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ABSTRACT

-We consider the Euler equations for a perfect fluid in a flat-
bottomed canal in the time~dependent case. A formal expansion procedure
for small amplitude, long waves analogous to that of Friedrichs and Hyers
for solitary waves is developed and leads to the Korteweg-de Vries equa-
tion(Kdv for short) for the lowest order term. The higher order terms in
the expansion satisfy the inhomogeneous version of the linecarized Kav
equation.

Of particular interest to us are those solutions of the KdV equation
called N-solitons, which asymptotically separate into N travelling waves
with distinct speeds. Using certain facts about the linearized Kdv
equation and some properties of the N-solitons, we prove that the next
term in this expansion can be uniquely specified by certain asymptotic
conditions and a symmetry requirement. This solution behaves like an
N-soliton; asymptotically, it separates into N travelling waves with the

same speeds and phases as those of the leading term.
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SIGNIFICANCE AND EXPLANATION

The Euler equations for fluid flow in a flat-bottomed canal may be
approximated, in the long wavelength, small amplitude limit, by the
Korteweg-de Vries equation (Kdv for short). We study the nature of this
approximation and attempt to justify it mathematically. The Friedrichs
and Hyers proof [9]) of the existence of the solitary wave provides such
a justification for travelling wave solutions of the Euler equations.
In fact, they gave a formal expansion procedure for the solution which
vields the (time-independent) KAV equation for the leading term.

In this paper, time dependent solutions of the Euler equations
are examined in the same long wavelength limit. A formal expansion
procedure analogous to that of Friedrichs and Hyers is developed, and
the full K4V equation is derived for the leading term. Chocsing the
so-called N-soliton solution of the KAV equation, we seek solutions to
the Fuler equations with similar properties. The N-solitons are non-
linear superpositions of N solitary waves with distinct speeds, and
thus, for large positive or negative times, they decouple into N
travelling waves. By analyzing the linearized KdV equation, we show

that with suitable boundary conditions and a symmetry condition, the next

term in the formal cxpansion is unique and resembles an N soliton. The

the same.

The responsibility for the wording and views expressed in this descripticb\
cmmary lics with MRC, and not with the author of this report. N




A JUSTIFICATION OF THE KdV APPROXIMATION
TO FIRST CRDER IN THE CASE OF N~SOLITCN WATER WAVES IN A CANAL

Robert I.. Sachs

1. INTRODUCTION

The Korteweg-de Vries equation (KdV for short) was originally derived
in 1895 as an approximation for fluid flow in a flat-bottomed canal ([14]}.
This non-~linear evolution equation for a function of one space variable
has the rather remarkable property, discovered by Gardner, Creene, Kruskal,
and Miura [10], that it may be solved more or less exactly. In fact, a
Hamiltonian structure can be introduced and the KAV equation may be
regarded as a completely integrable Hamiltonian system, One very
interesting class of solutions is the set of so-called N-~solitons.

These solutions behave, for large positive and negative times, like N
exponentially decreasing 'bumps' moving at distinct speeds. A natural
question to ask is whether such "N-tuple waves" exist for the full set of
Euler eguations governing the fluid flow in a canal.

For N = 1, such wave solutions, known as solitary waves, do in
fact exist (3,4,91. In [9], Friedrichs and Hyers gave a formal expansion
procedure for the Euler equations in which a time-independent form of the
KdV equation arose as the equation satisfied by the lowest order term.

The higher order terms of their expansion satisfied the inhomogeneous

form of the linecarization of the non-linecar ordinary Jdiffercential equation
for the leading term. With a symmetry condition added to the requlirement
of exponential decay, this equation could be solved uniaguely. After re-
formulating the problem, the convergence of this formal colution wus

shown by the implicit function theorem. Later Boeale [4) oimpliticd the

argument by using a gencralized implicit function theorem Jduc to ehmpde:

Sponsored in part by the United States Army under “ontract No, DAARGD =R -
C~0041Ll, National Sotence Foundation drant No. Mes=77-0lv4e, and by oan
AWM.5. Postdoctoral Kescarch Fellowship.




[25]. 1In both of these apiroaches, the time-independent nature of the
problem is relied upon from the beginning.

In attempting to generalize these results to N-solitons for N 2 2,
the problem becomes unavoidably time-dependent. An essentially trivial
step in both approaches to the solitary wave problem, namely inverting the
linearized KdV operator, now becomes a serious difficulty. Constructing
a formal solution which behaves like a N~soliton requires solving the in-
? homogeneous linearized KdV equation with prescribed asymptotic behavior,
We do this for the first order correction term by using the explicit form
of the inhomogeneous term. For higher order corrections, the existence
of some solution is guaranteed by Duhamel's principle and the solvability
of the Cauchy problem for the linearized KAV equation [19]. However, in
such an approach, initial values (say at t = 0) 'parameterize' the set

of all solutions and we cannot as yet single out those solutions with the

desired asymptotic behavior.
In this paper we present the following results:

(i} The time-dependent analogue of the formal cxpansion of Friedrichs-

Hyers [9] is developed. For perturbations of a steady horizontal
flow with Froude number near 1 which are of small amplitude,
long wavelength, and slow time variation, we consider a formal
power series solution of the Euler eguations. The small per-
ameter € 1s related to the Froude number. As in [9], the
leading term satisfies the KdV equation and the higher order
terms satisfy the inhomogeneous linearized KAV equation. How-
ever, in this case, both of these equations are time-dependent.
(ii) Using results on the solvability of the Cauchy problem for the
linrarized KAV equation [19] and certain facts about N-solitons,

we analyze the first order term completely. In particular, we




show that this term is uniquely determined by the following
conditions:
(a) (symmetry) u(x,t) = u(-x,-t)
(b) (asymptotic decay in moving frames)
u{et + £,t) - 0 exponentially fast as
t > +° for g fixed unless c = cj
j=1,...N where {cj} are the N
soliton speeds
(c) (asymptotic shape)
lim wu(c.t +&,t) is an exponentially

t

decreasing function of £.

This is the sense in which we use the term justification in the title of
this paper. The first order correction to the KdV N-soliton, as chosen
above, does not alter any of the essential features of the solution.
After a long time, the water wave decomposes into N travelling waves
with distinct speeds, each of which is exponentially decreasing in
space when viewed from the appropriate moving frame of reference.
Section 2 contains the time-dependent analogue of the formal
expansion of Friedrichs and Hyers [9] as well as the mapping formulation
of 3eale [4]. For the latter set-up, invertibility of the linearized
mapping at ~ = 0 1is shown in the formal sense provided the linearized
KdV operator is invertible. The basic facts =oncerning the Cauchy
problem for the linearized KAV equation are presented in Section 3.
Explicit solvability for this problem is related to the so-called
inverse scattering method for solving the KAV equation [10, 19}. Using
certain facts about N-solitons, which we present in the Appendix, and
the particular terms arising in the expansion of Section 2, the first-

order correction to the N-soliton is analyzed in Section 4.




2. THE EULER EQUATIONS, THE Kdv LIMIT, AND A FORMAL EXPANSION

In dimensionless variables, the Euler equations for a perfect
fluid in a two-dimensional, flat-bottomed domain D, with a free boundary
y = T'(t,x) as upper surface, subject only to gravitational acceleration

g are (cf. Stoker [21])):

(i) ¢xx+¢yy=o in D= {{x,y) : 0 <y < T(t,x)}

1}
o

(i1) ¢

alon =0
v g v

constant

]

(L1D) o, + 5 (02 + 02 + vy

along y = I'(t,x)

(iv) Ft + ¢x . Fx - ¢y =0 along y = I'{t,x)

where ¢ = ¢({x,y,t) 1is the velocity potential and vy = ﬂ% where h is
U

the length scaling and U is the velocity ccaling.
y_l/z is called the Froude number or reduced depth and is a parameter of
the problem. The linear theory of water waves (21] predicts y = 1,
while the existence of solitary waves occurs for y < 1 but sufficiently
close to 1. From now on, we assume
(2.2) 0 <1~ ¥y << y<1l and in fact, we define a small parameter ¢
by the equation: vy = e—3e.

