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ABSTRACT L
1
Let E be a Banach space, A CE x E an accretive operator that -

satisfies the range condition, Jr the resolvent of A, and S the

nonlinear semigroup generated by ~A. 1t is shown that if the norm of E* is @

Fréchet differentiable, then 1lim J x/t = lim S(t)x/t for each x in

tr t >
c({D(A)), and 1lim (x - th)/t = 1lim (x - S(t)x)/t for each x € D(A).
t+0+ t+0+ A
all limits are taken in the norm topology. If E is also smooth, then the F

first common limit is =~v, where v is the unique point of least norm in
c2(R(A)). 1If, in addition, A 1is closed, then the second common limit is
0 : . . . .

A x, the unique point of least norm in Ax. We also show that if A is

m-accretive and E* is strictly convex, then cf#(R(A)) 1is convex.
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f SIGNIFICANCE AND
Y

It is known that certain problems in

EXPLANATION

partial differential egquations may

be interpreted as initial value problems for ordinary differential equations

in Banach spaces. When such an evolution
operator, then its solutions give rise to
In this paper we study certain aspects of
semigroups and of resolvents of accretive
results on their behavior at the origin.

nonlinear semigroup resembles that of the

infinity and at the origin.
.
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equation is governed by an accretive
a nonlinear contraction semigroup.
the asymptotic behavinr of nonlinear
operators. We also derive new

It turns out that the behavior of a

resolvent of its generator both at
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& NOTE ON THE ASYMPTOTIC REHAVIOR OF NONLINEAR
SEMIGROUPS AND THE RANGE OF ACCRETIVE OPERATORS

5imeon Reich*
1. INTRODUCTION.

Throughout this paper E denotes a (real) Banach space, A C E x E an accretive
operator that satisfies the range condition, Jr the resolvent of A, and S the
nonlinear semigroup generated by ~A. The main nurpose of the present paper is to sharmen
some of the results of our previous paper (22} concerning the weak and strong convergence
of th/t and S{t)x/t a3 t + «», and the properties of the range of A. The first
results in this direction were established by Crandall (see [2, p. 166]) and Pazy [10] in
Hilbert space. For recent developments in Banach spaces see the papers hy Kohlberg and
Neyman [8, 9] and the author [17, 18, 19]. 1In addition, we also derive new results on the
weak and strong convergence of (x - th)/t and (x - S(t)x)/t as t + 0+,

In particular, we show that if the norm of E* is Frechet Aifferentiable, then the

strong lim J x/t lim S{t)x/t for each x g cf(D{(A)), and the strong
t o+ t o

lim (x - th)/t lim (x - S(t)x)/t for each x € D(A). If E 1is also smooth, then
t+0+ t+0+

the first common limit is =-v, where v is the unique point of least norm in Ccf(R(A)}).

1€, in addition, A 1is closed, then the second common limit is on, the unique point of

least norm in Ax. We also show that if A is m-accretive and E* is strictly convex,

then cf(R(A)) is convex.

The asymptotic behavior of resolvents and nonlinear semigroups is studied in Sections
2 and 3., Nonexpansive mappings are treated in Section 4. Section 5 is devoted to the
properties of cf(R(A)), and Section 6 to the hehavior of J.x and S(t)x at the oriain.
Let E bhe a real Banach space, and let I denote the identity operatonr. Recall that

a subset A of E x E with domain D(A) and range R(A) 1is said to be accretive if

*Denartment of Mathematics, The University of Southern California,
Los Angeles, California 90007

3ponsored by the United States Army under Contract No. DAAG29-80-C-0041.




