtPUN.
CATALOG.OEFVRACLEAN.P.999.

IO ATKINSON."frfL
APP DISPLACEMENT
SOL I

TIME so
CEND

TITLE - CLEAN
SUBTITLE - SINPLIFIEO PANEL
LABEL 2 FIER B1
METHOD I
SPC - I
OUTPUT
OISPLACEMNTSIPRINTPUNCHI * ALL
BEGIN BULK
ASETi 1 2 THRU 52
ASETI 1 54 THRU 64
GRID 1 1 42.S -18.0 23.5 1
GRID 2 1 42.5 -14.67 23.5 1
GRID 3 1 42.5 -11.33 23.5 1
GRID 4 1 42.5 -8.0 23.5 1
GRID S 1 42.S -5.67 Z3.5 1
GRID 6 1 b2.5 -3.33 23.5 1
GRID 7 1 42.5 -1.0 23.5 1
GRID a 1 42.5 1.11 23.5
GRID q 1 42.5 3.h7 Z3. 5
GRID 10 1 42.5 6.0 23.5 1
GRID 11 1 42.5 10.0 23.5 1
GR10 12 1 42.5 14.0 23.5 1
GRID 13 1 42.5 18.0 23.5 1
GRID 14 1 42.5 -18.0 17.7 1
GRID 15 1 42.5 -14.67 17.7 I
GRID 16 1 42.5 -11.33 17.7 1
GRID 17 1 42.5 -8.0 17.7 1
GRID t 1 42.5 -5.67 17.7 1
GRID 19 1 42.5 -3.33 17.7 1
GRID 20 1 42.5 -1.0 17.7 1
GRID 21 1 42.5 1.33 17.7 1
GRID 22 1 42.5 3.67 17.7 1
GRID 23 1 42.5 6.0 1?.7 t
GRID 24 1 42.5 10.0 17.7 1
GRID 25 1 42.5 14.0 17.7 1
GRID 26 1 42.5 18.0 17.7 1
GRID 27 1 42.5 -19.0 12.0 1
GRID 28 1 42.5 -14.67 12.0 1
GRID zq 1 42.5 -11.33 12.0 1
GRID 30 1 42.5 -8.0 12.0 1
GRID 31 1 42.5 -5.h1 12.0 1
GRID 32 i 42.5 -3.13 12.0 1
GRID 33 1 42.5 -1.0 12.0 1

GRID 14 1 42.S 1.31 12.0 1
GRID 35 1 *2.5 3.6? 12.0 1
GRID 36 I 2.5 N.0 12.0 1
GRID 37 1 4,'.5 10.0 12.U 1
GRID in 1 42.S 14.0 I.0 1
GRID 39 1 42.5 18.0 12.0 1
GRID 40 1 4k2. -18.0 6.25 1
GRID 41 1 42.S -14.67 6.25 1
GRID 42 1 42.5 -L.33 6.15 1
GRID 43 1 .5 -8.0 6.25 I
GRID 44 1 42.5 -5.67 f.25

Figure C-2. Sample NASTRAN Deck.
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GRID 45 1 42.5 -3.33 6:2') 1
GRID 46 1 42.5 -1.0 L.25 I
GRID 4? 1 42.5 1.33 6.25 1
GRID 48 1 42.5 3.6? 6.25 L
GRID 49 I 4Z.5 8.0 6.25 1
GRID 50 1 42.5 14.0 6.25 1
GRID 51 1 4Z.5 14.0 6.25 1

