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An algorithm was developed and partially implemented to
integrate the wuse of a phoneme recognizer and a syntactic
error corrector for continuous speech recognition. The
recognizer uses LPC reflection coefficients as a feature set
and makes decisions based on the computation of pairwise
likelihood ratio tests for M phonemes. The syntactic error
corrector uses a backtracking parser to perform phonological
rule and grammatical error correction. A computer program
is included to provide interactive training with a Tektronix
4010 terminal on a Data General NOVA/ECLIPSE computer

system.

T e

alad. .

ool SRC i o T »

R P TR A 4o PR "R

e

%




AUTOMATIC RECOGNITION OF PHONEMES USING
A SYNTACTIC PROCESSOR FOR ERROR CORRECTION

I. Introduction

With the recent advances in computer technology,
emerging applications for that technology, and the need to
communicate more rapidly and efficiently, much attention is
being focused on the use of an automatic speech recoghizer
(ASR) to fill one gap in the man/machine interface. These
applications include very 1low bit rate transmission of
speech, automatic translation of speech into written text,
voice controlled cockpits, etc. In each of these
applications, the human operator should be relatively free
to perform several tasks simultaneously yet more efficiently

than ever before.

With only a little bit of imagination, then, one could
dream up dozens of other applications for speech
recognition., However, the question at hand is not how we
would be able to apply speech recognition systems, but,
rather, how we would implement them, and further, how much
we are willing to pay to attain a desired 1level of

recognition accuracy.

The pitfalls in the method of implementation are
numerous, By way of introduction, one problem area is the
resolution of ambiguities that can occur in everyday spoken

language. The phrases "fire a round" and "fire around" are
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spoken exactly the same in many dialects of English.
However, their meanings are totally different. To the human

listener, this would pose no problem since the phrases could

be distinguished by the sentence context. But to the
processor in a voice controlled cockpit, the phrase might be
interpreted as "open fire on enemy target" or, "fire into
the vicinity of .."™ or, alternatively, "there is a fire i
around ..," depending on what other information was h
available. The cost of responding incorrectly to an
utterance could be extremely high in this case. In another 4

environment, say an application in voice transcription, an

ambiguity would also be present although +the <cost of an
error may or may not be as high depending on the sensitivity

of the text.

The purpose of this example was to illustrate that in
some applications, it 1is not only desireable, it is
imperative that the ASR have the ability +to resolve
ambiguities to some degree. Some details of implementing

this capability will be discussed later.

The task of automatic speech recognition entails
extracting from a continuously varying acoustic speech

signal a set of features which contains the information

essential to the recognition process. A simplification of
this procedure and the comparison to human speech

recognition is shown in Figure 1., These features can then

be mapped into a set of discrete symbols representing




linguistic units.

Although these units could

be

words or

syllables, the most frequently used unit is the phoneme.

STEP 1
TRANSDUCER

Ear

M

Microphone

STEP 2
SIGNAL
PROCESSOR

Cochlea

STEP 3
FEATURE
EXTRACTOR

Auditory Nerve
Cochlea and
Cerebral Cortex

Spectrum
Analyzer

Formant
Tracker,
Phoneme
Recognizer
(Data
Compressor)

STEP 4
UTTERANCE
CLASSIFIER

Left Cerebral
Cortex

Computer
(Comparison of
Reference
Messages with

Unknown) i

J

Figure 1.

Comparison of Human to Machine Recognition (Ref. 18)

The representation of speech by phonemic strings is not

altogether
model of the

variability in

is virtually infinite.

in which

displayed on a speech spectrogram.

independently

illustrate this, the hand labelling of the utterance,

exact,

speech

normal

translated

however, since

process.

conversational

In fact,

several

the phonemic labels," is shown in Figure 2.

speech is

the

For example, consider an

linguistics is merely a

degree of

the production and interpretation of speech

experiment

recorded and

The spectrogram is

then

linguists. To

"Edit




4
— 5_
5 .- ﬁw
Z , . ﬁ o Vel
RN ~AD *fi
E <o b Lbos :—r:»:s-%

1

TIME (sec)

\ Phonemes
|c|rh|tEalal f b}n}JnJllklll e lb} 1 } z hhond4obened)

Figure 2. Hand Labelling a Speech Segment (Ref. 17)

Almost <certainly, there would be some differences between
the respective linguists' interpretations. There would also
probably be differences between their translations and the
accepted standard phonetic transcription found in a

pronunciation dictionary.

Fortunately, the redundancy in natural languages allows
the listener to understand the message most of the time.
This 1is because he 1is wusually able to reconstruct a
meaningfully correct sentence from the recognized portions
of the speech through his understanding of the phonetic,

syntactic, and semantic rules of the language.

Therefore, a useful ASR must also incorporate knowledge
of these rules to -ensure adequate performance of the

recognizer. Unfortunately, this often adds almost

unsurmountable complexity to an already difficult problem.




The general speech recognition problem can be separated
into several sub-tasks with varying levels of difficulty.
Most of these sub-tasks are treated separately in the
literature. The first 1level of difficulty 1is with the
recognition of an isolated word. Further complexity is
added if this is to be done by more than one speaker or if

the word comes from a large vocabulary.

The second 1level of difficulty is that encountered in
word spotting from continuous speech. Again, added
complexity comes about with the above requirements of

speaker independence and large vocabulary size.

The most difficult level of speech recognition, the one
addressed in this paper, is with the application to speech

understanding or continuous speech transcription.

Problem

The objective of this research was to develop an
algorithm to be used 1in a continuous speech recognizing
system (C3R) that would unify current efforts in feature
extraction and syntactic error correction. This research is
necessary because, for the most part, developments in these
two areas are being made almost totally independently of one
another, Consequently, when these two technologies have

been integrated in a single system, the familiar "black box"

approach was typically used.




To cite an example of the potential power of syntactic
error correctors, Woods (Ref. 21:355) pointed out that,
because of the inevitability of decision errors with forced
decision rules ("hard" decisions), nondeterministic
algorithms (utilizing "soft"™ decision rules) have a
tremendous advantage for CSR's. These nondeterministic
algorithms systematically consider all possible sequences of
linguistic units (phonemes, words, etc.) until one of the
sequences yields a successful analysis. Success might
depend on various criteria such as syntactic or semantic

validity of the utterance.

A nondeterministic algorithm 1is only one form of a
syntactic error corrector. However, to ensure that many of

the existing syntactic error correctors will be usable with

the end result of this research, several criteria were

placed on the CSR algorithm to be developed: !

1. It must provide at least one phoneme as an alternative

for each observation interval.

2. It must have a potential for real-~time implementation.

3. It must afford ease of adaptation to changes 1in
technology and changes in empirical knowledge about the

speech process.




The 1last criterion was imposed to allow flexibility of
recognition performance since there is still much to 1learn
concerning what tradeoffs exist when combining phoneme
decision rules with syntactic error correctors and semantic

knowledge.

Scope

The scope of this research includes the development of
an algorithm for a "soft' phoneme decision rule to be used
in a CSR, This decision rule is to meet the three major

criteria stated above.

In addition to the development of the phoneme decision
rule, a simple CSR system will be described which can be
used to test the validity of the assumptions made and tne
validity of the theoretical results of this research. This
implementation is intended to be an experimental
implementation of the decision rule and not a final system

design.

umption

It 1is assumed here that any errors existing in the
measurement of the acoustic speech signal are caused by an
additive white gaussian noise process. It is also assumed
that the noise process is stationary and ergodic, The

effects of quantization errors in the A/D sampling of the

speech are ignored. While these assumptions add to the
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tractibility of- the mathematics in the theory and are
commonly made assumptions, it is not presently known whether
they are actually valid here or if they accurately reflect

the physics of the CSR problem.

Approach and Presentation

The presentation of this research effort is, for the
most part, in the order that the work was done. In Chapter
II, a detailed analysis of the CSR problem is given and some

of the inadequacies of existing strategies are stated.

In Chapter III, a well known model of the speech
process is discussed. From this model, parameters are
selected as the feature set for a simple CSR system. Then,
Chapter IV explains the control strategy for an experimental
CSR system. These two chapters are presented before the
following two chapters to introduce terminology and serve as
further motivation for the material presented in Chapters V

and VI.

Chapter V introduces some background in statistical
decision theory that is necessary for the development of the
theory in Chapter VI. It also contains results for
binary-hypothesis decision rules that will be wused in the

next chapter.

Chapter VI contains the major contribution of this

research. It develops an M-ary decision rule for




non-mutually exclusive decision regions. A solution
algorithm is also described to find the thresholds for the
pairwise 1likelihood ratio tests (LRT) that make up the

decision rule,

Chapters VII and VIII conclude the paper with a summary
of the results and recommendations for future work.
Following the main body of the paper 1is an appendix

containing computer programs which implement the algorithms

discussed in the paper.
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II. Detailed Analysis

As mentioned before, automatic speech recognition with
application to speech wunderstanding systems or automatic
speech transcription 1is considerably more difficult than
word spotting or isolated word recognition., It is a problem
characterized by huge amounts of data, high data rates, and
a great deal of wuncertainty about the data source.
Moreover, the dynamics of speech such as phoneme duraticn,
volume, pitch, and rate of pronunciation are extremely

difficult to deal with in a single speech model.

However, before discussing the model of speech used 1in
this paper, it is appropriate to first discuss some of the
considerations that motivated the choice of the speech model

and tue overall design.