1 2| < |X1 =%, torly, - y2)| for all [xi,yi] €A, i=1,2 and r > 0. The
resolvent Jr : R{I + rA) + D(A) and the Yosida approximation Ar : R(I + rA) +» R(A) are
defined by Jr = (I + rl\)-1 and Ar = (1 - Jr)/r. We denote the closure of a subset D
of E bv cf(D), its closed convex hull by cfco(D), and its distance from a point x
in £ by d(x,D). We also define #DF = d(0,D). We shall gay that A satisfies the
range condition if R(I + rA) O cf{D(A)) for all r > 0. 1In this case, =A generates a
nonexpansive nonlinear semigroup S : [N,®) x c(D(A)) +» c2(D(A)) by the exponential
formula: S(t)x = lim [I + E A)-nx.

n-+w
Recall that the norm of E is said to be Gateaux differentiable (and E is said to

be smooth) if 1lim (|x + ty] - Ix]}/t exists for each x and y in
t+0
U= {xeE : Ixl =1}. It is said to be uniformly Gateaux differentiable if for each y

in U, this limit is approached uniformly as x varies over U. The norm is said to be
Frechet differentiable if for each x in U this limit is attained uniformly for y in
U. We shall write that E 1is (UG) and (F) respectively. We shall need the following
two known lemmata (cf. [6] and [15]).

Lemma 1.,1. E* is (F) 1if and only if E is reflexive and strictly convex, and has

the following property: if the weak 1lim x = x and lxnl + Ix!, then {xn} converges
n+o
serongly £o X,
Lemma 1.2. E* is (F) if and only if for any convex set X C E, every sequence
(xn} in ¥k such that |xn| tends to d(0,X) converges.

Note that 1 f E* is smooth (strictly convex), then E 1is strictly convex (smooth).
Honce, 1f E  is reflexive, E 1is strictly convex (smooth) if and only if Ef* is smooth
(strictly convex). However this duality is not valid for all Banach spaces.

The duality map from E into the family of nonempty subsets of its dual E* is
lafined by

J(x) = {x* ¢ E*¥ : (x,x*) = |x|2 = |x'|2}
T+ i3 single-valued if and only if F is smooth. An operator A C E x ¥  is accretive if

and only if for each x, ¢ D{A) and =ach yi e Axi, i = 1,2, there exists
’ i

i
]
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j e J(x’ - x2) such that (y1 - vz,j) > 0. We shall repeatedly use the following simple
lemma.
Lemma 1.3, (b - a,j) > Ibl{Ib] - Ja]l) fer all a,bh ¢ E and j ¢ J(b).
Proof. We know that (Ix + tvl - Ix|)/t > (y,3) for all t > 0 and 3 ¢ Ix/Ix|l. To

obtain the desired result, let t =1, x=b, and y = a - b,

2. RESOLVENTS. 4'
i
In this section we study the weak and strong convergence of th/t ag t ¢+ o |

let x belong to cf(D{(A)), and let t > 8 > 0. Since (x = Jsx)/s belongs to

AJ_x and (x - th)/t belongs to AJ.x, we have
({x = Jsx)/s - (x - th)/t,j) »0
for some Jj in J(Jsx - th). Therefore
(l {x =3 x=-(x=-3x))+ (l - l)(x ~J.x),i)»0
s 3 t s t t
and

2 (t -~ 8)
IJsx JL.(I <lex thl T

@ |-

Ix - th| .

It follows that ;
. s
J - < (1 --= - . .1
i $% thl ( t]|x thl (2.1)
Applying Lemma 1.3 with a = Jsx - J,.x and b= x - th, we obtain :
. s 2 . L.
(x = J_x,3) > (t]lx - 3.xl® frorall 3 oin Jix - Jox).  Hence

. 2,2
((x Jsx)/s,Jt) > Ix - thl /t (2.2)

Py

for all jt e J((x - th)/t). let d = d(0,R(A})}. Since (x - th)/t belongs to R(A},

Ix - thl/t > 4. Consequently,

. 2
((x - JSX)/S']t) > 4 (2.3)

o g—

for all jt e J((x - th)/t).

Let a subnet of {jt} converge weak-star as * + » to j . E* (which depends on

x and the subnet). We obtain
. 2
((x ~ ng)/s,j) >4 .

Since 1lim |J x/t| A 122, Temma 2.1), it follows that 4]

t 00




Now let z_ = (x - J_x)/s, and let is be the natural image of =z, in E**.