GRID 53 1 42.5 -L1.0 0.5 1
GRID 54 1 42.5 -14.h7 0.5 1
GRID 55 1 42.5 -11.33 0.5 1
GRID 56 I 42.5 -q.0 0.5 1
GRID S7 1 42.5 -. 1 0.5 1
GRID sa 1 42.5 -).33 0.5 1
GRID 59 1 42.5 -1.0 0.5 1
GRID 60 1 42.5 1.33 0.5 L
GRID 61 1 42.5 3.67 0.5 L
GRID 6? 1 42.5 6.0 0.5 1
GRID 63 1 42.5 10.0 0.5 1
GRID 64 1 42.5 14.0 0.5 1
GRID 65 1 42.5 15.0 0.5 1
GRID 66 1 0.0 0.0 Z2.175 1 113456
GRID 67 1 0.0 0.0 2.3 1 123456
GRID 68 1 0.0 0.0 0.0 1 123456
GRID 69 0 0.0 0.0 0.0 U23456
GRID 70 0 0.0 0.0 23.0 123456
GRID 71 0 30.0 0.0 23.0 123456
GRID 72 1 0.0 0.0 23.5 1 123456
GRID 73 1 0.0 0.0 0.5 1 123456
CRAR 1 1 1 2 66 2 *CBARI
CRAR 2 1 2 3 66 2 *CBARZ
CAR 3 1 3 4 66 2 *CBAR)
CRAR 4 1 4 5 66 2 *CRAR4
CPA* 5 1 5 6 66 2 #COARS
CRAP 6 1 6 7 66 2 *CBAR6
CRAR 7 1 7 a 66 2 *CRAR?
CRAP a 1 8 9 6b z .CRARS
CRAP q I q 10 66 2 .CPAR9
CRAR 1D 1 t0 it 66 2 *CeARIO
CsAP 1I 1 11 12 66 2 #CRAR1I
CORR 12 1 12 13 66 2 *CRARIZ
CRAR 13 1 53 54 67 2 OCRARI3
CRAP 14 1 S4 55 6? 2 *CBAR14
CRAP is 1 55 56 67 2 *CRARIS
COAR 16 1 56 57 67 2 *C8AR16
CRAP 17 1 5? 58 6? 2 *CPARI
CRAP 18 1 58 59 67 2 *CRARI8
CRAP 19 1 59 60 6? 2 *CRARI9
CRAP 20 1 60 61 67 2 *CeARZO
,?AR 21 1 61 6z 67 2 *CRAR21
CRAP 22 1 62 63 67 2 *CMAR12
CRAP 23 1 63 64 67 2 *CRAR21
COAR 24 1 64 65 67 2 *CRAR24
CRAP 25 2 1 14 be 2 *CeAR?5
CBAR 26 2 14 ?7 68 2 *C9AR26
CRAP 27 7 2? #0 68 2 *CRAQ,?
CRAP 28 2 40 53 68 2 *CRARZ5
CRAR 29 2 13 26 b8 2 *CRARZq
CRAP 30 2 26 39 68 z *CfAR30
CRAP 31 2 39 52 68 2 OCRARII
CRAP 32 2 52 65 68 2 *CRARI2
CRAP 33 3 4 17 68 2 *CRARI)
CRAP 34 3 17 30 68 2 *CRAR3I
CRAP 35 3 30 43 b8 2 *CRARIS
CRAP 36 3 43 56 68 2 *CRAR)6
CRAP 37 3 ? 20 68 2 *CRAR37
CRAP 38 3 20 11 68 2 *CBARIR
CRAP 39 3 31 46 68 2 #CPARIq
CRAP 40 3 46 59 68 2 *CAR-.0
CRAP 41 3 Ito 23 68 2 .CoAR4I
CRAP 4z 3 23 36 68 2 OCRAR?
CRAP 43 3 36 4 68 2 *CRAR,1
CRAR 44 3 49 62 68 a *CBARS4
CRAP 45 4 1 ? 69 2 *CRAR45
CPAR 46 4 2 3 69 2 OCRe46
CRAP 41 4 1 4 69 I #CPAP?