In this section, we will consider flows which are very nearly the
trivial flow of constant horizontal speed 1 given by the solution
o =x, ' =1, vy =1 ot (2.1). Introducing auxiliary variables £E',n!
which vary over a fixed horizontal strip O < n' < 1, we may eliminate
the unknown free surface at the expense of defining x,y as functions

of £', n', t. 1In steady flow problems, t does not appear and &' + in!

is usually the complex potential function, but for time-dependent




probl
coord
(£',n
o
plane

1s ro

ems, we express both the potential function

¢ and the physical

inates x,y in terms of &', n' and t. Provided the mapping

')F* (x,¥) is invertible for every t, solving the problem in the

' plane is equivalent to solving the original system in the x,y
. In the neighborhood of the trivial horizontal flow, this mapping

ughly the identity map, hence it will be invertible.

After e¢xpressing the problem in these new independent variables, a

new dependent complex variable, A' - if?',

the complex velocity W (W =

defined as the logarithm of

iating with respect to &' along n' =1, ¢ is eliminated and a new
system of equations for x, y, }', 9' is obtained. Defining a small

. 1/2 . . vy
parameter a - € , we rescale the independent variables £', ', t and

the small dependent variables X', 6', x!

~

r

EX ]

in the rescaled variables,

x=£', y' =2 y-n'. The system

. 1/2 3 , 0 ° . 1727 1/2 2 3. .. .
(i) (e TF_+ i T’?]_) (x + i v) = (e 3—£'+ 1 -é—n-) (A - 1ic
=0 in 0 <n <1
(scaled Cauchy-Riemann equation)
(i1) 6=0; y=0 along n =20
s 2 3/2 2 ° ) 3 . L0
(iii) e {cos (¢ 6)[f>\T + € (XTXE - AEXT) + € (Giyr - uin
. 3/2
(2.3) 1 sin (¢ 9) 3 4 - ~ ~ -
+ -c : - 8 - 03 }
F3/2 [-¢ OT + € (ATyg AEYT + ng 11Y£)]
-\ - .
+ e2L A+ e 3e =0 along n =1
(Bernoulli's law)
. 3/
. s 3/2 ¢ A ~ sin (« )
(iv) € yﬁ cos (+ ny - e (1+LX{) o 2 =72
. 5 N
+ YL + e (x, v, xy. ) =0 along n =1

(free boundary/streamline condition)

¢x- i¢y), will be introduced. By different-

(2.1)

r,t and x, y, A, 8 respectively, becomes:

1/2

|8

W)




We proceed to derive system (2.3) below and then discuss a formal
expansion procedure using power series in €, A mapping formalism, as in
Beale [4], is also presented and formal invertibility of the linearized
map at € = 0 1is examined.

A, Reformulation via a Conformal Mapping

Introduce complex variables into (2.1l) as follows:

z = x+iy, F(z,t) = ¢(z,t) + iY(z,t). The complex velocity

il

wW(z,t) = Fz(z,t) b~ i¢ SO Re W = ¢X, the horizontal velocity, and

X b4

-Im W = ¢y, the vertical velocity. Since we are considering flows near

the trivial one, for which the free surfaceis T (t,x) = 1, we assume that
there exists a complex variable ' = £' + in' defined on the fixed strip
{1, n") ] 0 < n' < 1} and a conformal mapping =z = z(z',t) such that

the boundaries of the flow domain, y = 0 and y = TI(t,x) (where y = Im 2z)
correspond to the boundaries n' =0 , n' = 1 respectively.

Given the existence of such a mapping, we define new dependent

variables implicitly:

£z, t) T F(z(g',t),t)

(2.4) w(n',t) = W(z(z',t),t) so that
fr'
W(C"t) = —
ZC‘
Thus ' derivatives of f are expressible in terms of w and =z,

Substitution in (2.1) and differentiation with respect to &' along n' =1

yields a system with w,z as dependent variables, namely:




(2.5)

(2.6)

It is convenient to replace

( (1) w(z',t) and z(r',t) are holomorphic functions of
¢! in 0 < ImZ' < 1
(ii) Imw=0; Imz=0 along n' =0
(1ii) Re (w.z , ~w ,z.) += (w?,, +y Im (z.,) =0
J t E' gl t 2 5' gv
along n' =1
(iv) Im (zt/zg') + Im (w/zg,) =0 along n' =1
(This last condition comes from the relations Px = yg,/xg,
\ Ty = ¥ xtyg,/xg, on n 1.)

w by A' - i8', defined by the relation

At-ig!
w=e .

This substitution was introduced by Levi-Civita [16] in the periodic case

of infinite depth; it has the virtues of simplifying the

ensuring

flow.

(2.7)

|w]

for any solution, and making A' ~ i8' = 0 the trivial

differentiation,
w# 0

Upon substitution, we obtain:

[ (1) =z(z',t), (\'-i8')(z',t) are holomorphic in
! for 0< Imzg! <1
(ii) 0' =0, vy =0 along n' =0
1 i re @900 - s0na, - (r, - d02,)z.0)
i e (e £ - 8Dz, £ £1)2
1
+ oA Ay v Y Im 2gy = 0 along n' =1
, ' A'-ig' -
(iv) Im (zt/zg') + Im (e /zg,) =0 along n' =1

i




We note that this is a system of equations for two holomorphic functions
on a strip which are real for ' real (the bottom) and satisfy a pair of
coupled nonlinear time-dependent boundary conditions along the top of the
strip. Kano and Nishida [11) used essentially the system (2.5), along with
some basic facts about harmonically conjugate functions on a strip, to
obtain a nonlinear expression for the t-derivatives of x and ¢ along
n' =1, for which a solution will exist to the Cauchy problem for small
times (see also [18]).

We will now consider a particular limiting case of system (2.7)
corresponding to long wavelength, small amplitude waves of slow time variation
and will obtain the Korteweg-deVries equation in the limit. We assume that,
as ’C'[ + o A' _i8' >0 and Z * 1, so the perturbations from the
steady flow vanish asymptotically. The limiting case is given by the
following rescaling:

Define new independent variables
' 3
(2.8) & =a& :n =n ; T =a°t, where a° = €,

and new dependent variables £,§,0,X by:

ax(4,n,7,6) = Re (z(3',t)) - &
20 - = ' 1
avg,n,t,e) = Im (z(g',t) -n
(2.9) 5
a“\(f,r,1,e) = AU (r',t)
3
ta M {F,n,t,c) = At(r',t)
-8~
b cnlilieco i e e




Substituting these variables into the system (2.7) gives system (2.3)
above, which we have therefore derived.

B. A Formal Solution Procedure

If we consider the system (2.3) and assume expansions for A,%,x,y

of the form:

. - ()

’\(;.«IWITIE) = ) EJ

3=0
e(E,m,t,e) = 5 69 ,n, ) )

j=o

(2.10) A -
R © .
x{&,n,t,e) = ) x ﬁ(imn) e’

j=o
S\/(EranIE) = z /}\'(J) (glnl‘r) EJ

\ j—_—o

then (i) of (2.3) implies the system:

L (3 () _ o, (3, 50D

£ w0 i n 0
(2.11) " ©
el (1) _ . c (3 C (-1
X R R =0
. (0) _ ~(0) _ . -
In particular, An =0 ; xq = 0 . From the boundary condition (ii)

A

on 9, y at n =0 , this implies:

X(O) _ X(O)({,l) ’ ;(O) - ;(O)(E,T) :
(2.12)
O(G) = —A:O)(’,T) no; y(o) = ;}O)({,T) m




so Ay P g, == 230w, 02 oW,
2 EE
S (1) N _1-(0) 2 (1)
X (&,n,1) = 3 Xeg (E,T1) n” + P (£,1)
(1) - 1. (0) 3_ 4
6 (E,n,1) = e REEC(E,T) n QF’ (E,7) n
~ (1) _ _ 10 3 (1)
% (E,n,0) = P XEEE(E'T) n" o+ PE &, n
Proceeding inductively, with Q(O) = X(o) R P(O) = Q(O) , we have
[ & 2 ndn® 5 P k-g)
R R ) -—— (z3) Q (£,7)
I joo IR
(2.13)
® i 23 2j .
~ (k) (-1)n 3 (k-3)
X (£,n,1) + L _—(2j)! (BE;) P (£,1)
j=o
with similar expressions for e(j’ , ;(j) involving odd powers of n and
a/ar,
Thus i (3) . .. ~(3)
us if A , J < k, are known, and similarly for x , there
ire two unknown functions P(k)(E,T), Q(k)(g,T) which arise in terms of

