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I.  INTRODUCTION 

Experiments have been performed to measure the stress developed in 
targets during penetration by long-rod projectiles. This investigation 
is part of a continuing effort to characterize the complete behavior of 
targets and projectiles during the penetration process. Hard steel rods 
were used as the projectile; several materials were used as targets. 
Saboted projectiles were launched from a 100-mm light-gas gun at veloci- 
ties from 750 to 1000 m/s and impacted the face of right-cylindrical 
targets at normal incidence. Stress developed during penetration was 
measured by gauges located along the penetration path in the targets. 
Measurements began with the arrival of the initial shock and should have 
continued until penetration reached the gauge location. Although this 
measurement objective was not fully achieved, there was significant pro- 
gress. This report provides background information, describes the evolu- 
tion of experimental procedures, presents results, and discusses various 
problem areas. 

II.  BACKGROUND 

Some insight into the behavior of targets during penetration has been 
gained by examining prior work. The reaction of a target to point- 
initiated impulsive loading is indicated in Figure I1. This figure shows 
a series of time-lapse photographs of an explosive pellet detonated 
against a 'Perspex'* plate. The detonation initiates a strong shock 
pulse in the material. This shock progresses through the material, with 
stress relief from the lateral boundaries. The spherical wave front 
approaches the back surface, reflects from it, and returns as a rarefac- 
tion into the stressed material. The last two frames in the figure 
indicate the complicated wave interactions which result as time progresses. 
This phenomenon occurs when a single pulse of energy, deposited in one 
area, propagates throughout the target. When a kinetic-energy penetrator 
strikes a target, energy is delivered to the target in a continuous manner 
over a long time. More complicated target interactions occur as both 
target and penetrator materials deform and fail, and stress and strain 
fields that develop behind the initial shock front have not been well 
defined. In this investigation, the stress history behind the expanding 
shock front has been monitored in the path of penetration. The measure- 
ments have been performed using gauges located at different depths within 
several types of targets. 

1ff. Kolsky, Stress Waves in Solids, Dover Fublioatiansy Ina. 3 New Yorkj 
1963, Plate I. 

*Trade Name for PMMA. 
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Figure  1.     Stress Waves  in a  'Perspex'   Plate. 



The problem of making stress measurements in targets has been 
investigated by Charest 2.  In his experiments, stress was generated in 
layered targets by the hypervelocity impact of metal spheres. Typical 
stress-time data at various stations in the targets indicated an initial 
pulse-type loading of the gauges, after which the stress decreased to a 
steady-state condition, which continued until the gauge was destroyed. 
In a more recent study by Charest 3, a layered target of PMMA was impacted 
at low-velocity by a 22-caliber bullet.  Stress produced in the target 
was monitored by a single gauge.  Results showed that stress in the PMMA 
target increased rapidly in a linear manner until the gauge was destroyed. 

III.  EXPERIMENTS AND RESULTS 

The experimental series reported here was evolutionary.  Techniques 
were continually modified to improve the experimental results from each 
test.  Major problems were solved.  For example, stress gauges were used 
exclusively until it was decided that a strain gauge must also be included 
to monitor strain. An initial test was conducted which involved explo- 
sively loading an instrumented target.  In all subsequent experiments, 
penetration into various instrumented targets by long rods was conducted. 
Penetrators were composed of S-7 tool steel (RC 40) , except in Test 2 
where drill rod was used.  All penetrators were 254 mm long and 8.1 mm 
in diameter.  Circular targets (19.0-88.9 mm thick and 101.6 mm diameter) 
of yellow brass, mild steel, and rolled homogeneous armor (RHA) were 
impacted. Target configurations varied. Gauge locations in the targets 
were measured from the target impact surface.  Manganin foil gauges 
measured stress and Constantan foil gauges measured strain. The Manganin 
gauges for the first seven tests were double bifilar gauges4.  All sub- 
sequent stress and strain gauges used were simpler5. Mica, aluminum 
oxide, and Kapton sheets (0.013-2.758 mm thick) were tested as insulators 
between gauges and targets.  Mica and aluminum oxide were too brittle for 
the large deformation in these experiments. The best insulator was 
Kapton (0.127 mm thick).  A summary of experimental data is shown in 
Table 1. The circuit description for these experiments follows. 