Although varying with the application, the most
important consideration is to attain high recognition
accuracy. In general, speech recognition for military
applications will require very high recognition accuracies
and very efficient algorithms. These two requirements
appear to be conflicting and perhaps they are at the
present., But, this condition is relative to the state of
technology at any given time. For this reason, it might be
logical to approach the problem by first 1tixing an  upper
limit to the M"cost™ that 18 tolerable, Under this

constraint, we could then seek to maximize the performance

10
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of the Continuous Speech Recognizer (CSR).

|

For the general problem of maximizing some objective

function subject to fixed constraints, there exist several
solution techniques,. One solution technique that nicely
fits the problem at hand 1s the Lagrange multiplier
technique (Ref. 2:18-21). As will be seen later, use of

this method can be made to find the optimum thresholds of a

likelihood ratio test (LRT) for a particular performance
desired., It is this strategy that is adopted in this paper
since we <can reassign the desired performance to bring the i\

costs within tolerable limits.

Because of the inevitability of making decision errors |
when decisions are forced, it 1is desirable to retain
alternative phonemes for later consideration. This idea of
"deferred decision™ has 1its foundations in the area of
sequential decision theory. Most applications of this
theory are associated with radar detection problems.
However, it will be shown that we can make use of the basic
idea of deferring a phoneme decision with an associaved loss
due to the deferral. 1In the radar context, this loss might
be associated with the cost of going back to a particular
sector in a search volume to ascertain whether a target is

or is not present before alerting a tracking radar. In our

problem the c¢ost could be associated with the overhead of
retaining more than one possible phoneme for a particular

speech segment.

1
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Obviously, Aif we retained all possible phonemes for
each speech segment, we would later be able to generate all
possible combinations of phonemes that could have been
uttered. But, this procedure would tell us nothing we
couldn't have deduced before the words were even spoken. In
addition, the <cost in memory requirements for retaining
alternative phonemes would be exceeded only by the cost in
time it would take to generate all possible sentences made

up by the phonemes.

To overcome the problems of forced decision rules in
isolated word recognition systems, several authors such as
Itakura (Ref. 5) and Kashap (Ref. 6) have recently reported
on algorithms which minimize the overall "distance" between
a hypothesized string and the observed string of phonemes.
This procedure (dynamic programming), although improving the
word recognition performance remarkably for isolated word
applications, has serious problems when applied to
continuous speech recognition, The primary difficulty here
is determining the boundaries between words in the observed

utterance,

The difficulty with word boundaries can be understood
by thinking about how a sentencé is typically spoken, It is
usually one continuous utterance with no break between
words, In fact, when there are breaks in the acoustic
waveform, it 1is most frequently caused by stop sounds such

as "p", "d", "t", etc. rather than by gaps between adjacent

12
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words. Therefore, it can easily be seen that word
boundaries would cause considerable difficulties in

continuous word speech.

If a minimum distance rule of the variety used in
isolated word recognition were applied on continuous word
recognition, there would probably be disastrous results.
For example, if two words of different lengths exist in the
vocabulary with similar initial pronunciation, the wrong
word could very easily have the least "distance", Then, if
the minimum distance rule were applied, the estimate of the
word boundary would be thrown off. This would then give
rise to false recognition of other words in the following
speech segments until "resynchronization"™ with the actual

word boundaries was accomplished.

An alternative to the forced (or "hard") decision rule,
as was mentioned earlier, is the deferred (or "soft")
decision rule. To implement this strategy, however, it must
be determined at what point to make the cutoff between
retaining additional phonemes, Retaining the additional
phonemes constitutes a requirement to eliminate the

incorrect ones at some later time.

To accomplish this correction, we can make use of the
results in the field of linguistics. Each of us has innate
knowledge of the phonological rules governing the production
of speech. That is, our knowledge of English tells us that

certain strings of phonemes are permissable and others are

13
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not. For example, when a word begins with the sound "1" or
"r" we know that a vowel should follow. Anything other than

a vowel violates the restrictions we know exist.

Even more importantly, our knowledge of the rules of
phonology allows us to tolerate the variability in the
production of sounds between different dialects and even for
a single speaker utterring a sound in a different context.
One such rule tells us that voiceless stop sounds such as
"p" are aspirated at the beginning of a word. This means
that we should observe a more breathy quality to the
production of the phoneme than, for example, if it occurred
in the middle of the word. This rule and others are
typically formalized in a quasi-equation form called the
Backus-Naur Form (BNF). Most of the rules we know that are
applicable in the English language can be found tabulated in
this form in (Ref. 1). By making use of this knowledge, we
could automatically eliminate some of the phonemes retained

by the deferral process.

In addition to this knowledge, 1linguistics gives us
rules which allows us to understand sentences that we may or
may not have ever heard before., This is because of our
knowledge of the allowable structures of sentences. For
example, the sentence, "The nine month old baby took me to
work," is perfectly understandable although it doesn't make

much sense,

14
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ART N \') OBJ

Figure 3. Sample Grammar
We are able to understand sentences like the above because
of relatively few grammatical rules that allow us to
construct grammatically correct sentences from even a small
vocabulary, or lexicon, When you consider all the subjects,
adjectives, verbs, and objects that can be formed from the
huge lexicon that most people possess, an enormous number of
sentences can be formed using the simple grammar shown in

the tree diagram in Figure 3.

It should be obvious that although not all the possible
sentences conforming to such a grammar would have a logical
semantic meaning, the wuse of this kind of syntactic
knowledge can eliminate the majority of the erroneous

sentences allowed by the deferred decision process,

The final primary consideration discussed here is that
of efficiency. Because most applications for speech
recognition would require real-time or ciose to real-time
speed, the algorithms implemented must be simple enough to
be implemented in hardware, It is also desireable that the
algorithms be easily adaptible to new technologies. That

is, since technology 1is constantly evolving but not every

15
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aspect evolves as rapidly as another, it would be most cost
effective to implement the algorithms in modules. That way,
when it appeared that technology in one area affected one
but not all of the modules, it could still be incorporated

in a revision of the design with a minimum of effort,

A good example of this is the increasing likelihood
that Charge Coupled Devices (CCD) will be playing an
increasingly important role in signal processing
applications such as spectral estimation. As these special
purpose devices become more and more available, the
implementation of algorithms could be changed. However, the
performance wouldn't be changed unless the algorithms were
also changed. The big impact of these devices, then, would
be in the tolerable cost. That is, if speed of computation
were increased, it would be possible to 1increase the
performance by simply adjusting the thresholds of the

decision rule.

16




III. 14he Speech Model

The purpose of this chapter is to discuss the necessary
elements of a speech model for the proposed recognition
system. Because the actual speech model wused 1is not the
primary concern of this paper, we will concentrate on the

Linear Predictive Coding (LPC) speech model.

Before discussing the LPC model in detail, however, a

brief account will be given on the development of speech

models,
History of Speech Models
The earliest models of speech production were

mechanical and date back as far as the late 1700's (Ref.
3:166). Typical of these mechanical models were the use of

bellows to force air past a reed which, in turn, excited

hand variable resonators.

Later mechanical models, such as shown in Figure 4,
were %ore complicated but were also more versatile. In the
reed chamber, tension on the reed was variable to control
the pitch while the control keys changed the resonancés

corresponding to the various shapes the vocal tract takes on

during speech. |

17
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Figure 4. Mechanical Vocal Tract (Ref. 3)

All of the early mechanical models were attempts at
simulating the dynamic movements of the glottis (vocal
chords), the tongue and lips. Obviously, the vocal tract
shown 1in Figure ©5A is a complex mechanism to model

acurately.

More recently, attempts were made to model the vocal
tract mathematically. One of these models, called the
acoustic tube model, utilized the -theory of fluid motioﬁ
through a series of adjacent cylinders (Figure 6B}.
Reflection coefficients have been derived for *his model
(Ref. T:61-71) which uniquely characterige the tube for any
possible combination of diameters, or areas, of.‘ the

individual cylinders (Figure 5C).

18
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C) Area Function (Ref.

At about the same time that work was being done on the
acoustic tube model (ca. 1970), the
also evolving. This model captured the attention of many
researchers currently working on the

date, LPC 1is the most widely used and most versatile tool

for the analysis of speech.

LPC in Speech Analysis

The LPC model 1is, essentially,
difference equation with constant coefficients.
in equation (3-1) are assumed constant, but only over
time intervals. The sequence e(n) represents the residual

prediction error and is assumed to be

19
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noise process during unvoiced speech and an impulse train
during voiced speech (Ref. 5:67-72). X(n) is the result of
a prediction based on the previous P samples of speech.
p
x(n) = e(n) + z a(i)x(n-i) (3-1)
i=1
LPC has rapidly Dbecome a well known tool for the
analysis and transmission of speech., Its popularity is due
primarily ¢to 1its success as a data compression technique.
It is well known that speech can be represented much more
compactly 1if, instead of using the original speech samples
or the Fourier coefficients of a speech segment, the values
of the LPC predictor coefficients are used. To illustrate
the dramatic reduction in data possible, variable bit rate
schemes 1in speech transmission systems can achieve a data
rate as low as 1,200 bits/second compared to the 40,000 to
200,000 bits/second rate required to transmit the raw

sampled-data speech (Ref. T:246).

Another application of the LPC technique is in power
spectrum estimation 1in the speech signal. Although also a
consideration for the previous application, the question of
non-stationarity of the speech signal becomes more apparent
for this case since the spectrum is clearly non-stationary.
Thus, the spectrum +that can be computed from the LPC
predictor coefficients is only an estimate of the true
spectrum. Therefore, in order to reduce the variance in the

estimate of the short time power spectrum, we are forced to

20




do spectral averaging or windowing of the speech samples
(Ref. 12:532-570). In fact, if we did spectral averaging
over all time, we would be assured of having an
asymptotically consistent estimate with a variance equal to
that obtainable for a stationary process. This would,
however, reduce the time resolution of the power spectrum
that is desirable for speech spectrograms. Hence, there is
a tradeoff between the uncertainty of the spectral estimate
and the time resolution. Several windowing techniques (e.g.
Hanning, Hamming, and Kaiser-Bessel) that are commonly wused
to attain this tradeoff are discussed in (Ref. 12:239) and
(Ref. 13:88).