&k . . . . .
order ¢ and higher. Substituting these series (2.13) into the two

poundary conditions at n = 1 , namely

2o -3 " €A 3/2 2 ~ A 3 ~ ~
R} : + o ok: + A - + -
. © Y: + e {cos(ﬁ O)ICAT e ( Txg lng) € (STYE Ggyf)]

. 3/2.

sin(e 7 2 4., » - - -
TR LN URUGH SR (S \ - - + =
BZ [-< . ( Ve AEYT Orxg OEXT)]} 0
along n =1
ined
o . 3/2

- 3/2 . ~ sin(¢ 6) -cA) ° 2, ~ A ~on
v, 0w (s 5) - (l+e —_— + - =
7. 0 ) ( XE) 53/2 e {cyT > (xgyT xTyE)} 0 along
v obtain, soetting e = 0,

) (0) (0) _
(2. 1) Q{ + P{( = 0

from cach ~uation,

-10-

n:




Terms of order € in the boundary conditions at n =1 are:

(1) {0), (0) ~ (1) ~(0) (0) _
[ R S S R A S
(2.15)
2(1) _ 4(1) _ 2(0),(0) ~(0) _
l Yg 0 xE 0 + Y, =0
which imply:
_1 (0 (1) (o) (0) _ 1 _(0) (1) _ (0) oy _
2 %ee Tt QT m G P TPy " YO =0
1y _1 (0 _1 (0 (1) (0) ,(0) (o) _
Pee T6feeee "o Ree T YR % R =0
4 so that Pgé) + Qél) is known in terms of Q(o), P(o) and drops out upon
% subtracting these two equations. If we integrate (2.14), we have
Q(o) + P:O) = 0 (by our boundary conditions as |§| + @), so that the two

&

boundary conditions for order e imply:

-l

(0) (0) . (0) (0)

(2.16) 2QT + 30 QE + 3Qg ) _ 0

1
© 3 % T

which is a form of the KAV equation.
Remark: The formal expansion of Friedrichs and Hyers [9] for the solitary

A wave has the time-independent form of (2.16) as the equation for the leading

term.

If we pick any Q(o) satisfying (2.16), we obtain P(O) by integration,

since P:O) = - Q(O).

k . c s . .
The order ¢ terms in the boundary conditions yield two equations

of the form:

(k) (0), (k-1) (k=1), (0) ~ (k) ~(k-1) (k=1) _
A€ + 2 XE + 2 AE + yg - 3y€ + AT = Rk_2
(2.17)
~(R) (k) ~ (0) , (k-1) ~ (k-1)_(0) ~(k-1) _
Y pooT8 X0 e S = Sx-2
=~ p (3) (3) .
where RQ , SQ (and later R2 R SQ) depend only on P , 9 for j < %.

-11-




(x) x) _ = . R
Thus Pg + Qgg = Rk—l and again, by suptruction,
(k-1) (0), (k-1) (k~1) 1, {k-1) .
2.1 2A + 3(A A + 3\ - =A = 5
(2.18) . ‘ gt 3 3eE k-2
(k-1) (k-1) _ = .. ~(k-1) .
where we used Pg + Qgg Rk—2 to eliminate x in (2.18).
Inductively, we find a formal solution using the power series (2.13) by
solving {(2.18) for A(k-l) and then obtaining Q(k_l) by the relation
{(k-1) (k-1) _ =
R T WL

The nontrivial step is solving (2.18), the linearized KdV equation

with inhomogeneous terms. For water wave solutions of the system (2.3)

which behave like N-tuple solitary waves, we would choose for X(O) an

N-soliton solution of the KAV equation and then solve (2.18) with this
X(O)

, seeking solutions with the appropriate asymptotic behavior.

c. Reformulation as a Mapping

We may formulate the equations in (2.3), somewhat artificially, as
components of a mapping F(e,e,;), where the equations (2.3) correspond
to F(e,@,&) = 0. This will be the analogue of Beale's approach in the
stationary case [4)]. We begin with (2.3), ignoring the fact that this
is the rescaled version of (2.8).

Thus, we consider functions ;(E,H,T) and 6(£,n,7) satisfying

y(£,0,7) = 0, 9(£,0,7) = 0 and define:

(2.19) x(£,0,1)

T §n(€’.n,T) aer

-0

A(F,n,T)

£
= Jen(g'rnrr) dg)' .




The vector of functions F(E,O,;) = (FI'FZ'FB'F4) is defined as follows
(note: Fl' Fo are functions of ¢&,n,t while F3, F4 depend only on
£,T):
(P, = €0 + 0 ; F_ = eh + Y
17 e T 7 T2 7 ee T Yy
_ 2eA A =3c €A 3/2 2 2 ~
= A -\
F3 Xge + yge + e {cos(s 8)[EAT+8 ( TXE ng)
3 ~ ~
+ -8
(2.20) € O yg=8py, )]
. 3/2
sin(e”’ 9) 3. . 4, - ~ . - 1
+ - + - - +
33/2 [-€ GT € (ATy€ kgyT BTxC eng)])
. 3/2
~ 3/2 ~ sin(e 0) —-eAj ~ 2.~ - ~on
= - + + + -
k F4 ygcos(e 8) (1 exg) 53/2 e {eyT € (xgyT xTyg)}
where F3, F4 are evaluated at n = 1. ,
The degeneracy at € = 0 which we observed in the formal expansion
. Ny v
above (A(J), x(J) were only determined by order e’ 1 equations) may be

removed by considering a modified operator %(5,8,;), which has the same
roots as F for € > 0.

We examine the kernel of F(0,6,§): If F(O,6,§) = 0, then enn =0 ;
ynn =0 ; yg -0 n=1 =0 ; yg -8 ] _, = 0. Recalling that vy n= =0 e = o,

this gives the solutions:
(2.21) y=G(E, )+ ; 8 = G (5,1) m

where G(£,1) 1is arbitrary except for the asymptotic condition:
G(,1) > 0 as I&l + o, To study the range of F(O,6,§) , sSuppose

1 1
F(0,0,y) = («,B8,r,s) . Then since Sn -8 n=1 = Jon°8nn dn = Jo nea dn,

we must have the compatibility condition:

1
(2.22) s - r = J nea dn .
0

1f we suppose that «a,R,r are arbitrary functions which vanish as

|£] > » for t fixed, and define s(f,T) by (2.22), i.e.

-13~- |




1l
s = r + J a*n dn then F(O,§,§) = {(a,B,r,s) if
6(£,n,T) = (n-n') a(E,n',t) dn' + A(E,T)n
(2.23)

y(E,n, 1) = (n-n') B(E,n',T) dn' + B(E,T)n

Q3 O3

1
where Bg(g,r) - BA(E,T) = s(§,T) - J (1-n')(85-a) an' .
0

We will define a modified operator F by means of a projection Q on

the range space which incorporates the solvability condition (2.22). Define
1

(2.24) ¢{(¢,8,r,s) = (0,0,0, & = ¥ - j a*n dn)
0

Clearly Q 1is a projection and QF(0,8,§) = 0., Defining ﬁ(e,e,§) as:

Qgiiéngl + (I-Q) Fle,8,y) , €>0

(2.25) F(e,0,y) =

i
o

QF€(0,9,§)+-(I—Q) F{0,8,y) , €

F is a smooth operator with the same roots as F for € > 0, but the
additional condition QFE = 0 leads to more regular behavior at € = 0.
In fact, the added condition is precisely the KdV equation -~ i.e. suppose

?(O,G,?) = 0. Then QFE(O,G,Q) = 0 means precisely:

1
5 - - - + 9 - - . 1 T = = -
(2.26) Y. Oxi XT 3yE ZXXE j 655 n' dn 0 for n 1
0
Since OF - 0 at e =0, (I-QF(0,8,y) =0 implies 6 = Gg(£,T),
g
y = G(f,t}. Using the relation X = = j en dg = ~-G(E,T) in (2.26)
-0

above, we obtain an equation for A namely:

(2.27) = 20 = BA, - 3, + 1

£ et 3 g = O

-14-
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where A =X(£,1) , y =-=x(E,T)n, 6O = -AE(E.T)n. This is the KdV equation

(2.16) above.

