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ABSTRACT

In this paper, the steady, irrotational, subsonic flow of a gas around a
given profile is studied in the case of arbitrary space dimension greater than
two. We prove that the solution of this problem exists, is unique, and
depends continuously on the incoming flow. This extends the previous results

of Bers and of Finn and Gilbarg.
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SIGNIFICANCE AND EXPLANATION

It is clear that the study of the gas flow around a body moving at
subsonic speed is of primary importance in aerodynamics. Extensive studies
have been done on the problem of existence and uniqueness of steady
irrotational subsonic flow of a perfect gas past a given profile. Bers (1954)
treats the plane subsonic flow using the theory of quasianalytic functions.
Finn and Gilbarg (1957) deal with three dimensional flows with Mach number
less tha1 0.7. In this paper we prove the existence and uniqueness of three
dimensional flow by using and improving a priori estimates obtained earlier by
several authors. Our results can also be extended to higher space
dimensions. Furthermore we allow the flow to be arbitrarily close to sonic

speed.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THREE-DIMENSIONAL SUBSONIC FLOWS AND THEIR BOUNDARY
VALUE PROBLEMS EXTENDED TO HIGHER DIMENSIONS

Guang-Chang Dong.

The existence and uniqueness of steady irrotational subsonic flow of a perfect gas
past a given profile has been studied extensively in the two dimensional case. In [1],
Bers proved the existence and uniqueness of plane subsonic flow around a given profile.
For higher space dimensions, few results have been previously obtained. Finn and Silbaryg
[2) proved existence and uniqueness in three dimensions provided the velocity was not too
large (the maximum Mach number less than 0.7).

In this paper we use the idea of [2] together with an improved a priori estimete
(extending the method of [4]) to prove the existence and uniqueness of the solution in the
three dimensional case. We also extend the result to higher dimensions.

In the following we always suppose the dimension of space is n(n » 3}, and use the

summation convention

and denote the vector (x1,...,xn) by x.

The steady irrotational gas flow in n dimensional space can be Jdescribed by the

velocity potential ¢{(x), satisfying the equation
3 3y _ R
ax, [ Sx.) =0 (i
i i

where p represents the density of gas, which is a given positive functicn of velocivy

q, where

(1) can be written as

where
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. 1 (i=3)
a,, =06, +2 v 5y = . (3)
0 (i4})
Because (1) and (2) are rotational invariant, the eigenvalues x1,...,xn of the quadratic
form

aijaiaj

can be ottained by letting Uy = g, Uy Sees=u = 0, 1i.e.

n
= ' = .= = .
Ay = et elds )y Seee= A =0
So that if
p+p'q>0 (4)

at this point the quasilinear equation is of elliptic type, and the flow (1) is subsonic at
this point. If in some region  we have

inf(p + p'q) > 0 ,

Q
then the flow (1) is a subsonic flow in Q.

Assume that the function p = p(q) is a positive, three times continuous

Aifferentiable functions, defined in the interval

0 <qc« qiim LI
and asgume that a number e exists (we called it the critical velocity) 0 < qc < qlim'
such that
o+ p'a = 4 (pg) >0 (0 <g<ag) . (S)
da ) c

For definiteness, assume that when q > a. the left hand side of (4) is non-positive.
Hence (2} is subsonic if and only if 0 < q < qg* We also assume that
p'(o0y =0 . (6)
In gas dynamics, the density of a perfect gas is given by the dimensionless formula

1

y-1

- ol
p = {1~ 151 a’) (1 < y<2, vy is a constant)
so 2ny
1 2\ 7! 1 2
o+ p'a="1-L=4q") (1 - L= q)

hence




- /2 YN
9 /vy Yum /Y7
The flow is cialled subsonic when 0 < g < qc, which agrees with the discussion above.

