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ABSTRACT

Let E he a Banach space, A C E x E an accretive operator that

satisfies the range condition, J the resolvent of A, and S ther

nonlinear semigroup generated by -A. It is shown that if the norm of E* is

Frechet differentiable, then lim J tx/t = lim S(t)x/t for each x in

c£(D(A)), and lim (x - J x)/t = lim (x - S(t)x)/t for each x E D(A).
t+o+ t+0+

All limits are taken in the norm topology. If E is also smooth, then the

first common limit is -v, where v is the unique point of least norm in

ct(R(A)). If, in addition, A is closed, then the second common limit is

0
A x, the unique point of least norm in Ax. We also show that if A is

m-accretive and E* is strictly convex, then c£(R(A)) is convex.
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SIGNIFICANCE AND EXPLANATIONY
It is known that certain problems in partial differential equations may

be interpreted as initial value problems for ordinary differential equations

in Banach spaces. When such an evolution equation is governed by an accretive

operator, then its solutions give rise to a nonlinear contraction semigroup.

In this paper we study certain aspects of the asymptotic behavior of nonlinear

semigroups and of resolvents of accretive operators. We also derive new

results on their behavior at the origin. It turns out that the behavior of a

nonlinear semigroup resembles that of the resolvent of its generator both at

infinity and at the origin.
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A NOTE ON THE ASYMPTOTIC REHAVIOR OF NONLINEAR

SEMIGROUPS AND THE RANGE OF ACCRETIVE OPERATORS

Simeon Reich*

1. INTRODUCTION.

Throughout this paper E denotes a (real) Banach space, A C E x E an accretive

operator that satisfies the range condition, Jr the resolvent of A, and S the

nonlinear semigroup generated by -A. The main nurDose of the present paper is to sharpen

some of the results of our previous paper [22] concerning the weak and strong convergence

of Jtx/t and S(t)x/t ai t + -, and the properties of the range of A. The first

results in this direction were established by Crandall (see [2, p. 166]) and Pazy [10) in

Hilbert space. For recent developments in Ranach spaces see the papers by Kohlberg and

Neyman [8, 9] and the author [17, 18, 19]. In addition, we also derive new results on the

weak and strong convergence of (x - Jtx)/t and (x - S(t)x)/t as t + 0+.

In particular, we show that if the norm of E* is Frechet differentiable, then the

strong lim Jtx/t = lim S(t)x/t for each x r c£(D(A)), and the strong
t t. t

lim (x - Jtx)/t = lim (x - S(t)x)/t for each x e D(A). If E is also smooth, then
t+0+ t+

the first common limit is -v, where v is the unique point of least norm in ct(R(A)).

If, in addition, A is closed, then the second common limit is A
0
x, the unique point of

least norm in Ax. We also show that if A is m-accretive and E* is strictly convex,

then cX(R(A)) is convex.

The asymptotic behavior of resolvents and nonlinear semigroups is studied in Sections

2 and 3. Nonexpansive mappings are treated in Section 4. Section r is devoted to the

properties of ct(R(A)), and Section 6 to the hehavior of Jtx and S(t)x at the origin.

Let E he a real Banach space, and let I denote the identity operator. 'ecall that

a subset A of E x E with domain D(A) and range R(A) is qaid to he accretive if
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Ix - X21 4 Ix - x 2 + r(y 1 y2 for all [xi,y] e A, i 1,2 and r > 0. The

resolv-nt Jr R(I + rA) - D(A) and the Yosida approximation Ar R(I + rA) - R(A) arer -1r

defined by J = (I + rA) and A = (I - J )/r. We denote the closure of a subset Dr r r

of E by cZ(D), its closed convex hull by ctco(D), and its distance from a point x

in E by d(x,D). We also define IDN = d(0,D). We shall say that A satisfies the

range condition if R(I + rA) D ct(r)(A) for all r > n. In this case, -A generates a

nonexpansivp n~nlinear semiqroup S : In,-) x cX(D(A)) + c£(D(A)) by the exponential

formula: S(t)x -= lim (I + L A)'nx.
nn

Recall that the norm of E is said to be Gateaux differentiable (and E is said to

be smooth) if lim (Ix + tyl - lxl)/t exists for each x and y in

t+ 0

U = (x E E l jxi = l). It is said to be uniformly Gateaux differentiable if for each y

in U, this limit is approached uniformly as x varies over U. The norm is said to be

Prechet differentiable if for each x in U this limit is attained uniformly for y in

U. We shall write that E is (UG) and (F) resrectively. We shall need the following

two known lemmata (cf. [61 and 115]).

