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Abstract

An algorithm was developed and partially implemented to

integrate the use of a phoneme recognizer and a syntactic

error corrector for continuous speech recognition. The

recognizer uses LPC reflection coefficients as a feature set

and makes decisions based on the computation of pairwise

likelihood ratio tests for M phonemes. The syntactic error

corrector uses a backtracking parser to perform phonological

rule and grammatical error correction. A computer program

is included to provide interactive training with a Tektronix

4010 terminal on a Data General NOVA/ECLIPSE computer

system.
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AUTOMATIC RECOGNITION OF PHONEMES USING
A SYNTACTIC PROCESSOR FOR ERROR CORRECTION

I. Introduction

With the recent advances in computer technology,

emerging applications for that technology, and the need to

communicate more rapidly and efficiently, much attention is

being focused on the use of an automatic speech recognizer

(ASR) to fill one gap in the man/machine interface. These

applications include very low bit rate transmission of

speech, automatic translation of speech into written text,

voice controlled cockpits, etc. In each of these

applications, the human operator should be relatively free

to perform several tasks simultaneously yet more efficiently

than ever before.

With only a little bit of imagination, then, one could

dream up dozens of other applications for speech

recognition. However, the question at hand is not how we

would be able to apply speech recognition systems, but,

rather, how we would implement them, and further, how much

we are willing to pay to attain a desired level of

recognition accuracy.

The pitfalls in the method of implementation are

numerous. By way of introduction, one problem area is the

resolution of ambiguities that can occur in everyday spoken

language. The phrases "fire a round" and "fire around" are



spoken exactly the same in many dialects of English.

However, their meanings are totally different. To the human

listener, this would pose no problem since the phrases could

be distinguished by the sentence context. But to the

processor in a voice controlled cockpit, the phrase might be

interpreted as "open fire on enemy target" or, "fire into

the vicinity of .." or, alternatively, "there is a fire

around .. " depending on what other information was

available. The cost of responding incorrectly to an

utterance could be extremely high in this case. In another

environment, say an application in voice transcription, an

ambiguity would also be present although the cost of an

error may or may not be as high depending on the sensitivity

of the text.

The purpose of this example was to illustrate that in

some applications, it is not only desireable, it is

imperative that the ASR have the ability to resolve

ambiguities to some degree. Some details of implementing

this capability will be discussed later.

The task of automatic speech recognition entails

extracting from a continuously varying acoustic speech

signal a set of features which contains the information

essential to the recognition process. A simplification of

this procedure and the comparison to human speech

recognition is shown in Figure 1. These features can then

be mapped into a set of discrete symbols representing
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linguistic units. Although these units could be words or

syllables, the most frequently used unit is the phoneme.

STEP 2 STEP 3 STEP 4
STEP 1 SIGNAL FEATURE UTTERANCE

TRANSDUCER PROCESSOR EXTRACTOR CLASSI F IER

Ear Cochlea Auditory Nerve Left Cerebral
Cochlea and Cortex

Cerebral Cortex

Formant Computer
Tracker, (Comparison of

Spectrum Phoneme Reference
Analyzer Recognizer Messages with

( D a t a U n k n o w n )
Microphone Compressor) Unknown)

Figure 1. Comparison of Human to Machine Recognition (Ref. 18)

The representation of speech by phonemic strings is not

altogether exact, however, since linguistics is merely a

model of the speech process. In fact, the degree of

variability in the production and interpretation of speech

is virtually infinite. For example, consider an experiment

in which normal conversational speech is recorded and

displayed on a speech spectrogram. The spectrogram is then

independently translated by several linguists. To

illustrate this, the hand labelling of the utterance, "Edit

the phonemic labels," is shown in Figure 2.
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Figure 2. Hand Labelling a Speech Segment (Ref. 17)

Almost certainly, there would be some differences between

the respective linguists' interpretations. There would also

probably be differences between their translations and the

accepted standard phonetic transcription found in a

pronunciation dictionary.

Fortunately, the redundancy in natural languages allows

the listener to understand the message most of the time.

This is because he is usually able to reconstruct a

meaningfully correct sentence from the recognized portions

of the speech through his understanding of the phonetic,

syntactic, and semantic rules of the language.

Therefore, a useful ASR must also incorporate knowledge

of these rules to ensure adequate performance of the

recognizer. Unfortunately, this often adds almost

unsurmountable complexity to an already difficult problem.
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The general speech recognition problem can be separated

into several sub-tasks with varying levels of difficulty.

Most of these sub-tasks are treated separately in the

literature. The first level of difficulty is with the

recognition of an isolated word. Further complexity is

added if this is to be done by more than one speaker or if

the word comes from a large vocabulary.

The second level of difficulty is that encountered in

word spotting from continuous speech. Again, added

complexity comes about with the above requirements of

speaker independence and large vocabulary size.

The most difficult level of speech recognition, the one

addressed in this paper, is with the application to speech

understanding or continuous speech transcription.

Problem

The objective of this research was to develop an

algorithm to be used in a continuous speech recognizing

system (CSR) that would unify current efforts in feature

extraction and syntactic error correction. This research is

necessary because, for the most part, developments in these

two areas are being made almost totally independently of one

another. Consequently, when these two technologies have

been integrated in a single system, the familiar "black box"

approach was typically used.



To cite an example of the potential power of syntactic

error correctors, Woods (Ref. 21:355) pointed out that,

because of the inevitability of decision errors with forced

decision rules ("hard" decisions), nondeterministic

algorithms (utilizing "soft" decision rules) have a

tremendous advantage for CSR's. These nondeterministic

algorithms systematically consider all possible sequences of

linguistic units (phonemes, words, etc.) until one of the

sequences yields a successful analysis. Success might

depend on various criteria such as syntactic or semantic

validity of the utterance.

A nondeterministic algorithm is only one form of a

syntactic error corrector. However, to ensure that many of

the existing syntactic error correctors will be usable with

the end result of this research, several criteria were

placed on the CSR algorithm to be developed:

1. It must provide at least one phoneme as an alternative

for each observation interval.

2. It must have a potential for real-time implementation.

3. It must afford ease of adaptation to changes in

technology and changes in empirical knowledge about the

speech process.
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The last criterion was imposed to allow flexibility of

recognition performance since there is still much to learn

concerning what tradeoffs exist when combining phoneme

decision rules with syntactic error correctors and semantic

knowledge.

The scope of this research includes the development of

an algorithm for a "soft" phoneme decision rule to be used

in a CSR. This decision rule is to meet the three major
Li

criteria stated above.

In addition to the development of the phoneme decision

rule, a simple CSR system will be described which can be

used to test the validity of the assumptions made and the

validity of the theoretical results of this research. This

implementation is intended to be an experimental

implementation of the decision rule and not a final system

design.

Assumnptions .

It is assumed here that any errors existing in the

measurement of the acoustic speech signal are caused by an

additive white gaussian noise process. It is also assumed

that the noise process is stationary and ergodic. The

effects of quantization errors in the A/D sampling of the

speech are ignored. While these assumptions add to the

7 a



tractibility of the mathematics in the theory and are

commonly made assumptions, it is not presently known whether

they are actually valid here or if they accurately reflect

the physics of the CSR problem.

Approach and Presentation

The presentation of this research effort is, for the

most part, in the order that the work was done. In Chapter

II, a detailed analysis of the CSR problem is given and some

of the inadequacies of existing strategies are stated.

In Chapter III, a well known model of the speech

process is discussed. From this model, parameters are

selected as the feature set for a simple CSR system. Then,

Chapter IV explains the control strategy for an experimental

CSR system. These two chapters are presented before the

following two chapters to introduce terminology and serve as

further motivation for the material presented in Chapters V

and VI.

Chapter V introduces some background in statistical

decision theory that is necessary for the development of the

theory in Chapter VI. It also contains results for

binary-hypothesis decision rules that will be used in the

next chapter.

Chapter VI contains the major contribution of this

research. It develops an M-ary decision rule for

8



non-mutually exclusive decision regions. A solution

algorithm is also described to find the thresholds for the

pairwise likelihood ratio tests (LRT) that make up the

decision rule.

Chapters VII and VIII conclude the paper with a summary

of the results and recommendations for future work.

Following the main body of the paper is an appendix

containing computer programs which implement the algorithms

discussed in the paper.
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II. Detailed Analysis

As mentioned before, automatic speech recognition with

application to speech understanding systems or automatic

speech transcription is considerably more difficult than

word spotting or isolated word recognition. It is a problem

characterized by huge amounts of data, high data rates, and

a great deal of uncertainty about the data source.

Moreover, the dynamics of speech such as phoneme duraticn,

volume, pitch, and rate of pronunciation are extremely

difficult to deal with in a single speech model.

However, before discussing the model of speech used in

this paper, it is appropriate to first discuss some of the

considerations that motivated the choice of the speech model

and the overall design.

Although varying with the application, the most

important consideration is to attain high recognition

accuracy. In general, speech recognition for military

applications will require very high recognition accuracies

and very efficient algorithms. These two requirements

appear to be conflicting and perhaps they are at the

present. But, this condition is relative to the state of

technology at any given time. For this reason, it might be

logical to approach the problem by first lixing an upper

limit to the "cost" that is tolerable. Under this

constraint, we could then seek to maximize the performance

10
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of the Continuous Speech Recognizer (CSR).

For the general problem of maximizing some objective

function subject to fixed constraints, there exist several

solution techniques. One solution technique that nicely

fits the problem at hand is the Lagrange multiplier

technique (Ref. 2:18-21). As will be seen later, use of

this method can be made to find the optimum thresholds of a

likelihood ratio test (LRT) for a particular performance

desired. It is this strategy that is adopted in this paper

since we can reassign the desired performance to bring the

costs within tolerable limits.

Because of the inevitability of making decision errors

when decisions are forced, it is desirable to retain

alternative phonemes for later consideration. This idea of

"deferred decision" has its foundations in the area of

sequential decision theory. Most applications of this

theory are associated with radar detection problems.