S(2) o —%— El2)

8(2)

Flz)

Figure 6. Linear Predictor Block Diagram (Ref. 7)

A simplification of the LPC algorithm is shown in
Figure 6. S(z) 1is the Z-Transform of the discrete time,
sampled speech. F(z) represents the transfer function of
the predictor filter which has, as its input, S(z). The

output of the filter |is g(z), the maximum 1likelihood

estimate of S(z).

P = S




The actual implementation of the LPC algorithm for
speech anulysis is not typically carried out 1in digital
filters as is suggested by Figure 6. Rather, the sampled
speech data is normally the input to algorithms such as
Levinson's recursion (Ref. 7:55) running on large scale

computers which perform the analysis offline.

Parametric Representations of LPC

The term parametric representation of speech 1is in
reference to the characterization of the speech waveform by
a reduced set of parameters. It could be thought of as the
mapping of a point from a multi-dimensional coordinate
system to another coordinate system of lower dimension, The
advantage of the mapping rests in the fewer number of
coordinates required to specify a unique point in the new

coordinate system.

The five parametric representations discussed here all
have a common factor. That is, each of the other four
parameter sets can be derived from the original predictor
coefficients., These predictor coefficients are normally the

basic outputs of the LPC algorithm.

Unfortunately, it is well  known that the predictor
coefficients are very sensitive to finite word length
effects inherent in small computers which frequently results

in instability in the model (Ref. 7:229).

22



One set of parameters directly transformable from the
predictor coefficients is the set of autocorrelation
coefficients, Theoretically, stability of the digital
filter 1is guaranteed due to the properties of the positive
definite Toeplitz matrix encountered 1in the solution
procedure (Ref. 19:29). However, errors in calculations,
again attributed to finite computer word length, can destroy
the positive definiteness of the matrix resulting in

instability.

The spectrum coefficients can also be calculated from
the predictor coefficients by sclving for the roots of the
predictor filter F(z) (Ref. 7:229). These roots are called
the spectrum coefficients because they determine the
amplitude spectrum of the digital filter in the Z-Transform
domain. By solving for these parameters and 1linearly
interpolating between successive iterations, stability can
be guaranteed when using as few as five bits per parameter

(Ref. T7:229).

Another transformation of the predictor coefficients
which assures stability 1is the set known as the cepstrum
(Ref. T7:229-230). This set, however, has the disadvantage
of requiring meny operations including a logarithmic
transformation on the magnitude spectrum. Obviously, this
kind of computational burden is not desirable for a

real-time implementation.
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Although several other transformations have been
discussed in the literature, only one other set of
parameters has properties worthy of mention for this
application. This set, the PARCOR coefficients, or
reflection coefficients, has been shown to be equivalent to
the reflection coefficients used to describe the acoustic
tube model previously mentioned (Ref, 16:417). Since these
coefficients may also be solved for recursively (Ref. T:55),
}hey are very attractive for implementation on a small

computer.

One additional property of the reflection coefficients
is that the transformation yielding them has been shown to
orthogonalize the basis vectors in an appropriate Hilbert
space (Ref. 9:33). This result implies that for the same
number of parameters, this set will be less sensitive to the

noise present in the speech signal than any other set.
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IV, Control Strategy

Now that a set of parameters has been selected as the
feature set, namely the LPC reflection coefficients, a
simple system that makes use of these features car be
presented. A block diagram of the continuous speech

recognizer (CSR) is given in Figure 7.

The first component of the CSR 1is the signal
conditioner. It performs the analog to digital (A/D)
conversion of the continuous speech waveform and does a
first order pre-emphasis to accent the higher formants.
These formants, or resonances of the vocal tract, are
difficult to discern visually without pre-emphasis. For
this system, pre-emphasis 1is implemented with a digital
filter of the form 1 - al where a = 1,0 1is used. This
value yields a pre-emphasis of approximately 6dB / octave

(Ref. 7:166).

The pre-emphasized LPC model spectrum for the
utterance, "which way did you walk," is shown in Figure 8.
Notice the upward-going trajectory of the 2nd formant in the
"AEE" sound of "way" which is located between the L1st and

49th time segments.

The final part of the signal conditioner is the LPC
algorithm itself. N samples from a disk file containirg the

A/D speech are input to the LPC algorithm for each execution

of the algorithm.
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These N samples constitute a speech segment, or frame, and
typically represent several milliseconds of speech. For an

8KHz sample rate, N=64 to N=256 is appropriate. i

From these N samples, a feature vector containing P LPC
parameters is calculated. It is this vector which is used
in both the training mode and the recognition mode to !

classify speech, o

The second component of the CSR is the training mode. ‘j

A flow diagram for this component is given in Figure 9.

This component 1s necessary to generate the decision
thresholds of a likelihood ratio test (LRT) to be used later
in the recognition mode. Generation of the thresholds is

detailed in Chapter VI.

The training mode can be entered as often as is
necessary to increase recognition accuracy. Initially, it
will be necessary to enter this mode to build a set of ‘
decision thresholds for a single speaker. Conducting !%
training sessions over a period of several days will ensure i
that the statistics on the LPC features will account for
much of the single speaker wvariability that is known to ﬂ

exist. l

The training mode was perceived as a potentially time
consuming process. Therefore, since training will likely be

performed on an ongoing basis, an interactive program called

CLASSIFY (Appendix A) was written to minimize the burden of




‘ START ’

SAMPLE SPEECH
AT BKHz

. PRE-EMPHASIZE
SAMPLES

ANY MORE
SAMPLES?

e

GENERATE LPC
COEFFICIENTS
FOR NEXT
N SAMPLES

: GENERATE LPC
> MODEL SPECTRUM

[ Figure 9. Training Session
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INTERACTIVELY
REPLAY AND
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SPEECH SEGMENTS ’

CALCULATE
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CALCULATE NEW
DECISION THRESHOLDS

STOP

Figure 9. (Cont.)
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Figure 10. Recognition Session
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experimentation. With CLASSIFY, the user can view the LPC
model spectrum on a Tektronix 4010 terminal. The resultant
display is much like that of a typical speech spectrogram,
Intensity modulation is achieved by wusing the grey tone
patterns discussed in the text on interactive computer

graphics by Newman and Sproull (Ref. 10:225-27).

CLASSIFY uses the interactive interrogative
capabilities of the Tektronix terminal by displaying movable
crosshairs on the display surface. With these <crosshairs,
the wuser can type a two character sequence to label the
starting and ending segments of a phoneme. These boundaries

must be located visually by the user,

Optionally, the user can get an audible replay of the
labelled segments to ensure the validity of his visual
recognition. This is accomplished by doing a digital to
analog (D/A) conversion of the original speech samples
corresponding to the labelled speech segments. At the end
of the training session, the classifications are optionally
saved and updates of the LPC vector moments are

automatically made.

The next component of the CSR 1s the recognition
component shown in Figure 10. As with the training mode,
the recognition algorithm begins with sampling and
pre-emphasis of the speech. Again too, the LPC coefficients
are generated for each speech segment, However, in this

mode, each observation vector is wused to form M¥(M-1)
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pairwise LRT's since there are (M-1) pairwise LRT's for each

of the M hypotheses.

As will be shown in Chapter VI, the i-th phoneme will
be considered as one of the alternative choices if and only
if all of the M-1 LRT's associated with the i-th hypothesis
have values below their respective decision thresholds.
With this procedure, there 1is a potential that, at one
extreme, M choices exist, or, at the other extreme, no
choices exist. If the former occurs, then no entry will be
made 1in the 1list of alternatives. For every other case,
however, an entry will be made for each hypothesis that

satisfies the above test.

A typical time history for thz output of the decision
rule during a recognition session is shown in Figure 11,
Here, each phoneme 1is represented by a <two character
machine-readable code. The codes used by this experimental
system consists of a subset of the codes used by Cohen and
Mercer (Ref. 1). In Figure 11, the first and fourth speech
segments have alternative phonemes which are then input to

the next phase of the recognizer.

The next +two phases of the recognition mode are
dependent on the application. For this simple CSR, a
backtracking syntactic parser (Ref. 21:355) performs the
error correction. This type of parser is very similar to

the parsers in simple compilers.




AX XX PX TH UU SX TX EH RX
AH DH
AW

uu

TIME —>

Figure 11. Phoneme Decision Rule Output

In fact, the actual parser that is implemented here 1is a
modification of a general parser due to Wirth (Ref.

20:304-7) and is given in Appendix A.

The operation of this backtracking parser 1is very
simple but can also be very time consuming. Whenever the
input phoneme list consists of more than one alternative,
all the other choices are stored on a pushdown stack. The
parser then parses 1like a deterministic one, that is,
without Dbacktracking, until either it encounters an invalid
sequence or it reaches a satisfactory parse. If the
sequence was invalid, the program backs up one step, popping
the next phoneme off the top of the stack., This procedure
is reiterated until either a successful parse occurs or
until all the possible phoneme sequences have been

exhausted,
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Two important conditions can result with this approach:

1. No valid sequences are found.
2. A valid sequence was detected before all sequences were

exhausted.

With the occurrence of the first condition, it  was
decided to simply print out all possible phoneme sequences
in the form of Figure 11. This is done as a preliminary
solution to the problem in order to gain insight for future
solutions, When the second condition exists, it was
decided, again for experimental purposes, to continue the

analysis and print out all yalid phoneme sequences.

