AD=A10D 742 MOORE SCHOOL OF ELECTRICAL ENGINEERING PWILADELPHIA P==ETC F/6 1771
PHASE VARIATION WITH POSITION IN AN UNDERWATER MULTIPATH ENVIRO==ETC (U}
FEB 78 F HABER N00010-77-C-02

UNCLASSIFIED

or |
Jm 2




Ve
-

,

e Variation with Position in an Underwater Multipath
s Effect on Array Patterng’ Valley Forge Rescarch

[0}
™~
(=)
—
-~
S
o
ho
=
L0
U
[£9
N
o -~
)
£ -
ﬁno
-~ =
—
- oo
g 9 C
o
@ = -
A-mor
- 9
e B o B ]
P25
w.& O

C RELRASR

TICH USLIMITED

APFROVED YOR PURLI
MISTRIBU

edet (U h

-

1))
w4
-t

v

& )
>

thi

FaXnt At oYt al SN N

LU




- »

R

[y o)




*
As a preliminary we examine a two-ray condition as shown in Fizure 4. ‘

One wavefront is assumed to arrive alcng the x-axis, another at an angle 6.

The wavefronts are sinusoidal in time znd the sum at points along x is H
. U
s(t,x) = Alcos(mt - kx) + Azcos’wt ~ ¢ - kx cos8) (1) :
\NDIRECT :
RAY '

S

et S
DIRECT RAY

, e [ \ ;
-5 - ' z §

FIGURE 4. RAY ARRIVALS

* *
The case treated here is analogous to cae encountered In FM systems with

sivu-oidal interference to a desired carrier.
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Al and A2 represent the magnitude of the two wavefronts, é is the phase dif-
ference between them at x = 0, and k = 2n/X where A is the wavelength. A
sensor at point X responding equally and linearly to both wavefronts would

see s(t,x). Writing (1) in envelope-angle form,

s{t,x) = B(x)cos(ut + ¥(x)) (2)
where
B(x) = Al2 + A22 + 2A1A2 cos [¢ - kx(1 - cosB)]) (3)
-1 Alsin kx + Azsin(¢ + kxcos8)
v(x) = tan Alcos kx + Azcos(¢ + kxcos$) (4)

Tﬁe phase obtained using (4) will be modulo-2w. It is useful to deal with
the phase derivative dy/dx if the modulo-2m ambiguity is to be avoided. It
can be shown that

2
%ﬂ-= k - %(l ~ cos8) [- 1+ 5 1-a (5)
x [. 1+ a° + 2a cos[é - kx(1 - cosd)]
where
a = A1/A2 (6)

When a is large, meaning that the important part of the recelved wave 1is

along the w-axis

- Eﬁl_Z;EEEQl cos[¢ - kx(1 ~ cosB)], )

dx

It fluctuates sinusoidally around k with the fluctuation amplitude decreasing

to zero as a goes to infinity. For a small

%% = % cosb - ka(l - cos08) cos[d -~ kx(1 ~ cos8)], (8)

ogain a sinusoidal fluctuaiion which decreases to zero as a approaches zero.

For intermediate values of a the fluctuation of dy/dx is as shown in Figure §,
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FIGURE 5. PHASE DERIVATIVE VARIATION WITH
DISTANCE TN THE TWO-RAY CASE.

The variation is periodic with period

_ A
X = 1 - coss &)

and has peak excursions above and below k given by

g8 = k(1 - cosd)/(a - 1) (10)

a = -k(l - cosd)/(a + 1) (11)

I
Figure 5 is drawn assuming a > 1. The fluctuation is around k, which turns ‘

out to be the average of dy/dx. Note that at a = 1+ B is positive and high ;
in magnitude, and the fluctuation is highly impulsive. For a < 1, d¢/dx ‘
fluctuates around the value k(l-cos8) rather than around k and for a = 1 B ic
negative,and high in magnitude, and the fluctuation is again impulsive but

negative going. When a is close to unity the phase as a function of posi-

tion (which is the integral of dy/dx) is as shown in Figure 6.
In underwater applications the angle 6 typically found in long range
paths is less than 20°. Assuming it to be 10° the period is

1-0.98 = >0
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It is interesting to note that in analyses found in the literature of the cor-
relation distance of underwater acoustic waves, numerical estimates around

50X are typically obtained (see for instance [1]).
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FIGURE 6. PHASE AS A FUNCTION OF POSITION FOR KEANLY EQUAL MAGNITUDE RAYS.