Lemmi 1.1. E* is (F) if and only if E is reflexive and strictly convex, and has

tle following pronertv: if the weak lim x. = x and Ix I + lx1, then {x 
} 

converges
n --

'tro)nq~v tn X.

Lemma 1.2. E* is (F) if and only if for any convex set K C E, every sequence

(x in K such that lxn' tends to d(0,K) converges.

Note t-hat If E* is smooth (strictly convex), then E is strictly convex (smooth).

,. n,-e, if F is reflexive, E is strictly convex (smooth) if and only if E* is smooth

(otrictly convex). However this duality is not valid for all Banach spaces.

The du'lity map from E into the family of nonempty subsets of its dual E* is

L£ndby

2 2
J(x) = jx* E E* : x,x*) = lx

2  
x*1 I

i; sinqle-valued if and only if E is smooth. An operator A C E F is Accretive if

ani only if for each x.c £ D(A) ani -ach Vi E Axi , i 1,2, thern exists

-2-
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j 1 J(x 1 x2  such that (Y 1 '2,j) ) 0. We shall repeatedly use the followinq simple

lemma.

Lemma 1.3. (b - a,j) Ibb(ib - lab for all a,b c E ane. j c 3(b).

Proof. We know that (lx + tvl - lxl)/t ) (y,j) for all t > 0 and J c Jx/lxl. To

obtain the desired result, let t - 1, x - b, and y - a - b.

2. RESOLVENTS.

In this section we study the weak and strong convergence of Jtx/t as t * -.

Let x belong to cl(D(A)), and let t > a > 0. Since (x - JsX)/s belongs to

AJ x and (x - Jtx)/t belongs to AJtx, we have

((x - j sX)/s - (x - Jtx)/t,j) ) 0

for some j in J(J x - J x). Therefores t

Jx - (x - jtx))+ )(x - Jtx),) 0

and

2 (t-S)
!lJ.x - J :Ul l3x - atxl t Ix Jtx

It follows that

jJ x - JtX1 ; (1 - )lx - J .• (2.1)

Applying Lemma 1.3 with a - Jsx - Jx and b = x - Jtx, we obtain

(x - Jx,j) x - Jtx 2 f all j in J(x -
3 
t x). Hence

((x - 3sx)/s,J ) > Ix - Jtx 2 /t2 (2.2)
5 t

for all j c J((x - 3tx)/t). Let d = d(0,R(A)). Since (x - Jtx)/t belongs to R(A),
tt

Ix - Jtxl/t ) d. Consequently,

2((x - Jsx)/s,j ) 
2  

(2.3)

for all jt E J((x - 3tx)/t).

Let a subnet of jt I converge weak-star as t * to j r E* (which depends on

x and the subnet). We obtain

((x - J x)/s,j) > . (2.4)
s

Since tim 3 tx/tl = d r22, Temma 2.11, 1t follows that H?[ 1 .

t ,

i'i



Now let z (x - X)/s, and let Z. be the natural imaqe of zs  in E**.

Suppose that a subnet of i sI converges weak-star as S + - to z** E E
**

. Clearly

22

Iz**I & d. Since (z*e,j) ) d
2, We also have Iz**f ) d. Thus 1z'*I d and

(z**,j) = d
2 . 

In other words, z** always belongs to JE*(j). This fact leads to the

following results.

Proposition 2.1. Let E be a Banach space, A C E x E an accretive operator that

satisfies the range condition, Jr its resolvent, x a point in ct(D(A)), and w 
*  

the

natural image of Jtx/t in E**. If E* is smooth, then the weak-star lim w** exists.
tt ..

Theorem 2.2. Let E be a Ranach space, A C E x E an accretive operator that

satisfies the range condition, Jr the resolvent of A, and d = d(O,R(A)).

(a) If E is reflexive and strictly conves, then the weak lim J x/t exists fortt

each x in cZ(ICA)) (and its norm equals d).

(b) If E* is (F), then the strong lim Jtx/t exists.
t

Proof. Part (a) follows from Proposition 2.1. Part (b) follows from Lemma 1.1 and

Part (a) becuase lim jJtx/tI = d.
t t

We have already shown in (221 that the weak lim J x/t exists if E is UG),
t+

reflexive and strictly convex. We have also shown there that the strong lim Jtx/t exists
t+

if E is (UG) and E* is (F), or if F is uniformly convex. Since E is uniformly

convex if and only if the norm of E* is uniformly Frechet differentiablo, 4e see that

Theorem 2.2 unifies and improves upon these results.