At this point, it should be reiterated that the
implementation of the syntactic error corrector was not the
major objective of this research. Rather, it was to develop
a unified approach to the interfacing of a phoneme decision
rule to a syntactic error corrector. In addition, it was
required that the performance of the speech recognition be
readily adaptible to subjective <criteria. With this in
mind, the next two chapters deal with the development of

such an algorithm, The next chapter provides the background

for Chapter VI where a decision rule is actually developed.




V. Statistical Hypothesis Testing

This chapter will discuss some well known techniques
for the statistical approach to pattern recognition. The
Bayes classifier will be presented for introductory purposes
and 1is shown only for the binary hypothesis case. The
Neyman-Pearson criterion is also presented for the binary
case and an extension of this is made to the M-ary

hypothesis problem in the next chapter.

Bayes Decision Rule for Minimum Error

There are at least three well known strategies for
implementing a Bayes classifier (Ref. 15:23-33). The first
to be discussed here uses minimum probability of error as a

decision criterion.

The objective of this technique is to determine whether

a particular observation vector, R, belongs to hypothesis H0

or H The decision rule based on the a postericri

1
probabilities p(Hilﬁ) may be written

p(H_IR) p(H_IR) (5-1)

o /\V-‘m

This is read, if the probability that H1 occurred, given the

observation R, is greater than the probability that Ho

occurred, tnen we choose Hl; if not, choose Ho.
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The test 1is difficult to use in this form, however,
since the a priori probabilities are more readily available
than the a posteriori probabilities. An alternate form can
be derived using Bayes' rule which says

p(BlHi) p(Hi)

- -2
p(ﬂilﬂ) T E) (56-2)

Since p(R) is common to both sides of inequality (5-1)
the factors will cancel each other when substituting (5-2).
Using this fact and writing p(Hi) as Pi, the decision rule

of (5-1) can be expressed as

p(RIE_) %; P,
A 1 - & g -
[+

L(R) is <called the 1likelihood ratio and should be
recognized as the most Dbasic quantity in statistical
hypothesis testing. As will be shown, it will alsoc appear as

the basic quantity in the Neyman-Pearson criterion.

The wuse of the LRT with the present decision criterion
involves comparing L(R) to n, the threshold. If L(R) exceeds

the threshold, then we choose Hl; if not, we choose HO.

An equivalent form of the LRT 1is the log-likelihood

ratio test. That is,

H
p(RIH_) 1
> (5=-4)
log [p(glno)] <L log n

H
o

log [L(g)]

R S —




yields 1identical results as the LRT since the log function
is monotonic and both sides of the ineguality (5-3) are
positive (Ref. 15:27). From this point on we will refer to

both the LRT and the log-LRT as simply the LRT.

Although this decision rule will tell us which
hypothesis to pick based on the known probabilities, there
is still a finite probability that the rule will 1lead to
decision errors. The major drawback to this criterion is

that it ignores the cost of making incorrect decisions.

Baves' Decisjion Rule for Minimum Risk

The minimum risk criterion addresses the problen that
results when we have to pay more of a penalty for making one
kind of decision error than we would for making another
kind. For example, in a radar scenario, we may pay dearly
for failing to detect an enemy target while the occurrence

of a false alarm might be much more tolerable.

For the binary hypothesis case there are four costs:

C00 = cost of saying HO when H0 was true,
C01 = cost of saying H0 when H1 was true,
C10 = cost of saying Hl when Ho was true,

C = cost of i .
11 ost of saying H1 when H1 was true




The Bayes risk function involving these costs is

- R
V4 coopofp(glno) R+ C_.P f p(RIN ) 4R
z 3
(] ]
+ cloPo_f p(glno) dR + C P f p(glﬂl) dRr (5-5)
ll zl

where Z is the entire observation space of which R could be

a member. Zo and Z1 are partitions of Z such that if the

observed vector B maps into Z , we will say Hi' This is
b 3

illustrated in Figure 12.

Z = z,VZy
P(B_'Hi)
STATE ——
OF
NATURE
0 n
SAY H SAY m

Figure 12. Partitioning the Observation Space

If we are forced to decide for each observation R, the
expression for the Bayes risk in (5-5) suggests that the
optimum test is given by partitioning Z into Z0 and Z1 such
that, for each possible R, the pisk is minimized. This «can
be achieved by manipulating the expression in (5-5) into an
integration only over Zo using the fact that Z1 =7 - 1 .

0
The risk function is then reduced to




F':..L.,

¥

—Cll)p(B_|Hl)

£ = pc + ©P.C
+ f [Pl(co1
z

, [po(clo—coo)p(glu°>] dR (5-6)

But, we know that probabilities are always non-negative and
we can assume that the costs are also non-negative., If, in
addition, it is assumed that the cost of a wrong decision 1is
00’ C01>C11’
etc.), then the risk will be minimized by assigning R to Z

greater than the cost of a correct one (COI>C
0
if and only if the integrand in (5-6) is negative since the
first two terms represent fixed costs. The optimum test,

then, can be written in terms of the integrand of (5-6) =zs

B
1
- > - (5-7)
P (C_, Cll)p(BIHI) g p (¢ -C )p(RlH)
H
[+
or,
H
L(R) p(RlE) 21 Po %1070} n (5-8)
R p(g“{o) N Pl(col-cll)
o

Thus, the basic quantity in the test is again an LRT.

Mini Max Test

Although it was shown above that the minimum Bayes risk
test is_ optimum when the a priori probabilities Po and P1

and all the costs are known, there are applications in which
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only the costs are known reliably. In these cases, using the
mini-max criterion will assure an upper bound on the risk

function.

| In words, the mini-max procedure is merely a more
generalized version of the minimum Bayes risk criterion.
That is, the values of Po and P1 are assumed to take on some
value between 0 and 1 and the associated Bayes risk is
calculated for the given costs. This procedure 1is repeated
for all combinations of Po and Pl. The resulting Bayes risk
is then usually plotted against P1 (fixing P1 also specifies
Po). Then, to determine the value of the threshold 1in the
LRT, the value of P is assumed to take on the value at

1

which a line tangent to the curve plotted has minimum slope

(Ref. 15:31-33) (Ref. 14:67-69).

Neyman-Pearson Criterion

The above criteria for hypothesis testing result in

almost identical tests which are computaticnally simple
especially when the probability rules governing the
observations, p(BIHi), can be assumed to be gaussian. The

question arises, however, about the validity of using thece

criteria when both the <c¢ost factors anuc the a pricori

probabilities, Pi’ are not reliably known,

A different point of view for testing =statistical
hypotheses was presented in the original paper by Neyman and

Pearson which can be fcund in a volume of <collected papers
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(Ref. 11:140-185). The arguments given there were, in

effect, a re-evaluation of the intent of statistical tests.

The authors reasoned that for every value a continuous
observation vector, R, could take on, there is zero a priori
probability (a singularity) that R should have taken on the
value that it did. The consequence of this 1is that, by
itself, a statistical test cannot provide <conclusive
evidence for either the truth or falsehood of a hypothesis
concerning the state of nature. Rather, if the test were
used as a rule upon which we accepted or rejected the
hypothesis, then we would be correct more often than not in

the long run,

Although this statement is not terribly profound, the
authors go on to argue that there is little evidence that a
single criterion for deriving the test enjoys wuniversal
success. This is true, they state, because in many problems
of 1importance, the <cost factors and probabilities are

arrived at subjectively or empirically.

It would appear reasonable, then, that more than one
criterion may be suitable for testing a particular

hypothesis.

Associated with a test on hypothesis Hi’ there are two
types of errors that can occur, Type I is the error
resulting from rejecting Hi when it is true while Type II is

the error resulting from accepting Hi when some alternative
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hypothesis, Hi' is true.

The Neyman-Pearson criterionassumes that there may be
several suitable criteria, for example, to minimize the
chance of a Type I error. Since any of those criteria would
be suitable, then, it would be reasonable to pick one that
would also simultaneously minimize the chance of a Type II
error. However, since this 1is wusually a conflicting
objective, an alternative is to minimize the probability of
one type of error subject to a constraint on the other.
Neyman and Pearson showed that the solution of this problem
is equivalent to the solution of a problem in the Calculus

of Variations.

In a radar problem, a common procedure is to maximize
the probability of detection, PD s, Subject to a constraint
on the probability of a false alarm PFA’ The Lagrange

multiplier method has been shown to be a useful technique in

the solution of this problem (Ref. 15:33-34).

First, a loss function, F, 1is defined in terms of

P =1~ PD and PFA' Specifically,
F = P + A PFA - a’ (5-9)

where o 1is a Lagrange multiplier (1 > Q) and q'< a =

P_ .
FA
Then, if PFA z a', the second term is zero and in order to

maximize PD' we must minimize F (or Pu ).




By definition,

Pu fP‘B“ll’ dR (5-10) ¥
z
o
and
a
Pea ® [ p(RIN ) 4R (5-11)
%1
Then, F can be written
F = j.p(glﬂl) dR + Py [ ].p(BlHO) dR - a'J (5-12)
z z '
o 1

F can then be written in terms of an integral only over Z0

F = a(1l-a') + f [ p(glnl) - A p(glﬂo) aRr (5-13)

z
o

It can now be seen that to minimize F for a fixed value

of 1, we simply assign to ZO only those points R which

would result in a negative contribution to the integrand of

(5-13). This again results in the LRT

1 !