However, it will be shown that we can make use of the basic

idea of deferring a phoneme decision with an associabed loss

due to the deferral. In the radar context, this loss might

be associated with the cost of going back to a particular

sector in a search volume to ascertain whether a target is

or is not present before alerting a tracking radar. In our

problem the cost could be associated with the overhead of

retaining more than one possible phoneme for a particular

speech segment.



Obviously, if we retained all possible phonemes for

each speech segment, we would later be able to generate all

possible combinations of phonemes that could have been

uttered. But, this procedure would tell us nothing we

couldn't have deduced before the words were even spoken. In

addition, the cost in memory requirements for retaining

alternative phonemes would be exceeded only by the cost in

time it would take to generate all possible sentences made

up by the phonemes.

To overcome the problems of forced decision rules in

isolated word recognition systems, several authors such as

Itakura (Ref. 5) and Kashap (Ref. 6) have recently reported

on algorithms which minimize the overall "distance" between

a hypothesized string and the observed string of phonemes.

This procedure (dynamic programming), although improving the

word recognition performance remarkably for isolated word

applications, has serious problems when applied to

continuous speech recognition. The primary difficulty here

is determining the boundaries between words in the observed

utterance.

The difficulty with word boundaries can be understood

by thinking about how a sentence is typically spoken. It is

usually one continuous utterance with no break between

words. In fact, when there are breaks in the acoustic

waveform, it is most frequently caused by stop sounds such

as "p", "d", "t", etc. rather than by gaps between adjacent

12



words. Therefore, it can easily be seen that word

boundaries would cause considerable difficulties in

continuous word speech.

If a minimum distance rule of the variety used in

isolated word recognition were applied on continuous word

recognition, there would probably be disastrous results.

For example, if two words of different lengths exist in the

vocabulary with similar initial pronunciation, the wrong

word could very easily have the least "distance". Then, if

the minimum distance rule were applied, the estimate of the

word boundary would be thrown off. This would then give

rise to false recognition of other words in the following

speech segments until "resynchronization" with the actual

word boundaries was accomplished.

An alternative to the forced (or "hard") decision rule,

as was mentioned earlier, is the deferred (or "soft")

decision rule. To implement this strategy, however, it must

be determined at what point to make the cutoff between

retaining additional phonemes. Retaining the additional

phonemes constitutes a requirement to eliminate the

incorrect ones at some later time.

To accomplish this correction, we can make use of the

results in the field of linguistics. Each of us has innate

knowledge of the phonological rules governing the production

of speech. That is, our knowledge of English tells us that

certain strings of phonemes are permissable and others are

13



not. For example, when a word begins with the sound "I" or

"r" we know that a vowel should follow. Anything other than

a vowel violates the restrictions we know exist.

Even more importantly, our knowledge of the rules of

phonology allows us to tolerate the variability in the

production of sounds between different dialects and even for

a single speaker utterring a sound in a different context.

One such rule tells us that voiceless stop sounds such as

"p" are aspirated at the beginning of a word. This means

that we should observe a more breathy quality to the

production of the phoneme than, for example, if it occurred

in the middle of the word. This rule and others are

typically formalized in a quasi-equation form called the

Backus-Naur Form (BNF). Most of the rules we know that are

applicable in the English language can be found tabulated in

this form in (Ref. 1). By making use of this knowledge, we

could automatically eliminate some of the phonemes retained

by the deferral process.

In addition to this knowledge, linguistics gives us

rules which allows us to understand sentences that we may or

may not have ever heard before. This is because of our

knowledge of the allowable structures of sentences. For

example, the sentence, "The nine month old baby took me to

work," is perfectly understandable although it doesn't make

much sense.

14
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NP VP/I I\
ART N V OBJ

Figure 3. Sample Grammar

We are able to understand sentences like the above because

of relatively few grammatical rules that allow us to

construct grammatically correct sentences from even a small

vocabulary, or lexicon. When you consider all the subjects,

adjectives, verbs, and objects that can be formed from the

huge lexicon that most people possess, an enormous number of

sentences can be formed using the simple grammar shown in

the tree diagram in Figure 3.

It should be obvious that although not all the possible

sentences conforming to such a grammar would have a logical

semantic meaning, the use of this kind of syntactic

knowledge can eliminate the majority of the erroneous

sentences allowed by the deferred decision process.

The final primary consideration discussed here is that

of efficiency. Because most applications for speech

recognition would require real-time or close to real-time

speed, the algorithms implemented must be simple enough to

be implemented in hardware. It is also desireable that the

algorithms be easily adaptible to new technologies. That

is, since technology is constantly evolving but not every

15
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aspect evolves as rapidly as another, it would be most cost

effective to implement the algorithms in modules. That way,

when it appeared that technology in one area affected one

but not all of the modules, it could still be incorporated

in a revision of the design with a minimum of effort.

A good example of this is the increasing likelihood

that Charge Coupled Devices (CCD) will be playing an

increasingly important role in signal processing

applications such as spectral estimation. As these special

purpose devices become more and more available, the

implementation of algorithms could be changed. However, the

performance wouldn't be changed unless the algorithms were

also changed. The big impact of these devices, then, would

be in the tolerable cost. That is, if speed of computation

were increased, it would be possible to increase the

performance by simply adjusting the thresholds of the

decision rule.

16
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III. 11_g Speech Model

The purpose of this chapter is to discuss the necessary

elements of a speech model for the proposed recognition

system. Because the actual speech model used is not the

primary concern of this paper, we will concentrate on the

Linear Predictive Coding (LPC) speech model.

Before discussing the LPC model in detail, however, a

brief account will be given on the development of speech

models.

History of Speech Models

The earliest models of speech production were

mechanical and date back as far as the late 1700's (Ref.

3:166). Typical of these mechanical models were the use of

bellows to force air past a reed which, in turn, excited

hand variable resonators.

Later mechanical models, such as shown in Figure 4,

were more complicated but were also more versatile. In the

reed chamber, tension on the reed was variable to control

the pitch while the control keys changed the resonances

corresponding to the various shapes the vocal tract takes on

during speech.

17



Figure 4. Mechanical Vocal Tract (Ref. 3)

All of the early mechanical models were attempts at

simulating the dynamic movements of the glottis (vocal

chords), the tongue and lips. Obviously, the vocal tract

shown in Figure 5A is a complex mechanism to model

acurately.

More recently, attempts were made to model the vocal

tract mathematically. One of these models, cal-led the

acoustic tube model, utilized the theory of fluid motion

through a series of adjacent cylinders (Figure 5B).

Reflection coefficients have been derived for this model

(Ref. 7:61-71) which uniquely characterize the tube for any

possible combination of diameters, or areas, of the

individual cylinders (Figure 5C);

18
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Figure 5. Vocal Tracts: A) Human B) Acoustic Tube

C) Area Function (Ref. 7)

At about the same time that work was being done on the

acoustic tube model (ca. 1970), the LPC speech model was

also evolving. This model captured the attention of many

researchers currently working on the speech problem. To

date, LPC is the most widely used and most versatile tool

for the analysis of speech.

LPC in Speech Analysis

The LPC model is, essentially, a stochastic finite

difference equation with constant coefficients. The a(i)'s

in equation (3-1) are assumed constant, but only over short

time intervals. The sequence e(n) represents the residual

prediction error and is assumed to be samples of a white

19



noise process during unvoiced speech and an impulse train

during voiced speech (Ref. 5:67-72). X(n) is the result of

a prediction based on the previous P samples of speech.

p

x(n) e(n) + a(i)x(n-i) (3-1)

LPC has rapidly become a well known tool for the

analysis and transmission of speech. Its popularity is due

primarily to its success as a data compression technique.

It is well known that speech can be represented much more

compactly if, instead of using the original speech samples

or the Fourier coefficients of a speech segment, the values

of the LPC predictor coefficients are used. To illustrate

the dramatic reduction in data possible, variable bit rate

schemes in speech transmission systems can achieve a data

rate as low as 1,200 bits/second compared to the 40,000 to

200,000 bits/second rate required to transmit the raw

sampled-data speech (Ref. 7:246).

Another application of the LPC technique is in power

spectrum estimation in the speech signal. Although also a

consideration for the previous application, the question of

non-stationarity of the speech signal becomes more apparent

for this case since the spectrum is clearly non-stationary.

Thus, the spectrum that can be computed from the LPC

predictor coefficients is only an estimate of the true

spectrum. Therefore, in order to reduce the variance in the

estimate of the short time power spectrum, we are forced to

20



do spectral averaging or windowing of the speech samples

(Ref. 12:532-570). In fact, if we did spectral averaging

over all time, we would be assured of having an

asymptotically consistent estimate with a variance equal to

that obtainable for a stationary process. This would,

however, reduce the time resolution of the power spectrum

that is desirable for speech spectrograms. Hence, there is

a tradeoff between the uncertainty of the spectral estimate

and the time resolution. Several windowing techniques (e.g.

Hanning, Hamming, and Kaiser-Bessel) that are commonly used

to attain this tradeoff are discussed in (Ref. 12:239) and

(Ref. 13:88).

S(z) - -{---)0 Ez)

FWz

Figure 6. Linear Predictor Block Diagram (Ref. 7)

A simplification of the LPC algorithm is shown in

Figure 6. S(z) is the Z-Transform of the discrete time,

sampled speech. F(z) represents the transfer function of

the predictor filter which has, as its input, S(z). The

output of the filter is S(z), the maximum likelihood

estimate of S(z).

21



The actual implementation of the LPC algorithm for

speech analysis is not typically carried out in digital

filters as is suggested by Figure 6. Rather, the sampled

speech data is normally the input to algorithms such as

Levinson's recursion (Ref. 7:55) running on large scale

computers which perform the analysis offline.