Now let j t E J((x - Jtx)/t) and kt E J((y - t y)/t). Suppose that a suhnet of

fjr
} 

converges weak-star to i and that a subnet of {kt) converges weak-star to

i2" Let z = (x - J3x)/s and let a subnet of converge weak-star to z
*
* c E**.

Then the corresponding subnet of the natural image of (y - Jsy)/s also converqes to

z*. We have jz**l = Ij I = J2 1 
= 
d and (z**,1j) = (z**,j) = d . Therefore

2 (z**,(j + j,(/2) - 1z**jj(j I  + i )/21 = di(ji + j2)/2 1 an H iI + j )/21 = d.

This observatinn implies the follnwing proposition.

Propositlon 7.1. Let F %, a Ranach space, A C E x r. an -" ve orerator "at

satisfies the ranqe condition, and Jr the resolvent of A. If E* is strictly convex,

-4-



then the weak-star lim J((x - J x)/t) exists and is independent of x c ct(D(A)).t
t +

It is now clear that if E is reflexive and smooth, then the weak lim J((x - J x)/tt
t +*

exists (and has norm d). It follows that if E if reflexive and (F), then the strong

lim J((x - J x)/t exists.
t+tt

3. NONLINEAR SEMIGROUPS.

In this section we study the weak and stronq convergence of S(t)x/t as t . .

Let x belong to D(Al, and let t > s > 0. It is known f111 that K
5{S~s~x Jtx{ -l s I -

SWx < )Ix -JtJx + ( Ix - S(r)xldr , (3.1)
0

and that Ix - S(r)xl 4 rp(x), where

P(x) = lim Ix - j xj/r = lim Ix - S(r)xl/r 1i lAx11 i
r 0+ r -0+

Consequently,
2

1S(s)x - Jtx1 a i )lx - JxI )-(-p(x) .(3.2)

Applying Lemma 1.3 with a = S(s)x - Jtx and b x - Jt
x , 

we obtain

2

(x - S(s)xj) > I x- I tl(()I x- - (--P(x))

for all j in J(x - Jtx). Hence

((x - S(s)x)/s,jt) > Ix - Jtxl 
2
/t2 - ()lx - J7txlp(x) (3.3)

t

for all jt J((x - Jtx)/t).

Denote d(O,R(A)) hv d, and let a subnet of {it1 converue weak-star as t to

j c E*. We obtain

((x - S(s)x)/s,j) > d
2  

(3.4)

Since [il = d, (3.4) implies that Ix - S(s)xl/s > d for all nositive s. iut we always

have jim Ix - S(t)xl/t 4 d. This yields the following new result. It is valid in all
t..

Banach spaces.

-9-



Proposition 3.1. Let E be an arbitrary Banach space, A C E x E an accretive

rnerator that s-tisfies the rancie condition, S the semigroup generated by -A, and

x c ( (A). Then lim IS(t)x/tl = d(O,R(A)).

t

N,cw let y = Ix - S(s)x)/s, and let y be the natural image of y. in E**. Let

a subnet ,f V converge weak-star as S * to y** E E**. Then ly**l - d and

•V*J= d. In other words, v** belongs to J .(j). As in Section 2, this fact leads

'"o fnl!owing results.

rrotosltiorn 3.2. Let E be a Banach space, A C E x E an accretive operator that

-itisfies the range condition, S the semigroup generated by -A, x a point in

cICD(A)f, ani v* the natural image of S(t)x/t in E**. If E* is smooth, then the
t

weik-star im v** exists.
t

Theorem 1.1. Let E be a Banach space, A C E x E an accretive operator that

satisfies t'e ranae cnndition, S the semigroup generated by -A, and d - d(O,RI(A)).

(al If F is reflexive and strictly convex, then the weak lim S(t)x/t exists for

each x in :Z(r(A)) (and its norm equals d).

h :f F* is (F), then the strong lim S(t)x/t exists.
t+-

r. Pirt (V lollows from Proposition 3.2. Part (b) follows from Lemma 1.1 and

,trt ( oocause lirS(t)x,'t = I by Pronosltion 3.1.
t *O

Tlt ,o- 3.3 iorvs unn '21, Theorem 3.31 and the remark followinq it. Its oroof

ihow t '.in .(tlxt ho l x!t. Note that the example in [9 and (4.) show that the

t

nt, o coisci 'n E in Theorem 3.3 cannot be further weakened.

