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Glossary of Terms

1. Butterfly: The DFT computation of Fiqure 3.4 pro-
vides the notation whose appearance is that of a
"butterfly".

2. Fixed Radix: The term "radix" is commonly used to
describe a épecific FFT decomposition. The term
"fixed" radix means that all the factors of N are
the same,

3. Mixed Radix: All the factors of N are not identical.

4, Relatively Prime: The numbers in a given set are said
to be relatively prime when no number in the set is
divisible (with no remainder) by any other number in
the set. Example, (2, 3, 7, 92) are not relatively
prime sets because 9 is divisible (with no remainder)
by 3. The following example is relatively prime:

(2, 3, 5, 7).

5. Square and Squar~--free Factors: For the case where
N=4 . 3+« 7 +« 4, the "4s" are square factors and
the 3 and 7 are square-free.

6. Twiddle Factors: The term refers to the complex
multipliers of Figure 3.8 which pre-multiply the FFT
butterflies. They are sometimes called phase or

rotation factors.

xi
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Abstracg

* A comprehensive comparison of the most efficient
Discrete Fouricr Transform (DFT) technigues is presented.
The DFT algorithms selected are the fixed radix Fast
Fourier Transfqrm (FFT), mixed radix FFT, the Winograd
Fourier Transform Algorithm (WFTA), and the Prime Factor
Algorithm (PFA). Comparison of the algorithms is based
on the number of real multiplications, additions, and
memory arrays required as a function of sequence length N.
This paper reviews the literature, selects the most
efficient DFT FORTRAN programs available, develops the
number of real multiplications and additions as a function
of N, and compares the algoritiims using tables and plots of
real multiplications, additions, and memory arrays. <This
comparison shows that the WFTA and PFA require the least
real multiplications and additions, but the fixed radix
and mixed radix FFTs require the least memory. The mixed
radix FFT is much more flexible than WFTA or PFA since N
can be any length sequence. The WFTA and PFA are closely
studicd and tradeoffs between the two are discussed. The
PFA uses less additions but more multiplications for most
sequence lengths which means the WFTA is more efficient
when multiplications are "costly" relative to additions.
The PFA uses less memory than the WFTA making the PrA

prefcrable when the machine memory is limited. - Based on

xii




| - the results of the paper, an algorithm is presented to select
the most efficient DFT for an N length sequence given the

l, multiply speed, add speed, and memory size of the computer.

/
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I. Introduction

1.1 Background

Computing the Discrete Fourier Transform (DFT) of N
poiﬂts has many applications in scientific and engineering
calculations. In 1965 Cooley and Tukey described an
algorithm which became known as the Fast Fourier Transform
(FFT) because it reduced the number of complex operations
required to compute the DFT from N2 to N log2 N where
N=2", m an integer. Using ideas proposed in the Cooley-
Tukey paper a mixed radix algorithm was written and pub-
tished in 1969 by Singleton which permitted N to be any
positive integer length sequence.

In 1976 Winograd proposed a mixed radix DFT algorithm
which (1) converted the DFT to circular convolution,
(2) used fast convolution algorithms to perform "short-
DFTs", and (3) nested these short-DFTs into a structure to
perform long Fourier transforms on complex data sequences.
This algorithm became known as the Winograd Fourier Trans-
form Algorithm (WFTA). The WFTA maintained the real
additions count at the FFT levels while significantly
reducing the real nultiplications required.

Kolba and Parks, 1977, used Winograd's fast convolu-

tion algorithms and proposed a new Prime Factor Algorithm

1
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(PFA). This ncw algorithm modificd the short-DFTs to use
"shifts" instead of multiplication by 1/2 and did not use
the nested structure of WFTA. As a conscquence the I'YA

uses more real multiplications and less additions rclative

to the WFTA for a given length sequence N.

1.2 Problem

- Both Winograd, 1976, and Kolba-Parks, 1977, comparcid
their operations count to that of the FFT but did not
include all possible WFTA ard PFA segquence lengths. Fur-
ther, no comparisons were made on the basis of memory arrays
required by each algorithm as a function of N. This paper
presents a comprehensive comparison of fixed radix FFTs,
mixed radix FFTs, WFTA, and PFA based on real operations
and memory arrays. This comparison provides the informa-
tion needed to select the most efficient algorithm to
perform the DFT based on machine size, machine speed,

and real operations.

1.3 Scope

This paper reviews thc literature, selescts DFT
algorithms for comparison, studies the thecory of each
algorithm selected, develops the rcal operation and
memory count as a functicn of N, compares these algorithms
using tables and plots of operation and memory counts,
and presents an algorithm to select the most cfficient

techniques.
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The DIT algorithms selected for study and comparison

(1) Radix-2 FFT

(2) Radix-3 FFT

(3) Radix-3 FFT in the R(u) field

(4) Radix-5 FFT

{5) Mixed radix FFT written by the author

(6) Mixed radix FFT written by Singleton

(7) Mixed radix FFT available from International
Mathematical Subroutine Library (IMSL) on the
CDC Cyber 74

(8) WFTA

(9) PFA.

Each of these algorithms has a particular advantage which

makes selection of the best algorithm dependent on the

machine size, machine speed, and sequence length.

1.4 Assumptions

To a first approximation, the speed of an FFT
algorithm is proportional to the number of complex
multiplications used. The number of times the data array
is indexed is, however, an important sccondary factor
(Singlecton, 1969). Kolba and Parks, 1977, substantiated
this assumption by timing the PFA and FFTs on an IBM
370/155 for sevcral sequence lengths and showing that the
FORTRAN coded PFA (having less real additions and multi-

plications) was faster than the FFT FORTRAN algorithms.

{
i
{
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In 1978 Morris demonstrated that the sequence of
arithmetic operations in a DFT algorithm's internal
structure can rcsult in different execution times "between
ostensibly equivalent algorithms on a given machine"

1 and that éhe computer dependent algorithm/architecture
interactions may also alter relative performance of the
different algorithms. He modified the FORTRAN coded
radix-4 FFT and WFTA programs and matched them to the
PDP 11/55 and IBM 370/168 architecture and showed that
the WFTA offered neither time or space advantages over the
radix-~4 FFT. Morris achieved these results because "the
radix-4 FFT appears almost ideally matched to the PDP-11
architecture" whereas the WFTA "has extra load/store
burdens" and requires extra data array indexing.

Morris demonstrated that it may be possible to
optimize DFT algorithms to match a certain machine, how-

" ever, this type of optimization of the FORTRAN DFT algo-

rithms is outside the scope of this papér. It is assumed

that existing FORTRAN coded DFT algorithms will not be

<7, modified and selecting an algorithm which minimizes real

[ operations produces the most efficient algorithm.

& This paper derives and tabulates real operations

; counts as a function of N for the algorithms listed in

5 Section 1.3; The most efficient DFT algorithms are timed
;;‘ on the CDC Cyber 74 computer and comparced to the predicted
!E' exccution time based on real operations. These predicted

times are shown to be consistent with the timing results.




1.5 Approach and Presentation

A literature review is presented in Chapter II which
starts with the 1965 Cooley-Tukey paper and follows the
various DFT algorithm developments up through Kolba-Parks'
1977 article. The review puts Rader's 1968 landmark paper
in perspective with Winograd's "nested" DFT algorithm and

the subsequent work by Kolba and Parks.

the real operations count developed, and the memory array
count needed for a sequence length N is determined. The
general expressions for real operations and memory array
counts are developed from published articles or from the
background theory and then plotted and tabulated as a
function of N. The readers familiar with the FFT and
Winograd background theory may wish to skip Sections 3.1
and 3.2.

In Chapter IV comparison tables and plots of the
DFT algorithms make it possible to select the most
efficient algorithm based on real operations and memory
array required. Timing results from the CDC Cyber 74
system for representative sequence lengths are tabulated
to substantiate the assumption that minimizing real
operations equates to maximizing efficiency. An algorithm
is also presented at the end of Chapter IV which uses the
tables in this paper to select the most efficient DFT
technique given the sequence length, memory size, and

computer add and multiply spced.

- ——— e ‘ﬁi
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Next, the theory behind the DFT algorithms is reviewed,




{ Conclusions and recommendations are presented in

Clhiapter V.
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ITI. LITERATURE REVIEW

The calculation of the Discrete Fourier Transform (DFT)
is a central operation performed in digital signal proces-
| sing but was not widely used for other than trivial sequence
i i lengths because of the cumberscme DFT evaluation:
N-1
X(k) = I X (n)exp(~j2mnk/N) (2.1)

n=0

which required on the order of N2 compley operations.

In 1965 Coocley and Tukey published "An Algorithm for
the Machine Calculation of Complex Fourier Series" which
stimulated the widespread use of an algorithm which became
known as the "Fast Fourier Transform" (FFT). Their paper
proposed an efficient method of computing the DFT by factor-

ing an N length sequence into its prime components:

N = n, ny, ... n (2.2)

and then decomposing Eq (2.1) into m steps with N/ni trans-
formations within each step. If ny=n,= ... nm=2, the
- operations are reduced to the N log2 N level from the

previous N2 level.

g Most of the early work on the FFT (Bergland, 1968) was

*i directed toward the special cases where N=2" which yielded
} simple and cfficient algorithms. These algorithms are

! efficient because no multiplications are needed to evaluate

oM the 2-point DI'T butterflies which can reduce the operations

;; count below the N log, N level.

o
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! Other “fixed radix" algorithms were studiced and Dubois
and Venetsanopoulos published "A New Radix-3 Algorithm™ in
13978 which demonstrated that a radix-3 butterfly could be
computed without multiplications by defining a new basis
(1,u) instead of using the complex plane (1,i) basis, where
u is the complex cube root of unity. This technigque was
later shown to be limited to the special cases of 3™ ana &™
(Burrus and Parks, 1979).

Based on Cooley and Tukey's paper "mixed-radix"
algorithms were written by Brenner and Singleton. The
most efficient and popular of these algorithms was "An
Algorithm For Computing the Mixed Radix Fast Fourier Trans-
form" published in 1969 by Singleton and is frequently used
in digital signal processing where a wider choice of N is
needed. The Singleton algorithm can perform the DFT using
FFT techniques of any length sequence N but becomes most
efficient when N is highly composite from the set of inte-
gers 2, 3, 4, and 5. If N is a prime humber the algorithm
performs a DFT using N2 operations. The Singleton algorithm
became the standard against which all future DFT technigues
were measured. !

In 1968 Rader presented "DFTs when the Number of Data

Samples Is Prime" which showed that a prime number length

sequence contains an (N-1) point circular convolution. He
showed how to isolate the convolution by applying a permuta-

tion to the (N-1l) signal points x(1), x(2), ... , x(N-1).

He also gave the permutation appliecd to the complex




multipliers from the set {exp(-j2wnk/N),k=1,2, ..., N-1].

Both of the permutations were generated by using a "primi-
tive" root which exists for N length prime sequences
(McClellan and Rader, 1979). Rader's paper was largely
overlooked for many years but took on new significance when
Winograd presented his new DFT algorithm "On Computing the
Discrete Fourier Transform" in 1976.

Winograd combined Rader's idea of converting a DFT to
circular convolution with his own fast convolution algo-
rithms to produce a new DFT method called the "Winograd
Fourier Transform Algorithm" (WFTA). Winograd provided the
fast convolution algorithms for short prime and prime power
length sequences and proposed that longer transforms be
computed by "nesting" the short-high speed transforms. He
presented a table comparing the WFTA to the radix-~2 FFT
operations and showed that the number of additions remained
at the FFT levels while the number of multiplications was
significantly reduced.

Kolba and Parks published "A Prime Factor FFT Algorithm
Using High Speed Convolution" in 1977 which modified
Winograd's fast convolution algorithms to permit "shifts"
instead of multiplications by 1/2. They also changed the
nested structure of the WFTA in favor of a conventional FFT
decomposition. The dccomposition of the sequence was based
on an algorithm proposed by Thomas, 1963, in his article
"Using a Computer to Solve Problems in Physics" which uses

an index mapping bascd on the Chinese Remainder Theorem.

9




Kolba and Parks sclected scveral N length scquences and
cempared their operations count to WFTA and I'FT.
Paralleling Winograd's fast convolution work arc the

studics into number theoretic transforms (NTTs) which have
been proposed for digital cyclic convolution and digital
filtering. The NTTs were first published by Pollard, 1971,
in "The Fast Fourier Transform in the Finite Field". He
showed that an analogous transform to the DFT exigts in the

finite (or Galois) field where exp(j2mnk/N) terms are

replaced by rnk in the DFT expression such that:
N-1 nk
X(k) = I x(n) r (2.3)
n=0

Notice that Pollard chose the alternative definition of the
DFT where the exponent of e is positive. The r term is
defined in the Galois field (GF) such that the same cyclic
convolution properties exist in GF and in the complex field
for the DFT. He then proved that this analogous DFT could
apply prime factor decomposition to the N length sequence
and perform N/ni transformations to reduce the operations
in GF to the N log2 N level which provided the FFT in GF.
Pollard proposed that this technigue be applied to cyclic

convolutions in GF, multiplication of polynomials over

GF(pn), aperiodic convolution of integer sequences, multi-
plication of very large integers, division of polynomials

over Gi{p), and a chirp-%~transforwm for NTTs (McClellan and

Rader, 1979).

10
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Pollard's paper stimulated more study of the NTTs.
Recd and Truona's 1975 paper, "The Usce of Finite Pields to
Compute Convolutions", includes complex valued NTTs. It
was shown that this NTT over GF(q2) can reduce convolution
operations to the FFT levels. If q is sufficiently large
the NTT can be used over GF(qz) to transform a sequence of
complex integeré x(n) into X(k) on GF(q2) for which the
inverse transform of X(k) on GF(qz) is precisely the
original sequence X(n). Using these ideas filtering or
convolutions without roundoff errors can be obtained on a
sequence of complex integers.

Most applications of the NTTs have been in the areas
of digital filtering and convolution. The author was not
able to find any NTT algorithm which could be compared to
the FFT, WFTA, or PFA and perform all the same functions
as these three algorithms.

PFA, WFTA, and FFT represent the most efficient and
flexible FORTRAN programs available to perform the DFT.
Each algorithm has its own particular advantage over the
other two depending on machine size and speed for a particular
sequence length.  None of the articles reviewed presents a
comprehensive evaluation or comparison of the three
algorithms based on real operations and memory arrays
required to perform a DFT for any sequence length N. This
papcr fills that nced so that an efficient algorithm can

be selected.

11




‘ I1I. FWP? Theory

The set of algorithms known as the Fast Fourier
Transforms (FFT) use a variety of methods to reduce the
computation time required to evaluate the Discrete
Fourier Transform (DFT). The DFT is the central part
in most spectrum analysis problems and the FFT can improve
performance by a factor of 100 or more over direct eval-
uation of the DFT (Rabiner and Gold, 1975). Therefore,
the FFT is crucially important to the digital signal
processing techniques.

This section begins with "fixed radix" FFT algorithms

by discussing a "decimation-in-time” algorithm, the data

reordering (bit reversal) theory, the real operations
(addition and multiplication) count, a new fixed radix
algorithm in the finite field, and then summarizes the
memory required to use the fixed radix algorithms. Next
the conventional "mixed" radix algorithhs are presented

by discussing the theory, digit reversal, real opcrations

count, and memory required to utilize the mixed radix

\
g‘ algorithms. This thecory chapter concludes with a dis-~
$ cussion of mixed radix algorithms based on fast convolu-

r'S

e,

tion. The theory, data rcordering, real operations count

and memory are also presented for these algorithms,

L b A7 ol X

Before discussing the FPT algorithms comments must
be made relative to computing the trigonometric function

values nceded to cvaluate the FFT.

.
‘R -
-
..‘

r

12

e




— e ———

3.1 Computing Trigonomctric Function Valucs

The trigonometric values used in FI'I's can be repre-
sented as values on the unit circle. The values are based
on integer powers of

exp(-j2n/N)
which can be computed using sine and cosine functions. It
is useful to have accurate methods of generating the sine
and cosine terms other than the method of repeated use of

library sine and cosine functions.

The method most widely used in FFT algorithms
(Singleton, 1967) generates the trigonometric functions by

a difference equation given by:

cos ((k+l)a)
= (C » cos{ka) - S * sin (ka)) + cos(ka)
sin ((k+1l)a)
= (C * sin(ka) + S +« cos(ka)) + sin(ka)
where
C = -2 sin® (a/2)

S = sin(a)

b
-

\.

cos (0) =1

sin (0) = 0

This technique is used for all FFTs presented in this paper

e S

(except noted otherwise) because it minimizes using FORTRAN

-”_"1-' s 'm ﬁ.

library subroutincs cos (+) and sin (°) thercby reducing

‘e
A

the overall FFT computation time.

Y, o

e
'y

6
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3.2 Frixed Radix Algorithms

While FFT algorithms arce well known and widely used,
they are relatively intricatc and somewhat difficult to
grasp at first reading. There arc two cxcellent textbooks
(Rabiner and Gold, 1975; Oppenhcim and Schafer, 1975)
which discuss the FFT theory in great dctail and present
FFTs based on decimation-in-time and frequency. Both

texts spend a great deal of time discussing the radix-2

FFT, which is the most widely known and ured. For this

reason, the radix-2 development is presented here as a
convenience for the reader and provides a theoretical
background from which the other fixed radix algorithms are
derived.