L(R) ;7§T§:3

= AV =

=]

However, to satisfy the constraint on PFA , Wwe must choose

so that the expression for PF in (5-11) yields o' = P

A
Or, equivalently, we must solve for a in (5-15),

FA
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PFA = .[plL(g)IHOI dL(R) = @ (5-15)
A
In the case where the joint densities p(BIHi) are
gaussian, the pdf can be written as

1
p(BlBi) = ““T%———T' expl -3 (R-m;) " q; (R-m.) (5-16)

(2m)2 lglf
where miis the mean vector, Kiis the covariance matrix of R,

and Q is the inverse of Ki under the ith hypothesis.
1

In the special case where the N components of R are
also independent (implies an orthogonal basis), the joint
density reduces to a product of densities of the individual

components:

N
1 1 j

N 7 25 (5-17)

(21)2 fi j j=1 ij

Now, <concentrate on the exponent of the ratio in (5-14)

p(RIE) =

(formed by using (5-17) with i=1 in the numerator and i=0 in
the denominator). Calling this ratio d, we can merge terms

and complete the square.




1 N 62 - o2 ( 62. - m .02. 2
4 = __25 1j 0j r 4 1j o] 0oj 1j
2 02 2 i 0'2 2
i=1 “oj "1j 1j 0j
2 2 2 2 2 2 2
m1'00' - mo_jal' mo'clj - ml.jdoj
- g - s s (5-19)
%15~ %oj ®15 ~ %oj

But, since it can be seen that the terms in the second
bracket in (5-19) don't depend on rj, tﬁey are just
constants and can be separated from the exponent and lumped

into a new threshold, M . So, after manipulating the

constants, the test becomes

L p & Gy - mj)2 ( )
- _°J 1 -20
L(R) I o exp l 5 i 5
j=1 7 =t %
where
0’2 m 62
m . . .
o - 1j oj oj 1j (5-21)
j ) 7
o, . .
1j 0j
and
2 2
2 aojalg
aj = l 2 - 5 I (5-22)
%1j 0j

We <could then write the LRT for (5-20) in terms of a

sufficient statistic as

(r. - m.)2
S

o
j=1 j

L' (R)

y (5-23)

o:ﬂ AV,.F,




If we rewrote (5-23) in terms of standard normal random

variables, zj, where

r, — m,
z, = 3 __ 3 (5-24)
J o,
Jj
then the LRT becomes
N ) H1
L = 22 2 v (5-25)
j=1 H

o}

But, d 1is created by the sum of N random variables,
each of which is the square o¢f a standard normal random
variable, and is, therefore, alsc a random variable which
has a ]?(N) distribution with N degrees of freedom (Ref.
8:196-198).

As will be seen, the result given by (5-25) will be
used as the LRT for the classifier described in this paper
while the distribution of d will be used both to establish
the thresholds for the LRT's and to predict the performance

of the classifier.




.VI. Phoneme Decision Rule

In the previous chapter, the background of statistical
hypothesis testing was outlined briefly. In the present
chapter, a modification of the Neyman-Pearson criterion is
used to derive an M-ary decision rule that is well suited to
the objectives of this research. The Neyman-Pearson
criterion was chosen for the task because of its
flexibility. The objective of this chapter is to derive a
decision rule which maximizes the average probability of
phoneme detections while subject to some subjective or
empirical constraint on the average probability of false

classifications.

In one of the intermediate steps in the derivation, an
assumption 1is made which, in theory, will result in the
possibility of alternative hypotheses for a single
observation. The assumption is that, unlike forced decision
rules, the decision regions need not be mutually exclusive
to one another, This is desirable since, for sounds that
are easily confused for one another, we would like to let
the syntactic processor handle the ambiguity rather than to

force a decision,

Proceeding with the development of a decision rule, a

gain function, G, is defined in terms of P the average

D’

conditional probability of detection and PF the average

c,
conditional p- .wllity of false classification.
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G =Py~ A|P.. -k (6=1)
where
= 1 R
P)= i [ j"p(glno) dR + j'p(glnl) dR
ZO 21
oLl 4 fp(_&th) dR ] (6-2)
“n |
and
1 +
= H ) dR + (RIH ) 4R
Pec T W+ 1 [\fp(gl o 7 IP °
21 2
+ .[p(glﬂo) dg]
y
+ [_[p(glnl) dR  + }”p(glnl> dR  +
%o %2 )
+ p(RIH_) dR ]
RIN, ) dR
lu
+ + p(RIB ) dR + p(RIH ) dR + ...
e M’ ¢= =1
l J
0 1
(6-3)
+ ]p(_KlHM) ag]

M-1

Next, the terms of (6-2) are grouped with those of (6-3)

having common regions of integration so that, after

substitution, (6-1) becomes




M
| Y |
G 1) [p(glno) J\.i=0p(B|Hi) dR
_ ° i#0
+ 1 (Rln ) - i
M+ 1 plRiN, A 2, p(RIR) ] dR
zy i=o
i#1
* M 1 1 [p(glﬂ ) - XEED(RIH ) ]dR + Ak’
iy " iSo T i = (6-4)
i#M

Now, in order to maximize G (the regions are mutually
exclusive up to this point) for fixed ), we should maximize
the sum of the integrations simultaneously. However, if‘%he
requirement for mutually exclusive decision regions <c¢an be
relaxed, G could be maximized by maximizing each integral in
(6-4) independently of one another. This 1is dc =, as
before, by assigning R to Zk if and only if a pc tive

contribution to the integrand results.

Considering only the kth integral in (6-4), the test is

& S (6-5)
p(RlE ) > kzp(glﬂ,) -
k <' i=0 1

itk

e

which is the rule for saying whether or not Hk should be
among the set of alternative hypotheses when R is observed.

Inequality (6-~5) can be rewritten as

e

:. (6-6)
A
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which is recognized as the sum of M LRT's compared against a

single threshold.

Unfortunately, this result 1is not very convenient to
implement for a near-real-time classifier, Taking the log
of (6-6) would not result in a simple test either since the

log of a sum is not equal to the sum of the logs.

We could, however, make a more restrictive test (with
respect to the constraint on PFC) with M pairwise LRT's.

That is, P Wwill be lower if each pairwise LRT must support

FC
Hk for it to be in the set of alternatives. This can be
easily proven using the Union Bound (Ref. 22:264-266) which
says that the probability of an event made up of the finite
union of subevents 1is upper bounded by the sum of

probabilities of the subevents. Or, more precisely,

M
Peje] < zpf|§i| (6-7)
i=0
ik
where the subevents, £, are the events that +the pairwise

LRT's erroneously support Hk and ¢ is the union of those

subevents. This is made more apparent by writing (6-6) as

Moo(riu,) Y M

S == = S, (6-8)
< . -

<o p(&iﬂk) Hk “o ik

itk itk

where each of the n,'s can be associated with the ith LRT.

In the form of (6-7), this becomes




M
Pr | false classification | Hil < ZPrl Lik“—”<nik (6-9)
i=0

itk

where
Lik(B) = — (6-10)

Thus, as a result of wusing the stricter test, we have
reduced (6-6) to M simultaneous LRT's where the i~k th LRT

is given by (6-10).

As should be expected, though, we pay a penalty for
implementing the simpler test. For example, after fixing
the allowable PFC' we will solve for the thresholds that
will yield that value of PFC' But, when 1implementing the
classifier with those thresholds, the observed PFC will be
lower since the test is stricter. However, the observed PD
will also be lower since the thresholds will be smaller than

they could have theoretically been,. So, a loss in

performance is the penalty we pay for a simpler test.

We can define PFC , the average probability of false
k

classification given that Hk was not true, from (6-9) where

we assume that the equality hoids. That is,

M

Pee, © ZPFC. (6-11)
=0 ik

£k

[l




P =
FC Pr ‘Lik(g’i"ik,

Tix
= _!} (Lik(g)|ﬂi) dL . (R) (6-12)

is the chance that the i-k th LRT will not exceed its
associated threshold when hypothesis K was not true. In
other words, when Hk is not true, each LRT should exceed its
associated threshold. Otherwise, Hk might be erroneously

accepted as an alternative. This potential error is denoted

as P and can be calculated using (6-12).

FCix

From (5-20) we can see that L(R) is just a function of
the random vector R. Recognizing that the quantity L(R) is
itself a random variable, then (6-12) 1is simply the

cumulative distribution function (cdf) for the random

variable L(R).

Alternatively, a sufficient statistic L'(R) (another

random variable), given by (5-25) could be used to calculate

2
the P, 's. Since L'(R) is X (N) distributed, (6-12)
ik
becomes
Tik . (N-‘Z)
"Cu = f—g—-———_ (g) ] “"I‘%"I ix (6-13)
o 22Tz

where N Uij
= - Elog
Y = -2 108 n.k — +
ik 1 J=1 UkJ
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m2 0'2 2 02
- m, . .
_ kj ij ij kj
o2 - 42 (6-14)
ij kj

In addition to having M of the equations given by
(6-13) for each of the M+1 hypotheses, from (6-8) it can be

seen that

M

EE LY = 7 k=0,1,...,M (6-15)
i=0
i#k

must be satisfied.

The thresholds, n,r can be solved for using (6-11) and
(6-13) if we know the value of PFCk' But without prior
evidence to the contrary, it would be reasonable tc assume
that we can tolerate equal average errors for each phoneme.

Then, recalling the definition of PF in (6-3), we can say

C

that PF =P _ .

Ck FC

At this point, there are several considerations that
must be discussed so that a solution algorithm will be able

to converge on a feasible solution.

From equations (6-11), (6-13), and (6-15), there are
2M+1 basic variables (the PFC 's and nik's) in the solution
while, from equations (6-13) and (6-15), there are only M+l

equations. This indicates that multiple solutions probably
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exist. Therefore, in order to produce a unique solution, we
will also assume that each of the thresholds in (6-15) are

equal. Under this assumption, then,

iy © n/M i=0...M,i#k (6-16)

While satisfying (6-15) (and, hence, eliminating cne of
the equations) this assumption also eliminates M variables
(the nik's) from the basis. However, since p must still be
solved for, it must now enter the solution basis.
Therefore, with M+1 basic variables and M+1 equations, a
unique solution may be found if none of the equations are

dependent.