In the case of the solitary wave, Beale was able to find an appropriate
scale of Banach spaces for the domain and range of F. He then proved that
in a neighborhood of € =0, 6 = 90 (corresponding to the l-soliton Kdv
solution), the Frefhet derivative of F was invertible in the generalized
sense of Nash-Moser. This implied the existence of a nontrivial solution
for e > 0 sufficiently small by means of a generalized implicit function
theorem (Zehnder [25]).

For the problem considered here, we have not as yet specified the
proper function spaces. Continuing on a formal level, we consider the
linearized operator at - =0, 9 = 60 , ¥ = Yo where F(C,Go,yo) = 0.

We shall define another projection, P, mapping (8,y) onto the

kernel of F(0,-,*) Dby:

(2.28) PO,y = (§€(£.1,T)°m y(E,1,7)*n)

We note: P(98,y) = (0,0) if and only if §(€,l,r) = 0. Using the pro-

jections P and Q , we may regard the linearized operator dF ~
(Oreolyo)

as a matrix of operators:

[ o aF|, (1 - Q) aF|,
(2.29) aF =
Q af| . (I - Q) dFII_P

Since (I-Q) d%lp 320, invertibility of dF reduces to invertibility of
the 'diagonal elements' Q dF]P and (I-Q) di'I-P' We remark that

(I-Q) EII_p is a linear operator, whose inverie we may compute explicitly.
(0,0,Y) = (a,B,r,r+ J na An} has the unique
0

The equation (I-Q)E:[I_p

solution:

~15~




n 1
(2.30) Q& ,m,T) = J {n-n') a(¢,n',7) An' - nlr(&,1) + J'G(Em'ﬂ) dn')
0 0
n 1
Y(E,n,1) = J' (T)"n') B(Em',T) -n[ J (1-Y1')B(€,Y\',T)dn']
0 0

which is obtained by adding the condition Y(§,1,t) = 0 to the solutions
given previously in (2.23).

The essential difficulty with this inversion is that the Banach spaces
for ©,Y may include £ and 1 derivatives in their norms; for this
reason, Beale uses a generalized implicit function theorem in the station-
ary case (shrinking the domains of analyticity in order to control deriv-
atives).

The second diagonal element, Q d%IP , is invertible if we can solve:

1
.31 - 2H - - +HY + = = '
(2.31) 2 31‘16 3(A 3 3 HEEE J(Eg, 1)

the inhomogeneous linearized form of the KAV equation (see eguation (2.18)
above) .

For the remainder of this paper, we consider the linearized Kdv
equation. As we have seen, it arises in the study of small amplitude,
long wavelength, slow time variations of a steady flow of a perfect fluid
over a flat bottom with Froude number near 1. If we seek solutions describ-
ing a 'nonlinear superposition' of N solitary waves of distinct speeds,
the first approximant will be an N-soliton solution of the K4V equation
ind the higher order corrections will satisfy the inhomogeneous form of the
linearized KdV equation (linearized about the N=-soliton).

We shall consider the Cauchy problem for the linearized KAV equation.
By Duhamel's principle, this amounts to solving the inhomogeneous equation.

By the change of variables,

~16-




(2.32) X -9T = ¢
- 6T =1
_ 3

q(X,T) = ’i' x(EIT)

we obtain the usual form of the KdV equation

(2.33) p * dgyy ~ 699, = O

We note that the T-independent solution of the KdV equation is a function
of X - 9T ; this gives the one soliton with speed 9, which explicitly is

A(O)

= -3sech2(% £), the first order term on the expansion of Friedrichs
and Hyers.
In the remaining sections, we shall use the letters x,vy,t,u,v etc.

for meanings other than those of the above section. Since these different

meanings occur in separate places, this should cause no confusion for the

reader.

-17-
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3. SOME RESULTS ON THE CAUCHY PROBLEM FOR THE LINEARIZED KdV EQUATION

In this section, we summarize the results of [19] regarding the

Cauchy problem:

+ - =
ut uxxx 6(qu)x 0

(3.1}
u(x,0) = ¢ (x)

where q(x,t) satisfies the KdV equation

. + - =
(3.2) qt qXXX 6qqx 0

By Duhamel's principle, the inhomogeneous form of (3.1) is solvable if the
Cauchy problem is.
In [19], an explicit formula for the solution of problem (3.1) is

given, using certain functions arising from the Schr®dinger equation
2

(3.3) -£' (x,k,t) + qix,t)E{x,k,t) = k" flx,k,t)

where the potential qg(x,t) satisfies:

(3.4) J (l+x2)|q(x,t)|dx < o for every t fixed.

-

The fundamental discovery of Gardner, Greene, Kruskal, and Miura [10],
later formulated abstractly by Lax [15], is that if qg(x,t) <cvolves
according to the KdV equation (3.2), the spectrum of the Schrddinger equation
(3.3) is fixed and the associated scattering data evolves in a simple way.
We shall use this information below, but first introduce some notation
and basic facts about the scattering theory for (3.3). This information
(and much more) may be found in [7].

Let £ (x,k,t) denote the Jost solutions of (3.3)
“ eikx + 4ik3t

i.e. f+(x,k,t) Y as x > +» , t fixed

, .. 3
f_(x,k,t) Y e_lkx 4kt as x > -» , t fixed

-18-




and both satisfy (3.3). We define the transmission coefficient, T(k,t),

in terms of the Wronsk‘an of f f_ as follows:

4+

11
(3.5) T O - 7ik [f+(x,k,t), £_(x,k,t)]
fl_(xrkrt) f_(xrkrt) - f:(x,k,t) f+(X,k,t)

2ik

. 9

t = —
9k

(We shall always use the notation: = 5% ’

.) It is not hard to

show that T(k,t) = T(k) is independent of t and that under the normal-
ization of f+, f_, T(k) is meromorphic in the upper half-plane Im k > 0O
with poles at k = iBj, j=1,...,N where each energy -8; is a bound
state energy for (3.3). N is finite by a classical estimate involving

J (l+|x])|q(x)|dx < ©, T(k) 1is also continuous and non-zero for real

-Q0

k # 0 . For notational ease, we introduce for j =1,...,N the following

pair of functions:

2, . _ . .
(3.6) Fi(x,8) = £.06,18,,) 5 G (X,t) = o f (x,1B,,8)° g (x,t)

£ (x,iB_,t)
f+(x,i8j,t)

e

d
where gj(x,t) = I (f_(x,k,t) f+(x’k’t)]|k=i8j and cj

is chosen so that J FS(x,O) Gj(x,O) dx =1 for ji=1,...,N.
The principal result of ["9] is the following:
Theorem 3.1 Suppose q(x,t) satisfies (3.4). If ¢(x) 1is continuous

and integrable, the solution of (3.1l) (in the sense of distributions) is

given by:

_ dk 2 32 2
(3.7) ulx,t) = J Anik T (k) { I o [f+(x,k,t)f_(y,k,0)

- ff(xrk!t) ff_(Yrpr)] (y) dY}

N e <]
' (x, {y,0) - ¢ ' (x,t)F.(y,0 d
) f [F} (x,£)G, (y,0) = G} (x,)F,(v,0)] () dy

~19-




For a proof of this theorem, see [19].