V. A.   Charest,   "Measurements of Hypewelocity Impact Pressures Using 
In-Material Manganin Gauges," EG&G Report S-487-k,  Santa Barbara 
Division,  April 1970. 

V. A.   Charest,   "Development of a Strain-Compensated Shook Pressure 
Gauge," Dynasen,  Inc.   TR 005,  February 1979. 

hA.   V.  Anan'in,  A.   N.   Dremin,  and G.  I.   Kanel',   "Structure of Shock and 
Rarefaction Waves in Iron," Fizika Gorgeniya i Vzryva,   Vol.   9,  No.   2, 
May-June 1973, pp.   427-43. 

5E.   0.   Williams,   "An Etched Manganin Gauge System for Shock-Pressure 
Measurement in a High-Noise Environment," ISA Transaction,   Vol.   7, 
No.   2,   1968,  pp.   223-30. 
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A. Stress-Gauge Circuit. 

Stress was measured by the bridge circuit shown in Figure 2.  A 50- 
ohm stress gauge was connected to one leg of the bridge by approximately 
10 meters of RG 213/U coaxial cable. The bridge was dynamically balanced 
by adjusting the 5-turn, 100-ohm potentiometer, and was powered by a 300- 
volt direct current source which was triggered at least 10 \is  before pro- 
jectile impact. Calibrations for expected stress levels were obtained by 
triggering the circuit with various resistors in series with the stress 
gauge. During calibrations, a crowbar across the gauge leg of the bridge 
interrupted the current flow after approximately 50 ys to protect the gauge 
from excessive heating.  (Most calibrations were also performed with a 
dummy gauge which was substituted to avoid possible damage to the test 
gauge.)  Changes in resistance during a test were converted to stress 
using a stress-gauge calibration based on measurements by Charest6.  A 
similar circuit was used in later experiments to measure the associated 
strain.  Calibrations for expected strain levels were obtained by trigger- 
ing the strain gauge circuit with various resistors in parallel with the 
strain gauge.  Placing calibrating resistors in parallel with the strain 
gauge rather than in series yields more accurate calibrations.  Data 
reduction utilized the circuit equation so that calibrations could be 
based on decreasing gauge resistance, while the actual measurements 
encountered increasing gauge resistance. 

B. Test 1. 

A shock experiment was conducted while awaiting parts for penetration 
experiments. This experiment was intended to test construction concepts 
and to yield a stress history similar to that encountered in the target 
of Figure 1. A PBX pellet was detonated, initiating a shock pulse in a 
thin RHA plate. A double bifilar stress gauge, sandwiched between this 
plate and another thin RHA piece, monitored stress. This type of gauge, 
patterned after noninductive gauges designed by other investigators4, 
was introduced in an effort to prevent electrical noise induced by 
magnetic changes in the ferromagnetic target. Hauver encountered this 
form of noise in some of his work with rolled homogeneous armor at the 
Ballistic Research Laboratory (BRL)7.  Unfortunately, the power supply 
failed to trigger and no stress history was recorded. A weak signal was 
generated due to slight gauge effects induced by target shock. This 
signal was sufficiently clean and the time duration was long enough, 
indicating this experimental construction was a type that showed promise. 

6e7. A.   Charest,   "ChaTacterization of an Encapsulated 50-0hm Manganin 
Foil P-Lezoresistive Gauge", Air Force Weapons Laboratory Technical 
Report No.  AFWL-71-81,  Kirtland Air Force Base,  August 2972. 

7G.   E.  Hauver,   "The Alpha-Phase Hugoniot of Roll Homogeneous Armor",  BRL 
Memorandum Report No.   2651,  Ballistic Research Laboratory, Aberdeen 
Proving Ground, MB,  August 1976,  p.   14. 

11 
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This shock experiment was not repeated since long-rod penetration was 
the primary consideration in this investigation. 