The profile T is a bounded closed surface in n dimensional space (it can be some

~loged surface also). Assume that a constant 10 exists such that 0 < 10 < 1 and

(2+1))
Tec . (7)

The region outside T (not containing the point at infinity) is denoted by Q. we only
consider those satisfying the condition: any closed curve in £ can be deformed into a
point without touching T.
The flow around [ means that the solution of (1) in § satisfies two conditions as
follows. The boundary condition
%s‘ = 0 (N is the irnterior normal of @ on T) (8)
and the condition of uni;orm flow at § (called uniform incoming flow)
grad ¢|x=° =4 (u°° is a constant vector) . (9)
Usually for the yproblem of flow around a given profile we give the magnitude and
direction of incoming flow. Without loss of generality we can assume that the direction of
incoming fiow is tke positive x; axis (otherwise after an axis rotation we can reach this
gltuation), i.e.
u°° = (U, 0,...,0) the const U > 0 is given ., (10)
A slightly different problem is: Given the direction of incoming flow but not the
magnitude, i.e.
u = (U, 0,...,0) U> 5 is not given (1)
and given the maximum value of speed instead, i.e.
sup q = Q is given . (12)
We shall study the existence anj uniqueness, find the flow and other properties of the
solution of the above two kinds of flow pcoblem in the subsonic range, i.e. when
R <q. - (13)
§1. Preliminary study of the 'inear probler

Consider the following problem




2%y 2y
= R . 1.1
L(Y) bij(x) 3% Ix. + bi(x) % f(x) (x e Q, bij = bji) { )
i3 i
¥ )
3—’ =y (N 1is the interior normal of { on T) (1.2)
N r 0
¥ =0 (1.3)
«
. (0) = (0) .
where the given functions bi;' b;' fecC ), WO € C (I'), and a positive constant o
exists such that
GZaz <b aa < 1 Iu? . (1.4)
i 1313 g i
Further conditions on bij’ bi' f are given below. Assuming that the solution of problems

(1.1), (1.2), (1.3) exists, and we deduce some a-priori estimates.

Assume that a fixed small positive number Tt such that 1 < % (the definition of

1 see (7)) exists such that

0
Ib, (x) = b, _(»)] ¢ K,r_(x € ) (1.5)
ij ij 1 x
-1 T
- - 1.
lbij(X) bij(y)| < Kzrxylx vyl (x, y e Q) (1.6)
.«1-1’
o7
Ibil < K3rx (1.7)

where the congtants K1, Kyr eee depend on ¢, 1, I' only. Moreover, assume f 1is a

bounded function satisfying

€] < K, max |l ™" {1.8)
¢ = x
Q
where
r = d(x, I'), r = min(r_, r ) (1.9)
x Xy x %
d(x, ') 1is the distance between x and I. We have
Lemma 1.
1¥| < K_(max [¥Y | + max [f[] . (1.10)
S 0 =
T Q
Proof. Let
]
¥ = max IVOI + max [£] (1.11)
T 2
_4-




The uniqueness of the solution of (1.1), (1.2), (1.3) is easily deduced from the

maximum principle [S5]. Thus for WO = 0 we have ¥ = 0, and in this case (1.10) is true.

when Wo £ 0, 1let
2

Y
Lw(w) = bij(w) Ix % (1.12)
173
= . -
R v‘Bij(m)xixj (1.13)

Bij(c) ig the algebraic complement in the matrix (bij(m)). We have
1 T
2=-n- < -n= 3
2y _ 1 I 2
L (R ) =5 (n-2+ 3R . (1.14)

Wwhen R > K6, where K6 is a sufficiently large constant, from (1.5), (1.7), (1.8},
(1.14) we have

T T
2=n= — -n= =
2 £ T T 2

A IS § - RS
L(R b ow T (n-2+ )R

+ R >0 . (1.15)

Without loss of generality we can assume that the origin lies inside T, then

min R > 0. Take gq = a(o,1,) comparatively large, by using (1.5), (1.7), (1.13) we have
xeQ

