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ABSTRACT

The effect of activation energy on the steady state solutions exhibited

by the nonadiabatic tubular reactor is investigated by applying numerical

bifurcation techniques to the model equations. As the activation energy is

increased, the solution branch becomes more complex and finally evolves into a

multiplicity pattern with regions of one, three, five and seven solutions.

Only the states of lowest and highest temperature are found to be stable.

This work confirms recent results using large activation energy asymptotics

and links these results to previous numerical studies of reactor multiplicity

employing low to moderate values of activation energy.
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SIGNIFICANCE AND EXPLANATION

The solutions exhibited by chemical reactor models not only predict

performance but in the case of multiple steady states also elucidate reactor

dynamics which arise due to transitions between stable solutions. We trace

the response curves for the tubular reactor with an A + B reaction as the

activation energy y (the model parameter which controls the effect of

temperature on reaction rate) is increased from low to extremely large

values. These curves become quite complex as y is assigned large values,

however the dynamic capabilities of reactor do not increase with Y since

only the solutions of highest and lowest temperature are stable.

, ,

The responsibility for the wording and views expressed in this descrriptive
summary lies with MRC, and not with the author of this report.
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THE EFFECT OF ACTIVATION ENERGY ON TUBULAR REACTOR MULTIPLICITY

Robert F. Heinemann and Aubrey B. Poore*

INTRODUCTION

The existence of multiple steady states in the tubular reactor with axial

mixing was first illustrated by the numerical computations of van Heerden

(1). Many papers have followed his lead by theoretically and numerically

investigating the uniqueness, stability, sensitivity, and structure of the

solutions exhibited by this fundamental type of reactor. Theoretical

examinations have centered around the determination of criteria for uniqueness

and stability in terms of the model parameters. Several analytical methods

have been employed: first-order lumping, Liaponov functions, comparison

theorems, and fixed-point analyses. Their anplication has shown that in

general the solutions exhibited by the reactor are unique for sufficiently

large Peclet numbers, large heat transfer coefficients, small reactor length,

and small Damkohler number. These conclusions are given in the reviews of

Varma and Aris (2) and Schmitz (3) and in the works of Hlavacek and Hofmann

(4), Luss et al. (5-7), Varma and Amundson (8-10) and McGowin and Perlmutter

(11).

Multiple solutions have been numerically studied by applying variations

of the shooting and collocation methods to the reactor equations using model

parameters well outside the range given by the uniqueness criteria in the

above references. The investigations of Varma and Amundson (12-13), Hlavacek

(14-16), McGowin and Perlmutter (17), and Jensen and Ray (18) have determined
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the existence and stability of one, three, and five steady state solutions and

have examined the effect of the system parameters on the range of

multiplicity. Although sustained oscillations were also demonstrated in the

nonadiabatic case, the above studies were primarily directed toward the

multiplicity problem and the associated hysteresis and jump phenomena which

occur at transitions between stable operating states in the reactor. rapila

and Poore (19) have recently classified the steady state solutions for all

system parameters in the asymptotic limit of large activation energy. These

perturbational methods show that the reactor may in fact exhibit seven steady

states for higher activation energies.

The goal of this work is to show how the one, three and five steady

states, which were studied extensively in the seventies, evolve into the newly

discovered seven steady states. The present study then confirms the work of

Kapila and Poore and ties it to the work of the previous investigators.

MATHEMATICAL MODEL AND NUMERICAL TECHNIQUES

The steady state conservation equations describing an A + B reaction in

the nonadiabatic tubular reactor with axial mixing are written below in

dimensionless form

21 d c dc Dcey-y/T 0

Pem dx2 dx

2T
1 dT dT + BDce Y- /T  0

Peh dx2 dx : (T - Tc )

These equations are subject to the following boundary conditions
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Dc
-x - Pe (C - 1) at x - 0

aT-- Peh(T - ) at x - 0
a h

ac aT, 0  at x Iax 3x

The variables c and T represent the dimensionless concentration of

reactant A and reactor temperature. The parameters PemPehB,TcB,D, and

y denote respectively the Peclet number for mass transfer, the Peclet number

for heat transfer, the heat transfer coefficient, the coolant temperature, the

heat of reaction, the Damkohler number and the activation energy.