3.2.1 Development of Radix-2 Theory. To achieve

the reduction in complex operations (defined as four real
multiplications and two real additions) from N2 to N log2 N
it is necessary to decompose the DFT computation into
smaller and smaller DFT computations. As a result, the
symmetry and periodicity of the complex exponential

nk
exp{(-j2mnk/N) = W can be exploited. This radix-2

N
algorithm is based on deccomposition of the sequence x(n)
from the DFT expression:
N-1
X(k) = T x(n)exp(-j2wnk/N) (3.1)
n=0
k=0,1, ..., N-1 and N=2"
which is known as a "decimation-in-time" algorithm

(Oppenheim and Schafer, 1975). Since N is an even integer,

14
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) X(k) can be computed by separating x{n) into two N/2 length
scyuences consisting of even-numbered points and the odd-

2 numbered points in x{n). Using n=2r for n even and n=2r+1l

for n odd Eq (3.1) becomes:

T 2rk T
X(k) = I x(2r)wN + I
r=0 r=

(2r+1)k
X(2r+l)WN (3.2)
0

where T=(N/2)-1 and WN = exp(-j2n/N). By expanding

(2r+l1)k k
WN and factoring out WN Eq (3.2) can be rewritten as:
T 2 rk k T 2 rk
X(k) = I x(2r)(WN) + WN z x(2r+l)(wN) (3.3)
r=0 r=0
2

But WN = exp(-j4n/N) = exp(~j2n/(N/2)) = WN/2 and Eq (3.3)

can be written as:

T rk k T rk
X(k) = I x(2r)W + W I x(2r+1)W
r=0 N/2 N r=0 N/2 ;
k ,
) = G(k) + Wy H(K) (3.4) t

Each of the sums in Eq (3.4) is an N/2 point DFT, the
first sum being the even numbered points of the original

sequence and the second sum-being the odd numbered points

»

of the original sequence. Although the index k¥ = 0,1,...,N-1,

each of the sums in Eq (3.4) need only be computed over

ey &

k=0,1, ..., (N/2)-1, since G(k) and H(k) are periodic

in k with period N/2. After the two DFTs in Eq (3.4) are

g I Wi

computed, they are then combined to yield the N-point DFT,

X(k). Figurc 3.1 indicates the computation involved in

iand

computing X(k) according to Eq (3.4) for an eight-point
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o Figure 3.1. Flowgraph of thce Decimation-In-Timo
i Decorposition of an N-Point DFT

- Computation into Two N/2-Point DI'T
Computations (N—§).

4
‘J NOTE: The integers on the branches of the flowgraph
represent the powers of wN; i.e., the "4"
z represents w&.
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sequence,  PFigure 3.1 (Oppenheim and Schafer, 1975) uses

the signal flow conventions such that branches entering a
node are summed to produce the node variable. When no
coefficicent is shown the branch transmittance is assumed

to be one. For other branches the transmittance of a branch
is an intcger power of Wy Note in Figure 3.1 that two
four-point DFTs are computed using G(k) and H(k). X({0)

0
is obtained by multiplying H(0) by W, and addirg the product

N

to G(0). X(1) is obtained by multiplying H(1) by Wy

adding the result to G(l). For X(4) it would follow that

and

H(4) is multiplied by Ws and added to G(4), however, since
G(k) and H(k) arc both periodic in k with period 4, H(4) =
H(0) and G(4) = G(0). Thus X(4) results from multiplying

4
H(0) by W
With the computation of the N-point DFT of Eq (3.4)

and adding the produce to G(G). '

that number of computations can be compared with the direct
DFT computation of Eq (3.1). For the direct computation
without using symmetry properties N2 complex multiplications
were roguired. Ra (3.4) requires computation of two N/2-
point DI''s, which require 2()/2)2 complex multiplications
and about 2(N/2)y complex additions (Oppenhelim nd Schafer,
1975). The two N/2-point DI'I's must be combined, requiring

N complex multiplications corresponding to multiplying the
second sum by W: and then N complex additions, corresponding

to adding the product to the first sum. As a result, the

computation of Iy (3.4) for all values of k requires

17




N + 2(N/2)2 or N 4 (N2/2) contplex multiplications and
additions. For N-2, N + N2/2 is less than Nz.

The expression in Eq (3.4) corresponds to decimating
the original N-point Scquence into odd and even N/2-point
sequences. Since N=2" the N/2-point scquences are also
even and then each G(k) and H(k) can be further decimated
into two N/4-point DFTs, which could then be combined to
yield the N/2-point DFTs. Decimating the N/2-point sequences

in Eq (3.4) into N/4-point sequences gives:

(N/2)-1 rk
G(k) = rEO g(r)WN/2
(N/4)-1 2pk (N/4) -1 (2p+1)k
= pzo g(2p)WN/2 + pio g(2p+l)WN/2

Letting R = (N/4)-1,

R pk k R pk
p=0 p=0
Similarly,
R pk k R pk
H(k) = pioh(Zp)wN/4 + wN/2 pioh(2p+1)wN/4 (3.6)

If the four-point DFT in Figure 3.1 are computed using

Eq (3.5) and (3.6) then that computation would be carried

out as indicated in Figurc 3.2. Inserting the computation

in Figure 3.2 into the flowgraph of Figure 3.1 produces the
2

complete flowgraph in Pigqure 3.3. Note that WN/2 = WN was

uscd.

18
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For the 8-point DFT that has'becn used as an example,
the computation has becen reduced to a computation of N/4-
point DFTs where N/4=2. An example, 2-point DFT for x(0)
and x(4) is shown in Figqure 3.4. The complete flowgraph
1 for the computation of the 8-point DFT is shown in Figure
3.5 and was obtained with the computation of Figure 3.4
and inserting it in Figure 3.3.
Considering the more general case with N a power of
2 greater than 3 the same decimation procedure would Le
continued by decomposing the N/4-point transforms in
Egs (3.5) and (3.6) into N/8-point transforms. This
requires v stages of computation where v = log2 N. Recall
that in the original decomposition of the N-point trans-
form into two N/2-point transforms, the number of complex
multiplications and additions required was N + 2(N/2)2.
When the N/2-point transforms were decomposed into N/4-
- | point transforms the factor of (N/2)2 is replaced by
| N/2 + 2(N/4)2 so that the overall computation now requires

N + N + 4(N/4)2 complex multiplications and additions.

O If N=2V this can be done at most v = 1oc_;2 N times, "so

»

that after carrying out this decomposition as many times

as possible the number of complex multiplications and

additions is equal to N log2 N" (Oppcnheim and Schafer, 1375).

S &

The flowqgraph of Tigure 3.5 displays the operations

ogts> /W

explicitly. By counting branches with transmittances of

j'l
2

the form w; it is scen that cach stage has N complex

»

"“-"‘T’ ‘
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multiplications and 1} complex additions. Since there are
log2 N stages there aye a total of N log2 N complex multi-
plications and additions as shown before. Further reductions
in the complex operations count can be achicved by exploiting
the symmetry and periodicity of WE.

Note that on each "stage" of Figure 3.5 the computation
takes a set of N complex numbers and transforms them into
another set of N complex numbers. This process is repeated
v=logZN times resulting in the DI'T computation. For example,
in computing the first stage of Figure 3.5 one set of stor-
age registers would contain the input data sequence and a
second set of storage registers would contain the computed
results for the first stage. The sequence of numbers
resulting from the mth stage of computation is denoted as
Xm(i), whete i =0, 1, ..., Nl andm=1, 2, ..., v. For
the following stage, the previous output array, Xm(i),
becomes the input array and the new output array is Xm+l(i)
for the (mt+l) stage of computation. Using this notation,
it can be scen that the basic flowgraph in Figure 3.5 is
given by Figurce 3.6, Using the notation of Tigure 3.6 the

equations of the butterfly are given by:

r
Xpr1 (P) = X (p) + W X (q) (3.7)
r+N/2
Xm-rl(q) = Xm(p) i wn Xm(q) (3.8)

Because of the appearance of Figure 3.6 the computation of
Egs (3.7) and (3.8) ore veferred to as the "butterfly™

computations.

24
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The number of complex multiplications can be reduced

by a factor of 2 using the symmetry:

W = exp(-j(2n/N) + N/2) = exp(-jnw) = -1 (3.9)

so that the Eq (3.7) becomcs:

r

X1 (P = X (p) + Wy X (q) (3.10)
r

X1 (@ = X ) = W X (q) (3.11)

Egs (3.10) and (3.11) are shown in Figurec 3.7 which reflects
the "twiddle factor" W; out front in the butterfly. Since
there are N/2 "butterflies" of the form of Figure 3.7 per
stage and 1092 N stages, the total number of complex
multiplications required is (N/2) logzN instead of the

N logzN used in Figure 3.5. Using the "twiddle factor"
butterfly flowgraph of Figure 3.6 as a replacement for the
butterfly of Fiqure 3.4, the Figqure 3.8 is obtained.

3.2.2 Development of Radix-3 FFT Theory. Starting

with the restriction that the N-point sequence be an
integer power of three (N = 3m, m=1, 2, 3, ...), the
DFT X(k) was conputed by separating the discrete time
sequence s(n) into three N/3 point scquences. X(k) is
given by the DFT cxpression:

N-1 nk where kK = 0,1, ..., N-1

X(k) = i x(n)wN

n=0 and vy = exp{-j2n1/N)

(3.12)

Brcaking x(n) into three N/3 point scquences yields x(3r),
x(3r+1l) and x(3r+2). Substituting these into Eq (3.12)

and adjusling thc respective summations to (N/3)-1 yields:
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p (3r)k P (3r+l)k
X(k) = .). x(3r)wN + 2 x(3r41)WN
r=0 r=0

P (3r+2)k

+ L x(3r42)W
_ N
r=0

where P = (N/3)-1 {(3.13)
By regrouping the exponents of wN BEqg (3.13) can be

rewritten as:

P 3rk k P 3rk
X(k) = E x(3r)wN + WN E x(3r+1)WN
r=0 r=0
2k P 3rk
+ wN L x(3r+2)wN (3.14)
r=0
B . 3
Y rewriting WN as:
3 16 = 21 3 = 3.15
Wy = exp(-j6m/N) = exp(-j2n/(N/3)) = WN/3 (3.15)

Eq (3.14) can be expressed as:

P rk k P rk
X(k) = I x(3r)w + W T x(3r+1)W
o0 N/3 TN 2 N/3
2k P rk
+ WN rEOX(3r+2)WN/3 (3.16)

Each of the sums in Eq (3.16) reprecsents an N/3 point DIT:

the first being the N/3 DIFT of the 3r points in the

original sequence, the sccond being the N/3 points of

el a

3r+1, and the third being the N/3 points of 3r+2 points of
the original scquence. Although the index k of X(k) ranges

over N values (k = 0, 1, ..., N-1) cach of the summations

‘A:‘" WGP NP e »

in Eq (3.16) nceds computation over (N/3)-1 points. Eg

.:“

> (3.16) can be rewritten to reflect this:
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‘ k 2K
X(k) = (k) + W, G + W, 1) (3.17)

Eq (3.17) can be implemented into the butterf{ly flowgraph
in Figure 3.9 using the accepted notational conventions I
(Oppenheim and Schafer, 1975). The convention usced for

the flowgraph is wnen no cocfficient is shown, the branch
transmittance is assumed to be one. TFor other branches the

transmittance (multiplier) is an integer power multiplier ﬂ

of WN. In Figurec 3.9 there are three N/3 point DFTs and
these are computed with F(k) designating the three point
DFT of the 3r points, G(k) designating the three point DFT
of 3r+l, and H(k) designating the DFT of 3r+2 points,
where r = 0, 1, ..., (N/3)-1.

X(0) is obtained by (1) multiplying H(0) by a branch
transmittance of 1 (which equals wg), (2) multiplying
G(0) by 1, (3) multiplying F(0) by 1, and (4) summing the
three. Likewise, X(1l) is obtained by multiplying H(1l) by

w2, multiplying G(1) by WX

N N’ and adding the results to F(l).

X(6) has H(6) multiplicd by Wéz and G(6) multiplied by
, Wg and the products added té F(6) giving:

12

= 6
X(6) = F(6) + Wy G(6) + N

11(6) (3.18)

However, since F(k), G(k), and li{k) are all periodic in

k with period N/3=3, the periodicity can be exploited to

K A X adh & i
N s

yicld ¥ (6) = F(0), G(6) = G(0), and H(6) = H(0). These

<.
4 8

results can be substituted into Eq (3.18) to give:

12

. 6
X(6) = F(0) + WN G(0) + WN

H(0) (2.19)
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Continuing to use the neriodic propertics, the

results for X(0) through X(8) are:

X(0) = F(0) + G(0) + 1(0) (3.20)
1 2

X(l) = F(1) + w9 G(l) + W9 H(1) (3.21)
2 4

X(2) = F{(2) + W9 G(2) + w9 H{2) (3.22)
3 6

X(3) = F(0) + W9 G(0) + W9 H(0) (3.23)
4 8

X(4) = F(1) + Wy G(1l) + Wy H(1l) (3.24)
5 10

X(5) = F(2) + W9 G(2) + W9 H(2) (3.25)
6 12

X(6) = F(0) + Wy G(0) + W9 H(O0) (3.26)
7 14

X(7) = F(1) + w9 G(1) + W9 H(1) (3.27)
8 16

X(8) = F(2) + W9 G(2) + W9 H(2) (3.28)

Egqs (3.20) through (3.28) conclude the first stage decimation
of the 9-point scquence. The DFT computation has been
reduced to computations of N/3-point DFTs where N/3 = 3.

An cexoggle 3-poinl LPT for x{0), x{(3), and x{(6) is shown in
Figure 3,10, The complete flowgraph for the computation of
the 9-p01nt PFT is shown in tigure 3.11 and was obtained by
subctitut ing the computation of Figure 3.10 into Figure 3.9.

Con:rdering the more genceral case with N a power of 3

arecte e e tvo the same decimation procedure would be
contanucd by decorjosing tae N/3 DFTs into N/9 computations
O  CURY), and Ti{k) . The DFT of F(k) is:
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NOTE: Digits on the branch tranemittance refer
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(N/3)-1 rk
(k) = ¥ x(r) W
=0 3

This caquation, lctting 0 = (N/9)-1,

three N/9 length sequences:

Q Jik Q (3i+1)k
= s f£(31)W X i+ L)W
F (k) iiof(31)hN/3 + iiof(31 L)‘N/3
0] (31+2)k
+ ¥

f(3i+2)w
i=0 N/3

{3.29)

can be divided into

(3.30)

Expanding the exponents of WN/3 Eg {(3.30) can be rewritten:

Q 3ik k

F(k) = iiof(3i)wN/3 + wN/3

2k Q 3ik
N/3

+ W f(3i+2)Ww

i=0 3
Using the substitution “N/J

0 ik k

EOF(3)W, g + W
ico N/9 T PN/3

N/3

F (k)

i

2k Q ik
+ W F(3i+2)W
N/3 (L, N/9

similar cupressions for G{m)

Q ik k
G(k) = 1;40(’ (31 H\".‘C/",) + "‘".\'/3
2k Q) ik
N 1 4 Y
+ WN/3 : q(31+2)hN/9
1= Q
Q ik 4
(k) = ¥ h(?f)wn,q + WL,
.1:10 N, YA
2k Q 1k
+ WN/3 i:Oh(3]+2)nN/9

3ik

f(31+l)WN/3

0

e~

i

= wN/9'

0 ix
TOF(3ie1IW,
=0 N/3

and H(m) can be derived:

0 ik
al31+1)W,, .
i0 N/Y

Q ik
] h('§7+l)wn/9

1i=0

(3.31)

(3.32)

(3.33)

(3.34)
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Iigs (3.32) *hrough (2.3%4) can e used to dericc the

{
[ general cexpression for a radix-3 butterily flowgraph.
l Letting N9 the cexvressions for I'(k), G(k) and H(k) bccome:
} 0 0
F(O) = £(0) + W, £(1)y + w3 f(2)
1 2
F(1) = f(0)} + Wi (1) + w3 f(2)
2 4
F(2) = £(0; + w3 £(1) + w3 f{2) (3.35)
0 0
G(0) = g(0) + Wy g(1l) + w3 g(2)
1 2 |
G(1) = g(0) + W, g(1) + w3 g(2)
2 4
G(3) = g(0) + w3 g(l) + w3 g(2) (3.36)
0 0
H(0) = h(0) + W3 h(l) + W3 g(2)
1 2
H(l) = h(0) + Wy h(l) + w3 g(2?)
2 4
H(2) = h(0) + w3 h(1l) + w3 g(2) (3.37)
From Egs (3.35) through (3.37) the gencrol butterfly
multivliicrs are Jderived (consistent with Oppenhicinm and
. Schafer)y to be:
'
» k 2k
i X(k) = F(k) + WN G(k) + WN (k) (3.38) :
. k+r 2k+2r i
s, X(k4r) = F(K) + W G(K) + W H (k) (3.39) 5
Vo
L k+2r 2K+ 4r
$ X(k+2r) = F(k) + W G(k) + “N (k) (3.40)
)
‘; where r represents the distance between the endpoints of
%f the butterfly. In Figurce 3,11 r-1 for stage 1 and r-2 for
L J
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stage 2. tigs (3.38) throuah (3.40) arce represented in
Ficure 3,12 wioceh 1s the general radix-3 butterfly
{lowgraph.

The exponents of Figure 3.12 can boe rewritten to:

W o R T (3.41)
w2k+2r . w2k w?r (3.42)
wk+2r - wk w2r (3.43)
wlktar _ g2k i (3.44)

With these expressions for the butterfly multipliers an
alternative arrangement to Figure 3.12 is possible by

"premultiplying” or "twiddling" the inputs to G(k) and
H(k) (Centlcman and Sande, 1966). The multipliers wk

N

and Wzk represent the twiddle factors of the butterfly

in Figure 3.13. Since N=3r (Oppcnheim and Schafer, 1975)

the butterfly multiplicrs can be reduced to:

wg = wgr = exp (-j2nr/3r) = exp (-j27/3) (3.45)
= -0.5 - 3.866
2r 2r . .
Wl o= Wil o= oxp (=949/3) = ~0.5 + 3.8066 (3.46)
N 31 .
w2 Wt Gk (<9n/3) = =005 - 5,866 (3.47)
N i31_ -i J‘J‘l - - _]. -

Oppenheim and Schafer observed that there is no advantage
in Figure 3.12 to the alternate twiddle factor version in
Figure 3.13 because "exp(=32-/3) and all the powers thereof
are corplex coofficients that regquire maultiplications™.,
However, for the particular FORTRAN FFT radix-3 programs

which jmplerented Piguwres 3012 and 3.13, the twiddle factor

37
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version of the radix-3 FYP was much more cfficicent to
implenent because only two twiddice factors had to be computed
(Wk and WZR) per butterfly and the butterfly multipliers were
the constants in Egs (3.45) and (3.46), the original version
of Figurc 3.12 requires that all six complex multipliers be
computed for cach butterfly. The twiddle factor version
reprcsents a simplification over the original radix-3
butterfly.