2

~q ~a~4 -a-
= B 3] > - b, .3 - 1.1
L(R ) al a+2)R bij ij(w)xk jh(m)xh aR i3 ij(w) { 6)
~a-2 -a~2
aR biBik(m)xk ? K1R .
From {(1.15), (1.1%) we can select a constant Kg such that
2-n- 1
-a t
L(R + KBR ) - 5 >0 (x e ) . (1.17)
A4
Let 1
¥ 2-n-
L I 2Lk Ry (1.18)
Wz 8
From (1.1), (1.17), (1.18) we have
L(W1) <0, L(Wz) >0 . (1,19)

~5-
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From (1.3) we have W1(w) = 0, hence min Y1 < 0, this minimum can only be taken at
2

® or on T by (1.19). Similarly max Wz > 0, and this maximum can be taken at « or
Q

on [, Hence we have four cases as follows.

Case 1. mén W1 = WI(PO) <0, Po e I; m%x Vz = WZ(QO) >0, QO el .

Extend the method of {6] to prove that (1.10) is true. Because T ¢ C(z), there
exists a positive constant y = Y(I'), such that for any point P ¢ I' we can draw an
exterior tangent sphere with radius vy which lies entirely inside § except point P.

Draw the exterior tangent sphere with radius vy at PO' denote its center by Py,

Consider the function 2
o, -hEPC 2 _
¥,(B) = ¥ (P) - min ¥ - kY (e ) (red (1.20)

Q

where k, h are positive constants we may choose at our disposal. Take h = h(g) large

enough, from (1.17), (1.20) we have

X
L(¥;) <0, 3 <PPCY . (1.21)
From {1.20) we have
= = . 1.
W3 > 0, when P1 Yy and W3(PO) 0 (1.22)
If
Pp =X 1.
Wa > 0 when P1P 2 (1.23)
is true, then from (1.21), (1.22), {(1.23) we see that min W3 < 0 when % < P1P < y can
not he true, hence min 25 = Wj(PO) = 0, From (1.2), (1.18), (1.20) we have
T
Y 2~-n- 2
3 . 03 2 -4 _ 0 -hy
w \p = Ho(pn) ¥ aN(R + KGR ) P 2ykh¥ e >0 . (1.24)
0 0
Pici the constant X, so that
T
2 2-n- —
-hy 3 2 -a
2K he > 1+ maxIaN(R + KoR )

then (1.24) can not he true when we take X = Kg, hence (1.23) can not be true, in other




words, we have P, satisfies P P, . = 1 such that W3(P2) < 0, From (1.20) we have

172 2
- mi 0 X 3
W1(P2) mgn V, < K’OW ¢ 3 < d(Pz, Po) < > . (1.25)
Similarly there exists a Q2 satisfying
- L ¢ 3
mgx 12 WZ(QZ) < K11? 5 < d(QZ,QO) < 2 . (1.26)

Because of (1.6) we can apply Harnack's inequality (7] to the nonnegative function

¥ - min ¥ and obtain
1 5 1
[W1(P2) ~ min W, + mgle(W,)l] . (1.27)

Y (RQ.) - min ¥_ < K
172 a 1 12 a a
Combine (1.11}, (1.18), (1.25), {(1.27) we have

0

Y1(QZ) - mén W1 < K13Y . (1.28)
From (1.18), (1.26), (1.28) we have
ma ¥ - min ¥ < max WZ - min W1 < (K11 + K13)W0 .
Q Q Q Q
From (1.3) we have max ¥ > 0, min ¥ € 0, so combining the above expression and (1.11) we

Q Q
obtain (1.10).

Case 2. mén W1 = W1(~) =0, mgx Vz = ?2(Qo) >0, Q0 el .
By lemma 2, there exists positive constants RO(O,T,P) and Kigr Kyg such that the

Harnack inequality for the positive function R2-nw’ (the definition of R see (1.13))

for any R1 bd RO holds:

msx (Rz-nW1J < K, min (RZ'“w1) +

14

K15 max|f] .