Suppose that a subnet of {is} converges weak-star as s + @ to z** ¢ E**., Clearly

|z**| < d. Since (2z**,3j) > dz, We also have lz**| > 4. Thus lz**] = 4 and
J

(z**,3) = dz. In other words, z** always belongs to JE'(j)' This fact leads to the
following results.

Proposition 2.1. Let E be a Banach space, A C E x E an accretive operator that
satisfies the range condition, Jr its resolvent, x a point in c2(D(A}), and w;' the
natural image of jtx/t in E**., If E* is smooth, then the weak-~star 1lim w** exists.

£+

Theorem 2,2, ILet E be a Banach space, A C E x E an accretive operator that
satisfies the range condition, J,  the resolvent of A, and d = d(0,R(A) ).

(a) T1If E 1is reflexive and strictly conves, then the weak 1lim th/t exists for

t -+
each x in c2(P(A)) {and its norm equals d).
(b)Y I1f E* is (F), then the strong lim th/t exists.
t +o

Proof. Part (a) follows from Proposition 2.1. Part (b) follows from Lemma 1.1 and

Part {a) becuase 1lim |J x/t]| = 4.

t o
We have already shown in (22} that the weak 1lim th/t exists if E is (UG),
tro
reflexive and strictly convex. We have also shown there that the strong lim th/t exists

t +o

if E is (UG) and E* is (F), or if F is uniformly convex. Since E 1is uniformly
convex if and only if the norm of E* is uniformly Fréchet differentiable, we see that
Theorem 2.2 unifies and improves upon these results.
Now let jt e J((x - th)/t) and kt e J({y ~ Jty)/t). Suppose that a subnet of

{jt} converges weak-star to i; and that a subnet of {kt} converges weak-star to

iye  let z = (x - qu)/s and let a subnet of (is} converge weak-star to z** ¢ Ev*,
Then the corresponding subnet of the natural image of (y - sz)/s also converges to
z**, wWe have |z**] = |j1| = ljzl =d and (z",j;s = (2**,3,) = a2, Therefore

a? - (z**, (4, + 3,)/2) ¢ fz#*] (5, + jz)/zl = A4l + j2)/2! and |4+ 3)72] = 4.
This ohservatinn implies the following proposition.

Proposition 2.1, 'et F %e a Banach space, A CE x E an accrative operator *hat

satisfies the range condition, and Jr the rescolvent of A. If E* 1is strictly convex,

it e
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then the weak-star lim J((x - th)/t) exists and is independent of x ¢ cf(D(A)).
T+
It is now clear that if E 1is reflexive and smooth, then the weak 1lim J((x - th)/t
t >
exists (and has norm d). It follows that if E if reflexive and (F), then the strong

lim J(({x - J x)/t exists.
t oo t

3. NONLINEAR SEMIGROUPS.

In this section we study the weak and strong convergence of S5(t)jx/t as t »+» o,

Let x belong to D(A), and let t > s > 0. It is known [11] that

s
S 2
[S(s)x ~ thl < (1 - ;)lx - thl + (E] g Ix - S(ryxlar , (3.1)

and that |x - S(r)x| < rp(x), where

p{x) = lim |x ~- erl/r = lim |x - S(r)x|/r < WAxl .
r+0+ 0+
Consequently,
s 52
hY
Ists)x = 3 xl < (1 - Z)ix - goxl o+ (T ipx) & (3.2)

Applying Lemma 1.3 with a = S(s)x - J.x and b = x - Jy.x, we obtain

2
. s s
(x - s{s)x,j) » Ix - thl[[z))x - thl - (E—}p(x))

for all 3§ in J(x - Jyx). Hence

({x - S(s)x)/s,jt) > Ix - th|2/t2 - (EE)lX - thlb(x) (3.3)

[ad

for all 3 -J x .

i € J{(x ¢ y/t)

Denote d(0,R(A}) by A4, and let a subnet of (jt} converge weak-star as t + ®© to

j € E¥. We obtain
. 2
((x - S(s)x)/s,j) » 4" . (3.4)

Since |41 = d, (3.4) implies that |x - Si{s)x]/s > d for all positive s. B%But we alwavs
have 1lim |x - S{t)x]/t ¢ A, This yields the following new result. It is valid in all

t+

Banach spaces.