We investigate reactor multiplicity by computing the steady state

solutions of the above model as the Damkohler number is varied. The boundary

value problem is discretized by a fourth-order finite difference scheme due to

Stepleman (20), and the resulting nonlinear algebraic equations are solved by

Keller's arclength modification of the Euler-Newton continuation procedure

(21). Since these methods are discussed in the literature (22, 23), we forego

any further discussion of these techniques. The stability of the steady

states is determined by computing the eiqenvalues of the discretized system

via the QZ algorithm.

MULTIPLICITY PATTERNS

The results of our computations are represented on response curves which

represent the maximum reactor temperature (the largest value of T found on

the computed temperature profile) plotted against t".e Damkohler number. We

examine the effect of the ictivation enerqy on the reactor multiplicity by

tracing the response curve as y varies from 25 to 225 while the remaining

parameters are fixed at Pe = Peh = 1.0, $ = 4.0, B = 0.5 and T = 1.0.

m hc
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This set of parameters falls into the range for which seven steady states are

predicted by the analysis of Kapila and Poore. More specifically, let

r Pe heCl ± (1 + 40/Pe h )] and

a(B,Peh) - (exp(r+) - exp(r_))/(r+exp(r+) - rexp(r_)). If Bc denotes the

value of B for which Bc(SPeh) = 1, then in the asymptotic limit of large

activation energy, there exists for some range of the Damkohler number, three

solutions for S = 0, five solutions for 0 < B < 8c and seven solutions for

B > Bc (19). (For Peh = 0, Bc is approximately 1.4 while for Peh larger

than 4, Bc  is slightly larger than 1 + Peh.) Although we present the

transition to seven steady states for only one set of parameters, the results

are quite similar for other sets satisfying the above criteria.

In Figure 1, we show that the reactor model yields a branch of unique,

stable steady state solutions for y 25. As y is increased to 40, a

region of three solutions appears for a very narrow range of the Damkohler

number. A close examination of this solution branch indicates that all three

solutions may be unstable since exchanges in stability do not occur at the

static bifurcation points but rather at the Hopf bifurcation points where

periodic solutions bifurcate from the solution branch and surround the

unstable steady states (24, 19).

The remaining solution branches in Figure 1 all exhibit five solutions

over some range of D. An inner loop, which grows as y is increased,

appears on the intermediate section of the usual S-shaped curve, and this loop

gives rise to the five steady states. For each of these solution branches the

first exchange of stability occurs at the lower limit point, and all of the

intermediate solutions are unstable until a Hopf bifurcation point is

encountered above and to the right of the upper limit point. We also note

that the Y = 75 branch has the identical shape of the multiplicity pattern
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predicted by Kapila and Poore (19) for 0 < a < $c . (Our computations with

Pe = 1.0, S = 1.0, B = 0.5 and y = 100 confirm the Kapila and Poore

predictions for 0 < < 8c but are not presented here because of their

similarity with y = 75 results of Figure 1.)

In Figure 2, -y is increased to 100 and 125, and seven solutions appear

in both cases when two limit points arise along the lower, right-hand portion

of the inner loop. This region is barely detectable for y - 100 and is

slightly broadened for y = 125 as this S shaped perturbation of the inner

loop is more clearly defined. The lower two solutions on this perturbation

correspond to the additional solutions established by Kapila and Poore. The

stability results for the branches in Figure 2 are the same as those for

y = 75, where all the solutions except the lowest and highest temperature

states are unstable.

The exclusion of the lower limit points (D = 0.042 for y = 100 and

D = 0.032 for I = 125) from Figure 2 indicates the effect of large y on

the location of the multiplicity regions. It is clear from the definition

of D (D is proportional to e -Y (3).) that increasing y to such large

values must shift the solution branch rather dramatically to the left.

The result of increasing y to 225 is illustrated in Figure 3 where

seven solutions are shown for a narrow range of D

- 10 -9)

(7.0 X 10 < D < 1.35 x 10 ) and five solutions are shown over a
1-12 -

relatively wide range (5.0 x 10 < D < 5.5 x 10- 6 ) as the perturbation on

the inner loop becomes quite exaggerated. The maximum temperature of the

newly discovered solutions becomes identical along the lower portion of the

perturbation, but the locations of the maximums occur at different points

along the reactor. The solution branch for this extremely large value of y
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shows excellent agreement with the asymptotic results for large activatiom

energy presented by Kapila and Poore [19].

CCNCLUSIONS

We have illustrated the effects of activation energy on the steady state

multiplicity of the tubular reactor. As the activation energy increases, the

solution branch becomes more complex anO evolves into a pattern of seven

solutions of which only two (states of lowest and highest temperature) are

stable.
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