3.2.3 Radix-5 Theory. The theory for the radix-5

algorithm follows a development similar to the radix-3.
Because of this similarity only the radix-5 results are
given here for comparison to the radix-3, readers interested

in detailed development are referred to Appendix D.

The basic butterfly multipliers for the radix-5 are

given by:
k 2k 3k 4k
X(k)Y = A(k) + WN B(k) + WN C(k) + “N D(k) + WN E(k) (3.48)
k+r 2k+2r 3k+3r
X(k+r) = A(k) + W B(k) + W C(k) + W D (k)
: N N N
p 4k+4r
.- +'WN E (k) (3.49)
P k+2r 2k+4Ar 3k+6r
X(k+2xr) = A(k) + W, B(k) + W C(k) + W b (k)
‘ L N N
i 4k+87r
‘: + WN E(k) (3.50)
| 3 k+3r 2k+61r 3k+9r
| X(k+3r) = A(k) + W B(k) + W C(k) + W D(k)
. N N N
‘1 4k+4+12r
’ + wN E(k) {(3.51)

Y¢
'

A
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k+4r 2k4+-8r 3k+12r
X{k+4r) = A(k) + W, B(k) + wv C(k) + Wy D(k)
4k+16r
+ wN E(k) (3.52)

The Egqs (3.48) through (3.52) are shown in the twiddle
factor butterfly of Figure 3.14 where "r" is the distance

between the butterfly and points. Since W:5r the butterfly

multipliers reduce to constant conmplex mwltiplicers of:

r 6r 16r
WN = WN = WN = cos(21/5) -] sin(2/5)
2r 12r
WN = WN = cos(4n/5) -3 sin(4n/5)
3r 2r 8r
WN = (WN ) = WN = cos(47/5) +j sin(4n/5)
4r r o, 9r
WN = (WN) = WN = cos(zn/5) +3j sin(2u/5)

These constant butterfly multipliers are computed once

during the FFT computation and used in every radix-5

butterfly.

3.2.4 Digit Reversal Algorithm. In order for the

DFT to be computed as discussed above, the input data must
be stored in nonscquential order. In fact the order in
which the ipput data arce stored is in "bit-reverscd" order
for the radix-2 FIT and "digit~reversed" order for the

other fixed-radix algorithms. To sec what is meant by this
terminology note that for the 8-point radix-2 flowgraph of
Figure 3.8 threce binary digits arce requirced to index through
the data array. Writing the input indices Xp in binary form

and then reversing the order of thy s gives:

e
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XO(O) = X;(000) = x(000) = x(0)
XO(l) = X, (001) = x(100) = x(4)
XO(Z) = X,(010) = x(010) = x(2)
X0(3) = X5 (011) = x(110) = x(6) (3.53)
X0;7) = Xy (111) = x(111) = X(7)
If (n2 n, no) is the binary representation of the index of

the sequence x(n), then sequence value s(n2 ny no) is stored
in array position xo(n0 ny nz). That is, in determining the
position of x(n2 ny no) in the input array, the bits of
index n must be reversed in order.

For the radix-3 FFT the input array must be in a

similar nonsequential order. The order is determined by

“"digit reversing" the input sequence value using a modulo-3

counter. The digit reversed radix-3 FFT example where N=9

is shown in Figure 3.15. The modulo-3 counter is given by:

0

COUNT = (b, - 3y & (by - 3°) (3.54)

where bk =0, 1, 2. The reversed count is given by:

0

REVCOUNT = (b 3y & (b, - 3% (3.55)

Egs (3.54) and (3.55) show the modulo-3 counter for N=9
which requires only two bk bits: bl and bO to represcent the
input scquence. For the case where N=33=27 threce bits are

needed to represent the input sequence x(n) and the modulo-3

counter becomes:
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x{02) = x(2)
x(12) = x(5)
x{22) = x{®)

=
W

~uitterily
Jlowgrarh

base 10

B .
£(0)
1)
A(2)
(3

(%)

"

i}

hace 7
£(c0j
£(01)
X(02)
£{10)
A{11)
X(12)

~(20)

Figure 3.15. Digit Reversed Input and Output

Arrays.
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courr - (b, 37 (), - 3y (b, « 3") (3.56)
{
and the reveroo digqrt counter is:
’
= . 2 1 0 ]
{ REVCOUL'L = (bo « 37) + (bl + 37) + (1)2 « 37) (3.57)
L
4 . Similarly the general expressions for COUNYT and RIVCOUNT
can be given where N=3" and bk = 0, 1, 2:
} . am-1 . oM=2 _
COUNT := (bm_1 3 )y + (bm_2 3 ) o+
+ by - 3h + by - 3% (3.58)
0
and
. m-1 m-2
REVCOUNT = (bl + 3 Y + (b2 + 3 )+
1 0
. + . )
+ (bm_2 37) (bm_l 37) (3.%9)

Once COUNT and REVCOUNT are computed the magnitudes are
compared. If REVCOUNT is less than or equal to COUNT a
swap of the values indexed by COUNT and REVCOUNT is not
required; otherwise exchange the array value indexed in
by COUNT with the array value indexed by REVCOUNT. The
cojnters arce incremented by one and the process contjnuﬁi-

until all N indices have becen testcd.

3.2.5 Development of 4 Radix-3 FI'T Puse i on the

. ¢

Cub koot of Unily. This scoction presonts Uu’thuory(n'

a radix-3 FI'T algorithm which uses the complex cube root of,qp

unity to perform the complex Fourier transformation (‘Fttcr—

fly) without using multiplications. The benefit of this

P I v/ W ey *
- . .

techniqgque will also be discussed in the section on real

operations count. ‘




While the reforence (hubois and Vencetsanopoulos,

P oo atains o sl e e iy Lion ol Lhis technlqgue, it
leaves out several steps which aidd in understanding the
theory and for that rcason it is presentced again here.

This algyorithm usces basis vectors (1,u) instcad of the
conventional complex plance vectors (1,j) to perform the
complex Pouricr transform (wherc u is the cube root of 1
and j is the sguare root of -1). The new basis vectors

usc arithmetic notation:
a+ bu = R(u) ; a, b, real numbers (3.60)
Taking u as the cube root of 1 implies:

w - 1=0 (3.61)

or

(u-1) (u% + u + 1) = 0 (3.62) i
Since it is known u # 1, then

u? +u+1=0 (3.63)
or

u? = -1 - v (3.64)
Eg (3.60) is used in the definition of multiplication in
the R(u) field:

(a + bu)(c + du) = ac + bdu2 + adu + bcu (3.65)

Substituting Eq (3.64) into Eqg (3.65) results in:

(a + bu)(c + du) = (ac - bd) + (ad + bl{c-d))u (3.66)

The expression in Eq (3.66) can be expanded and then

recovhined to reduce the number of multiplications:
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ad + b{c-d) = ad + bc - bd - bd + bd + ac - ac
= ac + ad + bc + bd - ac - bd - bad
(a + b)(c + d) - ac - bd - bd

Substituting Eq (3.69) into kg (3.66) gives:

(a + bu) (¢ + du) = (ac - bd) (3.70)
+ ((a + b) (¢ + b)- ac - bd - bd))u
The result in Eq (3.70) requires thrce real multiplications
and six real additions commared with conventional complcx
multiplication which requires four recal multiplications and
two real additions. Multiplication in the R(u) field requires

one less multiplication but four more additions.

The expression for u3 is obtained from u3 = 1 by letting

u3 = (exp(—j2n/3))3 = 1., Consequently, u = exp(-j21/3) =

-1/2 -3(¥3/2) which is used for conversion between a + bj
and c + du:

c+ du=c+ d(-1/2-3(Y3/2)) = ¢c - d/2-j(/§/2)dqu

c + du = (c - d/2) + j(-/3/2)d

To find the conversion from a + bj to ¢ + du, solve

e g

Eq (3.70) for j:
c+ du = (c - d4/2) + (-24/2)]
a/2 + du = (-Y/3/2)a j
a(l/2 + u) = (=/3/2)a ]
1/2 + u = (=/3/2)]

j o= (-2/V3)(1/2 + u)

e A A T TR TP I TP NV A 110
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Using g (3.66) and a + b3y the conversion to ¢ 4 du is:

a4 b o oa b b(=2/05) (/8 )

a + b(=2/V3)(1/2) + b(~-2/V3)u

(a - b/V/3) + (-2b/V3)u {(3.74)

It

a + bj

Using the R(u) arithmetic developed above, it can be
shown that a radix-3 FFT bulterfly can be devcloped which
requircs no multiplications except for the twiddle factors

in Figurc 3.13.

Using Eq (3.74) and w§ = cos(21r/N) + j(-sin(2 r/N))
produccs:
c + du = (cos(2nr/N) + sin(2wr/N)}/v3)
+ (2 sin(2mr/N)/V3)u (3.75)

Using the substitution of N = 3r in Egq (3.75) reduces it to:

W

(cos(21/3) + sin(2u/3)V/3) + 2 sin(2n/3)V3)u

zZH

W

It

0 + lu = u (3.76)

zZ R

Likewise the rcemaining W terms in Figure 3.7 can be reduced:

il

2r
wN

2r
WN

4r
WN

(cos(4v/3) + sin(4./3)/V3) + 2 sin{(4v/3)/V3)u
= -1 - 1 u (3.77)
= 0+ 1 u-=u (3.78)

Substituting Eqs (3.76) through (3.78) into Figure 3.13

produccs Figure 3.16.
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Uoing critheet e in i) and carrying cut the operations
Ao recar e Sody o i thiar only tourte i road e and no
multiplics are reaguired to cevaluate the Lutterfly flowaraph.
Xi’ Yi arc the butberfly inputs after twiddloe factor multi-
plication and A(*), B(+) arc the butterily outpute in the

R(u) field.

A(l) + B{1l)u = (X1 + X2 + X3} + (Y1 + Y2 + ¥3)u (3.79)

A(2) + B(2)u = (X2 4+ y2u) (0 + u) + (X3 + ¥Y3u) (-1 - u)

+ (X1 + Ylu)

A(2) + B(2)u = (~-Y2) + (X2 + Y2 (-1))u + (=X3 + Y¥3)

+ (~X3)u - X1 + Ylu (3.80)

= (X1 - Y2 - X3 + Y¥Y3) + (Y1 + X2 Y2 - X3)u

A(3) + B(3)u = X1 + Ylu + (X2 + Y2u) (-1 - u)
+ (X3 + Y3u) (0 + u)
= X1 + Ylu + (-X2 + Y¥2) + (-X2)u + (-Y3)
+ (X3 + ¥Y3(Q1l))u (3.81)

= (X1 - X2 4+ Y2 - ¥Y3) + (Yl - X2 + X3 - ¥3)u

Therce are 16 rcal additions show in Bgs (3.80) and

(3.81); however, by conbining common {erms -Y2 - N3 = ~R
’ 1 N}

and -¥2 - Y3 = -G, the radix-3 bulterily can be evalvated

using only fourteen rcal additions (neglecting the twiddle

factors) :
A(l) == X1 + X2 4 X3
B(l) = Y1l 4+ Y2 + ¥3

- X} + ¥3 -~ R

>
~—
8o
~—
i

=
—
N
—
il

Yl + X2 - R where R = Y2 + X3
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A(3) = X1 + Y2 - §

B(3) = Yl + X3 - & vhieooe S = K2 o+ Y3

3.2.6 Supmary. This conpletes the discussion of
fixed radix PFT theorv. In this scection the general theory
was developed using thoe radix-3 case as an alternative to
the more common radix-2 development. A decimation-in-time
for N+9 was shown and the bacic butterfly cquations for
radix-3 was derived. Decausce of the similarity to radix-3
butterflies, the radix-5 theory was not developed but the
butterfly equations necessary to implement a radix-5 FFT
was given. Finallv, a new radix-3 FFT (Dubois and

Venctsanopoulos, 1978) was developed.

3.3 Real Operations Count for Fixed Radix FI'Ts

The spced at which an FPT algorithm can perform the
DFT is a (to a first approximation) proportional to the
number of complex multiplications used in the algorithm
(Singleton, 1969). The number of times the data array is
indexed is a sccondary factor and is shown to have minimal
impact on the results of this paper.

An anomaly in the nomenclature should be polintod out
before further discussion of "complex multiplications”
reclated to FFPs, A complex multiplication implics four
rcal multiplications and two recal additions. It has been
shown (Sinalcton, 1969) that (p~])2 real multiplications
arc required to cvaluate a complex transform of dimension

p, p odd, where N;pm. Singleton then refers to the (p—l)2




.y . 2 . . .
real multiplications as (p-1)7 cowmplex multiplications

vhidohe P neiotbons]l contonience sinee o comnploes trans-
form of dimension p requives more Lhan (p-1)2/2 rcal additiors.
Throughout this paper all references to multiplications and
additions are in terms of rceal operations and not complex
operaticns.
The rcal operations are determined from (1) the numbcer
of butterflics times the number of real operations required
to compute the buticerfly and (2) the number of twiddle
factors times real operations reguired per twiddle factor,
and (3) the number of trigonomecric functions (sine and
cosinc) which must be computed. The real operations count
for a radix-p FFTs are derived as a function of N, m, and :

p where N=p'. |

3.3.1 Number of Butterflies in Fixed Radix-p FFTs.
The number of butterflics is dependent on N, m, and p,
where N=pm. Examining the radix-~2 FPT in Iigure 3-8 shows

that there arec 8 input points and 8 output points for each

stace.  The radix-2 butterfly in TFigure 3.7 has 2 input
and 2 outyput points which meons that Tigure 3.8 must have
8/2 = 4 bhutlevrilics per stage. There are 3 stages in this
radix=2 1ri'v (where N“23) giving a total of 12 butterflics
in this FU'T.

In general the number of radix-p butterflics is given
hy: mn/p (5.82)
This cquation can be checked for the radix-3 exawmple.

Given that N=9, p=3, and m:2 Iiq (3.82) gives the total

e

.




nuhor of buttortlics as 2 ¢ 9/3 = 6. This is verified
by cigure oo which has 6 radix-3 Lbuttoritics,

3.3.2  HNumbey of Pwiddle Pactors in Pixed Rodix-p
I'l'fs . The twiddle faclors are compleox nultiplicrs of the
form exp(-j2.1/d) which nultiply coch radix=n butter{lv
as shown in Pigure 3.8. Notice that cach stage has N/p =
8/2 = 4 buttertlics, cuach of which reguires p-1 = 2-1 = 1
complex twiddle factor. The general cexpression for number
of twiddle factors in coch stage boecones:

N(p-1)/p (3.84)
Given that N'—-pm there arc m stages in a radix-p FFT making
the total numbor of twiddle factors for the FFT equal: A
mN (p-1) /p (3.85)
Some of the complex twiddle factors are WI(\)I = 1 and can be
eliminated. In any FFT there are N-1 of these unity twiddie
factors (Singleton, 1869) which gives the final expression

for the number of complex twiddle factors as:

mN (p-1)/p - (N-1) (3.86)
Using N = pm = 23 = § in Lg (3.80) the nunbor of twiddle

[ >

foctors is fovnd to be 5. Exanining Ulguire 3.8 for N2

¢

shows there arae 5 non-unity twiddle factors.