Proposition 3.1. Let E be an arbitrary Banach space, A C E x E an accretive

anerator that satisfies the range condition, S the semigroup generated by -a, and

X £ CUD(AYY, Then lim [S(t)x/t| = 4(0,R(A)).
t +
Now let ys = /x - S(s)x)/s, and let Qs be the natural image of Yg in E**., Let

a subnet of v_  converge weak-star as S * @ to y** ¢ E**. Then |y**| = 4 and
LA B I dz. In other words, vy** belongs to JE'(j)' As in Section 2, this fact leads
t~ o the following results.

Proposition 3.2. Let F be a Banach space, A C E x E an accretive operator that
satisfies the range condition, S the semigroup generated by =-A, x a point in
cl(D(AYY, and v;' the natural image of S(t)x/t in E**. If E* is smooth, then the
weak-star lim v**  exists,

t s
Theorem 1.3. Let E be a Banach space, A C E x E an accretive operator that

satisfies r»e ranae condition, 8§ the semigroup generated by -A, and 4 = 4(0,R{(A)}).

(a) 1f F 1is reflexive and strictly convex, then the weak 1lim S(t)x/t exists for

t+>
each x in Cci{D(A)) (and its norm equals d).
(hy If F* 13 (F), then the strong lim S(t)x/t exists.
tr
Prosf. Part (a) follows from Proposition 3,2. Part (b) follows from Lemma 1.1 and
Part {a) hrecause lim |8(t)x!/t = 4 by Pronosition 3.1.

t s

T™esre~ 3.3 improves upon (27, Theorem 3.3] and the remark following it. 1Its vroof
shaws *hat lim S(tix/t = lim J x/t. Note that the example in {9]) and (4.1) show that the

[ t s

cenlitions imposedt >n E in Theorem 3.3 cannot be further weakened.

4. NONUXPANSIVE MAPPINGS.

et C be a closel subset of a Banach space E and T : C » C a nonexpansive
(1T - Tvl « !'x - y| for all x and y 1in C) mapping. Assume that the accretive
Aparatar A = T - T <caatiafies the ranae condition and let . denote its resolvent. 1In

rn
this eection we stuly the weak and strong converqence of (T x/n} as n + o,




Let S be the semigroup generated by I - T. Since it is known {21, p. 82] that
n _

Istnix = T x| < /n Ix - Tx| (4.1)
for all n, the followina results are immediate consequences of Proposition 3.2 and
Theorem 3.3.

Proposition 4.1. Let C be a closed subset of a Banach space E and T : 7T +C a
nonexpansive mapping. Assume that I - T satisfies the range condition. Let x belong
to ©, and let u;' be the natural image of Tnx/n in E**, If E* 1is smooth, then the
weak-star lim u** exists.

n+e

Theorem 4.2. Let C be a closed subset of a Banach space E and T : C » C a

nonexpansive mapping. Assume that A = I -~ T satisfies the range condition and let
d = A(0,R(A)}.
(a) If E 1is reflexive and strictly convex, then the weak 1lim Tnx/n exists for
n+o
each x in C (and its norm equals d).
: n :
(b) I1f E* is (F), then the strong 1lim T x/n exists.
n+o
- Theorem 4.2 is essentially due to Kohlberg and Neyman (9] who use a different

argument. They also show that if E is not reflexive and strictly convex (or if E* is
not (F)), then there exists a nonexpansive mapping T : E + E such that {Tnx/n} does
not converge weakly (or strongly). The limits obtained in Proposition 4.1 and Theorem 4.2
equal those of Pronosition 2.1 and Theorem 2.2.