Remark: It is known ([10], Theorem 3.6 or [19]) that the functions
(fi)'(x,k,t), F%(x,t), G%(x,t) all satisfy the linearized K4V equation
(3.1). The formula for u(x,t) resembles the Fourier decomposition of

¢ (x), where the derivatives of the squared eigenfunctions replace the usual
exponentials and the presence of a non-zero potential g(x,t) can lead to
the discrete terms F%(x,t), Gg(x,t). In fact, when gq(x,t) = 0, (3.7)

reduces to the usual Fourier transform solution of the Cauchy problem:

Vt * vxxx =0
(3.8)
v(x,0) = ¢ (x)
namely
1 T 2ikx+8ik3t I =2ik
(3.9) v(x,t) = p J dk * e { J e y¢(x) dy }
-—CO -

i(ikx+4ik3t)

m

since for 9 = 0, T(k) 1 and fi(x,k,t) E-
Noting that the solution u(x,t) given by (3.7) consists of two
pieces—-- a discrete sum and an integral, we analyze them separately. The
sum corresponds to variations in the soliton part of the function q(x,t)
and decomposes into travelling waves with positive velocities as t
becomes large. For the water wave problem of Section 2, these terms are
of considerable interest. The k~space integral part of (3.7) forms a
dispersive wave train and will be seen to behave like the solution v(x,t)
of the Airy equation (3.8). In particular, for initial data which is
somewhat smoother and more rapidly decaying than was assumed in Theorem 3.1
above, we show that this part of the solution u(x,t) is smoother for
t >0 but, as x > - », it decays less rapidly. We present these results

for linearizations about N-soliton solutions of the KAV equation. Similar

analysis applies for a more general class of KAV solutions satisfying

-20-
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{(3.4); we omit such a discussion for the sake of brevity and restrict our
attention to the N~soliton case.

Slower decay as x +» -» for t > 0 occurs because of the dispersive
nature of the oscillating solutions é%%fi(x,k,t)) of the linearized Kav
equation (see [24] for a general discussion of dispersive waves). In part-
icular, the asymptotic behavior of fi(x,k,t) , @as x + *» respectively,

.
is given by the exponentials e"le(x'k't), where we define:

(3.10) 0 (x,k,t) = 2kx + 8k3t.

\ . . 2 .
These waves propogate with a negacive velocity =4k so that waves with
large wave numbers contribute to the solution near x = -» almost
instantaneously.
. +i6 . . .
The same expontentials, e , form the solution of the linearizod

equation for g = 0 , (equation (3.9) above), namely

as is seen by Fourier transform, and arise in the asymptotics of
ff(x,k,t), which, by the trace formula of Deift~Trubowitz [7], lead to a

solution of the full KdV equation

(3.11)
+ - =
qt qxxx 6qqx 0.

(In [7), q(x,0) 1is written as an integral over the real line in k:
N

(3.12)  q(x,0) = f w0200k, 00dk + ) a £ 0,180
=1

An approach to tie KdV ecgjuation itself using (3.12) will appear in a
subsequent paper by the author.) The smoothness and decay properties of
the solution of the Cauchy problem for the KdV equation were analyzed by

Tanaka [23] and later Cohen Murray (5] using Faddeev-Marchenko inverse

~attering theory rather than the then-unknown trace formula (3.12);

~21-




asymptotic analysis of the K4V equation also appeared in [1,2], where the

. . X . .
more delicate regions e 0(1) as t - += were also discussed in the
absence of solitons.

Our analysis for the linearized KAV equation proceeds in direct
analogy with the equation (3.8); the chief difference is the presence of
the factors mf(x,k,t) multiplying the exponentials and their derivatives,
which must be considered in all arguments. The techniques used will be
primarily integration by parts and stationary phase analysis. In the
limits we consider, the stationary phase points tend to #» , which
complicates matters slightly. As in [5), we will work in a shrinking
neighborhood of the stationary phase points, whose size is proportional to

o small negative power of  |x

. This variation of the usual stationary
ihase argument [8] is used to control the error terms arising at the
stationary phase points. The smoothness argument relies on the observation
{5] that “or t = 0, we may rewrite the x-derivative of @ in terms of

the k-derivatives of 6 as follows:

)
2 2 k X

3,13 a = 4k = == -

( ) ( X) 6t 3t
we will use this to re-express uxx as a function which is smoother than
L Mmool cthoerwise alpear to be.

xS

iroresults are summarized in the following theorem:

Assume & (X), the initial data for the linearized Kdv

1, has four continuous derivatives and that, for some fixed
a
» d 1
(1 + Ix]() [——J s (x) € L for 0 < a < 4.
: dx

o ©« . o when q(x,t) 1is an N-soliton solution of the Kdv equation,

Lo, istirenioan (3.7) above, has the following properties:




f (1 u(x,t) 1is a classical sclution of (3.1) for t > 0
with u(x,0) = ¢(x)

(ii) aiai u({x,t) 1is continuous for t > 0 for all non-negative
integers r,s satisfying 3r + s < 28 + 2

(3.15) 1 2

(iii)  lim Ju(x,t)*x"| = 0 t >0 fixed

|9/4[u(x,

(iv) Ix t)| is bounded as a function of x for t > 0 fixed

{even as Xx > -«)

L) fu(ct+6,t)ftl/2 is bounded for c¢c < 0 as t =+ +=», 5§ fixed.

The proof of Theorem 3.2 is given in the three lemmas below, in which
the smoothness and the limiting behavior are discussed separately. First,
we present some facts concerning the Jost functions fi(x,k,t) in the
N-soliton case, where we choose the phases of the waves so that q{-x,-t) =
g(x,t). (Recalling the scaling done in Section 2, this normalization is
reasonable.)

The explicit form of the N-soliton leads to an algebraic expression
for the Jost functions (see also [6]). In the proof of Theorem 3.2, we
shall exploit certain properties of these functions, which we state here

and prove in the Appendix. Define, for j =1,...,N,

cosh(B. £.), j odd
2 J 7]
3.16 £, 0 x = 4Rt ; Y. =
( ) 2 J ¢J

sinh(BjE j), j even

and consider the N * N Wronskian determinant (in x ):
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4 3
wl Lp2 ot WN
(1 1 1
(3.17) w(x,t) = det wl ) w; ) cee w; )
Y (N-1) Y (N-1) v (N-l)J
‘1 2 N

= wN(wl,....wN)

In the Appendix, we show w(x,t) > 0. The N-soliton solution of the Kdv
equation is given by:

2

d
(3.18) q(x,t) = =2 ——5-109 wix,t)
dx :

a2

while the eigenfunctions f+(x,k,t) are given by the ratios:

3
+i (kx+4k " t)
1
. wN_‘_lLJ)ll’vzr---rrie l

N
w(x,t) I l +{ik - B.)
3=1 ?

(3.19) £ _(x,k,t)

where wN+1 is the (N+1)X(N+1l) Wronskian determinant. Writing

.
£, (x,k,t) = m+(x,k,t)e_le(x'k’t), we deduce the following properties of

the factors m, (x,k,t) from (3.19):

(3.20) (1) m+(x,k,t) are rational functions of k. Their
denominations and numerators are polynomials of deqgree

N in k ; both denominators are in fact precisely

N
T—T(k + iB
j=1
N 1

PANREY KNy + * kK +a°
1 X, t) cee AN-l (x,t) AN (x,t) where

j) while the numerators are polynomials

+

each coefficient AQ“(x,t) is a rational function of
R.E.

e J J} which is bounded. The denominator of each

+
A}’(x,t) is w(x,t), which we show in the appendix is




a sum of terms e7 over all possible choices
Ej = t1 with positive coefficients for each term.
(ii) é% m+(x,k,t) is a rational function of k which decays
like |k|_2 as |k] > @, E
N j ?
R R (AT I
3 dxj '3
. a K, t) = =1
(iii) P mt(X.. = "
I(k + iBj)
j=1
so 11l x-derivatives of m_ decay like |k|-l as
[k[ > =.
N k+ifg,
(iv) We also have: T(k) = E?Iél
i=1 ]

(3.21) Fj'(x,t) and Gj'(x,t) are real analytic in x,t and for fixed ¢t ,
they decay exponentially fast as ]xl + = (see Appendix).
By (3.21), all the smoothness and decay properties of Theorem 3.2
are satisfied by Fj'(x,t) and G;(x,t). Therefore, we consider the

function U(x,t) given by:

(3.22) Blx,t) : j J = 4 {ff(x,k,t)ff(y,k,o) - ff(x,k,t>ff(y,k,0>}
* ¢ (y)dy dk.

Note that the integrand is continuous, even at k = 0 (since f+(x,0,t),

f_(x,0,t) are linearly dependent). Formula (3.22) suggests the following

definitions:
(3.23) 3,k = J £2(y,k,006 (y)dy
= J mf(y,k,o)et2lky¢(y)dy
-25_




We will analyze 5:(k) just as in the usual Fourier transform case,
using (3.20) to control the extra terms. Thus we shall see that U(x,t),
given by (3.22), and v(x,t), the solution to the linearized problem for
g = 0 given by (3.9), behave quite similarly.