3.3.3 Nunmboer of Tricononcelric Functions Reauired

for the Fi:xed Radlx

The trigonometric {unctions

of sine and covine are necded to comprute the twiddle factors.
The tited radiz=-2 algorithm uses calls to the FORTRAN

libvavy S110 and COS functions as well as the difference




cqualions given in Scetion 3.7, The radix-3 and 5 FPPI's
ureoonty i o condte JdE N Torcace cqual dang,

The radix-2 alyorithn in Appendix A computes one sine
and cosine at cach stage of the FFT using:

W = CMPLX (COS(PI/LR1l), SIN(PI/LEL))
Fach radix-2 T'Fr has m stages where N=2" which means the
since and cosine [unctions arce called m times for the FFT.
Once the initial sinc and cosine are computed for the
stage cach new twiddle factor in the stage is computed
using the complex multiplication:

U=U%*W

where the complex U was originally initialized to U = (1,0).
The complex multiplication U * W effectively implements
the sinc and cosine difference equations in Section 3.1.
The number of times U * W is computed for each TFFT stage
is a function of the number of different twiddle factors in
the stage m, . In Figure 3.8 the first stage has only one

type of twiddle factor wo

N the sccond stage has two types:

o . ..2 s L i ; .0 1 .2 !
UN and "N’ while staoge hos four: \\N, WN’ Wop ‘I\'

The
general expression for the types of twiddle factors in
cach stage is:
pp o= 2K71

Thus for stage 1, k=1 and TF:2O:1, which gives one type
of twiddle factor; for stage 2, k-2 and TTs 2]'::2 giving two
types of twiddle factor:; and finnlly for the last stage
in this example k=3 and TFr22:4, or fouxy types of twiddle
in

factors are required.  In general for the radix-2 17T
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Avpoendix A the complex multiplication U * W is cevaluated

a total ol

(Zk—l

1

)

I~

k
times, where m is the number of stages for N=2".  Given
that the conplex multiplications requires 4 real multipli-
cations and 2 additions, the number of operations rcguired

to compute sines and cosines for this radix-2 FPFT is:

mo k-1

real mult = 4 5o(2 ) (3.87)
k=1
m

real add = 2 1 (274 (3.88)
k=1

sine and cosine calls = m (3.89)

ae real operations required to compute the sine and

cosine lookup tables for the radix-3 and 5 algorithms is
less complex than the radix-2 FFT. In thege algorithms
the differcnce equation from Scction 3.1 is used to compute
sine and cosince looku» tables which have length N.  Becausc
of the symmctry of sin(k) = -sin(-k) only N/2 conputations
of the differencs cquations are reguired. The cqguations
arce given by:

WKC(I) = C * WKC(I-1) - S * WKS(T-1) + WKC(I-1)

WKS(I) = C * WKS({I-1l) + S * WKC(I-1) + WKS(I-1)
which neaed a total of 4 real multiplications and 10 additions

to compute. Por an K lenglh scequence computing the lookup

tables roequire:
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roal pmlt - A(/2) =0 2N (3.90)
real add = JO(N/2) = 5N
3.3.4 Number of Real Operations in Rudix-p FFT's,

Based on the goeneral expregsions in Eqs (3.82) through
(3.91) the total number of real multiplications can be
determined given Nrpm where N, p, and m arc integers.
First, cach radix-p butterfly computation requires multi-
plications or additions or both to be evaluated. The
cxact number of multipliecs and adds is determined from the
FORTRAN code as shown below. Second, each complex twiddle
factor multiplication requires 4 real multiplications and
2 real additions. Third, the number of rcal operations to
conpute the sincs and cosines is added to the butterflies
and twiddle factors to give the total operations count for
ecach algorithm,

For the case of N=2" it was shown in the radix-2
Scction 3.2.1 that the radix~2 butierfly can be computed with
4 recal additions and no nultiplications. This radix-2 butter-
{1y can be computed with 4 rceal additions and no multiplica-
tions.  This rodix=2 PP does not ¢liminate all multiplica~
tions by wg. Therefore cach radix-2 bhutterfly is multiplied
by a complex twiddle foctor as shown in Figure 3.8. For this
particular radix~2 FPT the number of twiddle factors cqual
the number of butterflics. Cormbining all sources of real

opcrations for the radix=-2 FFT gives a total of:
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i
3
:
|
F
:

rcal rnalt = (¥ jult por butterfly) * (§ butterflices)
o3 (0 Lwidale factor:) (3.92)
+ 4 (# types of twiddie {actors)

Substituting the appropriatc values for the radix-2 gives:

moo,
real mult = (0) * (;v/2) + 4%(uii/2) + 4 * (o 2"7
k=1
mo, .
= omy + 4y 2871 (3.93)

k=1

Likewise for the nwber of rcal additions:

I

real adds (i adds pecr butterfly) * (# butterflics)

+ 2 (¥ twiddle factors) (3.94)
+ 2 (# types of twiddle factors)
m k-1
real adds = 4 * (m/2) + 2*(mN/2) + 2 * (% 27 7)
k=1
m
= 3N + 2 5 2K (3.95)
k=1

For the radix-p FI''s where p is an odd prime it has
been shown by Singlcton, 19269, that these butterflies can
be evaluated using (p—l)2 rcal multiplications. The
FORTPAN coded radix-3 and radix=5 in Arpendices B and D
roquire 4 real multiplications and 12 additions foir radix-3
butterflicr and 16 real multiplications and 30 adaitions
for radix-2 butterflics. Using thesce in Eqgs (3.87) and

(3.91) yiclds the total real operations for the radix-3 as:

7




é rcecal mult = (4 wmull per butterfly) * mN/3
‘ + 4 (N (3~1)/3 - (N-1)) + 2N
} . = 4nN/3 + 8mN/3 - 4(N-1) + 2N
‘ = 4mN - 4(N-1) + 2N (3.96)
real adds = (12 adds per butterfly) * mN/3
+ 2(nN(3-1)/3 - (N-1)) + 5N
= 12mN/3 + 4nN/3 - 2(N~1) + 5N
= 16mN/3 - 2(N-1) + 5N (3.97)
Similarly the real operations count for the radix-5 IFT
becomes:
real mult = (16 mult per butterfly) * mN/5
+ 4{(mN(5-1)/5 - (N-1)) + 2N
= 16mN/5 + 16mN/5 - 4(N-1) + 2N

= 32m¥/5 - 4(N-1) + 2N (3.98)

real adds {30 adds per butterfly) * mN/5
+ 2(mN{5-1)/5 - (N~-1)) + 5N

= 30mN/5 + 8mN/5 -~ 2(N-1) + 5N

= 38mN/5 - 2(N-1)} + 5N {3.99)
- The results of Egs (3.92) through (3.99) are given in Table
o 3.1 for N bobtween 8 and 16,000, This table also summarizes
«
‘% the possible values of N for the fixed radix-2, 3, and 5
?’, < FI'Ts.
! 3
\: 3.3.5 Real Opcrations Count for the Radix-3 FPT
? Using the Compley Cube Root of Unity. This algorithm

represents an alternative to the conventional radix-3 FFT.

-

lﬂf“f.

It is shown in this section that selective usce of this
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TABLIY 3.1,

' L

RUAL OPP RN 108 coun? ;"1?‘.‘ AP I S B
; L
N radix  Multiplications — “Additions  Triy LIRran
8 . 23 76 56 3
9 32 58 125 1
16 24 188 222 4
25 52 274 457 1
27 33 274 515 1
32 2° 444 542 5
64 20 1020 1278 6
81 34 1138 1973 1 |
125 53 2154 3227 1
128 27 2300 2942 7
243 3° 4378 7211 1
256 28 5116 6654 8
512 2° 11260 14846 9
625 54 14754 20877 1
729 36 15142 25517 1
1024 210 24572 32766 10
2048 o1l 53244 71678 11
2187 37 56866 88211 1
3125 5° 93754 128127 1
4096 212 11460 155640 12
s 6501 38 19683 209071 1
" 8192 213 24576 135070 13
:‘, 15625 50 606705 Jha T 1
K
¥
V]
%
}
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algoriithm con reduce the mueaboer of real operations depending
on the scgquence loeageh oo,
The radi:n-3 PIPT in the R(u) ficld has four sources

or real multiplications (where N- 3™

1. 2mn/3 ~ (N-1) complex twiddle factors devived
in Scction 3.3.3.
m i~1
2. Conversion {rom cowplex to R(u) of [ 2(3 - 1)
i=2

twiddle factors derived from TORTRAN code in
Appendix C.

3. Conversion of cormplex array of length n to the
R(u) ficld derived from the FORTRAN code.

4. Conversion of R(u) array length N back to the
complex fiecld derived from the IFORTRAN code.

The radix-3 in R{u) has five sourccs of real additions:

1. mn/3 butterflics derived in Scction 3.3.3.

2. The four sources of real multiplies listed akove.
Bascd on the FORTRAN code in Appendix C, there arce three
recal multiplications per complex twiddle factor, two per
twiddle factor conversion, two per conversion from complex
to the R(u) ficld, and two per conversion from R(u) to the
complex ficld., Condcensing the above into an equation for
rcal multiplications yields:

i-1

2(3 - 1) + 4N (3.100)
2

recal mult = 3(2nN/2 - N+1) + 2
i

el

There are 14 real additions per butterfly, six per
twiddle factor, one per twiddle factor conversion, one per
conversiton to R{u) array, and one per conversion to complex
array. Exprcessing the total number of real additions as a

function of the above yields:

60
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real adds == 14 3n/3 4+ 6{2N/3 - N+1)

4y 2(3 - 1) + 2N (3.101)

The results foyr the number of real multiplications and
additions for both radix-3 algorithms is given in Table 2.2
for N=27 to N=19GH3. jecause the R{u) radix-3 requires rore
multiplications and additions for N=27 and 81 it will alwa.s
run slowcr than the complex ficld radix-3 FFT. But, for
N::243 and hiqgher the R(u) radix-3 may run faster depending
upon the speced of additions relative to multiplications for
the computer being used to perform the FFTs.

Table 3.2 also gives the "Add to Multiply Ratio"
required for the R(u) field radix-3 FFT to run faster than
the conventional radix-3 FFT. (The ratio is the differcnce
in the number of multiplies divided by the differcence in
the number of additions.) For the casc of N=729, a multinly
operation must take 3.77 times longer than an addition
before the R(u) field radix-3 can run fastcr than the corm-
plex field radix=3. "1his means that pricor to sclect i
either of the algoriilnas the relative costs of addit o
to multiplications must be known as well as the length of
the data scoquence.

3.3.6 Memory Recuirements for FPixed Radix FPIs. A

major connideration fov sclecting a particular PwT
algorithm is the scquence length and memory reguired to
excecute the subroutine relative to the memory available

in the computcer. PFor this recason the memory requircments

ol
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COMPARISON BLTVEDPN COMPLEY AND R((u)
RADLIX=3 P IFOR REAL OVLRATITONRNS*®

Comnhle:n Radix=3 R{u) RagGi~-3 aAdd to
N Real Mult Real Adds  Real Mult  Real Adds rult Ratio
27 220 380 232 624 NA
81 976 1568 1284 2562 NA
243 3892 5996 3140 9796 5.05
729 14584 21872 10912 35714 3.77 ;
2187 52492 77276 37152 126108 3.18
6561 183712 266816 124628 435202 2.85
19683 6292¢0 905420 413308 1476212 2.63

*  Does not include computing sine and cosine terms

e e e s - W e
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for the radix-2, 3, and 5 FFFT's is aiven here as o function
of sequence length Noo The progroam memory and data array
storage reqguirements for cach algorithm are chumerated
below.

The program memor, requircd by cach routine was
determined from a "load map” gcnerated by the command MAP,
PART. The array storaqge reguirements vere determined by
inspection of the DIMENSION statcments in the FPORTIRAN code
for each subroutine listed in Appendix A to D. The

results are:

FPT Program Arrays
Radix-2 108 2N
Radix~-3 301 4N + M + 30 ;
Radix~3 in R(u) 396 4N + M + 30 ‘
Radix-5 458 4N + M + 30

: The memory arrays required for each algorithm as a
function of N arec listed in Table 3.3. The program memory
was not included because it i dependent on machine word

size which variecs from machine to machinec.

. 3.4 Mixed Rodix TFT Alaorithms

Up to this point only fixed radix PFPs hu seen :

discussed. Explanation and programming .. the s,ecial

m S0 m .
casces where N=2" or 37 or 5 arc simpler than the general

4 casc of N=piP,-. Py and for most applications the restricted

choice of values is adeguate. However, when the avplication i

LN e

docs not permit "zeropacking" of the data sequence to reach

onc of the special cascs a wider choice of N is necoded.

IR | f
A i
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TARLY 3.3
FINDD RADINMN MLEMORY Ri.QULINED

il Memory Array

8 16

9 68

16 32

25 132

27 141

32 64

64 128

81 358

125 533

128 256

243 1007

256 512

512 1024

625 2534

. 729 2952

; 1024 2048

i 2048 4095

5, 2187 8820
! I
{
:

y
'%.




Sinoloton first publiched a mixed radixz VI algorithme
i June 19609 which has been widely wsed ond implemented on
large mnd omall computors. Thio algoyritton is listed in
MAppendix 10, (The Intoernational Mathematical Scientlific
Iibrary (1355L) which is availablce on tho WPAYB CDC Cyber 74

corputer has @ mixed radix FI'T basced on Singleton's work).

Alse the author has written and tested a mixed radix algorith:

: "

vhich is listed in Appondix B, The theory, digit roversal,
real operailrons count, and menorv recuircments for these
algorithms is discussced in the following scctions.

3.4.1 Mixed Radix Thcory. All T'P'T thecory can be
developoed by represcnting a cne-dimensional seguence N as
sceveral two dinersional natrices and performing operations
on these matrices. Understanding this approach when exposed
to it for the first time is difficult. For this reason the
it rin dovelorment is presented here and then a specific
exaple of =20 is treated to increase understanding of the

technique,

The oo clex Fourieo transifors e dofinced as:
N-1
MNAR) o) one (=32 ) (3.102)
n: 0

ror x 0, 1, ..., N=-1 wvhere X(k) ond x(n) arce both complex
valuod., g (3.102) ca. be expressod as a matrix
yaltinlical ion: X = Tx

The matriz 7 ocan be decinated-in-time (Cooley and Tukey,

1965H) or niogquency (Centleman and Sande, 1966) to produce

cqaad by of facient factoring:
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whore I“j ie the deciv . fion corresponding to the factor

ni of: N - N N e n2 nl

and P is the pormutation {(digit reveraal) matriz (Singloeton,
1969)., The matrix Fi has onlv n, Nonzero clements on each
row and colunn and alro be partitioned into N/n, squarce
submatrices of dinmonsion n.i it is this partition that is
the basis for thece (0ixed radix) alaovithns" (Singleton,

1869). The matrices I‘i can be further factored into:

F, = R, T, (3.103)
i i i

where Ri ig the diagonal matrix ol twiddle (rotation) fac-
tors. Using these twiddle factors cnable the trigonometric
ki 1% /2
in G2

synmetries and complex multiplicrs (c.g., e°

ojﬁ/N) to be exploited in the I'f'? butterflics arnd rcduce
the nusber of recal opervations. A specific decimation-in-
time example iz now considered which uses the above ideas.
Given an N-point scguence for which the N-point DFT
ic desived, the integer Docoan b factored into & product of
smnller intooors aosusing Wois not vrime. The succeosaive
factorization of onc nunboer into two can result in any
possible combination. T8 N30, 1t can be factored as
5+« ¢ and then as 5 <3 - 2. The first decomposition is slown
in Pioure 3017 and 1o sovesontod os ool Sepoint DTS followed
by (ive O6-point DIy, The next stage of decomposition is

from 5 + 6 too 5« 3 ¢+ 2 and 1s shown in Pigure 3.18. Start-

ing with the PP eoxpression in Fg (3.99) the sequonce can

(o

ad . e i
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' boe Tactorved Into W o« g - 5« 6 (representing a 5 by 6
ol and the cspression hooons:
p=-1 . q-1 prk
' X(k) = ¥ W n x(})r-sm)\‘JN (3.104)

Now the inner sums can bhoe cxpressced as the g-point DEFs:

q-1 rk
Cm(k) = 0 ox(prim)w (3.10%)
r=0 :
since
prk rk
WN = oxp{~J2: prk/N)Y = cxp(-j2iprk/pg) = h’q {3.106)

Using p=5 and =G in Eq (3.104) produces:

4 mk 5 5rk
X(k) = ¥ W Y x(S5r+m) W,
=0 30 =0 30

(3.107)

The inner sum in Eg {3.107) is a 6-point DI'T which
can be decomposcd into a 3 by 2 matrix by dividing the
scquences X (5r+m) into three seqguences, cach twoe points
long. The inner curmation in Eg (3.107) can be represented

using the notation of Egq (3.104) as:

p-1 ok -1 ptk
G(k)y = o W, s <.;(}»2~1—.».:)X-J,\I (3.108)
s=0 " t=0 ‘
where N odo now coval poe g o 3+« 2, Substitutin: o and
q yields:
p sk 1 3tk
G(k) = B w2 a(3tis)w, (3.109)
50 =0
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Thic cuprevsion in kg (3.109) con be substituted anto
o 1O ) Lo gt
4 mk 2 sk 1 tk
X(h) = AN T W oo (10t Hhstm) W, (3.110)
m-0 0 s=0 0 t=0 2
wheore
r = 3its
g(3L+s) = X(S5(3trs)+m) = x(150H5stm)
3tk tk
WG = exp(-j2u+3tk/0) = exp(=j2n-tk/2) = \-C2
m=20,1, 2, 3, 4
s =0, 1, 2
t=20,1
The complote flowgraph is shown in Figure 3.16 and
implements Tg (3.110).
3.4.2  Didgit Roversal Alaorithm (General). The

pormnutation matrix P ois reqgquired becausce the transformed

result is in a digit roversoed order.  Given a factorica-

tion of N - n_ n ... N, n., the tourier cocfficient of
m m-1 271
(k) with:
K Lo n_o. n, -+ bk, n bl 3.1101
h moomel om0 1 L 1 ( )
is found in location:
K" = Kk, n, n, ... 1 I X, n, n .4 . + K 3.112
L2 73 m 2 73 ] m m ( )

In general the interchance of k with k' can be done "in place”

1N s ractored such that (Singleton, 1977):

n., = nm . (3.113)




‘ tor 3 less than n-i.,  For this factoring k con he counted

in natural order and k' In dicit roverced order Lo o described
for fixca-radlx algorithnm bit-reversal.,
To implenent this technique for mixed radices @ odu

Tfactored into its prime factors and the "squarce" factors

arranged symmetrically around the "sqguare-free" factors

of N. TFor examplec, let N=270 and be factored as:

3«2+« 3+«5+.3
Now the reordering, P, is factored into:
P =P, P, (3.114)

# The reordering P1 is "associated with the square factors of
;, n and is done by pair interchanges as previously described,
X except that the digits of n corresponding to the square-

free factors are held constant and the digits of the

square factors are exchanged symmetrically" (Singleton, 1977).

For exanple, if:

= 1 n
i N = Ny N, N3 N, Ng ng nog (3.115)
with nl = nq, n2 = n6, and n3, n4, n5 relatively prine,

the interchange associated with the sguare factors Nys Ny

n,, and ne Je giveon by:

i ! _ )

; k = k7 Ng Ng e ny + kG Ng Ny ... Ny + k5 ng nyon, ny

)

;; + k4 n3 n, ny + k3 n2 nl + k2 ny + Ll (3.116)

;i interchanged with: }
1

) - N
‘t k' = ky nong ...ng +kyngng o..ony + kg ny ngn, ny
- + k4 ny n, ny - k3 N, oMy + kS ny 4 k6 (3.117)
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This reorderinag 1‘] in this cxample places cach element of

MO0 din the correct scegument of lenglh N/n:I n grouped 1in

2'

n, consccutive clements (Singleton,

172

1977). The next reordering P

"subsoqueonces” of n
9 then finished the recordering
of c¢ach Ny n, ng subscquences within cach N/nl n, scgment.
The above factorization is used in the Singleton and
IMSH mixed radix algorithms and generates a complicated
FORTRAN code. A simpler alternative factorization was
written by the author and used in his mixed radix algorithm.
The simpler algorithm requires an additional two arrays of
length N to store the intermediate results which detracts
from the algorithms utility when longer sequence lengths
are transformed. The details of this factorization are

presented in Appendix E for intercsted rcaders.