1] P. v. Smith, Jr., "Spatial Coherence in Multipath or Hultimodel Channels,”
Journal Acoustic Soclety of America, Vol. 60, No. 2, Aug. 1976, pp. 305-310.
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We now turn to the more general case of n wavefronts arriving at

angles ej. J=1,2,...n. The received sum at a position x is

n
s(t,x) = I A.cos(wt - ¢, - kx cos6,) 13)
The ¢j’ j =1,2,...n are random phase angles of each of the wavefronts on

arrival at the point x = 0. It is convenient to write this in the form

s(t,x) = B(x) cos[wt +y(x)]

- Re z(x)eJ®t 14)

where
n j(¢j + kx cos#

. )
z(x) = B(x)edV™®X) = 1A 3 (15)
317

P(x) is the phase angle we will study ard as was done before we find the
phase derivative

a4 | ol dz
dx Im(z(x) dx) (16)
From (15) we have i
n j(¢. + kx cosB,) '
92 . 41 A, kcoso, e 1 i an !
dx k] ;
j=1 !

so that (16) becomes

j(¢j + kx cosb ) l

IA, k cosf, e i

h| h|
Eemyd

|
J(d, + kx cos0,)
' IA, e 3 3 '
/| 33
i
L jlé, - ¢. + kx(cos0, - co0s0,)]
3 I LA Ak cosdy e 1 1 i 5
- 11 i
J(p. + kx cos0.) ;2 |
L Aj e 3 J

i
) ] onid, - + kx(cos - IS
i i AiAj k co 0, co [dj ¢j kx(co 0, - co OJ)]

_‘
- R (18) 2
LI AiAj cou[¢i - ¢j + kx(cosd, - FU:OJ)] . X

P ————

i
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2
As a rule 81 << %-and cosei =1 - E%—. Where this approximation is permis~
sible we can write
16,2 a,,
Dok L 4 (19)
dx 2Lt aij(x)

where

aij(x) = AiAj cos[¢i ¢j + kx(cosei - cosej)]

To retrieve § we must integrate dy/dx; i.e. we form

'ffx dw(xl)

dx

dx, = p(x) - ¢(0) (20)
o 1

The integration will generate the phase difference between the phase at x
and the phase at the origin of integraticn. From (19) we see that one term
on integration will te kx, the linear phase variation associated with the
normal phase vs. positicn function of a plane wave along the direction of
travel of the wave. In beam forming with an array of sensors along x oue
will subtract the phase progression kx if the axis of the beam is to be
colinear with the x axis. In this case the remaining phase difference be-~

tween a point x and the origin is

2

ei aij(xl)

dx (21)

-k
2 1

a

tde M |te ™

T
i
X
o i

ij(xl)

If the approximation cosf0, = 1 - 612/2 is not used, the remaining phase

1
after correcting for kx {s given by subtracting k from (18) and integrat-
ing over x.

Numerical evaluatloas of the remaining phase difference have been made

for a number cf cases.” One particular case is shown in Tifure 7 detcrmined
0

assuming 21 equal amplitude rays arriving at 2% intervals from 6 = -20° to
*

Prograuming of this computatfon and the one described later giving array
pattern, wace done by De Juan Ho.
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+20° with respect to the horizontal (sce Figure 4), each with a phase angle
¢ randomly selected in the interval (0,2n). Because the average wavelength
of the various rays as seen along x is less than A, the wavelength along the
direction of travel of the ray, there is a linearly-tending phase accumula-
tion with distance as seen in Figure 7. On top of this accumulation there
is a random variation. The fluctuation around a straight line approximation
to the phase diffcrence ranges around #3 radians. Thus even if the phase
were corrected to account for the slope of the straight line approximation,
a + 3 radian random error would still be encountered.

Figure 7 was obtained with one randomly selected set of ray arrival
phase angles. Additional examples will be ultimately computed for different
sets of arrival phase angles to provide data suitable for obtaining statisti-
cal averages. Other cases, including different intervals of arrival angle,
different ray amplitudes, and different numbers of arriving arrays will also
be treated.