Parametric Representations of LPC

The term parametric representation of speech is in

reference to the characterization of the speech waveform by

a reduced set of parameters. It could be thought of as the

mapping of a point from a multi-dimensional coordinate

system to another coordinate system of lower dimension. The

advantage of the mapping rests in the fewer number of

coordinates required to 3pecify a unique point in the new

coordinate system.

The five parametric representations discussed here all

have a common factor. That is, each of the other four

parameter sets can be derived from the original predictor

coefficients. These predictor coefficients are normally the

basic outputs of the LPC algorithm.

Unfortunately, it is well known that the predictor

coefficients are vvry sensitive to finite word length

effects inherent in small computers which frequently results

in instability in the model (Ref. 7:229).
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One set of parameters directly transformable from the

predictor coefficients is the set of autocorrelation

coefficients. Theoretically, stability of the digital

filter is guaranteed due to the properties of the positive

definite Toeplitz matrix encountered in the solution

procedure (Ref. 19:29). However, errors in calculations,

again attributed to finite computer word length, can destroy

the positive definiteness of the matrix resulting in

instability.

The spectrum coefficients can also be calculated from

the predictor coefficients by solving for the roots of the

predictor filter F(z) (Ref. 7:229). These roots are called

the spectrum coefficients because they determine the

amplitude spectrum of the digital filter in the Z-Transform

domain. By solving for these parameters and linearly

interpolating between successive iterations, stability can

be guaranteed when using as few as five bits per parameter

(Ref. 7:229).

Another transformation of the predictor coefficients

which assures stability is the set known as the cepstrum

(Ref. 7:229-230). This set, however, has the disadvantage

of requiring many operations including a logarithmic

transformation on the magnitude spectrum. Obviously, this

kind of computational burden is not desirable for a

real-time implementation.
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Although several other transformations have been

discussed in the literature, only one other set of

parameters has properties worthy of mention for this

application. This set, the PARCOR coefficients, or

reflection coefficients, has been shown to be equivalent to

the reflection coefficients used to describe the acoustic

tube model previously mentioned (Ref. 16:417). Since these

coefficients may also be solved for recursively (Ref. 7:55),

they are very attractive for implementation on a small

computer.

One additional property of the reflection coefficients

is that the transformation yielding them has been shown to

orthogonalize the basis vectors in an appropriate Hilbert

space (Ref. 9:33). This result implies that for the same

number of parameters, this set will be less sensitive to the

noise present in the speech signal than any other set.
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IV. Control atratey

Now that a set of parameters has been selected as the

feature set, namely the LPC reflection coefficients, a

simple system that makes use of these features car, be

presented. A block diagram of the continuous speech

recogn'zer (CSR) is given in Figure 7.

The first component of the CSR is the signal

conditioner. It performs the analog to digital (A/D)

conversion of the continuous speech waveform and does a

first order pre-emphasis to accent the higher formants.

These formants, or resonances of the vocal tract, are

difficult to discern vizually without pre-emphasis. For

this system, pre-emphasis is implemented with a digital

filter of the form 1 - aZ where a = 1.0 is used. This

value yields a pre-emphasis of approximately 6dB / octave

(Ref. 7:166).

The pre-emphasized LPC model spectrum for the

utterance, "which way did you walk," is shown in Figure 8.

Notice the upward-going trajectory of the 2nd formant in the

"AEE" sound of "way" which is located between the List and

49th time segments.

The final part of the signal conditioner is the LPC

algorithm itself. N samples from a disk file containing the

A/D speech are input to the LPC algorithm for each execution

of the algorithm.
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These N samples constitute a speech segment, or frame, and

typically represent several milliseconds of speech. For an

8KHz sample rate, N=64 to N=256 is appropriate.

From these N samples, a feature vector containing P LPC

parameters is calculated. It is this vector which is used

in both the training mode and the recognition mode to

classify speech.

The second component of the CSR is the training mode.

A flow diagram for this component is given in Figure 9.

This component is necessary to generate the decision

thresholds of a likelihood ratio test (LRT) to be used later

in the recognition mode. Generation of the thresholds is

detailed in Chapter VI.

The training mode can be entered as often as is

necessary to increase recognition accuracy. Initially, it

will be necessary to enter this mode to build a set of

decision thresholds for a single speaker. Conducting

training sessions over a period of spveral days will ensure

that the statistics on the LPC features will account for

much of the single speaker variability that is known to

exist.

The training mode was perceived as a potenti3lly time

consuming process. Therefore, since training will likely be

performed on an ongoing basis, an interactive program called

CLASSIFY (Appendix A) was written to minimize the burden of
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I.

START

SAMPLE SPEECH
AT 8KHz

PRE-EMPHASI ZE
SAMPLES

NT
NO _<AN MORE.

SAMP>LES?

YES

GENERATE LPC
COEFFICIENTS

FOR NEXT
N SAMPLES

GENERATE LPC

MODEL SPECTRUM

Figure 9. Training Session
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INTERACTIVELY
REPLAY AND

LABEL
SPEECH SEGMENTS

CALCULATE
LPC VECTOR
MOMENTS

UPDATE OVERALL
STATISTICS AND
CALCULATE NEW

DECISION THRESHOLDS

STO

Figure 9. (Cont.)

30



START

SAMPLE SPEECH

AT__K1z
PRE-EMPHIASI ZE

OUTPUT GENERATE LPC
RECOGNIZED COEFFICIENTS
SENTENCE FRNX

STOP

Figure 10. Recognition Session

31



FOR i-th HYPOTHESIS
FORM1 (M-1)

PAIRWISE LRT's
AND COMPARE

AGAINST THRESHOLDS

ENTER i-th
HYPOTHESIS
IN LIST OF

ALTERNATIVES

Figure 10. (Cont.)
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experimentation. With CLASSIFY, the user can view the LPC

model spectrum on a Tektronix 4010 terminal. The resultant

display is much like that of a typical speech spectrogram.

Intensity modulation is achieved by using the grey tone

patterns discussed in the text on interactive computer

graphics by Newman and Sproull (Ref. 10:225-27).

CLASSIFY uses the interactive interrogative

capabilities of the Tektronix terminal by displaying movable

crosshairs on the display surface. With these crosshairs,

the user can type a two character sequence to label the

starting and ending segments of a phoneme. These boundaries

must be located visually by the user.

Optionally, the user can get an audible replay of the

labelled segments to ensure the validity of his visual

recognition. This is accomplished by doing a digital to

analog (D/A) conversion of the original speech samples

corresponding to the labelled speech segments. At the end

of the training session, the classifications are optionally

saved and updates of the LPC vector moments are

automatically made.

The next component of the CSR is the recognition

component shown in Figure 10. As with the training mode,

the recognition algorithm begins with sampling and

pre-emphasis of the speech. Again too, the LPC coefficients

are generated for each speech segment. However, in this

mode, each observation vector is used to form M*(M-1)
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pairwise LRT's since there are (M-I) pairwise LRT's for each

of the M hypotheses.

As will be shown in Chapter VI, the i-th phoneme will

be considered as one of the alternative choices if and only

if all of the M-1 LRT's associated with the i-th hypothesis

have values below their respective decision thresholds.

With this procedure, there is a potential that, at one

extreme, M choices exist, or, at the other extreme, no

choices exist. If the former occurs, then no entry will be

made in the list of alternatives. For every other case,

however, an entry will be made for each hypothesis that

satisfies the above test.

A typical time history for the output of the decision

rule during a recognition session is shown in Figure 11.

Here, each phoneme is represented by a two character

machine-readable code. The codes used by this experimental

system consists of a subset of the codes used by Cohen and

Mercer (Ref. 1). In Figure 11, the first and fourth speech

segments have alternative phonemes which are then input to

the next phase of the recognizer.

The next two phases of the recognition mode are

dependent on the application. For this simple CSR, a

backtracking syntactic parser (Ref. 21:355) performs the

error correction. This type of parser is very similar to

the parsers in simple compilers.
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AX XX PX TH UU SX TX EH RX

AH DH

AW

UU

1 2 3 4 5 6 7 8 9

TIME

Figure 11. Phoneme Decision Rule Output

In fact, the actual parser that is implemented here is a

modification of a general parser due to Wirth (Ref.

20:304-7) and is given in Appendix A.

The operation of this backtracking parser is very

simple but can also be very time consuming. Whenever the

input phoneme list consists of more than one alternative,

all the other choices are stored on a pushdown stack. The

parser then parses like a deterministic one, that is,

without backtracking, until either it encounters an invalid

sequence or it reaches a satisfactory parse. If the

sequence was invalid, the program backs up one step, popping

the next phoneme off the top of the stack. This procedure

is reiterated until either a successful parse occurs or

until all the possible phoneme sequences have been

exhausted.
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Two important conditions can result with this approach:

1. No valid sequences are found.

2. A valid sequence was detected before all sequences were

exhausted.

With the occurrence of the first condition, it was

decided to simply print out all possible phoneme sequences

in the form of Figure 11. This is done as a preliminary

solution to the problem in order to gain insight for future

solutions. When the second condition exists, it was

decided, again for experimental purposes, to continue the

analysis and print out all v phoneme sequences.

At this point, it should be reiterated that the

implementation of the syntactic error corrector was not the

major objective of this research. Rather, it was to develop

a unified approach to the interfacing of a phoneme decision

rule to a syntactic error corrector. In addition, it was

required that the performance of the speech recognition be

readily adaptible to subjective criteria. With this in

mind, the next two chapters deal with the development of

such an algorithm. The next chapter provides the background

for Chapter VI where a decision rule is actually developed.
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V. Statistical Hypothesis Testing

This chapter will discuss some well known techniques

for the statistical approach to pattern recognition. The

Bayes classifier will be presented for introductory purposes

and is shown only for the binary hypothesis case. The

Neyman-Pearson criterion is also presented for the binary

case and an extension of this is made to the M-ary

hypothesis problem in the next chapter.

Bayes Decision Rule for Minimum Error

There are at least three well known strategies for

implementing a Bayes classifier (Ref. 15:23-33). The first

to be discussed here uses minimum probability of error as a

decision criterion.