C. Tests 2 S 3. 

Stress measurements were next attempted in layered RHA targets as 
they were penetrated by long steel rods. An exploded view of the experi- 
mental setup for Tests 2 and 3 is shown in Figure 3. The stress gauge 
was sandwiched between RHA plates with its active element centered on 
the axis of penetration. Mica sheets, 0.015 mm thick, insulated the gauge 
from the surrounding RHA. The target assembly was bonded together with 
epoxy cement; bond thicknesses were less than 0.003 mm. Tests 2 and 3 
were identical, except for the projectile striking velocity, which was 
840 m/s in Test 2 and 1000 m/s in Test 3. 

Stress-time histories measured in Tests 2 and 3 are shown in 
Figure 4. The signal from Test 2 was initially troubled by electrical 
noise, but suggested a nearly linear increase in stress to nearly 3.0 GPa 
before the gauge was destroyed at approximately 18 ys. The curve for 
Test 3 suggests a more rapid increase in stress to a maximum value near 
12.0 GPa before the gauge was destroyed at approximately 16 ys.  For 
penetration to reach the gauge location in these times, penetration would 
have to proceed at over three-fourths of the impact velocity, which is 
unreasonably high. The results from Tests 2 and 3, therefore, suggest 
that gauge leads probably fail before penetration reaches the gauge 
location. Lead failure was probably caused by shear in the layered 
targets. 

0. Tests 9 ^ 13. 

Experiments were performed in an effort to devise a target configur- 
ation that eliminates the shear problem in these tests. For the four 
tests following Test 3, each RHA target configuration was changed in an 
unsuccessful attempt to eliminate the shear problem.  In the next seven 
tests, brass target material was used to save experimental construction 
time during this crucial development phase of testing. The brass targets 
were easier to machine, which saved time.  Brass is not a magnetically 
susceptible material, so it was not envisioned that the simple gauges 
used would encounter significant noise. The use of simple gauges in 
these targets simplified target assembly procedures, again saving 
valuable time. A new addition in some of these experiments was the 
placement of a strain gauge in the area of the stress gauge to record a 
concurrent strain-time history. More experimental information was gained 
for each test with this addition. This addition is indicated in Figure 
5, which shows the experimental setup for Test 9.  Several tests with 
the same basic target configuration indicated in Figure 5 were conducted 
with varied amounts of success. Test 9 produced the best results for 
this basic configuration.  It was not foreseen before Test 9 was conducted 
that the addition of a strain gauge to a test was extremely important. 
A target arrangement that was tried for the first time in Test 13 is 

13 
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illustrated in Figure 6. A round monobloc target was used, with a single 
hole drilled through it as represented in the cross-sectional view. A 
stress gauge was sandwiched between two brass half-round rods. Kapton 
sheets provided insulation between the gauges and the rods. This complete 
rod assembly was then slipped into the drilled hole to align the active 
element area of the gauge along the penetration path of the projectile. 
This insertion technique is similar to a method that was employed at the 
Ballistic Research Laboratory by Netherwood8.  A vacuum technique was 
used to extrude epoxy uniformly around the rods and the gauge.  Then 
the complete target setup was placed in an oven at 353°K for two hours 
to cure the epoxy, which held all target components in their correct 
positions. Proper application and curing of the epoxy also eliminates 
voids between these components. Void elimination is a critical factor 
in these experiments because voids located in critical areas can cause 
premature gauge failures. Also, the small drilled hole (6.4 mm diameter) 
gave the target more integrity than in previous tests. 

