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THE PHYSICS AND THE CHEMISTRY OF ETWAC CODE
(AN EARLY TIME WET AIR CHEMISTRY CODE FOR
DISTURBED AIR CONDUCTIVITY CALCULATIONS)

I. INTRODUCTION

When air is bombarded by a pulsed beam of electrons or charged

particles, a conducting ionized path is generated which will subse-

quently decay and deionize. The conductivity of the plasma is deter-

mined by the electron density in the ionized region. However, the

electron density or the deionization of the plasma depends on the

atmospheric ions generated as a result of the energy deposited in air

by the bombarding charged particles.

The air ions, their forms and their paths in the deionization

scheme depend on the air density, various kinetic temperatures and the

density of the minor species present in air. Minor species and im-

purities (H20, 03, CO2, NO, NO2, N20, etc.) are generally present in

the atmosphere. Their role in the deionization of air must be

assessed.

In this report we present the physics and the chemistry of a

code developed to depict the role of the water vapor in the deioni-

zation of air. This code is developed to provide calculations on the

time history of the electron density, at a point in space, during the

passage of an electron beam in wet air. The code is named ETWAC

(Early Time Wet Air Chemistry) to emphasize its application to the

early time phase of the disturbed air.

The report describes the deionization of the dry air in Section

2. In Section 3 the processes which arise upon the addition of water

vapor to air are presented to depict the role of H20 in the deioniza-

tion processes. In Section 4 the rate coefficients currently used in
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the code are presented while in Section 5 a discussion is given for

the calculation of various relevant temperatures.

II. THE CHEMISTRY OF DRY AIR

The ionization of the air species (N2 and 02) by the electron

beam arise from the collisional ionization, ionization due to the

Bremsstrahlung radiation and the avalanche ionization caused by the

intense electric field associated with the electron beam. Regardless

of the ionization sources, the following ions: N2 , N, 02, and 0+ , are

generated directly in the dry air along with the free electrons.

The deionization (i.e. the disappearance of the charges, positive

and negative) proceeds in two distinct manners: 1) by the electron-

ion recombinations and 2) by the ion-ion recombinations. These pro-
1

cesses , however, are complimented by various atomic processes which

result in the generation of other ions not produced originally in air.

The electron-ion recombinations proceed through the dissociative

and the three-body recombinations. The dissociative recombinations

are:

e+ N N+N (1)
2

e+N+ - N + N, (2)
3

e + 4  N N2+ N 2  (3)

e + 2  0 + 0 (4)

* + 04 02 + 02 (5)

e + NO N + 0 (6)
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e+ 6.N2  02 +N 2  (7)

The three-body recombinations, on the other hand, proceed according to

+
e + e + A + e + A (8)

n n

and

e + M + - M + A (9)n n

Where the third-body, M, in equation (9) is a neutral species and A
+

n

indicates an atomic ion (n=l), a molecular ion (n=2) or a cluster ion

(n-3 and 4). Recombination also proceeds through the radiative re-

combination, which can be ignored in regions of interest to our

problem.
+ + + +

The cluster ions, N3 , N4, 04 and 02.N2 which appear in equations

(2), (3), (5) and (7) are formed by the following association react-

ions
+ +

N+ +2 +2 3 + N2 (10)

+ ++N
N + N + N N + ()

+ +
o + +0 + 0 0 ++0 (2
2 2 2 4 2 (12)

0 + N + N 02. N + N (13)2 ~2 2 2* 2 2 (3

NO+ on the other hand, is formed by

0+ + N2  NO + N (14)

N + 02  NO + 0 (15)

and by various charge exchange processes of positive ions with NO.