The objective of this technique is to determine whether

a particular observation vector, R, belongs to hypothesis H0

or H1 . The decision rule based on the a postericri

probabilities p(H.R.) may be written
I

P(H IR) 11 P(HoIR) (5-1)

H
0

This is read, if the probability that H occurred, given the

observation R, is greater than the probability that H0

occurred, tnen we choose H1 ; if not, choose H0 .
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The test is difficult to use in this form, however,

since the a priori probabilities are more readily available

than the a posteriori probabilities. An alternate form can

be derived using Bayes' rule which says

p(RIH )p(H )

P(Hi ) = p(R) (5-2)

Since p(s) is common to both sides of inequality (5-1)

the factors will cancel each other when substituting (5-2).

Using this fact and writing p(H i) as P,, the decision rule

of (5-1) can be expressed as

1( R pIH to (5-3)
p(RIH_ ) < P

L(R) is called the likelihood ratio and should be

recognized as the most basic quantity in statistical

hypothesis testing. As will be shown, it will also appear as

the basic quantity in the Neyman-Pearson criterion.

The use of the LRT with the present decision criterion

involves comparing L(B) to q, the threshold. If L(B) exceeds

the threshold, then we choose Hl; if not, we choose HO .

An equivalent form of the LRT is the log-likelihood

ratio test. That is,

log jL(R)j log [7Wi > l'og in 54
0 H

0

38



yields identical results as the L"IT since the log function

is monotonic anci both sides of the intquality (5-3) are

positive (Ref. 15:27). From this point on we will refer to

both the LRT arid the log-LRT as simply the LRT.

Although this decision rule will tell us which

hypothesis to pick based on the known probabilities, there

is still a finite probability that the rule will lead to

decision errors. The malor drawback to this criterion is

that it ignores the cost of making incorrect decisions.

Bayes' Decision Rule for Minim -Ri

The minimum risk criterion addresses the problem that

results when we have to pay more of a penalty for making one

kind of decision error than we would for making another

kind. For example, in a radar scenario, we may pay dearly

for failing to detect an enemy target while the occurrence

of a false alarm might be much more tolerable.

For the binary hypothesis case there are four costs:

CO0 = cost of saying H0 when H0 was true,

C = cost of saying H0 when H1 was true,

C10 = cost of saying H when H0 was true,

C : cost of saying H when H was true.
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The Bayes risk function involving these costs is

= c P f p(RIH 0 dR + C P f p(RIH ) dRoo o -o CoiPj1 - -

Z z
0 o

+ C1 P f p(RIH ) dR + C f p(R[H I ) dR
o -11P -(RR - (5-5)

zI z1

where Z is the entire observation space of which f could be

a member. Z and Z1 are partitions of Z such that if the0

observed vector R maps into Z., we will say H.. This isi I

illustrated in Figure 12.

Z = ZOUJZ 1

01
P(RIH.)

OF 0

SAY H I  SAY 0

Figure 12. Partitioning the Observation Space

If we are forced to decide for each observation R, the

expression for the Bayes risk in (5-5) suggests that the

optimum test is given by partitioning Z into Z and Z such0 1

that, for each possible F, the risk is minimized. This can

be achieved by manipulating the expression in (5-5) into an

integration only over Z using the fact that Z = Z - Z0 1 0

The risk function is then reduced to
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PoCo + P1 C1 1  + 1 (C 1- i C 1 1 )p(RIHI

0

[Po(C 1 -C o)P(RIH) dR (5-6)

But, we know that probabilities are always non-negative and

we can assume that the costs are also non-negative. If, in

addition, it is assumed that the cost of a wrong decision is

greater than the cost of a correct one (C 01>C 0i C01>Ci,

etc.), then the risk will be minimized by assigning ? to Z0

if and only if the integrand in (5-6) is negative since the

first two terms represent fixed costs. The optimum test,

then, can be written in terms of the integrand of (5-6) as

H
PI1(Co01- Cl1)P(RIH ) 1 Po0 (C10- Coo0)P(RIH 0 (5-7)

H
0

or,

P(RIH) H I P (C -C )

L(R) lo0 a
p(IH_ ) P (C -c ) (5-8)

P(RH° H 1 ol 11

0

Thus, the basic quantity in the test is again an LRT.

Mini Max Test

Although it was shown above that the minimum Bayes risk

test is optimum when the a priori probabilities P and P0 1

and all the costs are known, there are applications in which
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only the costs are known reliably. In these cases, using the

mini-max criterion will assure an upper bound on the risk

function.

In words, the mini-max procedure is merely a more

generalized version of the minimum Bayes risk criterion.

That is, the values of P0 and P1 are assumed to take on some

value between 0 and 1 and the associated Bayes risk is

calculated for the given costs. This procedure is repeated

for all combinations of P and PI . The resulting Bayes risk

is then usually plotted against P1 (fixing P also specifies

P ). Then, to determine the value of the threshold in the

LRT, the value of P is assumed to take on the value at

which a line tangent to the curve plotted has minimum slope

(Ref. 15:31-33) (Ref. 14:67-69).

Neyman-Pearson Criteion

The above criteria for hypothesis testing result in

almost identical tests which are computationally simple

especially when the probability rules governing the

observations, p(RIHi), can be assumed to be gaussian. The

question arises, however, about the validity of using t .es-.e

criteria when both the cost factors and the i prior.,

probabilities, P,, are not reliably known.

A different point of view for testinr stitistical

hypotheses was presented in the original paper by ' y',-An and

Pearson which can be found in a volume of collected pipfrs
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(Ref. 11:140-185). The arguments given there were, in

effect, a re-evaluation of the intent of statistical tests.

The authors reasoned that for every value a continuous

observation vector, R, could take on, there is zero a priori

probability (a singularity) that R should have taken on the

value that it did. The consequence of this is that, by

itself, a statistical test cannot provide conclusive

evidence for either the truth or falsehood of a hypothesis

concerning the state of nature. Rather, if the test were

used as a rule upon which we accepted or rejected the

hypothesis, then we would be correct more often than not in

the long run.

Although this statement is not terribly profound, the

authors go on to argue that there is little evidence that a

single criterion for deriving the test enjoys universal

success. This is true, they state, because in many problems

of importance, the cost factors and probabilities are

arrived at subjectively or empirically.

It would appear reasonable, then, that more than one

criterion may be suitable for testing a particular

hypothesis.

Associated with a test on hypothesis H., there are two

types of errors that can occur. Type I is the error

resulting from rejecting H, when it is true while Type II is
I

the error resulting from accepting H. when some alternative
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hypothesis, H.' is true.
I

The Neyman-Pearson criterionassumes that there may be

several suitable criteria, for example, to minimize the

chance of a Type I error. Since any of those criteria would

be suitable, then, it would be reasonable to pick one that

would also simultaneously minimize the chance of a Type II

error. However, since this is usually a conflicting

objective, an alternative is to minimize the probability of

one type of error subject to a constraint on the other.

Neyman and Pearson showed that the solution of this problem

is equivalent to the solution of a problem in the Calculus

of Variations.

In a radar problem, a common procedure is to maximize

the probability of detection, P. , subject to a constraint

on the probability of a false alarm P FA* The Lagrange

multiplier method has been shown to be a useful technique in

the solution of this problem (Ref. 15:33-34).

First, a loss function, F, is defined in terms of

P 1 - PD and P FA Specifically,

F P M + [PFA '1 (5-9)

where . is a Lagrange multiplier (x> 0) and a'< a PFA"

Then, if P F a', the second term is zero and in order to

maximize PD' we must minimize F (or P.
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By definition,

p / f IH )d
PM f P( 1 ) dR (5-10)

0

and

PFA f p(RI ) dR (5-11)

Then, F can be written

F f p(IH 1 ) dR + X [ f P(RJH) dR - a' (5-12)

z0 zI

F can then be written in terms of an integral only over Z0

F X(1-a') + f I p(RIH1 ) - x p(RIH o ) I dR (5-13)
z

0

It can now be seen that to minimize F for a fixed value

of x , we simply assign to Z0 only those points R which

would result in a negative contribution to the integrand of

(5-13). This again results in the LRT

H
P(RIH ) 1 1

1 > (5-14)L(R) p(RIH ) <
0 H

0

However, to satisfy the constraint on PFA , we must choose x

so that the expression for PFA in (5-11) yields a' : PA

Or, equivalently, we must solve for x in (5-15).
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PFA= fpL(R)Ho dL(_R) = a' (5-15)

In the case where the joint densities p(RIH.) are1

gaussian, the pdf can be written as

1 [ 1 T (R i)
p(RIH.) N exp - (R-m) Ti (- A (5-16)

(2n)-- N
where m is the mean vector, K.is the covariance matrix of R,

1 1

and Q.is the inverse of K. under the ith hypothesis.1 1

In the special case where the N comp3nents of R are

also independent (implies an orthogonal basis), the joint

density reduces to a product of densities of the individual

components:

N (r -m..)2

p(RIIi) = N exp - 2". (5-17)

(2n) 2 afc. j=l 13

Now, concentrate on the exponent of the ratio in (5-14)

(formed by using (5-17) with i=1 in the numerator and i=O in

the denominator). Calling this ratio d, we can merge terms

and complete the square.

N (r_ N (r -M 2

d Oj=i
2 l 2 (5-18)

j=1 oj j=1 lj

Or,
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2 2 2 2 2

T l a 2 Yj 2 2oj (m1 a0 j - mo.