3.4.3 Twiddle Yactors. 1In Section 3.4.2 the factoring

into Fi was described corresponding to a factor n . Fi can
be factored to give a product Ri Ti where the matrix Ti is
one of N/ni identical Fouricr transforms of dimension n;
and Ri is a diacgonal twiddle factor matrix. The clements
of R, arc spoecificd by the decimation-in-freguency version
of the I'FT (Singlcton, 1977).

The twiddle factor matrix Ri multiplies ecach transform

Ti of dimension ng by oj(z) where 7 is on angle from the
set:

0, 2, 22, ..., (ng-1)7 (3.118)
and 72 = 2i/N. No multiplication is nccded for the zero

anqgle which gives at most N(nj—l)/ni conplex multiplications
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L Fm—l' R Fl th muslaor o b idd!e factors for
an N length aogqoonee ig
n
Foon{(n,=1)Y/u.y - (N-1) {3.119)
. i i
1=1
Thils roesa!l is uced in conpubling the nunber of real

multiplications and additions vequired by an N length FPT.

3.4.4 Real Opcerations Count for Computing Sinc

and Cozine Piff orence ouation. Reeall from Section 3.1

that trigonomctric valuces used in an PP can be computed
using the difference equations:
cos ({k+1lya) - (C « cos(ka) = 8 « sin(ka)) + cos(ka) (3.120)

sin{((k+l)a) = (C - sin(ka) + S » cos(ka)) + sin(ka) (3.121)

where a = 2n/N radians
i .2
C = =2 oin"(a/2)
S = osin(a)
cos(0) - 1

sin(0) - ©
In the case of the author's mixed radix FET the
difference cquitions are compuled N times and the sine and
cosin results stoved an two lookup tables. The difference ]

cqual ions are aiven hve

wWhe () C * W (I-1) = 8 * WKS(1-1) + WRC(1I-1) {3.122)
whe () C* WiEs(I=-1) + 8 * WRKC(T-1) + WKS(I-1) (3.123)
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[ ‘ Veger (3.122) ot (10123) reauire 4 oreal multiplications and

t 10 reat qdditions coch time they are compulca.  Given they

} are conputed i otiwes, the operations count is given by:
real mult == 4N (3.124)
real adds = 10N (3.125)

The IMSL and Singlcton FITs do not usc the sine and

cosinc lookup btables in ordoer to save memory arrays.

Instcad the sinc and cosince values arc computced as necded

in the PPT progran resulting in an intricate FORTRAN code.
It was determined from the FORTRAN coded IMSL and Singleton
FPTs that both utilize thc same method of computing the sine
and cosine diffecrence cquaticons. For this reason only the
Singlcton TFPT alcorithm was studiced.

An algorithm which computes the number of real
operations requived was interpolated from "counters" placed
in the TPT TORTRANY code in Appendix I'.  They provided the
nunber of timces that each scction of the PFT subroutine
wags usced to cormute the gine and cosine valucs for diffcerent

. values of N. he Tabels for the counters are shown bolow

along vith the linces of FORTRAN code where they were

positionced. The lines of code are shown in appondix F.

I2C: Counter for the radix-2 difference cqguation
in linces 2330 - 2340,

-~

T2CT,: Countor for the radix-2 sine and cosine
Libviny calls in lTines 2650 - 2660.

PP IIRIE B L

I14Ci: Counter for the radix-4 scction which com-
putc: Lthe sine and cosine terms of the
k ) . . .
WN leg of the radix-4 in lines 3030 - 3040.
Refer to Figure 3.19 which shows the radix-4
buttcorfly flowgraplh.
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Data

14C2:  Countoer for the radiv-4 scction which computes
7. .
Liic Slhe o coclne Lorms of the Hﬁ“ and w;k
Tegn of the radix-4 butterfly flowgraph in
lines 3140 - 3170,

I4CL: Counteyr for radix-4 sine and cosine library
calls in lines 3690 - 3700.

IGTF: Counter for the general twiddle factors scction

in lines 4990 - 5000, which computes the sine
and cosinc for the w& leg of the general radix-p
FrT.

IGTFE: Counter for the gencral twiddle factors scction
which computes the sine and cosine for the
remainder ol the radix-p butterfly legs in
lines 5170 - 5190.

IGTFL: Counter for the general radix-p sine and cosine
library calls in lines 529C - 5300.

was collected for over 70 values of N using these

counters. A subsct of the vilues werce the 59 permissible

sequence lencgths of PrFA and WITA. Based on the results of

these tests and study cof the PORTRAN code TFT in Appendix F

the general cxpressicns for these counters were determined.

Give

then

n that:
N = scqguance length
NIFAC(i) = factore of N {as factored by the Sinaglcton

subroutine)
M o= number of facliors of N

KSPANi = N/(NIPAC(1) * NFAC(2) ... * (NFAC(i-1))

I2C. = (KSPAN. - 2}/2 for KOraw, > 4 and odd
i i i

1'2Ci = (KSPANi - 2y/2 for KS‘ANi > 4 and even

12¢, = 0 forv l'(f‘»l"i\N]. <4
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I'or the foactors of 2 in o the ¢xnrecsion for 12C Lecomes:
12¢ - (1.2¢.) iov 1 factors of 2 in N (3.126)

The expreocssion for the numboer of sine and cosine culls
during conputation of a facteor of 2 is [KSPANi/7ﬁ] wherao
[+] represents truncation of the result inside the brackets.
Using the "truncotion" notation:

I2CL = % [ESPAN. /70] (3.127)

i=1 1
The radix-4 section usces the same notational conven-

tions for KSPAN and truncation. The expressicns for

I4Cl, 14C2, and I4ClL become:

I4C2i = I{SPANi -1 (3.128)

I/JICL.l = [}\'SPX\Ni/32] (3.129)

T4Cl. = TI4C2, - TACL, (3.130) ”
A 1 1

For all factors of 4 in N the cxpressicn becomes:

k

T4C2 = % (KSPﬂNi—l) (3.131)
i=1 :
k :

14CI1, - b [IKEDAN. /32] (3.132)
i=1 1

TACl = 14C2 - T4CL

where thoere are k factors of 4 in N.
The general oxpressions for I6TY, IGUER, and IGTFPL were
derived 1o bes

T('.'I‘P‘Li 2 .”..‘Sl‘z'\Nj/B.?] (3.134)

FGTE ., O REPAN, - 16711, - 2 (3.135)
1 1 1
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]GTrﬁi : (KS“Xﬁj ~- 1)y (Nrac{i)y - 1) £3.136)

The rcsult for the general radix-p ccection boecomes:

k
IGTY = 3 IGTF (3.137)
1=
IGTPIL, = & 1CTFLi (3.138)
i=1
k
IGTFPE = ¥ IGTFEi (3.139)
i=1

Lgs (2.124) thrcugh (3.139) were programmed in FORTRAN and
then tabulated as a function of N in Table 3.4. These
resultis identically match the tests conducted using the
counters.

iwamining tnie FORTRAN code where the counters were
located gives the number of operations performed each time
one of the counters was incremented. These results arce
presented in Table 3.5 for all the counters. The number
of real operations, sine and cosine library calls, and
exponentiations can be determined for all N length secquences
by using Tables 2041 and 3050 The general oxpressions arce
given by

KADD == 1 (12C¢ 4+ 14C2 + 1aPr) + 3(T4ChY + 2(1G7rLn) (3.340)

KMU = 4(I2C 4+ 14C2 4 16T - IGURLY + 6(14Cl) (3.141)
KEXD = 2(714C1) (3.142)
3.4.5 Real Opcrati cns Count fer Mixed PrTs.  Thoe

real operations count is derived from the nunber of complex
twiddle factors, the nuwle o of butterflies, and the number

of since and cosine terms conputed using difference cquations.
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TABRI 3.6

OPTRATIONS XUCWLND PO DACH CoUire i

Real Real Fxponon- Sirc Cosinc
Counter Add Mult tiation Cails Calls

12¢ 4 4 0 0 0
T2C1 0 0 0 1 1
I4C1 3 6 2 C 0
T4C2 4 4 0 0 0
T4, 0 0 0 1 1
ey 4 4 0 0 0
IGTYL 2 4 0 0 0

IGTIL 0 0 0 1 1
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Given that N is faclored as:
N = pl 1)2 pm (3.143)

the number of twiddic factors has been shown (Singleton,

1969) to be:

m
) (N(Pi - l)/Pi) - (N-1) (3.144)
i=1

where m is the total number of factors of N. The number of
butterflies required for an N length sequence is given by:

m

L (N/p.) (3.145)
i=1 *

The total real operations count is determined by adding (a)
the number of real multiplications and additions required
per butterfly times Eq (3.145), plus (b) the complex twiddle
factor multiplications times Eq (3.144), plus (c) the number
of additions and multiplications given by Eq (3.140) and
(3.141).

Assuming a complex multiplication requires four real
multiplications and two additions a general expression for
the real operations count can be determined for the mixed
radix FFTs.

Singleton's mixed radix algorithm contains special
transform scctions for factors of 2, 3, 4, and 5 as well as

a general section for other odd factors. This requires

that N be represented as:

(3.146)




-

The IMSL mixed radix FPT (SFTCC) does not have a special
scction for factors of 5 and uses the general section to
transform these factors. The author's mixed radix FI'T (FFTMR)
has sections for 2, 3, 4, and 5 but docs not have the general
transform section. Only the detailced development of oper-
ations count for Singleton's algorithm is prescented here
because the cther two algorithms are subsets thereof. The
general expressions for real operations versus N are given
for the other two algorithms in Appendix G and H.

The radix~2 section of the FORTRAN code for Singleton's
algorithm is shown in Figure 3.20. For factors of two the
twiddle (rotation) factor complex multiplications are com-
puted in this section rather than the "general rotation
section" to reduce the array indexing required. Using

Eq (3.144) the total number of butterflies is rN/2 and from

Eq (3.145) the total number of twiddle factors is rN/2
{neglecting the - (N-1) term which will be subtracted once
the complete real operations count for all factors has been
developed). The transform for factor of 2 (refer to

I'igure 3.20) is computed in lines 2200-2230 using 4 real
additions, if no twiddles arc required, or it is computed
in lines 2450-2500 if twiddles are necessary. The general

expression for factors of two becomes:

real mult 4(rN/2) = 2rN (3.147)

i

real adds 4(rN/2) + 2(rN/2) = 3xN (3.148)

The factors of 3 section shown in Figure 3.21 performs !

Pl

only the butterfly in this scction and uses the general
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rotution (twiddle) scction to twiddle the data (the genceral 1
twiddle factor section is shown in Fiqure 3.24). Using
Lgs (3.144) and (3.145) the number of butterflies for
= factors of 3 is sN/3 and the number of compiex twiddles is
5(2N/3). Examining lincs 2760~2870 in Figure 3.2 shows
4 real multiplications and 12 rcal additions. Each complex
twiddle requires 4 real multiplications and 2 real additions.
The expression for the factors of 3 section becomes:
real mult = 4(N/3)s + 4(2/3)Ns
= 4sN (3.149)

real adds 12(N/3)s + 2(2/3)Ns
= 16sN/3 (3.150)
The factors of 4 section in Figures 3.22a and b include
the twiddles in the butterfly section to minimize array
indexing. The number of butterflies computed for t factors
of 4 is tN/4 and the number cf complex twiddles is t(3N/4)
from Egqs (3.144) and (3.145). PFrom lines 3210-3320 and

3540-3570 the number of real additions per butterfly is 16.

é; Every complex twiddle requires 4 real multiplications and

;k. 2 additions. Combining the butterfly and twiddle operations

i : results in the general expression for factors of 4: ,
. !
q real mult = 4(3N/4)t = 3tN (3.151) |

) { real adds = 2(3N/4)t + 16(N/4)t

= 3tN/2 + BLN/2 = 11tN/2 ' (3.152) i

3 The transform scction for factors of 5 shown in Figure |

E" 3.23 computes the butterflies for the u factors of 5. There

;_ arc uN/5 butterflies and u({4N/5) complex twiddles based on

£ 4
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Egs (3.144) and (3.145). LExamination ol lines 3820-4090

in Pigure 3.23 shows 10 real mulbtiplications and 32 real

additions are required per butterfly. Combining the
butterfly and complex twiddle operations provides the

general expression for real opceration for factors of 5:

real mult 16 (N/5)u + 4{(4N/5)u

= 32uN/5 (3.153)

real adds 32(N/5)u + 2(4N/5)u
= BuN (3.154)
where u is the number of factors of 5 in N.

The general transform scction for odd prime factors

is more complex than the special factors sections. To

aid in describing the number of real operations a p-radix
is defined such that p is an odd prime greater than 5 with
an associated "mi" integer power. The real operations
count for the general section does not include additions

associated with array indexing nor does it count multi-
plications and additions needed to recursively compute the
sine and cosine terms.

Based on the FORTRAN pfogram for the odd factors shown
in Figurc 3.24a and b therc arc five sources of real
opcrations for cach P; factor. The first source shown in
lincs 4310-4360 is computing the (pi—l)/2 complex multi-

pliers for the butterfly legs which require:

real mult = 4(pi—1)/2 2(pi—1) (3.155)

rcal adds == 2(pi-l)/2 (pi—l) (3.156)
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oocoRbeeed only once ror cach

SGow lactor Py el ooy 0287 -4, thoe factor 7 roenlres

{(7-1)/2 complun . tiplicrs. If N=196=7+7+4 thcro wrc

still only (7-1)/2 complex multipliers reeded.

The second source of real opcrations is produced by

computing the butterfly transmittances which require only

real additions. From Eg (3.145) there are (mi)N/pi‘

butterflies required for the (mi) factors of p;. For

each butterfly there are (pi—l)/2 transmittances which

require only real additions. Examining lines 4470-4540

in Figure 3.24a show that the (pi-l)/2 transmittances

require 6 additions. Combining these results produces

the general expression for the real additions:

Il

real adds (6(pi-1)/2)(mi)N/pi

3N (mi) (p;-1)/py (3.157)

The third source of operations is produced by the

(pi-l)2/4 butterfly transmittances which require real

multiplications and additions. Lines 4510-4750 in

Fiqure 3.24b show there arc 4 real multinlications and

.y

4 real additions needed., Combining this with the number

"‘ of transmittances and butterflies gives:
S real mult = 4((mi)N/p,) ((p;-1)%/4)
s 2
PR | = 1 —_
real adds = (mi)N(p;-1)%/p; (3.159)

KL s

LY
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| Tho ol L e v g bs Trom compuliing thoe (Ivi—] Y/ 2

e lertdy o o i SN (mi)l/pi butter{l, . LCoamining

TIPS

linces 4800~4730 zhow that this function requires 4 recal

additions. Combining these results give the total as:

i

real adds ((mi)ﬁ/pi)4(pi-l)/2

i

2(mi)N(pi-l)/pi (3.160)
The final source of real cperations is shown in

Figure 3.24b lines 5120-5140 which performs the complex

twiddle multiplications. From Eq (3.144) there are

(mi)N(pi-l)/pi complex twiddles which provide the general

expression:
real mult = 4(mi)N(p,~1)/p; (3.161)
real adds = 2(mi)N(p;~1)/p; (3.162)

Combining Egs (3.145) through (3.162) give the expression

for the real operations in the general odd factors section:

k
) real mult = I 2(p,-1) + (mi)N(p;-1)%p,
i=1
+ 4(mi)N(p;~1)/p, (3.163)
X
real adds = T ((pi-l) + 3N(mi)(pi-l)/pi
i=1

+ (mi)N(pi-l)z/pi + 2(mi)N(p;-1)/p;

+ 2(mi)N(pi-l)/pi)

e Kt

4
i K
= I (p;-1) + 7N(mi) (p,-1)/p;
i=1
+ (mi)N(pi—l)z/pi (3.164)
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Assuming that the sequence can be factored into

3 -
N = 2F 3% 4t 54 pTl pT“ cee prk the expressions for the

total number of real operations can be written using

Egs (3.140) through (3.164) as:

real mult 2rN + 4sN + 3tN + 32uN/5
k 2
'il(z(pi—l) + (ml)N(Pi‘l) /pi

+

+ 4(mi)N(p;-1)/p;) - 4(N-1) + KMULT (3.165)

3rN + 16sN/3 + 11tN/2 + 8uN

real adds
k
+ I

l((pi-l) + 7N(mi) (p;-1)/p;
1=

+ mi)N(p;-1)°/p;) - 2(N-1) + KADD  (3.166)

Notice that Egs (3.165) and (3.166) have the corresponding
4 (N-1) and 2(N-1l) real operations subtracted from the total
multiplications and additions because the first stage of any
FFT decimation-in-time does not require the "twiddle factors"
(likewise with the last stage of an FFT decimation-in-
frequency). These equations also include KADD and KMULT
which are the real operations required to compute the
recursive sine and cosine difference equation.