However, for early time phase of the beam air interaction one may
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ignore NO
+

The ion-ion recombination, also called the mutual neutralization

can be illustrated by the following two reactions
0 + 0 + A (16)

2 n 2 n

O A+ n 0 + A (17)
n n

Mutual neutralization also proceeds through the three-body neutrali-

zation reaction

(0,05) + An + M (0,02) + An + M (18)

where the negative ions O; and 0 are produced by the three-body

e + 0 + 0 0 + 0 (19)
2 2 2 2 (9

e + 02 + N2 2 2 + N2 (20)

and by the dissociative attachments

e + 02 - 0 + , (21)

respectively.

The positive ions, however, undergo various charge exchange and

ion atom interchange processes which are

+ 4.+
N + 0 0 .+N (22 2 2 N2 (22)

+ +

N + 0 0 + N (23)2 2

0+ + 02 02 + 0 (24)

N+ + 0 0++ 2N (25)4 2 2 2 (5

+
N + 0 NO +N (6)3 2 (6
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N+ +02 NO++ N20 (27)
3 2 2

0.+*N + 0 0 + +N
2"2 2 4 2 (28)

A schematic diagram shown in Fig. 1 illustrates the flow of the

positive charge in the deionization scheme of the disturbed dry air.
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III. THE CHEMISTRY OF WET AIR

The presence of water in air introduces further complications in the

disturbed air chemistry. Various positive clustered ions are formed which

terminate in the form of a hydrated hydronium, H3 0+. (H20) n . These ions

have been observed by Narcisi and Bailey 2 in the D-region of the ionosphere.

The reaction paths leading towards these clusters starts with 02 as a pre-

cursor ion and is well understood3 '4 and have been utilized in the mod-

eling1'5 of the disturbed atmosphere as a result of nuclear detonation.

The hydrated hydronium generally recombine with the free electrons,

through the dissociative recombination, at a much faster6 rate compared to

the lighter air ions.

The pertinent reactions which lead to the generation of various hy-

drated ions are as follows. The positive ions, N+, N,+ N,+ N4 and 0+ react

with H20 according to the following reactions

N + HO 2 H2O2 + N (29)

N2+ + H20 H 02O+ + N2  (30)2 2 2 2

N + + H20 N N H + + OH (31)

++

N + H20 H2NO + N (32)

2 2 2 2 (0
++

N + H0 H H +  + 2N (33)

2 22 2

+ + H20 H 2O+ + 0 (34)

Reactions (29) through (34) obviously produce predominantly H 2O0+ which in

turn undergoes the following reactions

+ +

H0 +H+ 0 H O + H20 (35)

2 2 2 2



H2O+ + e OH + H (36)

H20+ + H2 2 H30+ + OH (37)

Reaction (37) generates the hydronium, H30+,which in turn generates

once hydrated hydronium according to

H30+ + H20 + M - H30+.H20 + M (38)

The following reactions, an association and two switching, result in

the production of 0 .H2 0

+ +

0+ H0 + M O+.H0 + M (39)
2 2 2

S+ + 0 H20 + M (40)04+ 20+0.

2 N2 + H20 0 2H20 + N2 (41)

On the other hand, O.H 20 reacts with H20 to produce H 30.OH which

in turn produces H 30+.H20 through a switching reaction with H20. This

indicates two routes for the production of H3 0+H2O , one initiated by
H+ ,  + + +
HO and the other by O2.H20 where 02 and 04 are the precursor ions.

Other hydrates are generated according to

H3 0+(H 20)n + H20 + M 2 3 0-(H20)n+1+ M (42)

All these new clusters recombine with the free electrons through

the dissociative recombination process to produce neutral products.

A schematic diagram shown in Fig. 2 illustrates the flow of the

positive charge in a disturbed wet air. This diagram clearly shows

more complication compared to dry air scheme presented in Figure 1.