S2 2 2 2 1 (5-19)
olj oj j oj

But, since it can be seen that the terms in the second

bracket in (5-19) don't depend on r., they are just

constants and can be separated from the exponent and lumped

into a new threshold, n1 So, after manipulating the

constants, the test becomes

N a 1N (r. 2 n.

j1l j j= 2

where

2 2
iljii oj oj 1j (5-21)

j 2 2ii oj

and

2 2

.- _ 2 (5-22)

lj oJ

We could then write the LRT for (5-20) in terms of a

sufficient statistic as

N (r -in.)2 H1

LIM j > y (5-23)

47



If we rewrote (5-23) in terms of standard normal random

variables, z., where

Z = . (5-24)

then the LRT becomes

N H1

L'R < (5-25)

But, d is created by the sum of N random variables,

each of which is the square of a standard normal random

variable, and is, therefore, also a random variable which
2

has a X (N) distribution with N degrees of freedom (Ref.

8:196-198).

As will be seen, the result given by (5-25) will be

used as the LRT for the classifier described in this paper

while the distribution of d will be used both to establish

the thresholds for the LRT's and to predict the performance

of the classifier.
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VI. Phoneme Decision Rule

In the previous chapter, the background of statistical

hypothesis testing was outlined briefly. In the present

chapter, a modification of the Neyman-Pearson criterion is

used to derive an M-ary decision rule that is well suited to

the objectives of this research. The Neyman-Pearson

criterion was chosen for the task because of its

flexibility. The objective of this chapter is to derive a

decision rule which maximizes the average probability of

phoneme detections while subject to some subjective or

empirical constraint on the average probability of false

classifications.

In one of the intermediate steps in the derivation, an

assumption is made which, in theory, will result in the

possibility of alternative hypotheses for a single

observation. The assumption is that, unlike forced decision

rules, the decision regions need not be mutually exclusive

to one another. This is desirable since, for sounds that

are easily confused for one another, we would like to let

the syntactic processor handle the ambiguity rather than to

force a decision.

Proceeding with the development of a decision rule, a

gain function, G, is defined in terms of PD' the average

conditional probability of detection and PFC, the average

conditional p L)Ility of false classification.
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G =IP D'Ck (6-1)

where

P p(RIH_ ) dR + p(RI ) dR

z0  zI
0

+ + f p(Rll M) dR I (6-2)

z
M

and

PF = p(gln 0 ) dR +- fJpRIH 0 dR +

+ fp(RH 0 dR

z M

zo z2

+ + [f pRIHM dR + f pR RI ) d R +

zz
o 1

+ p(RIH ) dRI (6-3)

ZM-1

Next, the terms of (6-2) are grouped with those of (6-3)

having common regions of integration so that, after

substitution, (6-1) becomes
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G p(RIH ) - p(RH dR
M + 1 z - 0o i=O --

0 i*O

+ 1---if P(RIII) - X 5.P(R i )] dR

+ "" + + 1 (J ) - _ pR. dR + k' (6-4)i=0 1=0

zMM

iSM

Now, in order to maximize G (the regions are mutually

exclusive up to this point) for fixed X, we should maximize

the sum of the integrations simultaneously. However, if the

requirement for mutually exclusive decision regions can be

relaxed, G could be maximized by maximizing each integral in

(6-4) independently of one another. This is dc a, as V
before, by assigning _R to Z if and only if a pc ttive

k

contribution to the integrand results.

Considering only the kth integral in (6-4), the test is

M
H

p(RIH > .O p (RIH ) (6-5)
k < _= 1

Hk itk

which is the rule for saying whether or not Hk should be

among the set of alternative hypotheses when R is observed.

Inequality (6-5) can be rewritten as

M p(RIH ) Hi 1
____ > (6-6)

p(RIH ) X

ivk
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which is recognized as the sum of M LRT's compared against a

single threshold.

Unfortunately, this result is not very convenient to

implement for a near-real-time classifier. Taking the log

of (6-6) would not result in a simple test either since the

log of a sum is not equal to the sum of the logs.

We could, however, make a more restrictive test (with

respect to the constraint on P FC) with M pairwise LRT's.

That is, PFC will be lower if each pairwise LR'7 must support

H for it to be in the set of alternatives. This can be
k

easily proven using the Union Bound (Ref. 22:264-266) which

says that the probability of an event made up of the finite

union of subevents is upper bounded by the sum of

probabilities of the subevents. Or, more precisely,

M

i=O

ii~k

where the subevents, .' are the events that the pairwise

LRT's erroneously support Hk and k is the union of those

subevents. This is made more apparent by writing (6-6) as

p(RIH k

j= k jO
i~k i~k

where each of the ni's can be associated with the ith LRT.

In the form of (6-7), this becomes
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Pr Ifalse classification, Hjd i rL R<(69
i=O
i#k

where

p(RIH i)
L ik() = (6-10)

P(RIHk)

Thus, as a result of using the stricter test, we have

reduced (6-6) to M simultaneous LRT's where the i-k th LRT

is given by (6-10).

As should be expected, though, we pay a penalty for

implementing the simpler test. For example, after fixing

the allowable P , we will solve for the thresholds thatFC'

will yield that value of P FC* But, when implementing the

classifier with those thresholds, the observed P FC will be

lower since the test is stricter. However, the observed PD

will also be lower since the thresholds will be smaller than

they could have theoretically been. So, a loss in

performance is the penalty we pay for a simpler test.

We can define P FCk the average probability of false

classification given that H was not true, from (6-9) wherek

we assume that the equality holds. That is,

M

PFC k = IP FCi k  (6-11)i=O

itk

where
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P FCI =k Pr ILik (R) < 71jk

I ik

- fP (L ik (R)IH' dL ik(R) (6-12)

is the chance that the i-k th LRT will not exceed its

associated threshold when hypothesis K was not true. In

other words, when Hk is not true, each LRT should exceed its

associated threshold. Otherwise, Hk might be erroneously

accepted as an alternative. This potential error is denoted

as PFC and can be calculated using (6-12).

From (5-20) we can see that L(R) is just a function of

the random vector R. Recognizing that the quantity L(R) is

itself a random variable, then (6-12) is simply the

cumulative distribution function (cdf) for the random

variable L(R).

Alternatively, a sufficient statistic L'(R) (another

random variable), given by (5-25) could be used to calculate

2
the P FCiks. Since L'PR) is X (N) distributed, (6-12)

becomes

Yik

PCik 0 2 f P ) e p - I dx (613)

where N'~jwh r -2 l g- log a--

T ik -2 log 'jik - lO 1 j]
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N 2 C2

+ 2 Gkr j (mki r~i

J=1 j kj

2 2 2 2
Skjij mijk

0 2 2 (6-14)

In addition to having M of the equations given by

(6-13) for each of the M+1 hypotheses, from (6-8) it can be

seen that

M

'1 ik =k=O, ,.. M (6-15)
i=O
iik

must be satisfied.

The thresholds, can be solved for using (6-11) and

(6-13) if we know the value of PFC k .  But without prior

evidence to the contrary, it would be reasonable to assume

that we can tolerate equal average errors for each phoneme.

Then, recalling the definition of P in (6-3), we can sayFC

that P = PFC FC"

At this point, there are several considerations that

must be discussed so that a solution algorithm will be able

to converge on a feasible solution.

From equations (6-11), (6-13), and (6-15), there are

2M+1 basic variables (the P I's and In's) in the solution
FCik ik

while, from equations (6-13) and (6-15), there are only M+1

equations. This indicates that multiple solutions probably
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exist. Therefore, in order to produce a unique solution, we

will also assume that each of the thresholds in (6-15) are

equal. Under this assumption, then,

=ik = /M i=O' .' Mi~k (6-16)

While satisfying (6-15) (and, hence, eliminating one of

the equations) this assumption also eliminates M variables

(the AikIs) from the basis. However, since A must still be

solved for, it must now enter the solution basis.

Therefore, with M+1 basic variables and M+1 equations, a

unique solution may be found if none of the equations are

dependent.

Figure 13 summarizes the algorithm which solves for the

decision thresholds. This algorithm is implemented in a

FORTRAN program given in Appendix A. Notice that the

algorithm integrates over increasingly larger intervals ( by

increasing I ) until the sum of the P 's just exceeds the
FC

specified P FC" At that point, each of the M thresholds,

Yik, for a single hypothesis, k, become known. This

procedure is repeated independently for each of the M+1

hypotheses. The starting values for y are those calculated

by (6-14) with q equalling some small number.

56



START INPUT P FC

AND MOMENTS

I/
CALCULATE
STARTING rs
SET k=O

i~i+1iFO IT=

1Uz THE YES<71ik

TH THEN 0 LD+

i~i~lIF jzM+

THEN izO
AND IT=IT+l

SUM =SUM + 4 1 ip-xJ d

Figure 13. Decision Thresholds Solution AlForith:
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VII. Results and Conclusions

The desired result of this research was the development

of an efficient phoneme decision rule that permits the use

of a syntactic processor to perform error correction.

Limited success was achieved in satisfying this goal.

An algorithm for the integration of the phoneme

decision rule and a backtracking parser was described in

Chapter IV. The algorithm as described there has been only

partially implemented.

The major component which is missing in this

implementation is the data base. At the present stage of

implementation, the data base consists simply of disk files

which store the data in a readable format. That is, the

manipulation of the data files must presently be done

manually. Although much time and effort was expended in

attempting to design an efficient data base, limitations in

time dictated that efforts should be redirected to other

remaining problems.

Also, due to limitations in time, testing of the

phoneme decision rule developed in Chapter V! was not

possible. Although it would have been possible to generate

the LPC st tistics for a few utterances and manually feed

them into the threshold solution program, it was decided

that more benefit would come from beginning the development

of an interactive program that would speed the entire
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testing process and provide a simple interface to the user.

The program, CLASSIFY, is the result of this decision. One

task remains in the development of this program: designing

the interface to a data base containing the lexical entries.

Considerably greater success was made in the

theoretical development of the phoneme decision rule. A new

M-ary decision rule was derived based on the assumption that

non-mutually exclusive decision regions were desired. The

result of this assumption is that alternative phonemes can

exist for each observation.

The development of the phoneme decision rule was made

with a strong emphasis on efficiency and adaptibility to

changes in performance specifications. Because the decision

rule uses LPC parameters as a feature set and makes its

decision based on an efficient likelihood ratio test (LRT),

it is believed that the algorithm has a great potential for

real-time implementation.