Figure C-2. Sample NASTRAN Dock (continued).
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C A8 1 4 C 9 A% k 2
CA8 &a 4q 'kb 2C iA '
CRAP '0 4 6 1 ?z2 CA
08*8 it1 4 7 A 72 z .CRA9hl

8 0*8 5? 4 a 9 12 z .0A6QS?
C8*8 -)1 I % q 1t 12 2 CAS
08*8 s 4 4 0 11 72? * .C 9A v 4
(MAR 11 4 It 1? 72 # .088','
CRAR -, 4. 12 1 72 2 *086ts6'
08*8 S7 51 S 4 I1' 3 2 *CO68%F
C86 A 1 AR IP ) . 13 2 - l
CAB 5 9 ,5 is 56 73 2 CAQ'

CB8 60 s 15b '.11 1 2 .CA AI60
COR8 61 -1 IS 8s 13 2 *CRA861
C fAAR 62 % ,a 9 73 1 2 .066862
C A a 61 11 N9 60 71 2 . C A A h
(866 b4 s 0 61fi 73 2 CA6
0868 6% N 1 6Z 11 1 -.CA Q b%
C;%8 its bb s 2 63 13 z $086366
08.8 I? 61 6'.b1 71 z *CR66?
0868 69 b 1 14, b 2 *btb
C%68 10 6 14. 21 be68- 2A .080
C AR i a61 27 .0 68 -C *CA ARI
C8*8 I2 b "0 531 68 2 #CRA81
COAR ?1 6 13 26 be 2 *CBR81
Cb61 14 6 26 319 68 2 t08*614
CO*8 7'. 6 39 5? h8 2 *RR
0868 16 h 52a b% be 2 OCR66*It
#0*6*1 -1.2 Z1 1.0 -L.315 -1" a. -1.3Zi
6CRAR2 -Ia. 0.0 -1.325 -1.2% O.U -1.3175
408683 -1.215 0.0 -1.32'. -1.2s. 0.0 -1. 32s
OCOA04 -1.25 0.0 -1.1Z5 -1.2% 0..) -1.312%
4CRAs -1. 0.0 -1.)325 -1.% .0 -1. 31S

-1.2%6 0.0 -1 5 -1.2% 0..) -1.321,
*C8B7 1.2 0.0 -135 -1.15 0.0 -1. 325
.08*838 -1.211 0.0 -1. 3z% -1.25 0.0 -1.31S
*Cs699 -L.Z% 0.0 -1.)Z5 -1.2% 0.j -L.312%
*CSA810 -1.2'. 0.0 -1.3zs -1.1s 0.0 -1.325
.08*811 -1.2% 0.0 -1.3Z5 -1.25 0.1) -. 2
.08*012 -L.zi 0.0 -1.325 -1.2%, -1.0 -. 2
#CSAR13 -1.2% 1.0 1.8 -1.z% 0.0 1.5
OCO8*81% -1.2% 0.0 1.8 -1.Z5 0.0 1.8
.0*GAI% -1.2% 0.0 1.8 -1.zl% 0.0 1.8
*08A816 -1.?i 0.0 1.8 -1.2% 0.0 1.8
*C#AO1? -1.2% 0.0 1.8 -1.?'% 0.0 1.8
.0C*14ARI.2 0.0 1.8 -1.2% 0.0 1.8
.088il -1.2% 0.0 1.6 -1.25 0.0 1.8
OCSA01O -1.25 0.0 1.8 -1.2% 0.0 1.8
#086821 -1.1's 0.0 1.8 -1.25 0.0 1.8
*08*822 -1.z% 0.0 1.8 -1.2%, 0.0 1.8
*CBA023 -1.2% 0.0 1.8 -1.21) 0.0 1.8
OCN8RZ* -1.2% 0.0 1.8 -t.25 -1.0 1.8
O086825 -0.24P6 3.0 -0.81% -0.2416 1.0 0.0
#08*826 -0.2*6 3.0 0.0 -0.24h 3.0 0.1)
*036821 -0.214b 3.0 0.0 -0.246- 3.0 0.0
*C682 -0.2#.b 3.0 0.0 -0.2*.6 3.0 0.'.
*CO6029 -0.246 -3.0 -0.81% -0.2.6 -1.0 0.0
.086*30 -0.2,,6 -).0 0.0 -0.2%b -3.0 0.0
#CB6831 -0.2*6 -1. 0.0 -0.24h -3.0 0.0
*08*8032 -0.2016 -). 0.0 -0.2*6b -3.0 0.0
*C98813 -0.251 0.0 -0.815 -0.2%) 0.0 0.0
OCIA034 02 0.0 0.0 -0.2%) 0.0 0.0
OpD8R85 -. % 0.0 0.0 -0.2% 0.0 0.0
*C#4016 -0.2% 0.0 0.0 -0.2%) 0.0 0.5
6CORI83 -0.2% 0.0 -0.815 -0.2% 0.0 0.0
OC8AR38 -0.2% 0.0 0.0 -0.2%5 0.0 0.0
*06*839 -O.P% 0.0 0.0 -0.2s 0.0 0.1)
O086840 -0.2%, 0.0 0.0 -0.2% 0.0 0.5
'08*841 -0.15 0.0 -0.81% -0.2% 0.0 0.0
O.0868*? -0.2%) 0.0 0.0 -0.25 0.0 0.0
O06*863 -0.2% 0.0 0.0 -0.2% 0.0 0.0