8



102

0 +  02, +... 3 N
021 04+ 02 H2

+? 2,M + H20 H2

002 N2M

- H20 + 1  2 H3 Ob +  H06'OH1

H20, M

H30"(H20)n
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IV. REACTION RATES

The relevant reaction rates pertinent to the early time wet air chem-

istry code is given as a function of temperature, if the temperature depen-

dence is known; otherwise the room temperature values are presented. A

7
review of these and other rates is to be reported elsewhere

Table 1. LIST OF REACTIONS AND THEIR COEFFICIENTS

Reaction Rate Coefficient Reference

N2 + e- N + N 4.3 x -08 (T y0.39 8

e
02 + e 0 + 0 1.5 x -58 (T-70.7

10(T) , T <0.1I
2e -

2.1 x -08 (T-e0.5
10CT) , T > 0.1

e e

N + e N + N 3.4 x 108 (T )1-1 9, 10
4 2 2 e
+

N 3 + e N + N 1.75 x 108 (T 10 6,10
32 e

04 + e 0 + -3.4 x 108 6,10
4 2 2 e

H3O+ + e-H + H20 3.2 x 107 (Tet1'0, Te <. 0.86 6,10

2.5 x 108 (Te l', 0.26< T ,_2.15 11

3.05 x 108(T e 1"43 2.15 < T < 8.6 11e-

H2O+ + e-*OH + H 2.7 x -58 (Te0.5 Estimated

H 30 +H 20 + e 1.6 x 106 (Te 0.15 6,10

2H 20 + H

H30+. ( H2 0) 2 + e 4.2 x 106 (Te 0.05 6,10

3H 0 + H

2
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Table i. (continued)

02 .H20 + e 7.2 x 16, (T 0 . 2  
62 e

02 + H20

H3 0.OH + e - 9.6 x 107 (T 70 . 2  6

H 20 + H + OH

2e+M+(A+,A2) "* 5. x -31 -Te2.5

(A,A2) + M

e+e+(A + ,A) - 4.3 1027 (Te 4.56

e + (A,A2)

+

2N2  3.1 xi (T) 12,13
+a

4 2 1.3 x -30 (Ta1.0 0

++ i3 .

N+ + 2N -+ N + N 4.5 x 31 (T 02 3 2 a 1

0 + 20 - 0+ + 0 1.9 x 5 -3.2 142 2 4 2 a
+ 1.75 6 31 -2.0

01 + M + H00 1.75 x 1 ( M=N 102 2 a 2+a

02"H20 + M 1.43 x 1031 (Tay2.0 M=O 2  10

H30 + 0 H + M - 2.1 x 1030 (Ta 2 .0  M=N2 10

3 2 0+m14x (a 2 10H 30+'H2 0 + M 1.4 x I03 (Ta)4 "0  '=2 10

0+-H20 + H20 + M - 1.4 x10 (Ta/ M=N 2  i0

H30+.(H 20)2 + M 7.8 x 1033 (T a740 M=O 2  10

+i0 T < 0.39 10,15N + 0 2- 02 + N 2.8 x T a

2 21

......... .II I II .. .. Ilmi I . .. .I ,, •,, , -'



Table 1. continued

5.3 x 1010 (T a 57 T > 0.39a a

N+ + 0 - 02++ N2  2.7 x 1012 (T 08 , Ta < 3.3 15
22 2 2 a a

4.2 x 111 (T 3.4, T >0.3 15a a

N+ + 0 NO+ + N + 0 5.1 x 111 16
+ 2 12 0.52

and NO2 + N2  8.8 x 17

N+ +0 0+ + 2N 2.5 x 10 16
4 2 2 2 251 1

0 + 0 0+ +0 4.6 x 1512 -04 T < .155 18

2 a0

1.0 x 1510 (T 3.0 T > .155
a a

N+ + H20- H2O+ + N 2.8 x 10- 9  16

N+ + H0- H2O+ + 2N 3.0 x 159  16
4 2 2 2

O + H2 - H2O+ + N 2  3.2 x 10 9  16

+ +2-9

N + H20 H + N 2.8 x 109 16
2 2 2 2

and N H + OH a=0.82
2 b= .18

+ +101

N + H0 - H2NO + N 3.3 x10 16
3 2 2 2

0+ + N2  - N6+ + N 7.5 x 1510 Ta < 0.1 15,18

3.2 x 1611 (T 3.38 T > 0.1a a

T ,T
a v

0+ + H20 - 0+.H0 1.5 x 199 19
4 2 22
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Table 1. Continued