In addition, this decision rule interfaces quite

naturally with a non-deterministic syntactic error corrector

such as a backtracking parser.

In conclusion, therefore, it is held that the primary

research objective, that is, the development of a unified

approach for integrating a feature extractor and a syntactic

error corrector into a CSR system, has been satisfied.

Unfortunately, the secondary objective, that of providing an
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experimental system implementation to test the al.gorithm,

has only been partially satisfied.
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VIII. Recom.mr,nda ti ons

Although the objectives of the research have only been

partially satisfied, recommendations for future work are

still warranted. The recommendations made here are made

with the intention of investigating the utility of a system

which implements the phoneme decision rule and backtracking

parser discussed in this paper.

The first recommendation is that an efficient lexical

retrieval system be implemented. One of the factors that

must be considered is the computer language in which the

retrieval system is written. This is because many of the

difficulties encountered here in attempts to implement a

data base were due to the poor disk handling and data

structure capabilities of the PASCAL and ALGOL languages

respectively that were available at this computer

installation. FORTRAN was ruled out entirely because string

manipulation is almost impossible in that language. If

PASCAL is to be used, it is strongly suggested that a better

compiler be acquired.

Once a language is decided upon, it must a!so be

decided which attributes of the lexical entries will be

included in the data base and how they will be lirnej to the

entries. Two of the possible attributes might be the

grammatical catagories of which the entry is a member (such

as verb, noun, etc.) and the phonological Epeilin of the
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entry.

Once the lexical retrieval system has been implemented,

the testing of the system will be made easy using the

interactive program, CLASSIFY. The testing should proceed

by generating a set of thresholds for a single speaker

through a series of training sessions. Then, attempts at

recognition of sentences containing words in the lexicon

should be made, noting the actual performance. This should

be repeated for a number of specified performance levels

(PFC). The corresponding recognition results should also be

noted along with the computation times.

Then, finally, based on the results of these

recommended tests, the potential utility of the CSR

algorithm described in this paper can be assessed.
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C
C PROGRAM CLASSIFY.5
C
C THIS PROGRAM ALLOWS INTERACTIVE CLASSIFICATION OF SPEECH
C SEGMENTS BY DISPLAYING SPECTROGRAMS ON THE TEKTRONIX IN
C GRAY SCALE OF THE LPC MODEL SPECTRA.
C
C SUBROUTINES USED: SCARRAY, SPCTRM,TDELAY,ERS,TONE
C
C AUTHOR: ROBERT B. TAYLOR
C DATE: 15 NOV. 1980
C
C

PARAMETER M = 12, N = 50, IXOFF = 0, IYOFF 1
C

DIMENSION AC(M),AMAG(90,N),TEMP(N)
C

OPEN 1, "LPC.AC"
OPEN 2, "LPC.RC"

C
BIG = -1.0 E +55
SMALL = 1.0 E +55
MIN = 1
MAX = 1

C
C GET LPC COEFFICIENTS
C
C

CALL FGTIME(IHR1,IMIN1,rSEC1)
TYPE "INPUT START TIME - ", IHRI,":",IMINI,":",ISEC1

C
DO 10 I = 1,90

READ FREE (1) (AMAG(I,J), J=1,M)
10 CONTINUE

C
CALL FGTIME(IHR2,IMIN2,IS C2)
TYPE "INPUT STOP TIME - ",IHR2,":",IMIN2,1":",ISEC2

C
TYPE "CALCULATING SPECTRUM..."

C
C CALCULATE THE MAGNITUDE SPECTRUM OF THE ENTIRE 3 SECONDS
C OF SPEECH USING THE LPC PREDICTOR COEFFICIENTS
C

DO 40 I = 1,90
DO 20 J = 1,M

AC(J) = AMAG(I,J)
20 CONTINUE

CALL SPCTRM(ACM,TEMP,N)
CALL SCARRAY(TEMP,N,AMIN,IMIN,AMAX,IMAX)
IF (AMIN .LT. SMALL) SMALL = AMIN
IF (AMIN .LT. SMALL) MIN = I
IF (AMAX .GT. BIG) MAX = I
IF (AMAX .GT. BIG) BIG = AMAX
DO 30 J = 1,N
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X IF (TEMP(J) .GT. 15.) TEMP(J) 15.
AMAG(I,J) = TEMP(J)

30 CONTINUE
40 CONTINUE

C
CALL FGTIME(IHR, IMINITSEC)
TYPE "END CALCULATE SPECTRUM - ",IHR, ":" IMIN, ":",ISEC

C
C

C GET THE NEXT COMMAND
C

45 TYPE " "
TYPE "THE LARGEST MAGNITUDE IS - ',BIG
TYPE " - ITS LOCATION IS IN SEGMENT " MIN
TYPE " "
TYPE "THE SMALLEST MAGNITUDE IS - ",SMALL
TYPE " - ITS LOCATION IS !IN SEGIENT ",MAX
TYPE " "
TYPE "WHICH SEGMENT TO EXAMINE? (1-90) "

TYPE "TYPE 99 TO VIEW ALL SEG'!ENJTS IN A SPECTROGRAM"
TYPE "- OR 0 TO EXIT - "
ACCEPT "- OR 1-90 TO VIEW A SINGLE TIME SEGMENT ",IANS
IF (IANS .EQ. 0) STOP
IF (IANS .EQ. 99) GO TO 60
IF (IANS .LT. 0 .OR. IANS .GT. 99) STOP
ACCEPT "WISH TO SPECIFY SCALES? (1 FOR YES,G FOR NO) ",

+ IANS2
IF (IANS2 .NE. 1) GO TO 48
ACCEPT "LOW VALUE -",SMINl

ACCEPT "HIGH VALUE - ",SMAX
IFSCL = 1
GO TO 49

48 IFSCL = 0
C

49 DO 50 J = 1,N
TEMP(J) = AMAG(IANS,J)

50 CONTINUE
CALL GRPH2S("MODEL SPECTRUM", 1 ,TEMP,
TEMP,N,1,SMIN,SMlAX,IFSCL)
PAUSE IN-CLASSIFY
GO TO 45

C
C PLOT THE SPECTROGRAM (LPC MODEL SPECTRUM) IN
C GRAY TONE SCALE (10 LEVELS OF GRAY - 0 THROUGH 9)
C
C SUGGESTED PARAMETERS -

C CONTRAST = 7.5, BIAS = -5.
C

60 ACCEPT "INPUT THE DESIRED CONTRAST LEVEL ",CONTR
ACCEPT "INPUT THE DESIRED BIAS ",BIAS
DO 100 I 1,90

DO 80 J 1,N
MAG = AMAG(I,J) * CONTR + BIAS
CALL TONE(I+IXOFFJ+IYOFF,MAG)
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80 CONTINUE
100 CONTINUE

C
C GO TO HOME AND PUT UP CROSSHAIR,
C ACCEPT TWO-CHARACTER CODE FOR PHONEME
C

CALL TPLOT(O,1000,2)
CALL PCHAR(31,IER)
CALL CURSOR(IX,IY,ICHAR1)
IXLEFT =IX / 9
CALL TPLOT(IX,L480,2)
CALL TPLOT(IX,500,1)
CALL CURSOR(IX,IY,ICHAR2)
IXRIGHT =IX / 9 + 1
CALL TPLOT(IX,1480,2)
CALL TPLOT(IX,500,1)
IXMID =(IXRIGHT + IXLEFT) *9 /2
CALL TPLOT(IXMIID,1475,2)
CALL PCHAR(37K,IER)
CALL PCHAR(ICHAR1,!ER)
CALL PCHAR(ICHAR2,IER)
CALL TPLOT(1O,780,2)
CALL PCHAR(37K,IER)
ICHAR = ICHAR1*256 + ICHAR2
TYPE IXLEFT,IXRIGHT

C ALTHOUGH NOT YET IMPLEMENTED, THE OUTPUTS OF CLASSIFY
C WILL BE ALL THE VALUES OF ICHAR AND THE CORRESPONDING
C START AND STOP SEGMENT NUMBERS
C
C

ACCEPT "TYPE 1 TO GO BACK TO MODE 1,
+ 0 TO STOP, OR 2 TO CONTINUE CLASSIFYING"1,INUM
IF (INUM .EQ. 1) GO TO 45
IF (INUM .EQ. 2) GO TO 100
CALL RESET
STOP
END
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SUBROUTINE CURSOR(IX,IY,ICHAR)
C
C
C THIS SUBROUTINE PUTS UP THE CROSSHAIRS ON THE TEKTRONIX
C SCREEN AND RETURNS THE CURRENT X AND Y LOCATION
C PLUS THE KEY DEPRESSED.
C RETURN IS IN ALPHA MODE.
C
C
C ARGUMENTS-
C
C IX - THE X LOCATION IN TEK POINTS (0 - 1024)
C IY - THE Y LOCATION IN TEK POINTS (0 - 767)

C ICHAR - THE ASCII CODE FOR THE KEY DEPRESSED
C
C AUTHOR - ROBERT B. TAYLOR
C DATE - 14 NOV. 1980
C

DIMENSION IBYTE(5)
C
C BEFORE PUTTING UP CROSSHAIRS, TEK MUST BE IN ALPHA MODE
C

CALL PCHAR(37K,IER)
C

C SEND AN ESC-SUB TO PUT UP CROSSHAIRS
C AND GET X AND Y LOCATIONS AND KEY DEPRESSED
C

CALL PCHAR(33K,IER)
CALL PCHAR(32K,IER)
DO 10 I = 1,5

CALL GCHAR(IBYTE(I),IER)
CALL CHECK(IER)

10 CONTINUE
C
C COMPUTE X AND Y COORDINATES
C

IX = 32*(IBYTE(2) - 32) + (IBYTE(3) - 32)
IY = 32*(IBYTE(4) - 32) + (IBYTE(5) - 32)
ICHAR = IBYTE(1)
CALL PCHAR(37K,IER)
CALL CHECK(IER)
RETURN
END
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C
C PROGRAM MAKELPC.5
C
C