4. NCN%'XPANS1VF MAPPINGS.

Let C he a close i subset of a Ranach space F and T : C * C a nonexpansive

(1-x - Tvj I Ix - vj for all x and y in C) mapping. Assume that the accretive

on,,r.tr A 7 T- T saa'i7ies the ranl,- condition and let Jr denote its resolvent. In

thic orctin we stulv the weak and strong convercence of {T x/n} as n + w.

-C-



Let S be the semigroup generated by I - T. Since it is known [21, a. 82) that

nx
IS(n)x - Tnxl /n Ix - Tx) (4.1)

for all n, the followina results are immediate consequences of Proposition 3.2 ani1

Theorem 3.3.

Prooosition 4.1. Let C be a closed subset of a Banach space E and T : C - C a

nonexpansive mappinq. Assume that I - T satisfies the range condition. Let x belonq

n
to C, and let u** be the natural image of T x/n in E**. If E* is smooth, then thp

n

weak-star lim u** exists.
n

n
Theorem 4.2. Let C be a closed subset of a Banach space E and T : C - C a

nonexpansive mapping. Assume that A = I - T satisfies the range condition and let

A = d(O,R(A)).

n
(a) If E is reflexive and strictly convex, then the weak lim T x/n exists for

each x in C (and its norm equals d).

(b) If E* is (F), then the strong lim T nx/n exists.
n -

Theorem 4.2 is essentially due to Kohlberg and Neyman [91 who use a different

argument. They also show that if E is not reflexive and strictly convex (or if E* is

not (F)), then there exists a nonexpansive mapping T : E + E such that {T nx/nl does

not converge weakly (or strongly). The limits obtained in Proposition 4.1 and Theorem 4.2

equal those of Prnnosition 2.1 and Theorem 2.2.

A direct proof of Proposition 4.1 and Theorem 4.2 is also possible. Indeed, let x

and y belong to C, and denote d(O,R(A)) by d. By definition,

y = jty + t( tv - TJ tY), and

(1 + t)Jy =y + tTity . (4.2)

Therefore
IT x - Ji I + -)ITkx - jtvI - ' x - J ty

1k+1 k+
'rl + -!lTx- ' 

vI + IT 'CI/t - Iy/t
t t t

k+1 k4-1 k+1
IT x+ x/t - y/t - TJ yl + IT xi/t - t YI/t

ITkx - I * 'IT sl/t + ('l/t - t yt/t



Summing from k = 0 to k = n - 1, we obtain

n-1
Ix - itVI - ITnx - y) nJtvj/t - nlyf/t - ITk+ x1 . (4.3)

k= 0

By Lemma 1.3, this implies that

(x - Tnx,j)
t

n- 1 K+
i(x - JtY)/tl(nlJtyI/t - nlyl/t - ITXI 1

k=0

for all j E J((x - J y)/t)
t t

Dividing by n, and letting a subnet of jt ) converge weak-star as t * to j E E*,

we obtain

((x - T nx)/n,j) > d . (4.4)

nSince lim IJtvl/t = lim IT xI/n = d [22, Lemma 2.1 and Proposition 4.31, it follows
t.- n -

that IjI = d. It is now clear how Proposition 4.1 and Theorem 4.2 can be deduced from

(4.4). We also see that if E* is strictly convex, then the weak-star

lim J((x - Jtv)/t) exists and is independent of x and y in C.
t.t.t

Combining (4.1), Theorem 4.2, and the proof of [15, Theorem 2.21, we see that Theorem

4.2 implies Theorem 3.3 when A = I - T. It also implies Theorem 3.3 'or qeneral A if we

assume, in addition, either that ct(D(A)) is convex, or that E is smooth. Indeed,

assume first that ct(D(A)) is convex. Define T : c£(D(A)) * ct(D(A)) by Ty = S(1)y

for each y in cZ(D(A)). Since ct(D(A)) is convex, I - T satisfies the rance

condition and the appropriate lim S(n)x/n exists by Theorem 4.2. The result is now seen

n.
to follow, once again, from the proof of (15, Theorem 2.2]. We remark in passing that if

A is m-accretive and E* is (F), then ct(D(A)) is indeed convex [16, p. 3821. Assume

now that E is smooth and let Jr denote the resolvent of A. Let j denote the weak

lim J((x - Jtx)/t), which exists by Proposition 2.3. Since i is indepenlent- of x, we

see that (2.4) holds for all x in cZ(D(A)). Therefore

-8-



-i+- 2sln
X  

Jsln
5/n s / n

f - all 0 n - 1. S)-s.in these inequalities fron i n t = - 1, we n

(X- in 2 n
'Cx J x/r'j od

This leads to (3.4) and to -heorem 3.3.