02"H 0 + H 30+'OH + 02 1.2 x 1919

H3O + + OH + 02 a-0.83b-0.17

H30+'OH2+ H2 2 1.4 x 109  
19

H 30.H 20 + OH

H20+ + H20 -H30+ + OH 1.8 x 109  
10

H +02 )02 + H20 2.0 x 1i0 0

H O 2 ~ * 2  
1 00 + 0 - 0 + 0 4.3 x 108 [Ta 0"5N +0 0N 04 .6,10

+a

0 + 0- -0 + 0 4. 0 TO .5
-0a + O4 1 1 T 0  

6,10

+ 0 -* 02 + 0 1.6 x 158 [Ta1 O' 5  
6,10

02+ 0- 02 + 02 6.6 x8 158 o60
+

2 2 2 2 2.5',8 To- 6010
a 6,10

N++ 02- N2 + 02 2.5 x 108 [,%T0.5 6,10

X+ Y- X + Y 1.6 x I8 [,T 10.5 
20a 2

++M 2.9 x 10 2 9 (Ta 2.5 
6

A+ B +M

+y +M - 1.0xl (2 9 [ T 2 .  

6

X+Y+M

e0 2 +02 + 0 3.6 x 13110.052)

E'(--) 
21

e +e
e + 02 + N2  2 + N2  1.0 x 1031 

21

e + 02 + H20 .; 02 + H2 0 1.4 x 10 2 9  

21
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Table 1. Continued

- l.Sxl-10(T-1l0
e + 02 - 0 + 0 1.5x10 (T) Exp (-5/Te ) 22

T and T are in eV
e a

V. SPECIES AND TEMPERATURES

The early time disturbed wet air chemistry code solves a set of rate
+ + + + + +H2 +

equations to calculate the time histories of: N, N3, N4, 0 , 02, 4 H2002'20, H+'0 02 O.O

H30+, H0+.OH, H1 H 0 0 and 0. On the other hand, the electron
3 3 u2 2~ 3 2 2

density is calculated via the charge neutrality condition. In addition to

the above species, the electron temperature, Te, the N2 vibrational temp-

erature,Tv, and the neutral species temperature, Ta, are calculated. The set

of the rate equation for species and temperatures are solved by a computer

program devised by D. Strickland of Beers Associates.

The calculation of Te, TV, and Ta are necessary because (see Table 1,

Section 4) various relevant deionization reactions are temperature depen-

dent.

The calculations of these temperatures requires data on all appropriate

cross sections2 3 for elastic and inelastic processes in order to account for

the energy loss by electrons in air. These cross sections are then utilized

along with the electron velocity distribution to obtain the relevant rate

coefficients. The current rate coefficients used in this code are based

24 2
on a previous set of cross sections , some of which have been modified2 5

to the most current data. The calculation of the vibrational temperature

and the energy stored in the N2 vibrational mode follows a method reported

previously 6 The neutral temperature, on the other hand, is calculated

ab initio, where the heating sources are the elastic electron neutral, elec-

tron ion collisions, dissociative recombination, charge excharge and the

arrangement processes.
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The ohmic heating of the thermal electrons is considered in the

27
code by solving a simple circuit equation. This circuit equation re-

lates the net current In, to the induced electric field, E z , via,

dln
L = E

dt z

Where L is the inductance per unit length and is defined as

L = C-±--

Where rb is the beam current radius and R > rb is the radius where con-

ductivity in the plasma sheath falls to 4 The net current, on the

other hand, is

2
I I + nrb G E

o is the conductivity and Ib is the beam current.

The conductivity c is defined as
2

e Ne
mV

m

Where v is the electron momentum transfer collision frequency and is
m

the sum of the electron neutral and electron ion collision frequencies.
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