Similar expressions and derivations were performed
for the IMSL FFT and the author's FFT but due to the
reduridancy they were derived in Appendices G and E
respectively. The general expression for real operations

required by the IMSL mixed radix FFT (where N = 2f 38 4t

ml _m2 mk, . .
P;” Py «e«¢ Py ) is given by:
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| real muloe = ZriN + sl + JtN
k
: + % (2(p.-1) + 4(mi)N(p.~1)/p.
N L 1 1
i=1
+ (mi)N(pi-l)z/pi) - 4(N-1) + KMULT  (3.167)

i

real adds 3rN + 6sN + 1tN/2

X
+ I ((p;~1) + 8 (mi)N(p,-1)p;

i=1
+ N(mi)(pi-l)z/pi) - 2(N-1) + KADD (3.168)

where KMULT and KADD are the multiplies and adds needed
to compute the sine and cosine terms. The general expression

for real operations required by the author's mixed radix

t

FFT (where N = 2% 35 4% 5Y) js given by:

real mult = 2rN + 4sN 4+ 3tN
+ 32uN/5 - 4(N~-1) + 4N (3.169)
real adds = 3rN + 16sN/3

+ 11tN/2 + 8uN - 2(N-1) + 10N (3.170)
The real operations count for Singleton’'s mixed radix
FFT is shown for N - 200 in Figures 3.26 and 3.27. The
operations count plotted includes only the additions and
multiplications for the butterfly and twiddle factors in

order to demonstrate the N2 "upper bound" and the N 1og2 N

; "lower bound". The N2 upper bound occurs in the mixed
radix FFTs when a prime number must be transformed. The
?37 N log, N lower bound is reached when N=2". In between the
i& N2 and N log, N bounds there are other "bounds" which are
:. observed in Figure 3.25. The dashed lines represent numbers
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which arc not primes, but arc not highly factorable either.
The dashod line approaches log2 N as !l beccomes more
factorable.
The relative efficiency of radix 2, 3, 4 and 5 FFTs
is observed in Figures 3.27 and 3.28. These figures plot
real operations counts for the mixed radix FFT for N less
than 250 (where N is divisible by 2, 3, 4 and 5 only) and
annotate the integer powers of 2, 3, 4 and 5. Notice that
the fixed radix-2 and 4 provide the "lower bound" and the
radix-3 and 5 provide the "upper bound" on the number of
real operations which shows that integer powers of 2 and 4
require the least number of real operations and radix-3
and 5 the most. Other combinations of factors, i.e.,
N=120=5*4*3*2, have real operations counts which fall r
between the "bounds". '

3.4.6 Memory Requirements for Mixed Radix FFTs.

As in the case of fixed radix algorithms, a major considef—
ation in selecting a particular mixed radix algorithm is
the memory required to execute the FFT subroutine given the
memory storage limitations ©of the computer to be used. The
memory requirements for the three mixed radix FFTs is given
here as a function of the sequence length N. Each
algorithm has program and memory array requirements which
are listed below.

All the algorithms were compiled on the CDC Cyber
system at AFIT and the program memory required by each sub-

routine was determined from a "load map" generated by the ‘
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command MAP, PART. This load map gives the size of all
programs usecd during execution. The array storage require-
N ments were determined from the FORTRAN coded programs and

' reference material provided with the IMSL and Singleton FFT

subroutines. The general expression for memory recuire-
ments for each FFT subroutine (as a function of N) is
given below.

The subroutine written by the author requires 899
words of program memory. This subroutine (FFTMR) also
requires the "calling” program to dimension 6 arrays
(A, B, AT, BT, WKS, and WKC) to length N. (Use of these
arrays is explained in Appendix E). This gives the total
memory array required as:

FFTMR memory = 6N (3.171)

The mixed radix subroutine written by Singleton
(FFTSNG) requires 1100 words of program memory. Four arrays
(AT, BT, CK, SK) are dimensioned to equal the maximum prime
factor of N. If there are no prime factors greater than 5
these arrays may be reduced to 1. A fifth array (NP) is

v dimensioned to at least one less than the product K of the

square-free factors (see Glossary) of N. If N contains at

most one square-free factor this array can be reduced to
M + 1 where M is the maximum number of prime factors of

N. Two more arrays, (XR, and XI) are dimensioned to length

WGP W Y *
Q‘-“‘ .

N. The total memory array storage becomes:

3

FFTSNG memory = 2 « N + 4 « MAXPF + (K~-1 or M+l) (3.172)

4"‘

Y 4

P |
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where

Sequence length

N =

MAXPF = Maximum prime factor of N

K = Product of square~free factors
M = Maximum number of prime factors

NOTE: K-1 or M+l is selected in Eq (3.172) based
on the number of square-free factors of
N as described in the preceding paragraph.
"The mixed radix subroutine (FFTCC) provided as part
of the IMSL package on the CDC Cyber system requires 1061
words of program memory. A complex array (A) must be
dimensioned to length N and two other arrays (IWK and WK)
are dimensioned to length "IWORD", where:
JWORD = 3 - M+ 3 + MAX (4 - M+ 7 + 6 * K,
KB + 1 + 2 » JK) (3.173)
To define the quantities M, K, KB and JK a prime factor

decomposition of N is required such that:

2 .2 2
N=f£5 £5 o0 fgp fgrer oo Expear

£
where each fj is a prime number {(other than 1) and fi # fr
given that:

i, r > KT + 1

KT > 0; JT > 0
Then:

M = 2KT + JT (3.174)

is the number of prime factors in N and:

K = max
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is the largest prime faector of N. KB and JK arc defined

as follows:

JK =1 - fl . f2 e FKT (3.176)
where JK = 1 if KT = 0 and
KB = N/(JK)° - 2 (3.177)

Once M, K, JK, and KB are determined they are substituted
into Eq (3.173) to determine the value of IWORD, the actual
work storage requirement. Counting only the arrays for the
work vectors (IWK and WK) and the data arrays (A and B)
gives the total array memory required for the IMSL FFT:
Memory = 2 * N + IWORD * 2 (3.178)
An example of N=2100 is used to demonstrate the use
of Eqs (3.172) through (3.178) in computing the memory array
required by the IMSL and Singleton subroutines. For N=2100

z ., 3 ¢« 7 for which FFTSNG memory

the factors are 22 e 5
becomes:

N = 2100 = sequence length

5
<
g
|
"

7 = maximum prime factor in N

K = 37 = 21 = product of the square free factors

2
]
o
]

maximum number of prime factors
Using Eq (3.172) the expression for FFTSNG memory array
is given by
2 ¢« 2100 + 47 + (20 or 7) = 4248 (3.179)
NOTE: There are two square-free factors 3
and 7, therefore choose 20 for the
last term of Eq (3.179).

If this subroutine were used on the Cyber 74 computer, the

program memory is added to the memory array to give a
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total memory of:
memory = 4248 + 1100 = 5348 words (3.180)
The same example of N=2100 is applied to the IMSL
memory equation where:
2 .2 2

‘ N=f] Fy or Fgp frrel v Trrear

=22 .5%.3.7=2100 (3.181)
From Eq (3.174) the expression for M becomes: '
M=2KT+JT =2+ 2+ 2 =6 (3.182)
which is the number of prime factors in N. The largest

prime factor in N is given by Eq (3.175): F

K = max {(f.) = 7
1 <3 < RT+JT (3.183)

JK, which is the product of the "square-factors", is:

JK =1 - fl . f2 PN fKT = 25 =10 (3.184)

and KB is

KB = N/(JK)2 -2

2100/100 - 2 = 19 (3.185)
The results of Eq (3.181) through (3.185) provide the

size of the work vector IWORD given by Eq (3.173).

: IWORD = 3M + 3 + MAX (4M + 7 + 6K, KB+1+2JK)

kS = 18 + 3 + MAX (24 + 7 + 42, 19+1+20)
if | = 21 + MAX (73, 40) = 94

" Substituting IWORD=72 and N=2100 into Eq (3.178) gives the

i memory array for FFTCC as:

ﬁ 2N + 2IWORD = 4200 + 94 = 4294 (3.186)
’5 Using this subroutine on the Cyber 74 computer requires

;; 1061 words of program memory which makes the total memory

- required equal to:

5
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4294 + 1061 = 5355 words {(3.187)
For this length N=2100 sequence the Singleton FFTSNG used
less memory (5348) than the IMSL FFTCC (5355).

The array memorv requirements given by Eg (3.172) and
(3.178) are plotted in Figures 3.29 and 3.30 for M less than
200. It is readily observed that selective adjustment of N
to be highly factorable (composite) minimizes the memory
required by subroutines FFTCC or FFTSNG. As an example of
how prime numbers increase the memory array sizes, counsider
N = 2099 for each algorithm. For FFTSNG the variables are
MAXPF = 2099, K = 2099, and M = 1. Since N = 2099 contains
only one square-free factor the array NP can be dimensioned
to M+1=2, The memory array for FFTSNG becomes:

2N + 4 « MAXPF + 2 = 12594 words of memory array
Adding the program memory of 1100 yields the total memory
required to execute the FFTSNG on the Cyber 74:
memory = 12594 + 1100 = 13694 (3.188)

For the IMSL FFT the variables are K = 2099, JK = 1,

KT = 0, JT = 1, KB = 2097, and M = 1. The expression for
IWORD becomes:

IWORD 3M + 3 + MAX(4M+7+6K, KB+1+2JK)

= 3 + 3 + MAX(12605, 2100) = 12611
The total memory assuming execution on the Cyber 74
system is:
2N + 2-IWORD = 2-2099 + 2:12611 = 29420 (3.189)

which is 5.5 times larger than the total memory for N=2100.
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3.5 Fourier Transforms Using Fast Convolution Alcourithms

The paper by Cooley and Tukey, 1965, had a major impact
on digital signal processing by stimulating the development
and wide use of the FFT. Recently several new idecas have
been used to compute the DI'T which have impacted digital
signal processing. In 1968 it was observed by Rader that
computation of the DFT could be changed to circular con-
volution by rearranging the data when N is prime. Now, if
given a fast way to do circular convolution, one has a fast
DFT method. Winograd showed the minimum number of multi-
plications for circular convolution of primes and prime
power length sequences. He then proposed that these high
speed prime power convolutions be "nested"” into long trans-
forms to minimize multiplications. The Winograd nested
algorithm has been studied and programmed (Silverman, 1977;
McClellan and Nawab, 1979; 2ohar, 1979) for computing the
DFT of complex valued sequences.

An alternative to the Winograd algorithm was proposed
by Kolba and Parks and combined the concept of fast convolu-
tion with conventional DFT techniques to cive another
efficient DFT implementation. Kolba and Parks' prime
factor algorithm (PFA) uses the same reordering technique
as the Winograd Fourier transform algorithm (WFTA). The
oriainal PFA (Kolba and Parks, 1978) has been modified
(Burrus and Eschenbacher, 1980) so it can transform the same

sequence lengths as the WFTA.
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This secction presents thoe theory of the WRTA “"small-n“

algorithms, the data reordering (which is the samc¢ for PFA

and WFTA), the PFA theory, the real operatinns count, and the
memory array requirements for both PFA and WPTA. Since both
algorithms follow a similar develowment the conversion of a
DFT to circular convolution and data reordering are only
presented once and apply to both algorithms.

3.5.1 Converting a DFT to Circular Convolution.

To convert the DFT expression to a circular convolution the
DFT matrix [W] must be "mapped"” into the circular convolu-
tion matrix [Wc]. The mapping between these two matrices,
and hence the basis for the WFTA and PFA was developed
by Rader in 1968.

Rader showed that if "N is prime, there is some
number g, not necessary unique, such that a one-to-one
mapping from the integers i = 1,2, ..., N-1 to the integers

j=1,2, ..., N=-1 is given by:

j = ((gh))y (3.190)
where the notation ((x))N implies x modulo i.." The cxample

of N=7 and ¢=3 using the mapping of Eq (2.190) ogives:

i]1|2J3|4|5|6
-j[3[2{6{4[5|1

; The number g is referred to as 4 "primitive root" in number

theory. The mapping of Eq (3.190) provides the convolution

matrix [Wc] from the DFT matrix [W]. Examples of this

mapping are extensively treated in the references {
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(Silverman, 1977; Kolbka and Parks, 1977) and arc not
repecated in this paper. |

A brief example of using the results of the convolu-
tion matrix is presented to aid in developing the small-N
algorithm operations count. Considcr the following 3-point

DFT written in matrix notation as:

X (0} w09 rx(0)
X(1)] = wowlw2 x (1)
X (2) wowlwl | Lx(2) (3.191)

3 is assumed and Wg = Wﬁ. The circular convolution

where W
is given by:

1 ..2

X(1) W W x(1)

X(2) w Wt (x(2) (3.192)

which provides X(1) and X(2). Then the DFT in Eq (3.191)

can be rewritten using Eg (3.192) to give:

x(0) = wo(x(0) + x(1) + x(2))
x(1) = wWx(0) + (1)
X(2) = wx(0) + %(2) (3.193)

Using similar technigues to the one presented here, convolu-
tion expressions to perform DFTs have been developed for

N=2, 4, 5, 7, 8, 9 and 16.

111




e -
. & R .

4"‘

3.5.2 frorderinag the Data Arrays. Implementing the

WETA or the PFA into a useful form involves making long
transforms from the short, fast-convolution transforms for
2, 3, 4, 5, 7, 8, 9, and 16. The gyeneral idea is "to con-
vert a one-dimcnsional length N = Ml M2 e Mi transform
into a i-dimensional transform requiring computation of

i shorter length Mk transforms for k =1, 2, ..., i;"
(Kolba and Parks, 1977). The mapping from one-dimension
to i-dimensions is based on the Chinese Remainder Theorem
which requires relatively prime factors Ml My o Mi'

The example for two mutually prime factors given by Kolba
and Parks, 1977, is presented here because the mapping is

common to both WFTA and PFA.

In the DFT:
N-1
X(k) = I x(n) w¥ (3.194)
N=0
the index n of the input sequence is referred to as the
input index, and the index k of the output sequence X(k)

is called the output index. Mappinag from one-to-two

dimensions maps the input index n into a pair of indices

(nl, n2).
n; = rn mod Ml ny = 0l .o, Ml—l ry = M2 mod Ml ﬂ
n, = r,n mod M2 n, = 0y v.o., M2—1 r, = Ml mod M2

The output index is

-.o'M—l

kl = k mod M1 kl = 0, 1
112




Thoo inverse meoping fres bwo-to-one dimension for the out-

f put index is:

i k = (s)k; + s,k,) mod N (3.195)
where
sl -1 mod Ml and 32 0 mod Ml
S = 0 mod M2 and S = 1 mod M2

While the same inverse mapping in Eq (3.195) could be used
for the input index n, it is more convenient (Kolba and

Parks, 1977) to use:
n = (Mznl + Mlnz) mod N (3.196)

When the mappings in Egs (3.195) and (3.196) are used the
DFT becomes:

Ml-l Mz-l n2

X(k,,k,) = ¥ r x{(n,,n,) W W (3.197)
172 N 172 M
n1=0 n2—0 2

At this point the WFTA and PFA approach the implementation
of Eq (3.197) differently as seen below.

3.5.3 The Winograd Fourier Transform. A new

algorithm for computing the DFT was proposed by Wirnocrad

. 4

in July 1975, The WEFTA has properties such that the nunber

of real additions remained at the FFT level while the

Y L Bl

number of real multiplications necessary to evaluate the

DFT was reduced (Silverman, 1977). This paper will not

e -

“alidh *W

derive the "small-N" algorithms. Readers interested in
derivation of the WFTA are referred to the articles which
extensively treat the topic (Winograd, 1976; Silverman, 1977;

Kolba and Parks, 1977; 2Zohar, 1979).

-
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Winograd's proof startcd with the N by N matrix with

clements:

ir ir mod M

WN = WN = QN(i,r) (3.198)

which can be deconposed to:

QN = ON DN IN (3.199)

where I, i¢ a u by N incidence matrix with values of 0, 1,

N

and -1 only, D, is a u by u diagonal matrix, and O,, is an

N N
N by u incidence matrix (Silverman, 1277). The decompcsi-
tion of Qq is possible with large values of u relative to
N (i.e., u=N2). Winograd solved the more difficult problem
of decomposing QN=ON DN IN given an incidence matrix which
has dimension u smaller than Nz. Winograd applied field
theory to give solutions where u approximately equals N for
small values of N, where N = 2, 3, 4, 5, 7, 8, 9, and 16
(Silverman, 1977).

Not only did Winogral prove the minimum multiplication
count for the above small-N DFTs but he also proposed a
special structure of £g (3.197) using Fg (3.199). The two

dimensional transform in Eq (3.197) mav be implemented by

first'calculating My length M, DFTs:

2
M,-1 n.k
y(ng,kp) = 21 x(ng,myw 22 (3.200)
n,=0
2
and then calculating M2 length M, DFTs:
Ml-l nlkl
X(k,,k,) I yin,,k,)W (3.201)
1’772 1’72
n1=0
114
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Using the notablion of LCg (3.199) the M, short trans-

1
form can be written in terms of the input additions i(l),

(l), and muitiplications d(l). The length
d(2)

output additions 0

(2)  (2)

M2 transform uses 1 , , and ({Kolba and Parks,

1977). The E¢g (3.200) becones:

u,-1

- 2 (2) L(2) . (2)

y(nl,k2) = z 0k . d i x(nl,nz) ' {(3.202)
r=0 2 2

X(kl'kz) in Eq (3.201) is a length My transform of y(nl,kl)
which can also be written:

u, ~1 M. -1
1 (1) (1) 1 . (1)
X(k, ,k,) = r o0 d I i y{(n,,k,) (3.203)
1’72 =0 klm m n1=0 mn, 1772

Substituting Eq (3.202) into Eq (3.203) gives:

u,~1 M. -1
1. (1) (1) "1 . (1)
X(k, ,k,) = 0 4 z i
1’72 m=0 klm m nl=0 mn,
u,-1 - M,-1
2E 0(2) d(‘) 2z i(2)

X
k2r r rn,

x(n,,n,) (3.204)
r=0 1772

n2=0
The order of summation may be interchanged to "nest" the
multiplications in the center which gives Eq (3.204)

rewritten as:

. u,-1 u,-1
X(ky,ky) = 2o of2L lpoofl) ql) 4(2)
r=0 2 m=0 1
M, -1 M, -1
x Iy i 2t (2 e n) (3.205)
_ mn - rn 1772
nl—O 1 n2—0 2
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Eq (2.205) is thce form that was implement od into FORTRAL
code (McClellan and tiawab, 1979) ond listed in Appendix I
As an example of the "nesting" structurc for the WETA

consider the case of N=3 given in Egs (3.190) through (3.192).