Results from Tests 9 and 13 are shown in Figure 7, forming the basis 
for a comparison of the relative validity of these two experiments. The 
stress-time histories for Tests 9 and 13 are graphed as in Figure 4 and 
the strain-time history for the strain gauge in Test 9 is also repre- 
sented. The total mass penetrated along the centerline for Test 9 was 
nearly the same as for Test 13. The gauges for Tests 9 and 13 were 
located at the same depths within their respective targets.  Initial 
projectile velocities for all tests using brass targets was 750 m/s. A 
vast difference exists between stress-time histories that should be 
identical, based on these similar conditions for both experiments. The 
stress-time curve from Test 9 has a steep slope and a short time duration. 
The stress-time curve from Test 13 has a much longer duration than that 
from Test 9 and a slightly curved slope. The rapidly changing form on 
the end of the Test 13 stress record is probably an artifact of the 
destruction of the gauge by the projectile. Test 9 is suspect. When 
the stress-time and strain-time records for this test are compared, a 
large time difference between the ends of the records is found. This 
difference suggests that the leads for the stress and strain gauges 
failed at different times. The stress gauge leads for Test 9 also failed 
much earlier than in Test 13, which is an even stronger indication that 
the use of the Test 9 experimental setup did not solve the shearing 
problem. Also, slippage between target plates during penetration may 
have adversely affected measurements in Test 9. The gauge leads in 
Test 13 were extended and partially isolated from the target. This 
isolation left the critical cable connection areas free from severe 
deformation caused by penetration, eliminating the shear problem in these 
experiments. Test 13 produced the most accurate measurements that were 
made up to that point in the test series, due in part to the extended 
gauge lead life during that test. 

8P. H.  Nethenoood,   "Rate of Penetration Measurements", BRL Memorandum 
Report ARBRL-MR-02978y Ballistic Research Laboratory, Aberdeen Proving 
Ground, MD,  December 1979,  p. J5. 
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The spherically divergent strain encountered in the penetration 
experiments in this report had an effect on the stress gauges used. 
Both Charest and Trimble discovered a "false" component in a stress signal 
when the stress gauge producing that signal was simultaneously stressed 
parallel to the projectile motion and strained perpendicular to the 
projectile motion (spherically divergent strain) during penetration3'9. 
This divergent strain, inducing a strain gauge effect in the stress gauge, 
contributes to a significant amount of the change in resistance of the 
stress gauges in these experiments. This contribution forms the false 
components in the stress gauge signals that were analyzed. The strain 
gauge effect in the stress gauge required the introduction of a proper 
method of data reduction to adjust for this effect. For Test 9, values 
of strain from the resulting strain-time curve were analyzed with respect 
to the values of stress that occur at the corresponding times on the 
stress-time curve. Each value of strain was introduced into a standard 
equation (AR/R0 = Ge), with the proper strain coefficient for the stress 
gauge (G), to yield the correct change in resistance that defines the 
false signal value measured by the stress gauge at that time. Then the 
false signal value was subtracted from the measured stress signal value, 
resulting in a single value that was analyzed to yield the true stress 
(strain-compensated) in the direction of projectile penetration. Complete 
analysis along the strain-time and stress-time curves for Test 9 produced 
the strain-compensated stress curve shown in Figure 7. 

E. Tests 15 and 16. 

The experimental configuration for Test 13 was extended for all sub- 
sequent tests because this configuration yields the best experimental 
results. The experimental setup for the most recent tests (15 § 16) is 
represented in Figure 8. The initial projectile velocity for both tests 
was 1,000 m/s. There were only two major changes in the target configur- 
ation for both tests with respect to Test 13. In one of these changes, 
a strain gauge was placed opposite the stress gauge as for Test 9, but 
the active element area of the strain gauge was in register with the 
active element area of the stress gauge. This arrangement allowed the 
gauges to record exactly the same phenomenon. The other change was the 
use of mild steel targets. Simple gauges were still used, though they 
are susceptible to magnetically induced noise. Use of these gauges 
required two simple, yet effective, techniques to shield the active 
element areas from this induced noise. First, the continued use of the 
half-round brass rods allowed the gauges a large standoff distance from 
the steel. Also, brass has a very low magnetic susceptibility. The 
standoff distance involved and the magnetic properties of the brass 
drastically reduced the amount of noise-producing magnetic flux allowed 