R=RO R=R1 Q
Proof of (1.29) see lemma 2. From (1.29) we have
max ¥ = R""2 max (Rz'“v1) < x,4n3'2 max (Rz'“w1) + K1SR§'2w° =
R= Ro R=R0 R=R1
R, n=2
0 n=2,0
= (==
Kig\R max W, * KioRy ¥
1 R=R1
From (1.19) and W2|m = W1|Q = 0, combining «.th (1.18) we have
max W1 < max Wz < ma. WZ < max W1 + K16 WO
R=R1 R=R1 R=R0 R—'—RO
so combining (1.30), (1.31) we have
-7=

(1.29)

(1.30)

(1.31)




RO n-2 R0 n~2 n=2 0
N -
- — < - .
{1 xM(R, | max ¥ (K14(R bRy + Ry R IY
1 R=R 1
R
Take R, such that K (—R) =1 we have
1 4R, 2
max Y, ¢ K WO N (1.322
1 17
R=R0

(1.32) is similar to (1.25). We can get (1.26), (1.27), (1.28), (1.10) by the similar

process as in case 1.

Case 3. min W1 = W1(P0) < O(P0 e ), max Yz =Y (») = 0,
Q Q
Obtaining (1.10) is similar to case 2.

Case 4., min ¥ =0 = ¥ _(*), max ¥
5 1 1 ﬁ 2
From (1.18) we have ?0 = 0, contrary to the hypothesis.

=0 = Yz(m).

Lemma 1 is thus proved.
Lemma 2, Let
¥, >0 (x e Q) . (1.33)
Prove that (1.29) is true.
Proof. Assume that the region R ? R18 (the definition of R see (1.13)) lies in
2. Without loss of generality we can assume
max|f] =1 (AR
Q
b, (=) =§ . (1.35)
1] 1]
Otherwise after a linear change of independent variables and multiplying the unknown

function by a suitable constant we get (1.34) and (1.35). Hence R = [x|. Apply the

inversion transformation

X,
X, = —3= (i =1,2,00.,n) (1.36)
i 2
Ix|
and let
2-n- %
v, = (%" - & 2y 11.37)

{1.1) becomes

1
L(v) = Bijvxixj + Bjve + BV = F (X[ <) .

1 18
Notice that the matrix Bij is not the same as in (1.23). From (1..4) and (1.36) we see
-8~




that Bij still satigfies the uniform ellipticity condition and (1.33) becomes

v>o0 . (1.38)

From (1.1), (1.3), (1.5), (1.7), (1.15), (1,18}, (1.35), (1.36}), (1.37) we have

B.. =6+ 001x|") (1.39)
ij ij
-1
B =0 (1xI™h (1.40}
T 7 % -2 -2
B=-gln-2+3)xl| + 0 (ixf™ ) (1.41)
X
T T 2 -
F=-stn-2+50x% « 0 (x™9 (1.42)
ve=o (1x1*™ . (1.43)
We use the generalized maximum principle in [8]: When the coefficients satisfy
(2) - 2-n
(1.39), (1.40), (1.d1), we C , L{w) 2 0, w=0 (|X] ) in 0 < [X] < K.q, then w
can not attain a positive maximum value in 0 < [X]| < K19 where w(0) 1s defined by

Tim w (X).

8+0 z

From (1.39) - (1.43) we can take v + 2|xl2 to be the function w by taking K19
suitably. Hence v is bounded above and moreover v is bounded by combining with {(1.38).
Then from the result of (8! we get that v(0) existsg and

lim v (X) = v{0) . (1.44)
X+0

Take positive constant Kﬁo such that the following relations are true when

0 < IX| < K20:

T

L(v) = F <0, L(v+ 2|xl2) >0 (1.45)
X

L(1) = B < 0, L(1+2lxl2)>o . (1.4€)

We need to determine continuous functions K, (X, Y), K_(X, Y) in the range

Ix| < K‘O' iyl = Kag (X$¥Y) satisfying the following three relations:
i. L(K*) > 0, L(K_) « 0 (0 < (X} < KZO) (1.47)
11 lim [ K (X, Y)y4l¥)ds = g(Y ) (1.48)
t 0

X»Y
0

where y(X) 1s any continuous function and YO 1s any fixed point satisfying IYOI = Ksge