‘ 3 First, let
X(1) M,/2 + M,/2
[ = | ! 2 (3.206)
X(2) Ml/Z + M2/2
then equating Egs (3.206) and (3.191) gives:
= 1 2
X(1) M1/2 + M2/2 x (L)W + x(2)W
= = (3.207)
X(2) M /2 - My/2 (L)W + x(2)wh
Substituting,
wh = exp(-j2n/3) = -1/2-3(/3/2)
W2 = exp(-341/3) = -1/2+3(/3/2)
into Eq (3.207) provides:
M /2 + My/2 = -x(1)/2 - 3 (x(1)v/3/2)
-x(2)/2 + i(x(2)v3/2) (3.208)
g M/2 - My/2 = —u(1) /2 + F(x(1)V3/2)
. ~x(2)/2 - G(x(2)+3/2) (3.209)
% Solving for My and M, gives:
;e
‘g M1 = =(1/2) (x(1) + x(2))
‘; My = -3 (/3/2) (x(1)-x(2)) (3.210)
]
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For the algorithm to be used in Winograd's algorithm the

Vs 0
multinlications by W =1 must be accounted for and minimized.

This is accomplished by modifying the length 3 DFT to:

a; = x(1) + x(2)
a, = % (1) ~ x(2)
aj = x(0) + a; (3.211)
M1 = (-1/2 - l)a1 = -(3/2)al
M, = —j(/§/2)al
= wla =
M3 =W a3 = ag (3.212)
Cl = M3 + Ml
X(0) = M3
X(1) = Cl + M2
X(2) = Cl M2 (3.213)

Egs (3.211) through (3.213) result in 2 multiplications,
1 multiplication by WO, and 6 additions which can now be

expressed in the X = 0-D+I-*x notation as:

X (0) 100171 O 0 11 17 'x(0}
()] =l1 111 -3/2 o0 o1 11 x1) (3.214)
X(2) 114 1 0 =-343/2 0 0 -1 Lx(2)

and then rewritten into summations as:

u-1 N-1
X (k) 0kr dr irnx(n) (3.215)
r=0 n=0

The fast convolution cases for N=2,4,5,7,8,9, and 16

were developed similar to the method used for N=3 above.

The explicit equations for these cases provided the small-N
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1 operations count shewn in Table 3.6 which {5 used in com-
! puting the real operatinonsg count ac o tunction o7 0 Tor
{ the WITA.

= 3.5.4 The Prime Factor Algorithm Thecory. an 1lter-

E - native tn the nested alcorithm nronmosed hyv Winoarad was

developed by Kolba and Parks. Because of the algorithms
structure it is called the primc factor algorithm (PF4)
and uses a modified version of Winograd's high-speed con-
volution technique.

Converting the DFT to circular convolution and
reordering the data arrays for the PFA is identical up

through Eq (3.197)

where W

My exp(-j2ﬂ/Ml),

W
My

exp(—j2n/M2), with My and M, relatively
prime.
The transform in Eg (3.197) may be performed by calculating

M, length M, DFTs:

1 2

Mz-l nzk2
y(nl,kz) = i X(ny ,n,)W (3.2186)

n2 0

then calculatina M, lenath M, DFTs:

M, -1 n.k
_ 171
nl=0

(3.217)

e &

The expressions in Eqs (3.216) and (3.217) are implemented

- Wsm el s o

as short DFTs instead of "nested" operations as shown in

Eq (3.205).

e
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TABLE 3.6
SMALL-N OPERATIONS COUNT FOR WI'TA

Ml Ta 4 e

Mult
N Mult by w° Adds
2 0 2 2
3 2 1 6
4 0 4 8
5 5 1 17
7 8 1 36
8 2 6 26
9 12 1 44
16 10 8 74
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For both alaorithrs otructure the small-N couations
aroo o the aaree, only the ifmplepoentation 1o Jdifforent.  In
the case of the PIA structurce the small-l ulgorithms are

modified to permit a “shift operation” Instead of a multi-
nlication by 1/2. For the N=3 example Brags (2.211) throuch

(3.213) are modified to:

a; = (1) + x(2)

a, = x(1) - x(2)

az = x(0) + a; (3.218)
M) = -(1/2)a;

M2 = --j(/§/2)a2 (3.219)
C1 = x(0) + Ml

X(0) = a,

x(1l) = C1 + M2

X(2) = Cl - M2 (3.220)

Egs (3.218) through (3.220) have 1 multiplication, 1 shift
(multiplication by 1/2) and 6 additions.

Similar small-N DFTs result for N=2,4,5,7,8,9 and 16
to produce the overations count for PFA small-N algorithms
shown in Table 3.7 (Burrus and Eschenbacher, 1980).
(Complex valued sequences require the count in Table 3.7
to be doubled.) 1If the implementation of the PFA does not
use "shifts" the multiplication count must be adjusted to
reflect the multiplications by 1/2. The original FORTRAN
program written (Kolba, 1977) did not include the factor

of 16. Later modifications (Burrus and Eschenbacher, 1980)
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TABLE 3.7
PFA SMALL-I DT PCRATIONS COUNT
N Multiplies Shifts Adds
2 0 0 2
y 3 1 1 6
’ 4 0 0 8
5 4 2 17
7 8 0 36
8 2 0 26
9 8 2 49
16 10 0 74
NOTE: For complex sequences the values in
the table must be doubled.
.
\7" e
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ircluded thy Tactor of 16 which nmods the DPEFA capshle of
transforming the same coauetcec longihs s thie WIRTAL It
should be ncted that neither FPORTRAGD version implenented

the "shifts" which increased the number of rcal
nultiplicatinns.

3.5.5 Real Operations for WITM. To usc the WFTA

the N length sequence must be factorable into R relatively
prime factors Nl N2 .o NR where each factor corresponds
to one of the Winograd small-N algorithms for 2,3,4,5,7,8,

9 and 16. It has been shown (Silverman, 1977) that the

number of real multiplications is a function of the factors
of N. To aid in the development of the number of real

operations the following terms are defined:

Mr = number of real multiplications in factor Nr
Ar = number of real additions in factor N
Nr = rth factor of N

Winograd proved that the D,, matrix is an Mp by My diagonal

N
matrix with only 0, 1, or -1 for diagonal entries and 0N

and IN are N bv MN and MN bv N incidence matrices, respec-

tively. To evaluate the nested multiplications of Dy

(Silverman, 1977) requires:

NMULT = M, M M (3.221)

1 My ... Mp
which is the real multiplications count for real valued

sequences. For complex valued transforms Eq (3.221) must

be multiplied by 2.




All previous multinlications counts (Winograd, 1976;
Kolba and Parks, 1977; Silverman, 1977) use onlv Eg (3.221)

as the source of real multiplications for the WFTA. The

multiplicctions in Bg (3.221) arec all performed by the MULT
subroutine in Pigurc 3.31. Other rcal multiplications arc
required in the WFTA for computing the multiplier cceificients
and determining the input and output permutation vectors
of the INISHL subroutine in Figure 3.31.

The DFT multiplier coefficients are computed in lines
1450~-1510 of the WFTA listed in Appendix H and reqguire:

real mult = 3 * NMULT (3.222)

where N MULT was computed in Eq (3.221). Determining the

output permutation vector in lines 2080-2170 requires:

real mult = 4 * N (3.223)
where N is sequence length to be transformed. Combining
Egs (3.222) and (3.223) provides the number of real oper-
ations required for initializing the WFTA. Subsequent

transforms of the same sequence length do not require

initialization. The first complex transform of length X

using the WFTA requires:

real mult = 2 * NMULT + 3 * NMULT + 4 * N (3.224)

- gpen e

-~ &

Subsequent complex transforms require:

real mult = 2 * NMULT (3.225)

Counting the number of real additions is more compli-

-

r. LA A% o

cated because the factorization order of N will change the

R

real additions count (Silverman, 1977). PFor a given factor-

.’

- ization of N = Ny N, ... Np the number of real additions
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Flow Control in WFTA Program.
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rosorivred to oo lutt e a comploex colued cooaienes can b
cdestorndred L he TUTONT dndtioalL ooty o cabh e ine and
the WEAVED and WEAVL2 subroutines in 77 jure 3.21.  First

the real additions from the "WEAVLs" can be develoned by

considering the special case of N = R Hl 1s e fincd
< -

as the "innermost" factor and NZ is the "outcrmest" factor.

For two factors of N Silvcrman has shown the nuiiber of

real additions to be:

A(2) = N

1 A, + M, A (3.226)

2
(Recall A, equal real adds to evaluate factor N, and M,
equal real multiplies to evaluate NZ') Now consider

N = Nl N2 N3 where (N1 Nz) is considered to be the "inner-

most" factor. The number of real additions becomes:

A(3)

(Nl N2)A3 + My A(2)

= Nl N2 A3 + M3 N1 A2 + M3 M2 Al (3.227)
By iterative substitution the number of additions for
N = Nl N2 N3 N4 becomes:
A(d4) = (Ny N, N3JA, + M A(3)
= Nl NZ N3 A4 + M4 Nl N2 A3
+ M, My Ny A, + My, My M, A (3.228)

Eqs (3.226) through (3.228) are used to write a compact

expression for the rumber of real additions needed in the

WEAVE subroutines:
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The expression in Eg (3.229) represcnts only real additions
used in WEAVEl and WEAVLZ2. Other additions are rcuuired Lo
the INISHL initializatiocn subrcutine to index thoe Li
coefficient array and conpute the output index vector.

The DFT ccefficient array 1is indexed with a J counter
in line 1500 of the FORTRAN WFTA program in Appendix H.
This part of the INISHL subroutine requires NMULT real
additions. The input index array INDX1l requires another
J counter in line 1720 which uses N real additions. The
output index array INDX2 uses a J counter in line 2160
which uses N real additions. Also the INDX2 computation
requires 8N real additions in line 2120.

Totaling the real additions in the initialization
subroutine gives:

real adds = NMULT + 10N (3.330)

Adding the results of Egq (3.330) to Eg (3.229) gives the

total additions needed to transform an N lencth sequence o
the first time. Subsequent transforms at the same N scuouenc:
length requires only the number of adds in Eg (3.229).

The FORTRAN WFTA program written bv McClellan and
Nawab, 1979, decreased the number of real multiplications
for N=9 from 13 to 11 while the number of additions remained
constant at 44. Modifying Table 3.6 to reflect the new

multiply count for N=9 gives the McClellan and Nawab real
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Table 3.8 .

Using Lgs (3.229) and (2.330) witi Toanle 3.7 gives the
nurber of real operasions tor all permies Lo WETY Secjuence
lernatng srown 10 Vatese UM e . N ST AL SRS T P TR

"REAL MULTI" and "RLAL ADDE" represent tae operations for
the initial transform of lengtn N. The columns labeled
"RFAL MULT" and "REAL ADD" «cive the operations count for
subseqgquent transformations of the same seguence length,

The number of real operations are plotted as a function of

N in Figures 3.32 and 3.33. These graphs demonstrate the
large redu~tion possible after the WFTA has been initialized
for an N length sequence.

3.5.¢ Memory Requirements for WFTA. The FORTRAN

subroutine WFTA listed in Appendix H requires 2348 words of
program memory when compiled for the CDC Cvber 74 computer.,

The memory array requirements are given by:

XR, XI, INDX1l, INDX2: length N

COEF, 8K, €I: terath Nﬂthlrﬂl ?2 23 M4 wliilch 1s
the nurmbver vl T2 rocr e d by
the factors of N. NMULT is listed
in Table 3.9a and b.

co3, Cco4, CO5, CO3, CO1l6, CDA, CDB, CDC,
CDD: Total of 88

The origjinal version of WPFTA dimensioned INDX1, INDX2, COLF,
SR, and SI to their maximum possible lengths of 5040, 5040,

10692, 10692, and 10692 respc~tively. This made the memory
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TABLE 3.8
McCLELLAN AND NAWAB'S WFTA
REAL OPERATIONS FOR THE SMALL-N ALGORITHMS

N M(N) A(N)
2 2 2
3 3 6
4 4 8
5 6 17
7 9 36
8 8 26
9 11 44
16 18 74
»
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TABLE 3.9%9a
REAL OPERATIONS AND MEMORY FOR McCLELLAN AND NAWAB WFTA
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array storage very large even for the shortest scquence

lengths:

It

memory array 2N 4+ 2*5040 + 3*10692 + 88

2N + 42244 (3.331)
The memory arrays INDX1l, INDX2, COEF, SR, and SI were
variably dimensioned by the author's version of WFTA in
Appendix H. This reduced the memory arrays required to:
memory array = 4N + 3NMULT + 88 {(3.332)

The results of Eq (3.332) are listed in Table 3.9a and b
for all values of N. A comparison of the memory required
by Eqs (3.331) and (3.332) is plotted in Figure 3.34 which
shows the drastic savings in memory storage by using the
variable dimensions. The "cost" of variable dimensions is
more work for the user of WFTA because the dimensions must
be passed to the WFTA subroutine using more arguments in the
subroutine call. The original version required:

CALL WFTA (XR, XI, N, INIT, IERR) ‘
The modified WFTA call is:

CALL WFTA (N, XR, XI, INIT, IERR, SR, SI, COEF,
M, INDX1l, INDX2)

where M = NMULT. The increased complexity of the second
call is worth the savings of memory arrays.

3.5.7 Real Operations for the PFA. The real operation

sources for the Pr'A are computeda from reordering the data
and performing the small-N DFTs. The unscrambling constant
which maps the PFA result from arrays X and Y to arrays

A and B requires N real additions and no multiplications,
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The second source, computing the small-N DIFTs using fast

convolution, has been proven (Kolba and Park, 1977) for

two factors (Ml Mz) to be:
real mult = 2(Ml u, + M2 ul) (3.333)
real add - 2(Ml A, + M, Al) (3.334)
for three factors (Ml M, M3):
real mult = 2(M2M3ul + M1M3u2 + M1M2u3) (3.335)
real add = 2(M2M3Al + M MA, + M1M2A3) (3.336)
and for four factors (MlM2M3M4):
real mult = 2(M2M3M4ul + M{MsMyu, + MM M ug
+ M1M2M3u4) (3.337)
real add = 2(M2M3M4Al + M1M3M4A2 + MlM2M4A3
+ M1M2M3A4) (3.338)

where uy is the number of multiplications regquired for

Mi and Ay is the number of additions required for Mi‘

Notice that complex data transforms have been assumed in

Egs (3.333) through (3.338) and the number of multiplications
and additions werc multiplied by two.

As shown in the PFA theory chapter the small-N
algorithms can be implemented by using "shifts" instead of
multiplications by 1/2. The FORTRAN programs available do
not make use of these shifts. Therefore, the operations
count for the PFA small-N DFTs shown in Table 3.7 is

modified to produce Table 3.10. Using the results of
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TABLE 3.10
PFA SMALL-N DFT OPERATIONS COUNT FOR NO SHIFTS

N MULT ADD
2 0 2
4 3 2 6
'-7 4 0 8
5 6 17
- 7 8 36
K 8 2 26
9 10 42
16 10 74
4
A
3
*
1
¥
- r
1
i
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Eqs (3.333) through (3.338), the N adds rcquired for the

output mapping, and Table 3.10 the number of recal multi-

plications and additions are listed for all permissible N
values in Table 3.1la and b. The corresponding graphs in
Figures 3.35 and 3.36 show the multiplications and additions
as a function of N.

Even though this FORTRAN program did not use a shift
to perform multiplication by 1/2, incorporating shifts into
the small-N DFTs represents a significant savings of real
multiplications. The major benefit would be in small
computers where software multiplies are more ccstly relative
to additions. The benefit of performing multiplications by
using shifts is given in Table 3.la and b under the PCT

: (percentage) column. PCT was calculated by:
PCT = ((M-MS)*100)/M (3.339)

where M is the number cf multiplications without using
shifts and MS is the number using shifts. The percentage
savings as a function of N was plotted in Figure 3.37 for
all values of M.

3.5.8 Memory Requircments for PFA. The PFA program

listed in Appendix I requires 770 words of program memory

when compiled for the CDC Cyber 74 computer. The memory

A

array requirements are given by:

X, Y, A, B: 1length N

.w]’rv s Y. Dy p- .',' l.

The memory array required by PFA is given by:

Y
-¢y array = 4N

S .
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TABLE 3.1la
PFA REAL OPERATIONS AND MEMORY COUNT FOR N<72
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TABLE 3.11b
PFA REAL OPERATIONS AND MEMORY COUNT FOR N>80
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and is listed in Table 3.1la and b and nlotted in
Figure 3.38.

3.5.9 Summary. Two algorithms which usce hich-
speed convolution techniques have been prescented. Both use
the convolution for computing snall-X DFTs nd boch require
N to be factored into relativelv prime factors. This
particular factorization used the Chinese Remainder Theorem
and the "Sino correspondence" to reorder the data arrays.

The theory, structure, and operations count was presented

in this section.
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IV. Comparison Results of Bfficient

Discrote Fouricor Uransforms

4,1 Introduction

Several fixed radix and mixed radix algorithms have
peen studlied and thie number of real opcrations and memory
count required have been computed in the preceding sections.
The results from these sections are compared and presented
here.

Tradeoffs and advantages of fixed radix and mixed radix
algorithms are discussed, the justification for selecting
Singleton's algorithm over the IMSL and mixed radix FFT
is given, tables and graphs comparing the conventional
mixed radix FFT with the fast convolution algorithms (WFTA
and PFA) are presented and advantages of each are discussed.
This chapter concludes with an algorithm which selects the
most efficient algorithm based on memory available, machine
speed, zeropacking, and sequence length. A flowchart imple-
mentation of the algorithm is included.