The first part of Theorem 3.2 is contained in the following lemma.
Lemma 3.3 If (1 + }x]l) [é%]a¢(x)€5 L1 for all 0 < o < 4 where ¢ » 4
is fixed, then the functions atraxs u(x,t), where u(x,t) is given by
(3.17) are continuous for all non-negative integers 1r,s satisfying
Jr + 5 < 24 + 2,

Proof of Lemma 3.3. The idea of the proof is a follows: we show that

(k) decay rapidly enough as |k|+ « that we can differentiate (4.9)
twice with respect to x and still have a convergent integral. Then,
using (3.13) to eliminate the -4k2 factor arising from the exponentials
and the estimate (3.20) (iii) to control derivatives of m+(x,k,t), we show
that the integral for ;xx can be differentiated twice. Repeating this
argument, we obtain the desired result.

, aly. . . -4
Step 1. We show that I ¢ (k) exists and is O(|k| ) as k »

for 2 %« < .,

Proof of Step 1. If we integrate (3.23) by parts, we have:

izikydy

(3.24) 5L(k) = T3k [ é% (mf(y,k,0)¢(y))e

The intearal is absolutely convergent by our assumptions on % and the
proverties of m, (y,k,0) listed above. In fact, we may integrate by

parts four times with respect to vy, obtaining

fee]

4 I3
(.25 f 00 = ——— [ P (y,k,006 ()" Yy
: (2ix) dyj 2

-~

arnd the integral is still absolutely convergent. Thus ¢+(k) is

U(!kldd) as k] v o

since (1 + lxrjw(x) € Ll, the k-derivatives of 5*(k) of order less
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than or equal to 2 all exist. Integrating these expressions by parts

four times, we find
0 = ol
(3.26) —| §(k) =o0(|k|™) as |k] > for 05y <g,

which completes Step 1.

Step 2. (The smoothness for t > 0). Writing

@
~ - a« 2,..d4 2 i84 2 -i6~
(3.27) ulx,t) = J anik T (k)dx m (x,k,t)e ¢_(k)) - (m_(x,k,tle ""¢_(k))]
we have a continuous integrand which decays like |k|-4 as lkl +> o,

Therefore we may differentiate twice with respect to x and still have

a convergent integral. This yields:

o0

3
- dk 2 d 2 if 2 -iB
(3.28) uxx(x,t) = J ik T (k)[a;} {m+(x,k,t)e $_(k) - m”(x,k,t)e $+(k)}

-—00

3 Since Bx = 2k and mt'(x,k,t) decays like |k|_1, the terms on the
integrand in which mt'(x,k,t) or a higher derivative appears all have

decay like lk|—4 or faster; these terms can therefore be differentiated
twice more with respect to x. The remaining terms, in which the exponential

is differentiated three times, are:

65_(k) + mf(x,k,t)e-ie$+(k) dk}

< 2 .
(3.29) J L) (—4k2){m2 (x,k,t) et
27 +

T2 8 : .
= I T_(k) [L - _k] {mi(x,k,t)el%_(k) + mf(x,k,t)e'19$+(k>} dak

27 3t 6t
by (3.13)
T2 . .
_ T (k) x 2 if~ 2 -if~
= J o 3t {m+(x,k.t)e ¢_(k) + m_(x,k,t)e ¢+(k)} dk
1 ) 2 . ode
TSTE f {d—?(T (Rom (x,k, £)§_(K) | e
L} -® -
' d 2 2 ~ -i8
- Eé: (T (k)m_(x,k,t)¢+(k)l. e } dk
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where we integrated by parts in the second term. Each of these terms

has continuous k~integrands which decay like lkl-4 or better; hence

they are also twice differentiable with respect to x. Therefore G(x,t)
has in fact four continuous x~derivatives for t > 0. Repeating this

argument iteratively, we obtain u(x,t) has 28 + 2 continuous x~derivatives

(since we can only bound [éi} $+(k) for 0 <y £ %, we may repeat the

argument £ times).

To handle t-derivatives, we note that differentiating directly in t

brings down a factor Gt = 8k3, which does not a priori lead to a

convergent integral. However, multiplication by 8k3 may be expressed

3
in the sense of distributions as [5;} plus convergent integrals. Since

3
[E;) a(x,t) is continuous, so is ﬁt. The equation (*) then gives
higher regularity and the desired result. This proves Lemma 3.3.

The decay as x = +°, t > 0 fixed and finite is given by:

Lemma 3.4. For t > 0 finite, fixed, ]u(x,t) xll + 0 as x =+ +=,
Proof. Once again, we need only consider a(x,t) since Fj'(x,t), Gj'(x,t)
decay exponentially. For x > 0, t > 0 we note that Gk = /X + 24k2t >0

and in fact:

Ok 48kt x 1712
(3.30) 9—— = —————-—-2—— < TZ—t .

Kk 2x + 24kt
Note also ”kkk = 48t, which is bounded. Write
(3.31) u(x,t) =

e o)
i 6
[ o(x,k,t)e’ dk

by defining

-28=~
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2 .. -
i _To(kk) 4 [2 i6y

(3.32) o(x.k,t)e” = === = Lr_n+(x,k,t)e @_(51

+ %% 4 [2 io. 7

e 5 I—klt - .
4rik dx En_(x e ¢+( k)_‘
We note p(x,k,t) 1is continuous in k and decays like lk|-4 as Ikl +> o,
a Y
as does % plx,k,t) for 0 £ vy £ L.
Integrating (3.31) by parts & times in k, we have
oo

L 9 1 . i8

(3.33) ulx,t) = (i) — = p(x,k,t)le” dk.
3k ek
. . 1 1 .
Using (3.30) and the obvious bound 5 < E for x > 0 we obtain an
k
estimate, for t > 0 fixed,
- -2 {
(3.34) [ax,t)| < (2x) "c(t) for x zM> 0
1/2

where C(t) is polynomial in t of degree at most & - 1.

Moreover, since the integrand in (3.33) is integrable, by a simple

modification of the usual Riemann-Lebesque lemma (namely, pick « with

- (4]

J + J < ¢ then approximate by a smooth function and integrate by parts),
K

-0

[
we can show x u(x,t) >0 as x > +° for t > 0 fixed, which proves
lemma 3.4.

Finally we discuss decay as x > - for t > 0 fixed:

9/4

Lemma 3.5. As x -+ -» for t > 0 fixed, ﬁ(x,t)'le remains bounded.,

1/2
Proof of Lemma 3.5. Define a = [ié%J . For x-<0, t >0,

Gk = 2X + 24k2t =0 for k=*y. As x =+ =-o, (for fixed t > 0), a > +=,

Let k = ak. Then

~ ) i B
(3.35) u(x,t) = J p(x,k,t)el dk = a J o(x,aK,t)elxedK
3/2 ‘
where X = 2—151———— and f(k) = -k + K3/3, so that () = 0 for x = +]
(12¢) /2 '
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In the usual stationary phase method, the chief contribution to the integral

comes from the terms

l+e 3 -1l+e .
0o(x,a,t) J el)‘[_'“-'< /3]dK and [_ p(x,oc,t)el)‘e dx

1 1

where the « value is frozen at k = *1 in the function p. The extra
iA0 .
term J[p(x,am,t) - p(x,a,t)]el dk is of lower order for large A by

bounds on the derivative. In the case considered here, a + © so this
error texm may become large., To counteract this, as in [5], we consider
a very small interval about the stationary phase points « = #*1, of order

-u . .
]xl for instance. We estimate as follows:

l+e l+e -
. b4 .}\e
(3.36) aj p(x,an,t)elxodm = g J p(x,a,t)el dx
1 1
1+e .
iAd
+ J (p (x,0k,t) - pix,a,t))e dk
1 —
l+e .
iA6
= ap (x,a,t) J et Va
1
1+e
- i A8
+ a2-£L p(x,0k,t) (K—l)el edk
dk
1
for some « € [1, l+e]

Tne first term is estimated as in the usual method of stationary phase;
the secend torm leads after an integration by parts to an estimate of the
-2 - . . - . -V
form  ©, lh since é%p decays like |k| 4. With ¢ = |x] *, 0< vy < 1/2,

. ) ~5/2-v . .
this term i of order |[x| as x| > «. The first term decays like
-3 -‘/,':T f "9 4 . .
PR S o(x| / ) as |x|»> » and is the leading term.