Finally, we remark in passing that the special case A I - T of Theorem 2.2 implies

the theorem itself if ci(D(A)) is convex. To see this, let T =J and note that for

>

Jtx = tJ tx/(t - 1) - x/ft - 1) .

This relationship also shows that Corollary 1 of '20] is in fact equivalent to (a variant

of) Theorem 1 there.

5. THE MINIMUM PROPERTY.

A closed subset D of a Banach space E is said to have the minimum pronerty .101 if

I(0,cico(0)) = d(0,D). Let A C E x E be an accretive operator that satisfies the ranie

condition. In this section we show that if Z* is strictly convex, then Cl(R(A)) has

the minimum property. This provides another positive answer to a question of Pazv [10, p.

239). Several applications are also included

Assume that E* is strictly convex, and let j be the weak-star

lim J((x - J x)/t). This limit exists by Proposition 2.3 and is indenendent -t

x e cZ(D(A)). If A = I - T and T is nonexpansive, then the case n I of (4.4) shows

that

(x - Tx,j) > 12.

for all x in C, where d = d(O,R(A)). In other words, (z,j) > d2  for all z r ?A.V

Consequently, (w,j) > d
2  

for all w in cico(R(A)). Hence 1wid = wi11 ) (w,j) I 1'

and cZ(R(I - T)) is seen to possess the minimum property. Tn orler to exteni this r,-si2t

to all accretive operators, let x and v belono to c(D(A)), al l- t t s q r).

Since

t (t



for soime 7in Isx- h. y), it follows that

3.2) 2an be sinilarly exteniiei.) Arplyinq Lemma 1.3 with a = .2x - J y and
S t

X - J, we 'bt' in (x - j X'j) ;0 lx - J yI>>)Ix - i yl Ix - l y) for all i in
5 t t' t

JT(x T v). Henre

((X-Jx)/s') >Ix -JyI2/t 2_Ix - Jyjx- yI/t 2(5.3)
5 -tt t

ill '2' t ) Suopose that a subnet. of { 1 converges weak-star to j

an1 th at i sihoept of The natural imaqe of (x - Jsx)/s in E** converges weak-star to

2 2
**. ThIe- ((X - '7 X)'s,)) >d1, lil = 1, Iz**1 = d, and (z**,j) = d . The discussion

nre:oeiino- Pr-rnositi-i 2.1 now shows that if E* is Strictly convex, then the weak-star

'i'n j((x- t) exists and is independent of x and y. Combining this fact with the

:r-of -22 Teore- 2.'we ob)tain the following r-sult.

1.. Le t E be a sanach space, and let A C E x E he an accretive operator

that 5salt i ?es teranaie corlition. If E* is strictly convex, then cX(R(A)) has the

'alThat accretive onerator A C E a E is called m-accretive if R(I + A) - E.

Th.~ '~l~wn:'.t R(2 + rA) = E for a'! nositive r.) For m-accretive A, Theorem

Iboc ren 5.2. ',- F .o i anach snaco, ani let A C E . E he m-accretive. If E*

istri_-ty: co-nvex, '-hen CZ(R(A)) is Convex.

0
r~o. ?rnhne heorem 5.1 with the nroof of (22, Theorem 2.71. An alternative oroof

-in h-e b e n t1 fontl 'hat. if A is i-accretive and ; is its Yosida approximation,

Phn (A) =RCA, fo r all r > 0.

it 7ay he of interest to ieterrsine if the strict convexity of E* is necessary for

Thn 's .l and '.2 to hnld. (w4e have already seen in (221 that neithpr theorem is true

in all FPanaich srD. revious, rsqults in the direction of Theorem 5.2 were obtained by

-- <ai''llar '24',,'-r-w!er :3l, ind the auithor [13, 14).



When E* is stricly convex, Theorem 5.1 identifies the limit in Theorems 2.2, 3.3 and

4.? as -v, where v is the noint oO least norm in cX(R(A}). Tt also shows that the

assumption that E is (UG) can be renlaced by the weaker assumption that E is smooth

in Theorems 3.4 and 3.6 of [221, and in Theorem 3 of 171. These theorems deal with

iterations of nonexpansive mappings, infinite products of resolvents, and a certain

nonlinear evolution equation. We mention in particular the following results.