Figure 13 summarizes the algorithm which solves for the
decision thresholds. This algorithm is implemented 1in a
FORTRAN program given 1in Appendix A. Notice that the
algorithm integrates over increasingly larger intervals ( by

increasing 54 ) until the sum of the PF 's just exceeds the

C.

specified PFC' At that point, each oflkthe M thresholds,
Tig? for a single hypothesis, k, become known, This
procedure is repeated independently for each of the M+1
hypotheses. The starting values for ¢y are those calculated

by (6-14) with 5 equalling some small number.




START INPUT PFC

AND MOMENTS

CALCULATE
STARTING 7's
SET k=0

k=k+1

% iz0, IT=0
SUM=0, ¥;=0

>

SAVE M
THRESHOLDS

izi+1 IF IT=1
1,77, THEN 75=7y
IF izk
LR A THEN i=zi+1
IF i=M+1
THEN i=0
AND IT=IT+1

SUM = SUM + f—n—lm . cxo | -4 s

Figure 13. Decision Thresholds Solution Algorithm
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VII. Results and Conclusions

The desired result of this research was the development
of an efficient phoneme decision rule that permits the use
of a syntactic processor to perform error correction.

Limited success was achieved in satisfying this goal.

An algorithm for the integration of the phoneme
decision rule and a backtracking parser was described in
Chapter 1IV. The algorithm as described there has been only

partially implemented.

The major component which 1is missing in this
implementation is the data base. At the present stage of
implementation, the data base consists simply of disk files
which store the data in a readable format. That is, the
manipulation of the data files must presently be done
manually. Although much time and effort was expended in
attempting to design an efficient data base, limitations in
time dictated that efforts should be redirected to other

remaining problems.

Also, due to limitations in time, testing of the
phoneme decision rule developed in Chapter VI was not
possible. Although it would have been possible to generate
the LPC st tistics for a few utterances and manually feed
them into the threshold solution program, it was decided
that more benefit would come from beginning the development

of an interactive program that would speed the entire
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testing process and provide a simple interface to the user.
The program, CLASSIFY, is the result of this decision. One
task remains in the development of this program: designing

the interface to a data base containing the lexical entries.

Considerably greater success was made in the
theoretical development of the phoneme decision rule. A new
M-ary decision rule was derived based on the assumption that
non-mutually exclusive decision regions were desired. The
result of this assumption is that alternative phonemes can

exist for each observation.

The development of the phoneme decision rule was made
with a strong emphasis on efficiency and adaptibility to
changes in performance specifications. Because the decision
rule uses LPC parameters as a feature set and makes its
decision based on an efficient likelihocd ratio test (LRT),
it 1is believed that the algorithm has a great potential for

real-time implementation.

In addition, this decision rule interfaces quite
naturally with a non-deterministic syntactic error corrector

such as a backtracking parser.

In conclusion, therefore, it is held that the primary
research objective, that is, the development of a unified
approach for integrating a feature extractor and a syntactic
error corrector into a CSR system, has been satisfied,.

Unfortunately, the secondary objective, that of providing an




experimental system implementation to test the algorithm,

has only been partially satisfied.




VIII. Recommendations

Although the objectives of the research have only been
partially satisfied, recommendations for future work are
still warranted. The recommendations made here are made
with the intention of investigating the utility of a system
which implements the phoneme decision rule and backtracking

parser discussed in this paper.

The first recommendation is that an efficient lexical
retrieval system be implemented. One of the factors that
must be <considered 1s the computer language in which the
retrieval system is written. This 1is because many of the
difficulties encountered here 1in attempts to implement a
data base were due to the poor disk handling and data
structure <capabilities of the PASCAL and ALGOL languages
respectively that were available at this computer
installation., FORTRAN was ruled out entirely because string
manipulation 1s almost impossible in that language. If
PASCAL is to be used, it is strongly suggested that a better

compiler be acquired.

Once a language 1is decided upon, it must =zlcso Dbe
decided which attributes of the lexical entries wiil be
included in the data base and how they will be linxed to the
entries. Two of the possible attritutes might be the

grammatical <catagories of which the entry is a member (such

as verb, noun, etc.) and the phcnoloerical spellinpgs  of  the




entry.

Once the lexical retrieval system has been implemented,
the testing of the system will be made easy using the
interactive program, CLASSIFY. The testing should proceed
by generating a set of thresholds for a single speaker
through a series of training sessions. Then, attempts at
recognition of sentences containing words in the lexicon
should be made, noting the actual performance. This should
be repeated for a number of specified performance levels
(PFC). The corresponding recognition results should also be

noted along with the computation times.

Then, finally, based on the results of these

recommended tests, the potential wutility of the CSR

algorithm described in this paper can be assessed.
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Appendix A

Program Listings




PROGRAM CLASSIFY.S

THIS PROGRAM ALLOWS INTERACTIVE CLASSIFICATION OF SPEECH
SEGMENTS BY DISPLAYING SPECTROGRAMS ON THE TEKTRONIX IN
GRAY SCALE OF THE LPC MODEL SPECTRA.

SUBROUTINES USED: SCARRAY, SPCTRM,TDELAY,ERS,TONE

AUTHOR: ROBERT B. TAYLOR
DATE: 15 NOV. 1980

OO0 00O00O00O0000

PARAMETER M = 12, N = 50, IXOFF = 0, IYOFF = 1

(@]

DIMENSION AC(M),AMAG(90,N),TEMP(N)

OPEN 1, "LPC.AC"
OPEN 2, "LPC,RCY

BIG =
SMALL
MIN =
MAX =

GET LPC COEFFICIENTS

eXeEeXe]

CALL FGTIME(IHRT,IMINT,ISEC1T)
TYPE "INPUT START TIME - "OIHRT, "o, IMINT," ", ISECT

DO 10 I = 1,90
READ FREE (1) (AMAG(I,J), J=1,M)
10 CONTINUE

CALL FGTIME(IHR2,IMIN2,ISZC2)
TYPE "INPUT STOP TIME - n IHR2,":" IMIN2,":" ISEC2

(@]

TYPE "CALCULATING SPECTRUM..."

CALCULATE THE MAGNITUDE SPECTRUM OF THE ENTIRE 3 SECONDS
OF SPEECH USING THE LPC PREDICTOR COEFFICIENTS

QOO0

DO 20 J
AC(J)

20 CONTINUE

CALL SPCTRM(AC,M,TEMP,N)

CALL SCARRAY(TEMP,N,AMIN,IMIN,AMAX,IMAX)

IF (AMIN ,LT. SMALL) SMALL = AMIN

IF (AMIN .LT. SMALL) MIN = I

IF (AMAX .GT. BIG) MAX I

DO 40 I = 1,

IF (AMAX .GT. BIG) BIG = AMAX
DO 30 J = 1,N




X IF (TEMP(J) .GT. 15.) TEMP(J) = 15.
AMAG(I,J) = TEMP(J)
30 CONTINUE
40 CONTINUE

CALL FGTIME(IHR,IMIN,ISEC)
TYPE "END CALCULATE SPECTRUM - ",IHR,":",IMIN,":",ISEC

GET THE NEXT COMMAND

e XeoNeoNe]

4s TYPE " ™ ;

TYPE "THE LARGEST MAGNITUDE IS - ",BIG '
TYPE " -~ ITS LOCATION IS IN SEGMENT ™,MIN §
TYPE " 11

TYPE "THE SMALLEST MAGNITUDE IS - ",SMALL

TYPE " - ITS LOCATION IS IN SEGMENT ™, MAX

TYPE " n

TYPE "WHICH SEGMENT TO EXAMINE? (1-90) "

TYPE "TYPE 99 TO VIEW ALL SEGMENTS IN A SPECTROGRAM"

TYPE "- OR O TO EXIT - "

ACCEPT "- OR 1-90 TO VIEW A SINGLE TIME SEGHMENT ", IANS

IF (IANS .EQ. 0) STCP )
IF (IANS .EQ. 99) GO TO 60 A
IF (IANS .LT. O .OR. IANS .GT. 939) STOP v
ACCEPT "WISH TO SPECIFY SCALES? (1 FOR YES,C FOR NO) ",
+ IANS?

IF (IANS2 ,NE. 1) GO TO 48

ACCEPT "LOW VALUE - ",SMIN

ACCEPT "HIGH VALUE - ", SMAX

IFSCL = 1

GO TO 49

48 IFSCL = 0O

D W

49 DO 50 J =
TEMP(J)
50 CONTINUE
CALL GRPH2S("MODEL SPECTRUMM™,?1,TEMP,
TEMP,N,1,SMIN, SMAX, IFSCL)
PAUSE IN-CLASSIFY
GO TO 45

1,N
= AMAG(IANS,J)

PLOT THE SPECTROGRAM (LPC MODEL SPECTRUM) IN
GRAY TONE SCALE (10 LEVELS OF GRAY - 0 THROUGH 9)

SUGGESTED PARAMETERS -
CONTRAST = 7.5, BIAS = -5.