Having a sample function of phase vs. position,a logical next step is
to determine the gain and pattern of the random planar floating array when
it is focused in some azimuthal direction using conventional beanforming, and
when the source signal is propagating toward the array through the multipath
medium. As a first step a program was developed for selecting element posi-
tions over a circular area assuming a uniform distribution of clement posi-
tions.

If the array is assumed confined to a cirecle of radius p with uniform
distribution over the circle, the density function in the joint random vari-

ables X, Y, i{g

1 2 2 2
Px,y(st) ﬂ_pi y X +y <o

=0 , elsewhcre.

Transforming to polar coordinates, (R, &), we have
P, (r,4) =55 0< r<
R’¢ > 2 ’ —_ __p

o 0< ¢< 2m

= 0 R elsswhere
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The marginal densities in R and ¢ are

2r
PR(I’) ? 0<r<op

n

= 0 , e€elsewhere

ki

1
I’é¢) 507 » 0< ¢< 2n

= 0 s, €elsewhere

The random variables R and ¢ are independent and Independent choices of these
varlables are made. Sample valucs of ¢ are obtained by a conventional com-
puter program which selects sample values uniformly distributed in (0,1) and
ﬁultiplies these by 2n. Sample values of R are obtained by picking a number
Z uniformly distributed in (0,1) 2nd forming

R = 021/2,

for then

=-3, 0<re< p.

4z
dr

Pe(r) = p,(2)

Finally, the pzirs {r,¢) so obtained are converted back into rectangular co-
ordinates by
X = r cos¢
y = r sin¢g
Using elerent positions so determined the array pattern was next found.

The geometry of the problem is shown in Figure 8,
Assuming N elements distributed over the circle, cophased to form a beam

along the y axis, the array pattcrn is given by
N J[k(x_cosd + y sind - y ) ~ a(d )]
1 n
A =5 | 1 B e n n n

n=1

where Ao Y ¢, and dn are defined in Figure 8, and a(dn) is a phuase vs po-

sition function of the form obtained earller and shown in Figure 7. B(dn) is

the amplituds of the acoustic ffeld at the nth element. This quantity can be

ohtained usiap the earlier analyv:ils but for our pumposes now we will assume
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TYPICAL
ARRAY
ELEMENTS

ORCULAR ARRAY
BOUNDARY,
RADWUS = P

dp=p - cos(;ﬂn—ﬁ)

FIGURE 8. ARRAY GEOMETRY.

it constant ana set it equal to unity for all n. Amplitude fluctuations as

a rule, cause minor effects cowpared to phase [luctuations. The phase sampie
function of Figure 7, called now a(x) 1s used alone below to assess the ef-
fect of the multipath madium. The variable x in Figure 7 is replaced by dn’
with

dn= p - rn°°s(¢u - 4)

2)1/2 cos(tarx"1 2. ¢)
n X

2
o~(xn*y

Computer calculations of A(4), as described above, were carried out for two
cases: (1) a(dn) = 0 and (2) a(dn) as given by Figure 7, and the results

are shown in Figures 9 and 10, Carz 1 is that of propagation through a trans-
parent (non-multipath) medium while case 2 is for the particular wmultipath

case rasulting in the phase function discussed above. Note that. the gains along
the main beam in the two cases are In the ratio of about 4.4 dB - a substan-
tial factor; the sidelobe structure is differcnt in detail but not in general
characterirstics. These results, it must be rccognized, are based on onc set

of random érrival ohases and on on~ set of rundom elemont positions; whether

they are representative remains to be determfned. Avereging over wany sets

OPR Wo. 24

DM e e L ok eer t o AR et S o e A TR T YT C s e LI L L ¢ e oA - -y

RN S,

PR VNPV SV OF SO AU SR




Ly

0.5
350°

FIGURE 9. ARRAY PATTERN OF RANDOM FLANAR ARPAY IN TRANSPARENT
MEDIUM. ENDFIRE BEAYM FOIZIED AT AZIMNUTH ANGLE, ¢ = 90°,
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EIGURE 10. ARRAY PATTERN OF PRANDOM PLANAR ARRAY ASSUMING MULTIPATH
PROPAGATION. INDFIRG nist UORMED AT AZIMUTIH ANGLE ¢ = 90°
FOR TRANSPARUNT MEDIWM,

’

of arrival phases and element positions, as well as carrying out additienal

computations with other system parameters, remain to be done.
Fred Haber
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