Corollary 5.3. Let C be a closed convex subset of a Banach space E, T : C - C a

nonexpansive mappinq, S the semigroup generated by -a(I - T), a > 0, and x a point

in C. Assume that E is smooth and that E* is (F), and let v be the point of least

norm in c(R(I - T)). Then

(a) lim dS(t)x/dt = -v,
t

and

(b) if T is stronplv nonexpansive, then lim (Tnx Tn x) V.

n-
Proof. Since C is convex, I - T satisfies the range condition and cX(R(I - T))

has the minimum property by Theorem 5.1. We know that lim IdS(t)x/dtl = Ivi and

lim ITnx - Tn+xl = IvI (see [1, Theorem 4.3] and [4, Proposition 1.21). Therefore the
n-

result follows by Lemma 1.2.

Finally, let E be a Banach space, and let A C E x E be m-accretive. Assume that

E is ref1exive, smooth, and strictly convex. Since c(R(A)) is convex by Theorem 5.2,

the nearest point map P : E + cl(R(A)) exists. Part (a) of Theorem 2.2 can now be used

to show that I - P is nonexpansive. This improves upon (22, Proposition 4.21.

Remark. Rruce Calvert and the author have recently shown that if a Banach space is

not smooth, then there is an accretive A C E x E that satisfies the ranqe condition such

that ct(R(A)) does not possess the minimum property. Consequently, a reflexive Banach

space E is smooth if and only if c£(R(A)) has the minimum property for all accretive

A C E x E that satisfy the ranpe condition.
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6. BEHAVIOR AT THE ORIGIN.

In this section we use the ideas of Sections 2 and 3 to study the beha'ior of Jtx

and S(t)x as t + 0+.

Theorem 6.1. Let E be a Banach space, A C E x E an accretive operator that

satisfies the ranqe condition, Jr the resolvent of A, and S the semigroup generated

hy -A.

(a) If E is reflexive and strictly convex, then the weak lim (x - J x)/t and the
t

weak lim (x - S(t)x)/t exist and are equal for each x in D(A).

t -0+
(h) If E* is (F), then the strong lim (x - J x)/t and the stronq

t

lim (x - S(t)x)/t exist and are equal.
t.0+

Proof. Let x belong to D(A), and let Jt belong to J((x - Jtx)/t). Recall that

p(x) = lim Ix - Jtxl/t = lim Ix - S(t)xl/t 4 1AxI exists. Suppose that subnets of
t+0+ t0+

[(x -Tsx)/s} and {(x - S(s)x)/s) converge weakly as s + 0+ to z and y

respectively. Then IzI ( o(x) and lyl 4 p(x). On the other hand,

2 2 2 2
(z,j ) Ix - Jtxl /t and (y,j ) Ix - J x1 /t by (2.2) and (3.3). It follows that,

t t t t

in fact, IzI = jyl = p(x). Now let a subnet of {j ) converge weakly to j as t + 0+.
t

2 2
Then lIjI o(x) and (z,j) > [p(x)] . Hence 1i = p(x) and (zj) = (y,j) = !p(x)]

In other words, both z and y belong to JE*(j). Since E is reflexive and strictly

convex, E* is smooth, JE,(j) is a singleton and (a) follows. Part(b) follows from (a)

and Lemma 1.1.

Theorem 6.1 improves upon a recent result of Plant [121 who proved Part (b) for

uniformly convex r by a different argument. It remains valid if D(A) is replaced by

the generalized domain D(A) of Crandall [5).

In the setting of Part (b) of Theorem 6.1, assume in addition that A is closed and

that E is smooth. Let A 0x = {y £ Ax : lyl = RAx} be the canonical restriction of

A. Since lim J tx = x for all x in c£(D(A)), we see that D(A) = D(A), the common
t +

limit of Part (b) belongs to A x, and p(x) = IIAxi. Let B be a maximal accretive

extension of A in ct(fl(A)). Since p(x) is not changed for x e D(A), Irxll = IAx:I.

-12-



But BOx is a singleton because Bx is closed and convex. Therefore A Ox is a singleton

0
too and Jr (x - Jtx)/t = lira (x - S(t)x)/t = A x for all x in O(A).

t+0 t+O+

Corollary 6.2. Let E be a Banach space, A C E x £ an accretive operator that

satisfies the range condition, and S the semigroup generated by -A. If E* is (F),

E is smooth, and A is closed, then the (negative) infinitesimal generator of S is

equal to the canonical restriction of A.

This result is of interest in connection with our Hille-Yosida theorem for semiqrouos

on arbitrary closed convex subsets of E (23].
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