OAOOOOOO0O0

60 ACCEPT "INPUT THE DESIRED CONTRAST LEVEL ",CONTR
ACCEPT "INPUT THE DESIRED BIAS ",BIAS
DO 100 I = 1,90
DO 80 J = 1,N
MAG = AMAG(I,J) * CONTR + BIAS
CALL TONE(I+IXOFF,J+IYOFF,MAG)
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80 CONTINUE
100 CONTINUE

GO TO HOME AND PUT UP CROSSHAIR,
ACCEPT TWO~CHARACTER CODE FOR PHONEME

OO0

CALL TPLOT(0,1000,2)

CALL PCHAR(31,IER)

CALL CURSOR(IX,IY,ICHAR1)

IXLEFT = IX / 9

CALL TPLOT(IX,480,2)

CALL TPLOT(IX,500,1)

CALL CURSOR(IX,IY,ICHAR2)

IXRIGHT = IX / 9 + 1

CALL TPLOT(IX,U480,2)

CALL TPLOT(IX,500,1)

IXMID = (IXRIGHT + IXLEFT) * 9 / 2

CALL TPLOT(IXMID,A475,2)

CALL PCHAR(37K,IER)

CALL PCHAR(ICHAR1,IER) )
CALL PCHAR(ICHAR2,IER) X
CALL TPLOT(10,780,2) '
CALL PCHAR(37K,IER) )
ICHAR = ICHAR1%¥256 + ICHAR2 g
TYPE IXLEFT,IXRIGHT

ALTHOUGH NOT YET IMPLEMENTED, THE OUTPUTS OF CLASSIFY
WILL BE ALL THE VALUES OF ICHAR AND THE CORRESPONDING
START AND STOP SEGMENT NUMBERS

aOOO0O0O00

ACCEPT "TYPE 1 TO GO BACK TO MODE 1,
+ 0 TO STOP, OR 2 TO CONTINUE CLASSIFYING",INUM
IF (INUM .EQ. 1) GO TO 45

IF (INUM .EQ. 2) GO TO 100

CALL RESET

STOP

END




SUBROUTINE CURSOR(IX,IY,ICHAR)

C
C
C THIS SUBROUTINE PUTS UP THE CROSSHAIRS ON THE TEKTRONIX
C SCREEN AND RETURNS THE CURRENT X AND Y LOCATION
C PLUS THE KEY DEPRESSED.
C RETURN IS IN ALPHA MODE.
C
C
C ARGUMENTS -
C
C IX - THE X LOCATION IN TEK POINTS (0 - 1024)
C IY - THE Y LOCATION IN TEK POINTS (0 - 767)
C ICHAR - THE ASCII CODE FOR THE KEY DEPRESSED
C
C AUTHOR - ROBERT B. TAYLOR
C DATE - 14 NOV. 1980
C
DIMENSION IBYTE(5)
C
C BEFORE PUTTING UP CROSSHAIRS, TEK MUST BE IN ALPHA MODE
c
CALL PCHAR(37K,IER)
C
C SEND AN ESC-SUB TO PUT UP CROSSHAIRS
C AND GET X AND Y LOCATIONS AND KEY DEPRESSED
C

CALL PCHAR(33K,IER)
CALL PCHAR(32K,IER)
DO 10 I = 1,5
CALL GCHAR(IBYTE(I),IER)
CALL CHECK(IER)
10 CONTINUE

COMPUTE X AND Y COORDINATES

QOO0

IX 32*(IBYTE(2) - 32) + (IBYTE(3) - 32)
IY = 32%(IBYTE(U4) - 32) + (IBYTE(5) - 32)
ICHAR = IBYTE(1)

CALL PCHAR(37K,IER)

CALL CHECK(IER)

RETURN

END

[
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PROGRAM MAKELPC.5
PARAMETERS
M - THE ORDER OF THE LPC FILTER

NSAMP - THE NUMBER OF SPEECH SAMPLES PER FRAME

AUTHOR - ROBERT B. TAYLOR
15 NOV. 1980

SUBROUTINES CALLED - AUTO

OOOOO0OO000000O000O0000

PARAMETER M = 12, NSAMP = 256

o

DIMENSION X(NSAMP),TEMP(NSAMP),IARRAY(NSAMP),RC(M),AC(M)
OPEN 1,"DSPEECH"
OPEN 2,"LPC.AC"
OPEN 3,"LPC.RC"

THERE ARE 90 RECORD BLOCKS IN "DSPEECH" FOR 8KHZ SAMPLE RATE

loXoNe]

DO 100 I = 1,90
CALL RDBLK(1,I,IARRAY,1,IER)
DO 50 J = 1,NSAMP
X(J) = IARRAY(J)
50 CONTINUE
CALL AUTO(NSAMP,X,M,AC,ALPHA,RC)
WRITE FREE (2) (AC(J), J=1,M)
WRITE FREE (3) (RC(J), J=1,M)
100 CONTINUE
CALL RESET
STOP
END
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PROGRAM PREEMPHASIZE.S

THIS PROGRAM PERFORMS SPECTRAL PRE-EMPHASIS AT
6 dB / OCTAVE USING A DIGITAL FILTER OF THE FORM:

1 < Z¥%(-1)

OaOOOO0O0O0O0

DIMENSION IARRAY(256)

(@]

OPEN 1,"DSPEECH"
OPEN 2,"DSPEECH1"
ITEMP = 0
DO 100 I = 1,90
CALL RDBLK(2,I,IARRAY,1,IER)
ITEMP2 = IARRAY(256)
DO 50 J = 0,254
IARRAY(256-J) = IARRAY(256-J) - IARRAY(256-J-1)
50  CONTINUE
IARRAY(1) = IARRAY(1) - ITEMP
ITEMP = ITEMP2 ;
CALL WRBLK(1,I,IARRAY,1,IER) %
| 100 CONTINUE ¥
CALL RESET k
STOP g
END i

p ey

(A




ao

aAOO0O

OO0 O000O0000000000000

aOOO0

[pNe!

SUBROUTINE QUANC8(FUN,A,B,ABSERR,RELERR,
+ RESULT, ERREST, NOFUHN, FLAG)

THIS SUBROUTINE IS DUE TO FORSYTHE, ET AL. (REF. 4)

REAL FUN,A,B,ABSERR,RELERR,RESULT,ERREST,FLAG
INTEGER NOFUN

ESTIMATE THE INTEGRAL OF FUN(X) FROM A TO B
TO A USER PROVIDED TOLERANCE.

AN AUTOMATIC ADAPTIVE ROUTINE BASED ON

THE 8-PANEL NEWTON-COTES RULE.

INPUT..

FUN THE NAME OF THE INTEGRAND FUNCTICN SUBPROGRAM FUN(X).
A  THE LOWER LIMIT OF INTEGRATION.
B THE UPPER LIMIT OF INTEGRATIOHN.(B MAY BE LESS THAN A.)
RELERR ARELATIVE ERROR TOLERANCE. (SHOULD BE KNON-NEGATIVE)
ABSERR AN ABSOLUTE ERROR TOLERANCE.

(SHOULD BE NON-NEGATIVE)

OUTPUT..

RESULT AN APPROXIMATION TO THE INTEGRAL HOPEFULLY
SATISFYING
THE LEAST STRINGENT OF THE TWO ERROR TOLERANCES.
ERREST AN ESTIMATE OF THE MAGNITUDE OF THE ACTUAL ERROR.
NOFUN THE NUMBER OF FUNCTION VALUES USED IN CALCULATION

OF RESULT.
FLAG A RELIABILITY INDICATOR. IF FLAG IS ZERO, THEN RESULT
PROBABLY SATISFIES THE ERROR TOLERANCE. IF FLAG IS8

XXX.YYY, THEN XXX = THE NUMBER OF INTERVALS WHICH HAVE
NOT CONVERGED AND 0.YYY = THE FRACTION OF TWHE INTERVAL
LEFT TO DO WHEN THE LIMIT ON NOFUN WAS APPROACHED.

REAL WO,W1,W2,W3,W4,AREA,XO,F0,STONE,STEP,CORT1, TEMP
REAL QPREV,ONOW,QDIFF,QLEFT,ESTERR,TOLERR

REAL QRIGHT(31),F(16),X(16),FSAVE(S,30),XSAVE(Y,?0)
INTEGER LEVMIN,LEVMAX,LEVOUT,NOMAX,NOFIN,LEYV, T, 1,J

®%% STAGE 1 ¥*%¥%  GENERAL INITIALIZATION
SET CONSTANTS. ’

LEVMIN = 1

LEVMAX = 30

LEVOUT = 6

NOMAX = 5000

NOFIN = NOMAX - B8¥(LEVMAX-LEVOUT+2¥*¥(LEVOUT+1))

TROUBLE WHEN NOFUN REACHES MNOFIN

T2




OO0

OO0

[eNoReNeNeNe

WO = 3956.0 / 14175.0
W1 = 23552.0 /14175.0
W2 = -3712.0 / 14175.0
W3 = 41984,0 / 14175.0
W4 = -18160.0 / 14175.0
INITIALIZE RUNNING SUMS TO ZERO.
FLAG = 0.0
RESULT = 0.0
CORR11 = 0.0
ERREST = 0.0
AREA = 0.0
NOFUN = O
IF (A .EQ. B) RETURN
¥¥% STAGE 2 *%¥%¥ TINITIALIZATION FOR FIRST INTERVAL
LEV = 0
NIM - 1
X0 = A
X(16) = B
QPREV = 0.0
FO = FUN(X0)
STONE = (B - A) / 16.0
X(8) = (X0 + Xx(16)) / 2.0
X(4) = (X0 + X(8)) 7/ 2.0
X(12) = (X(8) + X(16)) / 2.0
X(2) = (X0 + X(4)) /7 2.0
X(6) = (X(u4) + X(8)) / 2.0
X(10) = (X(8) + X(12)) / 2.0
X(14) = (X(12) + X(16)) / 2.0
DO 25 J = 2,16,2

F(J) = FUN(X(J))
25 CONTINUE
NOFUN = 9

*%% STAGE 3 *** CENTRAL CALCULATION

REQUIRES QPREV,X0,X2,X4,...,X16,F0,F2,F4,...,F16.