C PARAMETERS
C
C M - THE ORDER OF THE LPC FILTER
C NSAMP - THE NUMBER OF SPEECH SAMPLES PER FRAME
C
C
C AUTHOR - ROBERT B. TAYLOR
C 15 NOV. 1980
C
C
C SUBROUTINES CALLED - AUTO
C

PARAMETER M = 12, NSAMP 256
C

DIMENSION X(NSAMP),TEMP(NSAMP),IARRAY(NSAMP),RC(M),AC(M)
C

OPEN 1,"DSPEECH"
OPEN 2,"LPC.AC"
OPEN 3,"LPC.RC"

C
C THERE ARE 90 RECORD BLOCKS IN "DSPEECH" FOR 8KHZ SAMPLE RATE
C

DO 100 I = 1,90
CALL RDBLK(1,I,IARRAY,1,IER)
DO 50 J = 1,NSAMP

X(J) IARRAY(J)
50 CONTINUE

CALL AUTO(NSAMP,X, M AC,ALPHA,RC)
WRITE FREE (2) (AC(J), J=1,M)
WRITE FREE (3) (RC(J), J=1,M)

100 CONTINUE
CALL RESET
STOP
END
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C
C PROGRAM PREEMPHASIZE.5
C
C
C THIS PROGRAM PERFORMS SPECTRAL PRE-EMPHASIS AT
C 6 dB /OCTAVE USING A DIGITAL FILTER OF THE FORM:
C
C 1 -Z**(-1)

C
DIMENSION IARRAY(256)

C
OPEN 1 ,"DSPEECH"
OPEN 2,"DSPEECH1"'
ITEMP =0
DO 100 1I 1,90

CALL RDBLK(2,I,IARRAY,1,IER)
ITEMP2 IARRAY(256)
DO 50 J 0,254

IARRAY(256-J) =IARRAY(256-J) -IARRAY(256.-J-1)

50 CONTINUE
IARRAY(l) =IARRAY(l) - ITEMP
ITEMP =ITEMP2
CALL WRBLK(1,I,IARRAY,1,IER)

100 CONTINUE
CALL RESET
STOP
END
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C
C

SUBROUTINE QUANC8(FUN,A,B,ABSERR,RELERR,
+ RESULT,ERREST,NOFUN,FLAG)

C
C THIS SUBROUTINE IS DUE TO FORSYTHE, ET AL. (REF. 4)
C
C

REAL FUN,A,B,ABSERR,RELERR,RESULT,ERREST,FLAG
INTEGER NOFUN

C

C ESTIMATE THE INTEGRAL OF FUN(X) FROM A TO B
C TO A USER PROVIDED TOLERANCE.
C AN AUTOMATIC ADAPTIVE ROUTINE BASED ON
C THE 8-PANEL NEWTON-COTES RULE.
C
C INPUT..
C
C FUN THE NAME OF THE INTEGRAND FUNCTION SUBPROGRAM FUN(X).
C A THE LOWER LIMIT OF INTEGRATION.
C B THE UPPER LIMIT OF INTEGRATION.(B MAY BE LESS THAN A.)
C RELERR ARELATIVE ERROR TOLERANCE. (SHOULD BE NON-NEGATIVE)
C ABSERR AN ABSOLUTE ERROR TOLERANCE.
C (SHOULD BE NON-NEGATIVE)
C
C OUTPUT..
C
C RESULT AN APPROXIMATION TO THE INTEGRAL HOPEFULLY
C SATISFYING
C THE LEAST STRINGENT OF THE TWO ERROR TOLERANCES.
C ERREST AN ESTIMATE OF THE MAGNITUDE OF THE ACTUAL ERROR.
C NOFUN THE NUMBER OF FUNCTION VALUES USED IN CALCULATION
C OF RESULT.
C FLAG A RELIABILITY INDICATOR. IF FLAG IS ZERO, THEN RESULT
C PROBABLY SATISFIES THE ERROR TOLERANCE. IF FLAG 1S
C XXX.YYY, THEN XXX = THE NUMBER OF INTERVALS IC'H AVE
C NOT CONVERGED AND O.YYY = THE FRACTION OF THE INTERVAL
C LEFT TO DO WHEN THE LIMIT ON NOFUN WAS APPROACHED.
C

REAL WO,W1 ,W2,W3,W4,AREA,XO,FO,STONE,STEP,COR11,TEMP
REAL QPREV,ONOW,QDIFF, QLEFT ,ESTERR,TOLEFRR
REAL QRIGHT(31),F(16),X(16) ,FSAVE(8,30),XCAVF( -, TO)
INTEGER LEVMIN,LEVMAX,LEVOUT,NOMAX,NOFIN,LEV , I,I,J

C
C ** STAGE 1 *. GENERAL INITIALIZATION
C SET CONSTANTS.
C

LEVMIN = 1
LEVMAX = 30
LEVOUT = 6
NOMAX = 5000
NOFIN = NOMAX - 8*(LEVMAX-LEVOUT+2**(LEVOUT+1))

C
C TROUBLE WHEN NOFUN REACHES NOFIN
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WO =3956.0 / 14175.0
Wl 23552.0 /14175.0
W2 =-3712.0 / 14175.0
W3 = 41984.0 / 14175.0
W4 =-18160.0 / 14175.0

C
C INITIALIZE RUNNING SUMS TO ZERO.
C

FLAG =0.0
RESULT =0.0
CORR11l 0.0
ERREST =0.0
AREA = 0.0
NOFUN = 0
IF (A .EQ. B) RETURN

C
C ~STAGE 2 ** INITIALIZATION FOR FIRST INTERVAL
C

LEV =0
NIM = 1
XO =A
X(16) =B
QPREV =0.0
FO = FUN(XO)
STONE = (B - A) / 16.0
X(8) = (XO + X(16)) /2.0
X(4) = (XO + X(8)) /2.0
X(12) =(X(8) + X(16)) / 2.0
X(2) =(XO + X(4)) / 2.0
X(6) = (X(4) + X(8)) / 2.0
X(10) =(X(8) + X(12)) /2.0
X(14) =(X(12) + X(16)) /2.0
DO 25 J 2,16,2

F(J) FUN(X(J))
25 CONTINUE

NOFUN = 9
C
C STAGE 3 * CENTRAL CALCULATION
C REQUIRES QPREV,XO,X2,X4,...,X16,FO,F2,F4,...,Fl6.
C CALCULATES Xl,X3,-..,X15,F1,F3,.. .,F1S,

C QLEFT,QRIGHT,QNOW1-,QDIFF,AREA.
C

30 X(1) =(XO +- X(2)) / 2.0
F(l) = FUN(X(1))
DO 35 J 3,15,2

X(J) (X(J-1) +X(J+1)) / 2.0
F(J) =FUN(X(J))

35 CONTINUE
NOFUN =NOFUN + 8
STEP = (X(16) - XO) / 16.0
QLEFT = (WO*(FO + F(8)) + Wl*(F(1)+F(7)) ;*1) (1 )
1 + W3*(F(3)+F(5)) + W4*F(LW)* STEIP
QRIGHT(LEV.-) = (WO*(F(8)+F(16))+W1*CF(9)+F i5/')
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+ + W2*(F(1O)+F(ILi))
+ + W3*(F(11)+F(13)) + W4*F(12)) * STEP
QNOW = QLEFT + QRIGHT(LEV+I)
QDIFF = QNOW - QPREV
AREA = AREA + QDIFF

C
C * STAGE 4 *** INTERVAL CONVERGENCE TEST
C

ESTERR = ABS(QDIFF) / 1023.0
TOLERR = AMAX1(ABSERR,RELERR*ABS(AREA)) * (STEP/STONE)
IF (LEV .LT. LEVMIN) GO TO 50
IF (LEV .GE. LEVMAX) GO TO 62
IF (NOFUN .GT. NOFIN) GO TO 60
IF (ESTERR .LE. TOLERR) GO TO 70

C
C * STAGE 5 * NO CONVERGENCE
C LOCATE NEXT INTERVAL.
C

50 NIM = 2*NIM
LEV = LEV+I

C
C STORE RIGHT HAND ELEMENTS FOR FUTURE USE.
C

DO 52 I = 1,8
FSAVE(I,LEV) = F(I+8)
XSAVE(I,LEV) = X(I+8)

52 CONTINUE
C
C ASSEMBLE LEFT HAND ELEMENTS FOR IMMEDIATE USE.
C

QPREV = QLEFT
DO 55 I = 1,8

J = -I
F(2*J+18) = F(J+9)
X(2*J+18) = X(J+9)

55 CONTINUE
GO TO 30

C
C ** STAGE 6 * TROUBLE SECTION
C NUMBER OF FUNCTION VALUES IS ABOUT TO EXCEED LIMIT
C

60 NOFIN = 2*NOFIN
LEVMAX LEVOUT
FLAG = FLAG + (B - XO) / (B - A)
GO TO 70

C
C CURRENT LEVEL IS LEVMAX
C

62 FLAG = FLAG + 1.0
C
C ** STAGE 7 * INTERVAL CONVERGED
C ADD CONTRIBUTIONS INTO RUNNING SUMS.
C

70 RESULT = RESULT + QNOW
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ERREST = ERREST + ESTERR
COR11 : COR11 + QDIFF / 1023.0

C
C LOCATE NEXT INTERVAL.
C

72 IF (NIM .EQ. 2*(NIP-/2)) GO TO 75
NIM =NIM/2
LEV =LEV-1
GO TO 72

75 NIM =NIM + 1
IF (LEV .LE. 0) GO TO 80

C
C ASSEMBLE ELEMENTS REQUIRED FOR THE NEXT INTERVAL.
C

QPREV =QRIGHT(LEV)
XO =X(16)
FO =F(16)
DO 78 I 1,8

F(2*I) FSAVE(I,LEV)
X(2*I) XSAVE(ILEV)