A direct proof of Proposition 4.1 and Theorem 4.2 is also possible. Indeed, let «x

and y belong to C, and denote d(0,R{A)) by d. By definition,

=73 + t(J - 7T 4
y R e Jty), an

(1 + t)Jty =y + tTJty . (4.2)
Therefore
|Tk+‘x - Jtyl = (1 + %]ITK+‘X - Jtvl - % |Tk+‘x - Jtyl
I T I TIL AL D7 R PN
t t t
= rrk*1x + Tk+‘x/t - v/t ~ TJ?yI + lTk*‘xl/t - IJtY'/t

< It - Joelos AN P 13 vi7e .




Summing from k =0 to X =n - 1, we obtain

: - 1
Ix = J vl - (7% - Iyl > nlg vize - nlyl/e - {%7 v 1T kg . (4.3)
k=0
By Lemma 1.3, this implies that
n .
(x = 7T x,jt) >

n=-1
2 R+
ltx - Jty)/tf(nlJtyl/t -onlyl/e - (2) T AT kg

k=0

for all j,_ e J((x =~ Jty)/t) .

t
Dividing by n, and letting a subnet of {jt) converge weak-star as t + o to Jj ¢ E*,
we obhtain
n . 2
((x - T x)/n,3) »d& ., (4.4)
Since 1lim lJtvl/t = lim |Tnx|/n =d [22, Lemma 2.1 and Proposition 4.31, it follows
t+o n+o

that |3j] = d. It is now clear how Pronosition 4.1 and Theorem 4.2 can be deduced from
(4.4). We also see that if E* 1is strictly convex, then the weak-star
lim J{(x - Jty)/t) exists and is independent of x and y in C.
t s+

Combining (4.1}, Theorem 4.2, and the proof of [15, Theorem 2.2}, we see that Theorem
4.2 implies Theorem 3.3 when A = I - T. It alsc implies Theorem 3.3 for general A if we
assume, in addition, either that cf#(D{(A)) is convex, or that E is smooth. Indeed,
agsume first that c2(D(A)) 1is convex. Define T : c{D(A)) + cf(D(A)) by Ty = S(1)y
for each y in cl(D(A})). Since cQ(D(A)) 1is convex, I -« T satisfies the range
condition and the appropriate 1lim S{n)x/n exists by Theorem 4.2. The result is now seen

n+o

to follow, once again, from the proof of (15, Theorem 2.2]. We remark in passing that if
A is m-accretive and E* is (F), then c&(D{A)) is indeed convex [16, p. 382). Assume

now that E {5 smooth and let Jr denote tne resolvent of A. TLet 3§ Aennte the weak

lim J((x - th)/t), which exists by Proposition 2.3. Since 3+ is independenr of x, we
t +

see that (2.4) holds for all x in c&(D{A)). Therefore

N




S i+1 rSN Ly 2
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for all 0 € 2 &~ - 1. Summing these inequalities from 1 =9 %> 1 =n - 1, we ah%ain
. n Sy . 2
fx =3, x)/0=0,37 > nd® .

This leads to (3.4) and to "heorem 3.3,
Finally, we remark in passing that the special case A =1 - T of Theorem 2.2 :implies

the theorem itself if ci&(D(A)) 1is convex. To see this, let T = Ty and note that for

[ad
v
-

I-T
= ¢ - - -1 . 4.%)
th Jt_1x/(t 1) x/{t ) ( )
This relationship also shows that Corollary 1 of [20] is in fact eguivalent to (a variant

cf) Theorem 1 there.

5. THE MINIMUM PROPERTY.

A closed subset D of a Banach space E is said to have the minimum property 107 i€
d(0,clco(l)) = 4(0,D). Let A CE x E be an accretive operator that satisfies the rance
condition. In this section we show that if E* is strictly convex, then cf{R(A)) Thas
the minimum property. This provides another positive answer to a question of Pazv (10, p.
239]. Several apvolications are also included.
Assume that E* 1is strictly convex, and let j be the weak-star
lim J((x - th)/t). This limit exists by Proposition 2.3 and is indenendent nf
e
x £ c2(D(A)). If A =1-T and T 1is nonexpansive, then the case n = 1 of (4.4) shows
that
. 2
(x - Tx,j) >4 (5. 1)
s . 2
for all x in C, where d = d(0,R(A)). 1In other words, (z,j) » A4 for all 2z ¢ RCAY,
: 2 . . .
Consequently, (w,3j) > d° for all w in cfcolR(A)). Hence Iiwld = {wiijl > (w,j) > 3
and cf(R(I ~ T)) 1is seen to possess the minimum property. In order to extend this result