-03.2% 0.0 0.0 -0.1% 0.0 0115
'885-0.02 0.0 0.0 -0.02e 0.0 0.0

*006A*6 -0111 0.0 0.0 -0.02 0.0 0.0
OC6*8,17 -0.02 0.0 0.0 -0.02 0.0 0.0

L *08*4 -0.02 0.0 0.0 -0.02, 0.0 0.0

Figure C-2. Sample NASTPAN Civ~ck (Continued).
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*CRA849 -0.02 0.0 0.0 -0.02 0.0 0.0

*C8ARSO -0.02 0.0 0.0 -0.02 0.0 0.0

*CSARSZ -0.02 0.0 0.0 -0.02 0.0 0.0

*CAR54 -0.0 0 0.0 0.0 -0.02 0.0 0.0
*C8 a85 -0.02 0:0 0:0 -0:0Z 0:0 0:0
*CAAR 6 -0.0? 0.0 0.0 -0.02 0.0 0.0
*CB.R5? -0.0? 0.0 0.0 -0.02 0.0 0.0
*CBARS? -0.02 0.0 0.0 -0.02 0.0 0.0
#CSAR58 -0.02 0.0 0.0 -0.02 0.0 0.0
*CRAR60 -0.02 0.0 0.0 -0.02 0.0 0.0
*CBARt -0.02 0.0 0.0 -0.0? 0.0 0.0
*C88R61 -0.02 0.0 0.0 -0.02 0.0 0.0

*CB8A63 -0.02 0.0 0.0 -0.0? 0.0 0.0
9C8AR64 -0.02 0.0 0.0 -0.02 0.0 0.0
'CBAR65 -0.0? 0.0 0.0 -0.02 0.0 0.0
*CBAR66 -0.02 0.0 0.0 -0.0? 0.0 0.0
'CRAR67 -0.0? 0.0 0.0 -0.02 0.0 0.0
*C8AR68 -0.02 0.0 0.0 -0.02 0.0 0.0
4COAR68 -0.0? 0.0 0.0 -0.02 0.0 0.0
#CBARb0 -0.02 0.0 0.0 -0.02 0.0 0.0
*CBAR71 -0.02 0.0 0.0 -0.02 0.0 0.0
CBAR712 -0.02 0.0 0.0 -0.02 0.0 0.0

*CAR73 -0.02 0.0 0.0 -0.02 0.0 0.0
*CBAR?4 -0.02 0.0 0.0 -0.02 0.0 0.0
*C8ARIS -0.02 0.0 0.0 -0.02 0.0 0.0
*C8AR76 -0.02 0.0 0.0 -0.02 0.0 0.0
CR88 68 S 63 64 73 2 #CBAR68
CORoIC 1 69 70 71
COUAOZ 1 1 1 14 15 2
COUA02 2 1 2 15 16 3
COURO2 3 1 3 16 17 4
COU8D2 4 1 4 17 18 5
COUAO2 5 1 5 18 19 6
COUA02 6 1 6 19 20 7
COUAO2 7 1 7 20 21 8
COU802 8 I 8 21 22 9
COUAO2 9 1 9 22 23 10
COUAOZ 10 1 10 23 24 11
COUAO2 1 1 11 24 25 L2
CQUAD? 12 1 12 25 26 13
COUA02 13 1 14 27 28 15
COUAO2 14 1 15 28 29 16
COUAOZ 15 1 16 2q 30 17
C0UADZ 16 1 17 30 31 18
COUAO? 17 1 18 31 32 19
COUAO2 IS 1 19 32 33 20
COU02 19 1 20 33 34 21
COUAOZ 20 1 21 34 35 22
COUA02 21 1 22 35 36 23
CMURO? 22 1 23 36 37 24
COU8O2 23 1 24 37 38 25
COUA02 24 1 25 38 39 26
COUAD2 25 1 27 40 41 28
COUAO2 26 1 28 41 42 29
COUAO2 27 1 29 42 43 30
COUA02 28 1 30 43 44 31
C0UA02 29 1 31 44 45 12
COUA02 30 1 32 45 46 33
C0UAD2 31 1 33 46 47 34
COUADZ 32 1 34 47 48 35
COUAD2 33 1 35 48 4q 36