78 CONTINUE
GO TO 30

C
C **STAGE 8 FINALIZE AIND RETURN
C

80 RESULT = RESULT + COR11
C
C MAKE SURE ERREST NOT LESS THAN RGUN4DOFF LEVEL.
C

IF (ERREST .EQ. 0.0) RETUORN
82 TEMP =ABS(RESULT) + ERREST

IF (TEMP .NE. ABS(RESULT)) RETURN
ERREST = 2.0*ERREST
GO TO 82
END
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C
C ----------------- ------------
C
C REPLAY ORIGINAL SPEECH ROUTINE
C
C-------------------------------------------------------------
C
C

DIMENSION INPUT(256)

CALL DFILW("DSPOUT",IER)
IF((IER.N4E.1).AN'D.(IER.NE':.13)) GO TO 900
CALL FOPEN(3,"DSPOUT"I,512)
CALL OPEN (7 ,"DSPEECi" , 2, lED ,512)
IF (IER.NE.1) GO TO 920

C
ACCEPT "TYPE IN STARTlIND: AN'D ENDING SEG"EINTS"1, ISTART, ITND
IF (ISTART.LE.1) ISTART =1
IF (IEND.GT.90) lEND =90
DO 50 I=1,256

INIUT(I) =0
50 CONTINUE

IF (ISTART.EQ.1) GO TO 200
IS1 = ISTART - 1
DO 100 I 1 ,IS1

CALL WRBLK(3,I,INPUT,1,IER)
IF (IER.NE.1) GO TO 940

100 CONTINUE
200 DO 300 I ISTART,IEND

CALL RDBLK(7,I,INPUT,1,IER)
IF (IER.NE.1) GO TO 940
CALL WRBLK(3,I,I'IPUT.,1,IER)
IF (IER.NE.1) GO TO 960

300 CONTINUE
IF (IEND.EQ.9o) GO TO 1000
IE1 = IENI) t-1
DO 400 I = 1,256

INPUT(I) =0
400 CONTINUE

DO 500 I IE1,90
CALL WRBLK(3,I,I reUT,1,IER)
IF (IER.NE.1) GO TO 960

500 CONTINUE
C

GO TO 1000
900 WRITE(1O,910) IER
910 FORMAT(" FILE DELETING ERROR CODE -",13)

GO TC 1000
920 WRITE(10,930) IER
930 FORMAT(" FILE OPENING ERROR CODE -",13)

GO TO 1000
940 WRITE(10,90") IER
950 FORMAT(" R DRLK ERROR CODE - 13)I

GO TO 1000
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960 WRITE(10,970) IER
970 FORMAT(" WRBLK ERROR CODE 11,13)
1000 CALL RESET

S TOP
END
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SUBROUTINE SPCTRM(ARRAY,M,SPEC,N)
C
C
C SUBROUTINE SPCTRM COMPUTES THE MAGNITUDE SPECTRUM OF THE
C SPEECH MODEL FROM THE PREDICTOR COEFFICIENTS, A.
C
C ARGUMENTS:
C
C ARRAY - THE PREDICTOR COEFFICIENTS (INPUT)
C M - ORDER OF THE PREDICTOR FILTER
C SPEC - THE MAGNITUDE SPECTRUM (OUTPUT)
C N - THE NUMBER OF POINTS IN THE SPECTRUM
C TO BE COMPUTED (INPUT)
C
C AUTHOR: ROBERT B. TAYLOR
C DATE: 15 NOV. 1980
C
C

DIMENSION ARRAY(1),SPEC(200)
COMPLEX Z,DENOM,ARG

C

PI = 3.1459263
DO 50 I = 1 ,N

DENOM = (1.0,0.0)
ARG = CMPLX(O.,PI*FLOAT(I-1)/FLOAT(N))
DO 40 J = 2,M

Z = CEXP(ARG*FLOAT(J))
DENOM = ARRAY(J)*Z + DENOM

4 0 CONTINUE
SPEC(I) = I./CABS(DENOM)

50 CONTINUE
RETURN
END
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C
C SUBROUTINE TONE
C
C JX - X POSITION OF DOT (FROM 0 TO 170)
C JY - Y POSITION OF DOT (FROM 0 TO 128)
C JZ - INTENSITY FROM 0 TO 9
C

C TLAE HALFTONE PATTERNS GENERATED ARE THOSE
C ~DESCRIBED IN ROBERT F. SPROULL'S "PRINCIPLES

C 3 4 5 THE NUMBERS REPRESENT BIT POSITIONS IN KODE
C 0 12
C

SUBROUTINE TONE (JX,JY,JZ)
DIMENSION KODE(9)
DATA KODE(1),KODE(2),KODE(3)/20K,60K,260K/
DATA KODE(4),KODE(5),KODE(6)/270K,2--72K,273K/
DATA KODE(7),KODE(8),KODE(9)/673K,773K,777K/
IF(JZ .LE. 0) RETURN
IF(JZ .GT. 9) JZ= 9
DO 100 KY =0,2

IY = 5*(3*JY + KY)
DO 50 KX =0,2

IN( ITEST(KODE(JZ),3*KY+KX) .EQ. 0) GO TO 50
IX = 5*(3*JX + KX)
CALL CHR(IX,IY,0)
CALL CHR(IX,IY,1)

50 CONTINUE
100 CONTINUE

RETURN
END
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REAL FUNCTION FUN(X)
C
C THIS FUNCTION IS THE CHI-SQUARED DENSITY
C FOR N=12 CORRESPONDING TO THE NUMBER OF
C COMPONENTS IN THE LPC VECTOR
C
C IT IS CALCULATED USING THE INTEGRAND OF
C EQN. (6-3)
C
C GAMMA6 IS THE GAMMA FCN. WITH AN ARGUMENT OF 6
C THIS GIVES GAMMA6 5!
C

GAMMA6 = 120
FUN = 1./(2.**6 * GAMMA6)
FUN = FUN * X**5 * EXP(-0.5 * X)
RETURN
END

80



VITA

Robert B. Taylor was born on 29 September 1954 in

Cherry Point, North Carolina. He graduated from high

school in 1973 and worked as an electrician for over a year.

He then enlisted in the USAF and served as an Automatic

Tracking Radar Repairman. With one and a half years in

service, he was selected for an Air Force commission through

the Airman Education and Commissioning Program. He

graduated from Lehigh University with the degree of Bachelor

of Science in Electrical Engineering in May 1979. Upon

graduation, he was commissioned and selected to attend the

School of Engineering, Air Force Institute of Technology.

Permanent address: Box 644 River Road
Upper Black Eddy, Pennsylvania
18972



UNCLASSIFIED
SECURITY CLASSIFICATION OF T.I$ PAOE iW1e ) , Fwrtrc,

REPORT DOCUMENTATION PAGE H -AD ORNTR,'cTU,,'__ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _fllA.()E_((__'I.1 "!-NrII._P-M

1. REPORT NUMBER 2. GOVT ACCELSSION NO. 3 RECIPIENT'S CATALOCJ, NUMBER

AFIT/GE/EE/8OD-45 J9[ 6
4. TITLE (ard SobrlcIl) S TYPE OF RPORT & PERIOD CcJEIE LF

AUTOMATIC RECOGNITION OF PHONEMES MS Thesis
USING A SYNTACTIC PROCESSOR FOR
ERROR CORRECTION 6 PERFORMING O'O. REPORT NuMBER

7. AUTHOR(s) 8. CONTRACT OR GRAN' NUMBER-)

Robert B. Taylor
2nd Lt.

9 PERFORMING OR3ANIZATION NAM'~ AND ADDRESS 10. PROOPAM ELEMENT PN,4JE
2

T TAK
AREA & hLRK UNit N MBLkS

Air Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT GATEDecember, 1980

13. NUMBER OF PA5ES

86
14. MONITORING, AZENCY NAME & ADDRESS(,I different from Co-troling Off,,,) 15 SECURITY C. LAoS 'o' "h.e-1 t'

15 ., CECL ASSIF.C AT$ON DOWNGRA['ING
SCHEDULE

16. DISTRIBUTION STATEMENT (.,f th .Report)

Approved for public release; distribution unlimited

17t. GI1STRIBUTION STATEMENT (of the mbstttact erteted ;nl Block 20, it differen~t from Report)

18, SUPPLEMENTARY N07ES p~, C> , ,, ~ (.,

A p pr ye or 'pu re ease; IAW AFR 190-17
FREDRIC C. LYUCI, 1a jor, USAF
Director of Public Affairs

19 KEY WORDS (Ccrtitroe- o reverse sldeI f ececrF and - -ert-fv ty hlock n her,)

AUTOMATIC SPEECH RECOGJITION
AUTOMATIC PHOUEE ECOGMTiO:
SYNTACTIC ERROR COREECTION

20 ABSTPACT (Co-tre Ir - evere ,de If necessary -nd Id-fsfy hr bl.,k n mer

An tlgorithm was developed and partially implemcrlcd to
integrate the use of a phoneme recopnizer and a :v,'t;ictic
error corrector for continuous speech reoF r, ticr. The
recognizer uses LPC reflection coefficier, ec " , urI- set
and makes decisions based on tIhAe csrmputt, ir ' r.
likelihood ratio tests for H1 phoremen. T e error

F, M 1473 rDITION ? , NOV 65 IS OBSOLFTEDSD JUAN 7 1473 U ' tic A .. . .



0 MM. S.; F5T F r
SECURITY CLASSIFICATION OF THIS PAGE(N7,e, Data E,,ter.d)

corrector uses a backtracking perser to perform phonological
rule and grammatical error correction. A computer program
is included to provide interactive training with a Tektronix
4010 terminal on a Data General NOVA/ECLIPSE computer
system.

U NC LA S SIF I F P

SrrUt'Ty CL A!SIFICATI. ki O)F ~ I.r



DAT

pI

D1

II