to all accretive operators, let x and v belong to c2(D(AY), ani let + > c > N0,

Since

2oLy IREE Y, 40 e 0
s w7 Y e TV

1
[ 3y -3 x) +
‘s Ut s




for some  j in (I .x - J,y), it follows that

s
. 5 . '8
Tx = T vl ¢ Y- 2 x - e T2V - . (5.2)
17 x . ¢ Ix -3l it g (
{{3.2) can be similarly extendel.) Arplying Lemma 1.3 with a = Jsx - Jty and
) . s .
ho=ox o~ Jty, we obtain  (x - Jsx,j) 2 Ix - Jtylfz)(]x - Jty] - |Ix -~ y!) for all 3 in
J{x - J y). Hence
t
({x = 3 x)/s,5 ) > Ix =7 y|2/t2 ~Ix - 3 yllx - yl/t2 (5.3)
s t t t
for oall o Jitx = 2 v)'t). Suopose that a subnet of {jt} converges weak-star to j

and that 1 sghner of the natural image of {x - Jsx)/s in E** converges weak=-star to

d
Z*¥*,  Then ((x - :sx)/s,)) >4, 130 =4, lz**] =4, and (z**,§) = dz. The discussion

preceding Propesiticn 2.3 now shows that 1€ E*  is strictly convex, then the weak-star

Tim Jix - T w) ) exists and is independent of x and y. Combining this fact with the
croof of 22, Thenre~ .37 we ~htain the following r~sult.
Trenrem .1, Tet E be a Ranach space, and let A CE x E bhe an accretive operator

that satisfies whe range condition. If E* is strictlv convex, then <cf{(R(A)) has the

Terall that aQ‘accretive cperator A T E x E is called m-accretive if R(I + A) = E.
ws that R(I + rA) = E for all positive r.) For me-accretive A, Theorem
Thecrenm 5,2. #+* E Yo a1 Banach srace, arnd let A CE x E be m-accretive. 1f E*
is stri=tlv canvex, rhen cR{(R(A)) 1is convex.

Pranf.  Tomhine Theorem 5.1 with the vroof of (22, Theorem 2.7]. An alternative proof
san he rased on the fack that if A is m-accretive and Ar is its Yosida approximation,
tren R{A) = R(Ar) for all! r > 0.

It may Pe of interest to Jetermine if the strict convexity of E* 1is necessary for
Theorems 5.1 and 5.2 to hold. (We have already seen in {22} that neither theorem is true
in all Banach sraces.) Previous results in the Airection of Theorem 5.2 were obtained by

nmgafellar ‘240, trowler 3%, and the author [13, 14}.
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When E* 1is stricly convex, Theorem 5.1 identifies the limit in Theorems 2.2, 3.3 and
1.2 as =-v, where v 1is the noint of least norm in cf(R(A}). It algo shows that the
assumption that E is (UG) can be renlaced by the weaker assumption that E is smooth
in Theorems 3.4 and 3.6 of [22), and in Theorem 3 of {7). These theorems deal with
iterations of nonexpansive mappings, infinite products of resolvents, and a certain
nonlinear evolution equation. We mention in particular the following results.

Corollary 5.3. Let C be a closed convex subset of a Banach space E, T : C +C a
nonexpansive mapping, S the semigroup generated by -al(l - T), a > 0, and x a point
in C. Assume that E is smooth and that E* is (F), and let v be the point of least
norm in c&(R(I - T)). Then

(a} 1lim AS(t)x/At = ~-v,

t -+
and
. . n n+1

(b) if T is strongly nonexpansive, then 1lim (T x - T x) = v,

n+eo

Proof. Since C is convex, I - T satisfies the range condition and Ccf{(R(I - T))
has the minimum propertvy by Theorem 5.1. We know that 1lim [dS(t)x/dt| = {v{ and

t+e0

1xl = |v] (see {1, Theorem 4.3] and (4, Proposition 1.2}). Therefore the

1im ft7x - ™
nee
result follows by Lemma 1.2.