COU802 34 1 16 4q 50 37
COUA02 35 1 37 50 51 38
C0UA02 36 1 3 61 52 3q

COUAD2 37 1 40 53 S4 41
COUA02 38 1 1 S4 55 42
CQU802 39 1 42 51 56 43
COU8O2 40 1 43 56 57 44
COUA02 41 1 14 57 58 45
C0UAD2 42 1 45 44 59 46
COU80Z 43 1 46 69 60 47

COUA02 44 1 47 60 61 48
COUA02 45 1 4 61 62 40
COU02 46 1 41 6? 63 60

Figure C-2. Sample NASTR.AN Deck (Continued).
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PIP-

COUAU2 47 I 150 013 0,4

COUAD2 48 1 51 64 65 52
E|GR I IV 0.0 500.0 1.-10 *EC01

*EIG[ RAX

MATI 1 1.*1 0.33 2.588-4

PARAM GRoPNr 13
PRAR 1 1 0.37S 0.083" 0.0371 0.0019 0.0

PRA 2 1 0.121 0.00955 0.01576 .00015?t0.0
PBAR 3 1 0.14 0.00664 0.0891 .00007-70.0

PBAR 4 1 0.13S2 .00007210.03218 .00028840.0

PAR S 1 0.0 000042 0.06667 .00000700.0

PRAM 6 1 0.00 .00004270.06667 .00017070.0

POUAD2 1 1 0.040 0.0

SPCI 1 123 1
SPC1 1 13 53

SPCL 1 1 65

ENDOATA '
END OF RECORD

Figure C-2. Sample NASTRAN Deck (Concluded).
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VITA

Frank Broderick Atkinson was born on 13 November

1947 in Nashville, Tennessee to Robert T. and Ruth B.

Atkinson. After graduation from Irving Senior High

School in 1965 he attended Arlington State College

(now the University of Texas at Arlington). During

his studies there he participated in the cooperative

education program as a Weight Control Engineer at Bell

Helicopter Company in Hurst, Texas. Following gradua-

tion in 1970 with a Bachelor of Science degree in Aero-

space Engineering, he enlisted in the U. S. Air Force as

a Ground Radio Communications Equipment Repairman. He

subsequently attained the rank of Sergeant whereupon he

was selected to attend Officer's Training School (OTS)

at Lackland AFB, Texas. Upon graduation from OTS in

January, 1975, he was assigned to the 3246 Test Wing,

Guns and Fuzes Division, Eglin AFB, Florida as a Wing

Munitions Test Engineer. During his tenure at Fglin

AFB, he was selected three times as his division's

nominee for the Directorate of Test Engineering Test

Engineer of the Quarter Award. He also represented the

Directorate of Test Engineering as the nominee for the

Lt. Robert L. Sullivan Award for the most outstanding

junior officer. Capt. Atkinson was assigned to the

School of Engineering of the Air Force Institute of

Technology in June 1979 in the Craduate Aeronautical Engi-

neering Program.

Permanent address: ?O Mr. and Mrs. R.T. Atkinson

5012 Shannon Drive, Box 8-190.

Lewisville, Texas 75056
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