CALCULATES X1,X3,...,X15,F1,F3,...,F15,
QLEFT,QRIGHT,QNOW,QDIFF,AREA.

30 X(1) = (X0 + X(2)) /7 2.0
F(1) = FUNCX(1))
DO 35 J = 3’1572
X(J) = (X(J=-1) + X(J+1)) / 2.0
F(J) = FUN(X(J))
35 CONTINUE
NOFUN = NOFUN + 8
STEP = (X(16) - X0) / 16.0
QLEFT = (WO*(FO + F(8)) + WI¥(F(1)+F(7)) + W2*{(F(2)+F(16))
1 + W3I*(F(3)+F(5)) + WU¥XF(UL)) * STEP
QRIGHT(LEV+1) = (WOX(F(8)+F(16))+WI¥(F(92)+F (15"




OO

OO0

OO0

aoOoa

loNoNoNe]

oo N

aaoaa

+ + W2¥(F(10)+F(1L))

+ + W3¥(F(11)+F(13)) + WU*F(12)) * STEP
QNOW = QLEFT + QRIGHT(LEV+1)

QDIFF = QNOW - QPREV

AREA = AREA + QDIFF

¥%% STAGE 4 ***¥ INTERVAL CONVERGENCE TEST

ESTERR ABS(QDIFF) / 1023.0

TOLERR AMAX1(ABSERR,RELERR*ABS{AREA)) * (STEP/STONE)
IF (LEV .LT. LEVMIN) GO TO 50

IF (LEV .GE. LEVMAX) GO TO 62

IF (NOFUN .GT. NOFIN) GO TO 60

IF (ESTERR .LE. TOLERR) GO TO 70

it 1

¥%¥¥ STAGE 5 *¥* NO CONVERGENCE
LOCATE NEXT INTERVAL.

50 NIM = 2%NIM
LEV = LEV+1

STORE RIGHT HAND ELEMENTS FOR FUTURE USE.

DO 52 I = 1,8
FSAVE(I,LEV)
XSAVE(I,LEV)

52 CONTINUE

F(I+8)
X(I+8)

ASSEMBLE LEFT HAND ELEMENTS FOR IMMEDIATE USE.

QPREV = QLEFT
DO 55 I = 1,8
J = -1
F(2¥J+18) = F(J+9)
X(2%¥J+18) = X(J+9)
55 CONTINUE
GO TO 30

¥%¥%¥ STAGE 6 **% TROUBLE SECTION
NUMBER OF FUNCTION VALUES IS ABOUT TO EXCEED LIMIT

60 NOFIN = 2¥NOFIN
LEVMAX = LEVOUT
FLAG = FLAG + (B - X0) / (B - A)
GO TO 70
CURRENT LEVEL IS LEVMAX
62 FLAG = FLAG + 1.0

E¥%¥ STAGE 7 ¥*%% INTERVAL CONVERGED
ADD CONTRIBUTIONS INTO RUNNING SUMS,

70 RESULT = RESULT + QNOW




ERREST = ERREST + ESTERR
COR11 = COR11 + QDIFF / 1023.0

c
C LOCATE NEXT INTERVAL.
c
T2 IF (NIM .EQ. 2%(NIM/2)) GO TO 7%
NIM = NIM/2
LEV = LEV=1
GO TO 72
75  NIM = NIM + 1
IF (LEV .LE. 0) GC TO 80
c
C ASSEMBLE ELEMENTS REQUIRED FOR THE MNEXT INTERVAL.
c
QPREV = QRIGHT(LEV)
X0 = X(16)
FO = F(16)
DO 78 I = 1,8
F(2%¥I) = FSAVE(I,LEV)
X(2%¥I) = XSAVE(I,LEV)
78 CONTINUE
GO TO 30
c
C *%¥ STAGE 8 ***%* FINALIZE AND RETURN
c
80 RESULT = RESULT + COR11
C
C MAKE SURE ERREST NOT LESS THAN RGUNDOFF LEVEL.
C

IF (ERREST .EQ. 0.0) RETURN
82 TEMP = ABS(RESULT) + ERREST
IF (TEMP .NE. ABS(RESULT)) RETURHN
ERREST = 2.0¥ERREST
GO TO 82
END
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DIMENSION INPUT(256)

CALL DFILW("DSPOUT", IER)
IF((IER.NE.1).aND.(IER.HNE.13)) GO TO 900
CALL FOPEN(3,"DSPOUT",512)

CALL OPEN(T,"DSPEECH",2,IER,512)

IF (IER.NE.1) GO TO 920

ACCEPT "TYPE IN STARTING AND ENDING SEGMENTS",ISTART,IE!ND
IF (ISTART.LE.T1) ISTART = 1
IF (IEND.GT.90) IEND = 90
DO 50 I=1,256
INFUT(I) = O
50 CONTINUE
IF (ISTART.EQ.1) GO TO 200
IS1 = ISTART - 1
DO 100 I = 1,IS1
CALL WRBLK(3,I,INPUT,1,IER)
IF (IER.NE.1) GO TO 940
100 CONTINUE
200 DO 300 I = ISTART,IEND
CALL RDBLK(7,I,INPUT,1,IER)
IF (IER.NE.1) GO TO 940
CALL WRBLK(3,I,INPUT,1,IER)
IF (IER.NE.1) GO TO 960
300 CONTINUE
IF (IEND.EQ.90) GO TO 1000
IE1 = IEND + 1
DO 400 I = 1,256
INPUT(I) = O
400 CONTINUE
DO 500 I = IE1,90
CALL WRBLK(3,I,I.pPUT,1,IER)
IF (IER.NE.1) GO TO 960
500 CONTINUE

GO TO 1000

900 WRITE(10,910) IER

910 FORMAT("™ FILE DELETING ERROR CODE - ",I3)
GO TC 1000

920 WRITE(10,930) IER

930 FORMAT("™ FILE OPENING ERROR CODE - ",I3)
GO TO 1000

940 WRITE(10,990) IER

950 FORMAT("™ RDBLK ERROR CODE - ",I3)
GO TO 1000

T6



960
970
1000

WRITE(10,970) IER

FORMAT("™ WRBLK ERROR CODE -~ ",I3)
CALL RESET

STOP

END

R




s s

SUBROUTINE SPCTRM(ARRAY,M,SPEC,N)

SUBROUTINE SPCTRM COMPUTES THE MAGNITUDE SPECTRUM OF THE
SPEECH MODEL FROM THE PREDICTOR COEFFICIENTS, A.

ARGUMENTS:

ARRAY -~ THE PREDICTOR COEFFICIENTS (1NPUT)

M - ORDER OF THE PREDICTOR FILTER

SPEC - THE MAGNITUDE SPECTRUM (OUTPUT)

N - THE NUMBER OF POINTS IN THE SPECTRUM
TO BE COMPUTED (INPUT)

AUTHOR: ROBERT B. TAYLOR
DATE: 15 NOV. 1980

OO0 0O0O00000000

DIMENSION ARRAY(1),SPEC(200)
COMPLEX Z,DENOM, ARG

PI = 3.1459263
DO SO I = 1,N
DENOM = (1.0,0.0) '
ARG = CMPLX(O.,PI*¥FLOAT(I-1)/FLOAT(N)) ¥
DO 40 J = 2,M
Z = CEXP(ARG¥FLOAT(J)) s
DENOM = ARRAY(J)¥*Z + DENOM
40  CONTINUE
SPEC(I) = 1./CABS(DENOM)
50 CONTINUE
RETURN
END
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C

C SUBROUTINE TONE

C

C JX - X POSITION OF DOT (FROM 0O TO 170)

C JY - Y POSITION OF DOT (FROM 0 TO 128)

C JZ - INTENSITY FROM 0 TO 9

c

C TuE HALFTONE PATTERNS GENERATED ARE THOSE

C DESCRIBED IN ROBERT F, SPROULL'S "PRINCIPLES

C OF INTERACTIVE COMPUTER GRAPHICS", PP. 225-27.
C

c 6 7 8

C 3 4 5 THE NUMBERS REPRESENT BIT POSITIONS IN KODE
C o0 1 2

C

SUBROUTINE TONE (JX,JY,JZ)
DIMENSION KODE(9)
DATA KODE(1),KODE(2),KODE(3)/20K,60K,260K/
DATA KODE(4),KODE(5),KODE(6)/270K, 272K, 273K/
DATA KODE(7),KODE(8),KODE(9)/673K, 773K, 777K/
IF(JZ .LE. 0) RETURN
IF(JZ .GT. 9) JZ = 9
DO 100 KY = 0,2 ¥
IY = 5%(3%JY 4+ KY) .
DO 50 KX = 0,2
IF( ITEST(KODE(JZ),3¥KY+KX) .EQ. 0) GO TO 50
IX = 5%(3%JX + KX)
CALL CHR(IX,IY,O0)
CALL CHR(IX,IY,1)
50 CONTINUE
100 CONTINUE
RETURN
END

PSP W S
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REAL FUNCTION FUN(X)

THIS FUNCTION IS THE CHI-SQUARED DENSITY
FOR N=12 CORRESPONDING TO THE NUMBER OF
COMPONENTS IN THE LPC VECTOR

IT IS CALCULATED USING THE INTEGRAND OF
EQN. (6-3)

GAMMA6 IS THE GAMMA FCN. WITH AN ARGUMENT OF 6
THIS GIVES GAMMA6 = 5!

OOOOO0O0OO00O00O0

GAMMAG = 120

FUN = 1./(2.%%6 * GAMMAG)

FUN = FUN ¥ X*¥5 ¥ EXP(-0.5 ¥ X)
RETURN

END
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