~g-




iil. There exists constants K21, KZZ such that

K
(x| <—2—0, Iyl =x_ ) . (1.49)

K (X, Y) > K, K (X, ¥) <K 5 20

1’ 22

If K+(X, Y), K_(X, Y) exist, then combine (1.44), (1.4%), (1.47), (1.48), (1.49),
and apply the method of (5], (c.f. in 84 of [5]) which extends theorem 1 to the

inhomogeneous equations. This is the result that we need. Hence, positive constants K23,

K24, K25 exist such that
-1 KZO
K23v(0) - 1<24 < v(X) <€ K23 v(0) + KZS (I1x] < T) ’ (1.50)

(1.29) follows from (1.34), (1.37), (1.50).

We can construct K, and K_ by only altering the method of [S] a little as follows.

Let
n
2

2 2 -
= - * - -
H (Kzo X )[Bij(Y)(Xi Yi)(xj Yj)]

where B;ﬁ are the algebraic complements of Bij' Take K_ = f_(H), then
L(K ) =B, (X)H_ H, (f" + Af') + Bf
- i3 X, X - - -

i3

where
A= [B..(X)H + B H, 1/(B, . (X)IH, H, 1 .
ij Xixj 1%y ij X4 Xj
Apply the estimate method of [S) (the method of obtaining (30) in it) and (1.6),

(1.39) and

T T
5" 1 5 - 1
a =0 =0 - -
. (1xt ) (1x-v| Kool )
deduced from (1.40), we have '
- -1
n-1+¢ n 2
~ + |X=Y| 1X~y| - .
Al < x%(!x Y| [X-Y|"1X~-v| K20| )

and then determining f etc. (these steps are similar to [S5}), at last we get K_(X, Y)

satisfying (1.47), (1.4R), (1.49). .
Through the transformation K+ = (1 + 2 IXIZ)K:, (1.47) becnmes
*(KE n
L (K+) >
where
*(v) = R + B*v + B* .
Lt SRS 'S v
i3
Applving (1.46) we have . 1

B¥ = L1 + EIXIz)/H + 2{*((2) >0 .

~-10-




Let X, = f _(H). the selection of f, 18 similar to [5]. The proof of the existence
of K7 such that K: satisfying (1.47), (1.48), (1.49) is similar to K_. Hence the
proof of lemma 2 is finished.

Lemma 3. We have
2-n
l¥l ¢ X, min(1, ro )(max|¥ | + max|fl) (1.51)
27 X r 0 5
under the conditions (1.4), (1.5), (1.6), (1.7), (1.8).

Proof, Because of lemma 1, we only need to prove the validity of (1.51) when T,

large enough. From (1.13), (1.14) when R > K28 (K28 large enough) we have

2-n~- = -n- —
- £
LR er o oI Iniae R Zho @™ H <o .
X WO 2
5
Hence the function T .
2-n- = 2-n- =
2-n 2 2-n 2,0
KS(R R )/(1<28 - Kzs ¥t ¥ (1.52)

can not take on a negative minimum value in K28 < R< > PFrom (1,3), (1.10) we see that
when R = w» and R = K,g (1.52) is nonnegative, hence (1.52) is nonnegative in

KZB € R ¢ », This proves the lemma.

Denote the k'th order derivatives of ¥ by D(k)w. when V ¢ C(k)(Q) or
), et
Mo (9 = lub 2™ 0™y (1.53)
m,k
Xefd
+k+2

M (o) = 1ub ™My - 0™ vy /1yl T (1.54)
mok+ x.veq Y

x' Txy See (1.9). The

where m is a nonneqative inteqral. For the meaning of symbols r
symbol of 1lub in (1.53), (1.54) means first to take upper bound for all k's order
derivatives. Let

fyl = My lem,k+T = lem,k AL S DR

-11-




when VY(x) € C(k)(ﬂ) and {¥] is finite, denote by Y(x) € Cm K Similarly we define
’

m,k

cm,k+1‘

Lemma 4, Assume that (1.4), (1.6), (1.7) and

T =-1~T

- < - .