V. J. Trimblej "Manganin Gage Pressure Measurements Under Conditions 
Where Gage Deformation Oaaurs", BEL Tedhnioal Re-port ARBEL-TR-02180, 
Ballistic Research Laboratory3 Aberdeen Proving Ground, MD, July 1979. 
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through the active element areas of the gauges. The second technique 
required the attachment of a mild steel keeper to the front of the target, 
as shown in Figure 8. This keeper allowed magnetic flux lines to "cycle" 
in the target portion ahead of the gauge element areas, further reducing 
the amount of noise-creating magnetic flux in these critical areas. This 
is the same principal that is applied when a keeper is placed on a 
permanent magnet to prevent the loss of its strength during storage. 
The keeper for a permanent magnet acts as a shorting path for magnetic 
flux lines. The keeper had a center hole which allowed the projectile 
to pass through it and strike the target. Quantitatively, it was not 
clear how much these shielding techniques aided in reducing the amount 
of noise in the monitored signals from the stress and strain gauge 
circuits. Qualitatively, these signals are the least noisy that have 
been obtained while using simple gauges in the type of magnetically 
disturbed environment which is encountered during penetration of steel 
targets. 

The experimental results for Tests 15 and 16 were the best test 
results obtained so far in this test series.  Stress-time and strain- 
time data from these tests are shown in Figure 9.  The Test 15 results 
are represented by the stress and strain curves above the dotted lines. 
Because of a timing error made during the experiment, only the later 
parts of these test curves were recorded. Test 16 was an effort to 
duplicate Test 15 in its entirety.  Because of a premature failure of 
the gauges for an unknown reason, only the two abbreviated curves below 
the dotted lines were obtained for Test 16.  The dotted line portions 
connect the two experiments together extremely well. This connection 
strongly indicates that Test 15 was reproduced by Test 16.  The strain- 
compensated stress curve was obtained as for Test 9. The strain- 
compensated stress achieves a steady state condition as time progresses, 
then begins to decrease rapidly as the penetrator nears the active 
element areas of the gauges.  It is doubtful that this decrease to a 
final stress level of zero is real. As the measured stresses and strains 
recorded toward the end of the Test 15 record increase very rapidly, a 
large error factor is introduced in the calculation of the strain- 
compensated stresses. Also, the effect of the strain-compensated stress 
tending to zero toward the end of the experiment may only be an artifact 
of the onset of the destruction of the active gauge elements. The 
strain-compensated stress never rises above the Hugoniot Elastic Limit 
for mild steel (1.3 GPa)10'11. 

l0O. E,  Jonesj F.   W.  Eeilson,  and W.  B.  Benedick,   "Dynamic Yield Behavior 
of Explosively Loaded Metals Determined by a Quartz Transducer  Tec?i- 
nique," J.  Appl.  Phys.,   Vol.   2Z,  No.   11,  November 1962,  Fig.   3,  p. 5228. 

110. E.   Jones,  and J.  R.   Holland,   "Bauschinger Effect in Explosively 
Loaded Mild Steel,",  J.  Appl.  Phys.,   Vol.   35,  No.   6,  June 1964,  pp. 
1771-73. 
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IV.  SUMMARY AND CONCLUSION 

Three very important results were obtained from the series of tests 
reported here.  One was the fact that the use of the monobloc targets 
introduced for Test 13 and all subsequent tests produced better experi- 
mental results than the layered targets used in all experiments prior to 
Test 13. Two, during the evolution of these experiments, strain was 
found to affect gauges that were designed to respond to stress only. 
This effect was treated satisfactorily. Three, the achievement of 
obtaining reproducibility of results in identical tests was apparently 
attained for Tests 15 & 16, which enhances the reliability of these 
experiments. 

More work remains to be done to characterize the phenomena occurring 
in these tests, and to relate them to other penetration phenomena on a 
theoretical and experimental basis. The point has been reached where 
meaningful and reproducible data are being obtained, so future plans are 
to continue experimentation with different target materials and arrange- 
ments. Several modifications and improvements are planned for these 
continuing experiments.  Future plans include inserting more gauges into 
the monobloc targets at different depths.  More data may thus be obtained 
from each test. Different thicknesses of RHA will be used again as 
target material.  Some special gauges have been constructed which combine 
the stress and strain gauges as components of one complete gauge assem- 
bly*. The gauge components have smaller active element areas than the 
separate gauges previously used.  Also, the active elements of the com- 
ponent stress and strain gauges are constructed in an interlocking 
pattern rather than an overlapping one. This allows the active element 
areas of both the strain and stress components to be as integral as 
possible. 

^Developed by Dynasen^ Inc.:  Goleta,  CA    93027. 
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