Finally, let E Dbe a Banach space, and let A CE x E be m-accretive. Assume that
E 1is reflexive, smooth, and strictly convex. Since c2(R{(A)) 1is convex bv Theorem 5.2,
the nearest point map P : E + c2(R{A)) exists. Part (a) of Theorem 2.2 can now be used
to show that I - P is nonexpansive. This improves upon (22, Proposition 4.2].

Remark. Rruce Talvert and the author have recently shown that if a Banach space is
not smooth, then there is an accretive A CTE x E that satisfies the range condition such
that cf(R(A)) does not possess the minimum property. Consequently, a reflexive Banach

space E 1is smooth if and only if cf(R(A)) hag the minimum property for all accretive

A C E x E that satisfy the range condition.

-11-
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6. BEHAVIOR AT THE ORIGIN.

In this section we use the ideas of Sections 2 and 3 to study the behavinr of th
and S{t)x as t + 0+,

Theorem 6.1. Let E be a Banach space, A C E x E an accretive operator that
satisfies the range condition, Jr the resolvent of A, and § the semigroup generated
by =A.

(a) If E 1is reflexive and strictly convex, then the weak 1lim (x - th)/t and the

t+0+
weak lim (x - S(t)x)/t exist and are equal for each x in D(A)}.
t+0+
(b) I1f E* is (F), then the strong 1lim (x - th)/t and the strong
t+0+

1im (x - S(t)x)/t exist and are equal.
t+0+

Proof. let x belong to D(A), and let jt belong to J((x - th)/t). Recall that

p(x) = lim |x - thl/t lim |x - S(t)x|/t < NAx# exists. Suppose that subnets of

t+0+ t+0+

{{x = fsx)/s) and {(x - S{s)x)/s} converge weakly as s + 0+ to =z and vy
respectively. Then Jlz| < p{x) and |y| < p{x). On the other hand,

(z,jt) > Ix - thlz/t2 and (Y'jt) > Ix - th|2/t2 by (2.2) and (3.3). It follows that,
in fact, |zl = |ly] = p{x). Now let a subnet of {jt} converge weakly to 3 as t + 0+,
Then 13j| < o(x) and (z,35) > [p(x)]z. Hence |[j] = p(x) and (z,3j) = (y,3) = !p(x)]z.
In other words, both z and y belong to JE'(j)' Since E 1is reflexive and strictly
convex, E* is smooth, JE‘(j) is a singleton and (a) follows. Part (b) follows from (a)
and Lemma 1.1.

Theorem 6.1 improves upon a recent result of Plant {[12]) who proved Part (b) for
uniformly convex ¥ by a different arqument. It remains valid if D(A} 1is replaced by
the generalized domain D(A) of Crandall [5).

In the setting of Part (b) of Theorem 6.1, assume in addition that A is closed and

0
that E is smooth. Let A x = {y ¢ Ax : |yl = #AxI} be the canonical restriction of

A. Since 1lim J . x = x for all x in cf£(D(A}), we see that D(A) = PD(A), the common
t+0+
limit of Part (b) helongs to on, and p(x) = JAxHk. Let B be a maximal accretive
extension of A in cf(N(A)). Since p(x) is not changed for x ¢ D(A), 189xI = IAxXY.
-12-
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put 8%x is a singleton because Bx is closed and convex. Therefore A% is a singleton

too and lim (x - th)/t = lim (x - S(t)x)}/t = on for all x in D(A).
t+0 t+0+

Corollary 6.2. Let E be a Banach space, A C E x £ an accretive operator that
satisfies the range condition, and S the semigroup generated by =-A. If E* {s (F),
E is smooth, and A is closed, then the {negative) infinitesimal generator of S is
equal to the canonical restriction of A.

This result is of interest in connection with our Hille-Yosida theorem for semiqroups

on arbitrary closed convex subsets of E [23).
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