The timing tests in this section used the Cyber 74
evstem clock. Tnhnis clock was accessed using the FORTRAN
command SLCOND(CP) which provides a timer accurate to .001
seconds. The transforms were all performed using samples

fror the function e"t cos 50nt which has the magnitude

transform shown in Figure 4.1 for N=625.
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Figure 4.1. Fourier Transform of e © cos 50nt.
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The menory comparisons made in this chapter are based
AN eRory array roeduired. Uhe procorar merors bt ine fron
compilation on the Cyber 74 is not applicable to smaller
machines and would not permit valid memory comparisons. The
program menory reauired for the Cyhber 74 1s aiven to show

the relative sizes of the algorithms.

4.2 Conventional Radix-3 vs R{u) Field Radix-3

In the previous chapter the real operations count for
these two radix-3 FFTs was given in Table 3.2. From this
table the most efficient radix-3 algorithm can be selected
based on machine speed. Validation of this table was per-
formed using the CDC Cyber 74 computer which has a 1.1

multiply~-to-add ratio and test data).

With a 1.1 multiply-to-add ratio Table 3.2 indicates
that the conventional radix-3 algorithm is more efficient
for all sequence lengths shown. The timing results in

Table 4.1 verify this conclusion.

4.3 Fixed Radix vs Mixed Radix FFTs

In Sections 3.3 and 3.4 the real coperations count and
memory requirements developed for the fixed radix and mixed
radix FFTs. Using the results from these sections the real
operations count and memory requirements are given in Table
4.2 along with results from timing tests conducted on the
CDC Cyber 74. This table demonstrates that Singleton's
mixed radix FFT (MFFT) minimizes the operations count for

factors of 2, 3, and 5 to the level of the fixed radix

algorithms.
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TABLL 4.1

RADIX-3 TIMIKG COMPARISCX

Conventional
Radix~-3 Tinc

.002
.009
.026
.094

.305
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R{u) riecld
Radix-3 Tine

.003
.011
.034
117

.393

"
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The program memory required by caclh alcorithr is given
in Table A.30  the large siso o of the i ia 0 roewnis of the

exlra scctions neecded to transform any lensth transforn and

the extra FORTRAN code reqgulred to perform multi-variate

transforms. None of the other FFTs arc capable of zerformin -

multi-variate transform~ without a significant amount of
additional user programming. Singleton's NFFT can perform
up to a tri-variate transform, however, this additional
flexibility is a disadvantace on memory limited computers
when performing single-variate FFTs.

The fixed radix and mixed radix FFTs are roughly
equivalent in efficiency. The fixed radix FFTs offer a
memory savings over the MFF. for all radix-~2 transform
sequencé lengths shcwn in Table 4.2 and some of the radix-3
and 5 transform lengths. The main advantage the MFFT offers
is the capability to transform any length sequence N while
the fixed radix algorithms are limited to integer powers

of 2, 3, and 5.

4.4 Mixed Radix T'FT Comparison: IMSL vs Sinclecton

In Chapter 3 and Appendix G the real operaticons and
memory required for the IMSL and Singleton's mixed radix
FFTs were derived as a function of N. Those two algorithms
are now comparced on the basis of real operations and memory

and the best alagorithm selected.
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TABLE 4.3
PROGRAM MEMORY REQUIRED BY FFTs

FFT Program Memory
Radix-2 108
Radix-3 301
Radix-5 458

Singleton's Mixed
Radix 1100




The expression for real multiplications and wdditions
developed for Singloton’s FET io onbtr osted fros v paa,
FFT expression for real operations to show the omtra oper-
ations required by IMSL. Rccall that both Singlcton and
IMSL versions of the FFT compute sine and cosine usinag the
difference equation of Section 3.1. Both implement the
sine and cosinec computation similarly and require the same
number of real operations to compute them.

Assuming that N can be factored as:

Esbp ™ p ™ (4.1)
the difference in real multiplications between IMSL and

Singleton's becomes:

. delta multiplies = [IMSL multiplication expression]

- [Singleton multiplication expression]

delta
multiplies = [2rN + 4sN + 3tN + 8 + 32(u)N/5
S k
;- + i51(2(pi-1) + 4(ml)N(pi'l)/Pi
+ (mi)N(pi—l)z/pi) _ 4N-1) + KMULT]
. - [2rN + 4sN + 3tN + 32uN/5
¥ k 2
X # (2pgD) ¢ DN /py

»

+ 4(mi)N(pi—l)/pi) - 4(N-1) + KMULT]
= 8 (4.2)

For large values of N the difference in multiplications is

g

-

negligible.

g
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The differonce in real additions is derived from:

dolta
adds

delta
adds

+

[IMSL addition expression]

[Singleton addition exprcssion]

[3rti + 6sN + 15tN/2 + 4 + 48 (u)N/5S

k
iil ((pi-l) + 8(mi)N(pi—l)/pi

N(mi) (pi~l)2/pi) - 2(N-1) + KADD]

[3rN + 16sN/3 + 11tN/2 + 8uN

k
. ((p;-1) + TN(mi) (p;-1)/p;
=1

1
(mi)N(p;-1)°/p;) - 2(N-1) + KADD]
2sN/3 + 2tN + 8uN/5 + 4

N(p;-1)/p; (4.3)

The results from Egs (4.2) and (4.3) demonstrate that

the IMSL has approximately the same number of real multi-

plications but requires significantly more additions than

Singleton'

s mixed radix algorithm. Based on these results

and because the data reordering for the two subroutines

is the same, the Singleton'FFT is the nost efficient of the

two subroutines. This conclusion was confirmed by timing

tests on the CDC Cyber 74 computer at AFIT. The results

are shown

in Table 4.4 for selected sequence lengths.

The memory array required for each of the algorithms

was derived in the preceding chapter. Those results are

now compared for N less than 200 and the percentage of array

memory saved by Singleton's FFT over the IMSL FFT was plotted

in Figure

4.2 using the equation:
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TABLE 4.4
TIMING RESULTS FOR IMSL AND SINGLLETON FPFTs

IMSL Singlcton

N Time (sec) Time (sec)
60 .010 .008
120 .018 .014
125 .019 .012
128 .013 .011
210 .039 .036
243 .031 .031
256 .028 .021
315 .054 .052
420 .081 .072
504 .090 .082
625 .128 .076
729 .107 .107
840 .163 .150
1008 .151 .157
1024 .126 .092
g 1250 275 .158
,L 1260 .268 .231
} 2048 .269 .224
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savings — (MUMCC = Soniernia) oo 100, Mo (4.4
where Stoneg SIS PR SR T s ol
MEMSNG = Singlcton's array nemory

From the plot it is evident that Singlecton’'s aloorithm uses
less mermory than the IMSL »rcearar . The "M roproi o of
the curve anproaches 577 which can be verified bv c¢xamina-
tion of Lgs (3.172) throuch (3.178) for N a primc nunbor.
This number represents the memory savings at the points
where N is prime.

The values of M, K, KB, and JK used to compute the

IWORD constant in Eq (3.173) are M=1, K=N, KB=N-2 and JK=1.

IWORD = 3 - M+ 3 + MAX (4 - M+ 7 + 6 - K,

KB + 1+ 2 « JK) (4.5)
IWORD = 3 + 3 + MAX (6N + 11, N + 1) (4.6)
IWORD = 6 = N + 17 (4.7)

Now the memory for IMSL given that N is prime becomes:

MEMCC 2 « N+ 2(6 - N+ 17) (4.8)
MEMCC = 14 - N + 34 (4.9)
The array memory required by Singleton's FI'T iz based
on the values ND and RD. NP 1s dimensioned to one 1oss than
the product of the square free factors of N or 1 at most one
square free factors is present, MP can be dimensioned to M+1
where M is the number of prime factors in N. KD is the size
of arrays AT, BT, CK, and SK where KD equals the largest
prime factor in N. Using these results the expression for

array memory where N is prime becomes:

MEMSNG = 2 « N + 4 « KD + NP (4.10)
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Substituting for NP and KD this coquation is:
| MEMELG = 2« 0 b 4 e N+ 2 (4.11)
MEMSNG = 6 « N + 2 (4.12)

Substituting Egs (4.9) and (4.12) into the percentage

expression in Eqg (4.4) is secn to approach approximately
57%:
% savings = ((l4 « N + 34} - (6 * N + 2))
+ 100/(14 + N + 34) (4.13)
% savings = (8 » N + 36) - 100/(14N + 34) (4.14)

As N gets large Eq (4.14) becomes:
% savings = 800N/14N = 57% (4.15)
which corresponds to the results shown by Figure 4.1.

The memory array must be added to the program memory
to determine the size of the program. The program memory
required by each algorithm was determined by compiling each
algorithm for the CDC Cyber 74. The IMSL FFT used 1061
words and the Singleton FFT used 1100 words. The larger
size of the Singleton FFT relative to the IMSL version
is because of the extra FORTRAN code needed to rerform

multi-variate FFTs. These program mermory figures arce onlw

applicable for the FORTRAN compiler used here at arirv,

n »

however, they do provide a relative measure of the program

.
4

memory size. Singleton's program requires about 3.7¢ more

e " -

program memory.

-l - gy

The results for real operations count and memory

required show that Singleton's mixed radix FFT is superior
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to the THAT alaorithe . Poar thia reacon Sincloton's
e
available for comnarison to the WPTA and PPA in the follow-

ing sections.

J.0 Conventional vs Poast Convoelut oo Mised Roors P7570g
Singleton's algorithm (MFET) 1s referred te as a
“"conventional" FFT because it uses the Cooley~Tukey deci-

mation and reordering of the data array. The WFTA and

PFA use Winograd's small-N fast convolution algorithms

to perform the DFT. The operation and memory array counts
are presented in Figures 4.3 and 4.4 and Tables 4.5a and b.
as a function of N for comparison of the three algorithms.
These tables and plots illustrate the advantages and dis-
advantages of each algorithm and are used along with the
fixed radix results in Table 4.2 to select the most
efficient algorithm for a particular sequence length and
machine capability (size and speed).

The tables and plots refer to the algorithms as MFFT
(Singleton), wWrTh (Winooral), and PFA (Kolbka-~Parw:s) .  The
PI'A usoed fov operation counts and Qonory comoarlsons is
the bne described by Burrus and Eschenbacher which includes
prime power factors of 2,3,4,5,7,8,9 and 16. The FORTRAN
coded program for PFA was obtained from C. S. Burrus of
Rice University and does not make use of "shifts" for
multiplications by 1/2. Both the WFTA and MFFT FORTRAN

programs were obtained from the IEEE Press "Programs for

Digital Signal Processing"”.
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The romory comparison was based on memory aryaes only
and dieboaobt Incladic e gradr v s iDL Wl dohie becausce
the program menory changes based on machine wora length.
The program memory required for the Cyber 74 is given for
cach alaorithm so the relatio size ~an be cornoveld,

4.5.1 Real Opcrations Count. The mixed radix MFFT

written by Singleton includes special sections for factors
of 2, 3, 4, and 5 as well as a general section for odd
prime factors which permits the transformation of any
positive integer N length sequence. Because of the special
sections the operations count is less for an N which is
highly factorable by 2, 3, 4, or 5 instead of higher prime
powers. Figure 4.3 and 4.4 demonstrate the efficiency of
Singleton's MFFT relative to the radix-2 complex transform
multiplications and additions count of 2N 1092 N and

3N log, N respectively (Winograd, 1976). The MFFT oper-
ations count shown in Figures 4.3a,b and 4.4a,b are for N
factorable by 2, 3, 4, or 5 combinations thereof. The
WFTA and PFA counts are shown for all 59 seaquence lenaths
which thev can transform. Recal! ° oum Section 3.4 and 3.5
that WFTA and PPY scgquence ! schs .o limited by the data
reordering algorithm used by the WFTA and PFA. These
figures also reflect the WFTA "post-initialization" oper-
ations count. As shown in Section 3.5 the post-initiali-
zation count is significantly less than the number of

operations required for the initial transform of length N.
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As a denonstration of the ivvooveront in the post-initiali-

ok don WA conctder the timineg oo ocaltos oo Tab b a0 th

data presented here wes collected Ly timing the individual

subroutines (INISHIL, PERM 1, WEAVE 1, MULT, WEAVL 2, PIRM 2)
in the WFTA for different secquence lengths and then dividinge
the time required for each subroutine by the total time for ”

all of the subroutines. Comparing the MFFT and PFA against

the post-initialized WFTA is assumed to be valid because
most applications of DFTs involve the repeated transform
of N length seguences.

A point by point comparison of MFFT, WFTA, and PFA
real operations is presented in Table 4.7. The
sequence lengths in these tables represent the only lengths
permissible for both PFA and WFTA, whereas the mixed radix
MFFT can transform any sequence length. The operations
count presented in Tables 4.2, 4.7 with a computer's
multiply and add speed can predict the most efficient
(fastest)DFT technique for that particular computer.

Using the multiplv and add speeds determined for

the CDC Cvber 74 (sece Apvendix J) as 1.9 x 10-6 seconds

and 1.7 x 1()—6 seconds, resvectlvely, thoe alcoritims
execution spceds were predicted from the operations count
in Tables 3.9 and 4.7. The predicted execution speecds

do not account for all of the actual execution time

measured as shown in Figure 4.5. The extra time which

was not predicted by the real operations count comes

n

from array indexing and data reordering needed in all of
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315
360
630
720
840
1008
1260

TABLE 4.0
TIMING RLESULTS FROM THLE

INISHL PERM 1 WEAVE 1
48.0% 7.5% 16.3%
47.0% 5.9% 15.7%
43.9% 5.6% 18.7%
44.0% 3.5% 20.0%
34.5% 5.5% 23.6%
48.0% 1.7% 19.2%
38.2% 5.3% 18.1%

Results are given as %
to execute WFTA.
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WETA

MULT

SUBROUTINLS

WEAVE 2 PERM 2
16.3° 7.4%
21.6% 3.9%
21.5%¢ 4.7%
22.8% 3.6%
23.6% 6.4%
21.5% 3.4%
27.7% 4.3%

of total time
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thoe ol oris o, frvwowor, Phe ped et el conee 1o,
basced only on real operations are sufficicent to select the
most efficient algorithm as demonstrated by Table 4.7.

The timing results in Table 4.7 corpare one-to-nne with
the predicted times (given the standuard deviations shown 1n
parentheses) for all three algorithms. Several observa-
tions can be made from Table 4.7. First, the WFTAl which
represents the initial transform made by WFTA ray ke slower
than MFFT for certain sequence lengths. An example of this.
is N=315, 630, and 720, all of which were correctly pre-
dicted to be slower from the operations counts in Tables
3.9 and 4.6. Second, the post-initialized WFTA2 and the
PFA were'predicted to be, and are, faster than MFFT for all
sequence lengths. Third, the PFA and WFTA2 (post-initiali-
zation) are close in efficiency for all sequence lengths.

4.5.2 Memory. The memory array for MFFT, WFTA, and
PFA was compiled from the previous chapter and presented in
Figure 4.6 and Table 4.5a and b. The fiqure clearly demon-
strates how much less memory array is required bv MITT.

These reosults are due to the efficient data recordering
technique of MFFT which can essentially be done in place
with very little additional memory relative to the sequence
length. The WFTA and PFA base their data reordering on
the Chinese Remainder Theorem and require an additional two
length N arrays for PFA. The WFTA uses even more memory
array because of the algorithm's structure which "nest"

multiplications inside all the additions. This requires
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three additional arrays of length o= omp o om o0 000 aro

tho saltip bications vooandreer cay vl ,

store the multiplication cocfficicents and provile working

array storagce becausc the WFTA is not computed in-place.
The program rniemory was not included in the i oclations

for comparison because program memory required dewends on
the machine word size. The jrogram mormery reguirced ¢n
the Cyber 74 for each algorithm is:

PFA program mernory = 770 words

WFT program memory 2348 worxds

FFT program memory 1100 words

These results were achieved from the standard compiler
command FTN for the FORTRAN IV language. For short sequences
these program memory requirements contribute significantly

to the choice of the most memory efficient algorithm.

4.5.3 WFTA vs PIA Operations Count. The tradeoffs

between WFTA and PFA for real multiplications and additions
can be seen in Figures 4.3 and 4.4. In most cases the WFTA
requires less multiplications but more additions than PFA.
The selection of the most efficient alecorithm then bhocomes
dependent on machine speod of reoal addition comnar. .o o

real multiplication. As an example of this tradeoff between
additions and multiplications consider the casc of N=630.
For this sequence length the PFA requires 4352 multiplica-
tions and 18534 additions while the WFTA rcaquires 2376
multiplications and 22072 additions. Assuming the machine

add speed of 1.7 x 107% seconds and a multiply speed of
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For the sclected add ana nmultiply speed PPA was faster.
Hlowever, consider the case where a multiply requires three
times tho adlition oo s 02 ) 1077 scconds.  Tor the
same N=630 the Pra szpecd iz predicted to be (054 scconds
and the WI'TA speed is .050 seconds. With the increase in
multiply time from 1.9 to 5.1 microseconds the WFTA
became the more efficient algorithm. This example illus-
trated why the add and multiply speed must be known to
select the fastest algorithm for a particular sequence
length N.

The effects of changing the multiply to add ratio from
l to 20 is shown in Figure 4.7a, b, and ¢ for MFFT, WFTA,
and PFA. For the sequences N=315 and 1008 the PFA is most
efficient at the low multiply to add ratios but as the
multiplies are "more costly” the WFTA soor. becomes the

most efficient. For N=30 the WFTA is the most efficient

for all ratios.

3.6 Tlewirilite ~7 +he 790 Nloorithms

It is clear from the plots in Figures 4.3, 4.4, and
data in Table 4.2 that the fixed radix FFT, PFA, and WFTA
are somewhat limited in permissible sequence lengths,
whereas the mixed radix FFT provides a much more "dense"
selection even for sequence lengths factorable by only

1

2, , 4, or 5. The restriction in possible values for N
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2,3,4,5,7,8,9 and 16. This limits ¥ to Tour “actors and &

rasimus. value of 5040. The fixed vadia alaeritic. are even

nore rostrictod than PFSLoor WA boecause choey can transforr

only secquence lengtn which are an intceqger power of 2, 3, or 5.

4.7 An Algorithm to Select the Most Bfficient D