Similar cstimates hold on the intervals [1-¢,1], [-1-e,-1], [-1,-1+c].
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On the interval [l+4¢,®), we

~

AB

-Q

estimate as follows:

eiA[-2/3+ez+e3/3]

@®©
(3.37) [ o (x,ak,t)e " Vak =
1

+€

o0

i dk K2 -1

1+e

ide (2+¢)

_a J 51_[9(x,amzt)I eikédk.

which leads to a bound of the form:

]

(3.38) a J p(x,ak,t)elkedK < (A—la-3e-l)' C
l+e
a7 % e+ 2T 1a 32
2 3
= O(Ix[-3+2u) since 0 < v < 1/2

A similar estimate holds on the interval (-«,-1-€],

Finally, on the interval [-1+¢,l1-€], we have:

1-¢ -
(3.39) a I p(x,az,t)elxedn =
~1l+e
1-e
- 4
iA dx

-1+e

a*p (x,ak,t)e
ir? - 1)

ixé[
|

p(x,ax,t) irg
[—ngf?jfj e de,

Integrating by parts three more times, we obtain:
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1-¢ .
(3.40) a I p(x,am,t)elxedK
~1+e
— K=l-¢g
3 -1 d . (x,0K,t) 1A8
=a ] 2 .. ak 2 e
L=0]{1iA (x"=1) iA(k”™ - 1)

==1+c

-Er.d 1 4 iA6
+ o [——-——————*1 o (x,0K,t) e1 dk.

lee & 4 k2-1)

The boundary terms lead to estimates, for £ =0,1,2,3 of the form:

-1 -3 -1 -2 -3 -3
o €

A i A Ta e (1 + ag);

A-3a_3e-s(1 + ae + azez) P k_4a_3e—7(1 + ae + a2€2 + a3€3)
respectively,
Since a is O(lxll/z), A is O(|x|3/2) and € = le_u, the

inequality v < 1/2 1implies that the leading term is the first,

-1 -3 -1

ie. A 7o Te T o= O(|x|“3+U

) as Ix| +> o,

The remaining integral

~

1-¢

r s 1 4 iA0
— ————] p(x,ok,t)]e dx
dx 'A(mz-l)

~1l+e .

has a bound of the form:
C A_4(ase-4 + a4e-5 + a3€_6+-a2e-7 + ae-g)

which has leading term

7
A-4ase-4 = O[le- 3+4U] as |x| > o,
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This can be cbosen to be of lower order than the contribution from the

stationary phase points, by making

7 9 . . 5
-5 + 4u< - 7 which is true for u < T3

This completes the proof of Lemma 3.5.

To finish the proof of Theorem 3.2, we remark that if x = ct + §,

_c]l/Z

c <0 then a > [——- as t - +», and the usual method of stationary

phase applies [8]. This gives a decay rate of X-l/z which is proportional

t-l/2

12

to

and finishes the proof of Theorem 3.2.




4. GLCBAL BEHAVIOR AND UNIQUENESS FOR THE FIRST ORDER TERM IN THE
N-SOLITON WATER WAVE PROBLEM

In section 2 above, a formal expansion procedure was given for the
Euler equations for a fluid in a flat-bottomed canal which was near the
constant horizontal flow of Froude number 1. We now show that the choice
of an N-soliton solution of the KAV equation as leading term in this
expansion results in an equation for the first order term which has a
unique "N~tuple wave" solution if we add a symmetry requirement. As noted
previously, this term satisfies the inhomogeneous form of the linearized

KdV eguation:

(4.1) Lu = ut + uxxx - 6(qu)X = h{(x,t)

where «f(u,t) 1is an N-soliton and h(x,t) is a term which depends only
on {x,t). A zsimple calculation shows that in fact h(x,t) is a linear

combination of the functions:

) 2
Uy ot M G v T 9 0 T Gy v 9y Ty 1 Dywwxx

We remark that h(x,t) contains terms of the form FS(x,t), which
catisfy the linecarized equation. It is rather surprising that these
"secular terms"™ [13] do not give rise to resonant solutions. The usual
cholee for the seolution to Lu = F; would be tF; , which grows linearly

. . . . . 2 .
in t in tho moving frame in which Ej = x—43j t remains constant as

t " . Hewaver, the function G;(x,t) is a solution of the homogeneous
suation ot the form (see the discussion in the Appendix)
(4.2) G, t) = el [ (x-12 B%t)F'. (x,t) + F.(x,t) + H' (x,t)]
| ] ] J J ]
[ . . . . ngQ .
PRt HO (i, ) i a rational function of the exponentials {e } which

for t > 0 fixed. Thus
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GHx,t) 2 2.,
- . . ' - - H! T -
(4.3) . (x 48jt) Fj(x,t) Fj(x,t) Hj(x,t) SBjt Fj(x,t)

and since L(Gg) =0, we have:

(4.4) L[(x—4B§t)F5(x,t) + Fj(x,t) + H%(x,t)] = L[83§t F;(X,t)]

esj?pg (x,t)

The function (x-4B§t) Fg(x,t) + Fj(x,t) + Hg(x,t) has the property that
it is bounded as t + «® in any moving frame, even Ej = constant, so we
have found a 'nonresonant' solution for the secular term Fg(x,t). For
the secular forcing terms G%(x,t), the growth in the obvious solution is
quadratic in t as t > ® with Ej fixed and, to the best of our
knowledge, no nonresonant solutions of (4.1) exist. By the absence of

these secular terms, the perturbation we consider is rather special.

In order to study (4.1) when h(x,t) 1is a linear combination of the
functions listed above, we use the following representation of the N-soliton
solutions of the KdV equation (see Gardner, Greene, Kurskal, and Miura [101,

Tanaka [22], and Deift-Trubowitz [7]):

N
(4.5) q(x,t) = ) a, F,(x,t)
. J 3
j=1
. 2 .
where Fj(x,t) is as usual the squared eigenfunction f+(x,18j,t). Then,

using the third order equation satisfied by the squared eigenfunctions {19],

we have:
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(4.6) q"’

N
= ) a,l4(g(x,t) + 82) F! + 2q'F.)
L3 "3 j
j=1
3 2
= 6qq' + ) 4a.B F! .-
50 333
N
~oaq'''= 6q°qt + ) 42 gq B
s J ] j
j=1
(5) v 2, 2 2
q = 6qg!!'t + 18 gq'q'' + z [16a.R. (gq+B )F'+8a B .q'F.]
521 i3 37353 )

Thus our particular forcing term h(x,t) is in the span of the functions:

2 .
(4.7) {Fg(x,t), q(x,t)FS(x,t), q‘(x,t)Fj(x,t), q7q' (x,t), q' q"}, j=1,...,N.

We prove:
Lemma 4.1. Suppose h(x,t) 1is a linear combination of the functions in
(4.7). Then there exists a solution to the linearized KdVv equation (4.1},
Lu = h, which is an N-tuple wave in the following sense:
(1) u(x,t) > 0 exponentially fast as lxl + o for t fixed
(i1) u(ct+d,t) » 0 exponentially fast as t =+ +=
if o # 43? ;3= Lyees,N
(iii) éig u (48?t+£,t) exists and is an exponentially decreasing
function of ¢
(iv) In fact, u(x,t) is a sum of terms which are either
(a) rational functions in the N-exponentials {exp {Bj(x - 48§t)}}
with the same denominator {w(x,t)]2 as qg({x,t) or

(b) of the form (x—48§t) Fg(x,t).

Proof of Lemma 4.1l: As above, we write

(4.8) L(u) = ug +ou - 6(qu)x .

XX
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From [10], Theorem 3.6, F%(x,t) satisfy L(u) = 0 and Fj(x,t) satisfy

the adjoint equation

+ - =
(4.9) Ve Ve 6q Ve 0

2
Thus L(F.) = - 6F, q' ; L(tF') = F' . Also, L{(x-12B7t)F' + F.) = 6g F
( j j 9 ( b 3 o 1 3773 J) 4
2 i
From the KdV equation, L(qz) = 6q'q'' - 6g°q! and L(g'') = 12q'q''. A basi

the solution is therefore given by

2 2
4.10 {F,, tF! -~12RSt)F'+F. 1}
( ) ' 3’ (x j ) j ! qQ , 4d
Using L(GS) = 0 and (4.2), an equivalent basis is:
(4.11) {F., (x-48%0)F!, H, §°, q"}
j s S A I

The functions Fj, q2, q'' have properties (i)-(iv) of the lemma since
Fj(x,t) is exponentially decreasing. In the Appendix, we show that
(x-48§t) F;(x,t) is bounded and satisfies (i)-(iv) and prove that H;(x,t)
is a rational function of the expontentials which has properties (i)=-(iv)
as well. Assuming these results, the lemma is proved.

Remarks: (i) Uniqueness: If we choose the phases of the N-soliton so
that g(-x,-t) = gq(x,t) then the solution in Lemma 4 is unique provided

we require:

(a) u(-x,~t) = u(x,t)
(b) u{ct+§,t) is bounded for all ¢ as t » o
(c) u{ct+§,t) > 0 exponentially fast if ¢ # 46?.

Proof: From the results of Section 3, the kernel of L 1is spanned by

F;(x,t), G;(x,t) and {(ff)'(x,k,t)l—m < k < »} ., The functions Ft

1]

violate (a); G;(x,t) violates (k) for ¢ 48?; by stationary phase
analysis, (ff)'(x,k,t) violates (c) for «c= -4k2 (the decay is algebraic,

not exponential). Thus u(x,t) as given in Lemma 4.1 is unique, since

in this case, the functions given in (4.11) satisfy all these conditions.
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(1ii) Higher order terms: Even in the time-independent case,
explicit expressions for the higher order terms of the formal expansion
involve more compiicated, transcendental functions. For even the second-

order term, functions like

log (1 - tanh 8x) sech28x

occur, Thus algebraic methods will not readily yield solvability results

like Lomma 4.1 for the higher order terms.




APPENDIX

In this appendix, we collect certain facts about N-solitons of the
¥dV equation and the associated eigenfunctions f+(x,k,t) in this case.
These properties are well known ([6], [l0], [13], [20], [22]), so we
sketch the proofs for the most part. The functions Gj(x,t) do not appear
in these papers, so results regarding these eigenfunctions are presented
and proved in full,

With the choice of phases so that q(x,t) = q(-x,-t), the N-soliton

2

g(x,t) with bound states —82 < -BN-l

2
< - >
N < oo 81 < 0 where BJ o,

it is given explicitly by the following formulae:
Let Ej = x—48§t and define
cosh (ngj) if j is odd

(a.1) £.(x,t)=
) sinh (ngj) if j 1is even

Let W(x’t) = WN (wl ,w2, - .onN)

vy Vs .. W )
(1) 1) (1)
7 ¥ ]
= det 1 2 N .
(N-1) (N=-1) (N-1)
N v, M

the Wronskian determinant in x of wl,...,wN.

Then

2

qix,t) = - 2 -‘5—2 log w(x,t) .
ax

This definition is sensible because w(x,t) > 0 , which we show below.
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Lemma A.l. w(x,t) >0. In fact, w(x,t) is a sum of exponentials with

positive coefficients.

Proof: wi(x,t) = wN[cosh Blgl , sinh 6252 t eses

N-1
exp{BNEN} + (-1) .exp{-BNEN}
2

By the multilinerarity of the determinant, this is the sum over all possible

choices ey = +1 of 2 W [exp {613 €.}, €. exp {e. B &}, exp {e B .},

N 1°1 2 2°2°2 373°3
€, ©XP {648454} ...] i.e. we have upon evaluating the Vandermonde
determinants,

. (1 c8yey)
(A.2) w(x,t) =2 ) exp { €,B,e,)} €., «u. €
'
all choices =1 274 24 2[n/2]
€. =+ 1
J

TT .8, -€.8.) .
j<k k"k 373

Since O < 81 < 82 < vee < @ the number of negative factors in the

N 14

product can be found explicitly. Namely, if ei ,...,si are the negative
1 r
indices for a given choice of the ¢'s, we obtain (il—l) + cee 4 (ir-l)

negative factors in I (ekBk - eij). The extra factor €2€4"'€2[n/2]
j k

adds an additional (-1) factor for each ij which is even. For any

choice of r and il,...,ir , this means that there are an even number
of (-1) factors; thus every term in the sum (A.2) has a positive
coefficient. We remark that all exponents ‘gl eijCj occur in w(x,t)
and that w(x,t) = w(-x,-t) since changing ?;j} > {—Ej} does not alter

the coefficients in (A.2). This proves Lemma A.l.

The eigenfunctions f+(x,k,t) are given explicitly by:

. ., 3
Wgal Vyr¥oreeentyy exp{ikx+4ik~t})

(A.3) f,(x,k,t) =

N
wix,t) TT (ik - 8,)
g=1




The normalization £ % explikx+4ik t} as x + +® for t fixed is
satisfied, as is seen by looking at the leading term, which has exponent
.gl ngj (i.e. pick the term with all €.'s=+1 in (A.2) and the
gorresponding expansion of the numerator). From the fact ([6], [7)) that
N
T(k) = T—T'(k+i8j)/(k-iBj) + wWe obtain a similar expression for f_(x,k,t)
using %Yi) f_(x,k,t) = f+(x,k,t). The proof that ft(x,k,t) satisfy the
Schrddinger equation with potential q(x,t) defined as above is given in
Deift [6]; the basic idea is to use Jacobi's identity for the Wronskians

and induction on N,

From (A.3) and the expression for f (x,k,t), it is easy to see that
. j+1 . -
£, 0085,0) + (-1)) £_(x,iB,t) =0 .

Also, from (A.2) and (A.3), it is clear that f+(x,iBj,t) decays like
exp {-Sj|€j!} as [gj} + © since the exponentials exp {iBjEj} in the

numerator will cancel each other, while remaining in the denominator w(x,t).

The factor is gj(x,t) defined in (3.6) as

1 j+1
I (£_(x,k,t) + (-1) £, 0k, t))

e

(A.4) g.(x,t) =
) k=ig

Differentiating the exponential exp {ikx+4ik3t} gives a term

2(x-128§t)f+(x,i8j,t) , while differentiating the factors (# ik)Q—l

which occur in the (£,N+1)}) entry in the Wronskian gives terms having
N

E.+ ) €8,
373 7 gz Rete

whose sum we denote by hj(x,t). Thus gj(x,t) grows like exp {Bj!gj!}

the form (csexp{x(x,t))/(w(x,t)) where A (x,t) = B

as Igjl + o and is of the form 2(x—128§t)f+(x,i8j,t) + hj(x,t) where
hj(x,t) is a rational function of the N exponentials exp {BQEQ} with
denominator w(x,t), growing like exp {ijgjl} as lgj[ + o, Since

gj(x,t) z cj f+(x,i8j,t) qj(x,t), multiplying by f+(x,iBj,t) we have
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=

L
|
i

1

2 2 . .
2(x-128jt)f+(x,18j,t) + f+(x,18j,t)hj(x,t)

2
=128, .
2(x BJt) Fj(x,t) + Hj(x,t) .

Since fT(x,iBj,t) is rational with denominator w(x,t) and decays like
exp {—ijéj,} as ijl + @, Hj(x,t) is rational with denominator
(w(x,t))2 and is bounded as ]Ejl *> ®, Since all the other exponentials
occur in the numerator with growth at most exp { Z_ 282|€1[} and these
terms are balanced by those in the denominator, g:%x,t) is bounded for
all x,t real. It then follows that Hg(x,t) is a sum of terms

which decrease exponentially fast as t &+ © except in the frames x—48§t
= constant, where their limit is an exponentially decreasing function of
the variable Ej = x—48§t. Note, however, that for t =+ «, H;(x,t)
"decouples" into N exponentially decreasing bumps moving at the speeds
48; with the same phases as q(x,t) as t + ®; unlike Fg(x,t), these
terms give rise to contributions in all N moving frames. These are the

basic properties used in the discussion in Sections 3 and 4 above.
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