Ibi(x) bi(y)l K29|x vl rxy (1.55)
are valid, and assume that
f ecC . (1.56)
n,t
(2+71)
Let Y e C (2) be the solution of (1.1), (1.2), (1.3) and Y ¢ Cn_2 o’ then we have
.
Y ¢ cn_2'2+1, and

¥ < + . o

Plpa, 41 € KapMp g of0) + 1£1 1] (1.57)

Proof. From the interior estimate [9] we obtain (1.57).

Consider a bounded region 90 satisfying i8> 50 > T, wWhen VY ¢ C(k)(no) or

€ c(k+T)(Q0), let
(k) (k) (k) 1
Mk(W) = lub |D ¥(x)i|, Mk+T(W) = Jub D Y¥{x) ~ D "Y(y)]/|Ix=y]) B
ero x,yeﬂo
k
¥l = I omen, J¥i o= (¥ + () .
3=0
When VY(x) € C(k)(ﬂo) and H’Ik is finite, denote by Y(x) ¢ Ci, similarly we define
0
Ck+1'
Concernng the function ?0 defined on T, 1let
- (h) - {(x)
WY U = lub lub|D (wo)l, wouk+T 1Y U+ lub ID ¥, (x)
h<k xel x,yel

k T
_— )Wo(y)l/lx-yl

(k)

k
where in lub the D Wo(x) and D Wo(y) restrict to the derivatives of the same

parameter.

Lemma 5. Apart from the hypothesis of lemma 4, let bij' by, £, Yo satisfy the following

conditions
T
- < - - ) .
|bij(x) bij(y)l K31|x vyl (x, ye 20 (1.58)
T
lbi(x) - bl(y)l < K321x~yl (1.59)
£ SCg {t.00)
~12-




¥, ey . (1.61)
(2+1) n
and let Y g C (Q) be the solution of (1.1), (1.2), (1.3), then we have V¥ ¢ c2+1'
and
lwlz+T < K33[MOW) + lflT + WO“HT] . (1.62)
Proof. See [10].
Let
M (¥) = lub max(1, rm+k)|D(k)W(x)| '
m,k x
XEef
" = 1ub max(1, O ve0 - 0 wy) 1/1x-y1 T
m,k+T1 x
X, YeR
k
AL jzo Mm'j(‘!’), T SO L S B

Summing lemmas 3, 4, 5 up, we have
Lemma 6. Under the conditions (1.4}, (1.5), (1.6), (1.7), {(1.8), (1.55), (1.56), (1.58),
-
(1.59), (1.60), (1.61) let V¥ ¢ C(‘)(Q) be the solution of (1.1), (1.2), (1.3), we have
+ . .
H‘ln_zlz+T < K34(If"n,r nw°n1+r) (1.63)
Theorem 1. If the conditions of lemma 6 are satisfied then the solution

(0) = N C(2)

¥ec oM (20

(Q) of (1.1), (1.2), (1.3) exists and is unique. V¥ ¢ (), and
satisfies the estimate (1.63).

Proof. The uniqueness of the solution follows directly from maximum principle. The
existence of the solution can be obtained by applying the continuity method, i.e. to solve
the equation with parameter

tt1-9)L_ + BLljY = 9t (0 < 8 < 1) (1.64)
with boundary conditions (1.2), (1.3), where the definition of operator L is defined by
(1.12). When 9 = 0, through a linear transformation, the equation (1.64}), (1.2), (1.3)
becomes the Laplace equation in an exterior domain with oblique derivative aiven. The

+
2 T)(Q) can be obtained bv the method »f integral

existence nf a solution ¥ and V¥e C
equations, see [5]. Applying lemma 6 to extend the solution by increasina the parameter

a4 uantil 9 = 1.

The thenrem is thus nroved.
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§2. The existence of solution around a given profile.
Theorem 2. The solution of problem (1), (8), (9), (11), (12), (13) exists.
Proof. First we alter the function p a little as follows: Take 5 = _E—E' where
for the definition of - Q see (5), (12). Let
s = sta) = 2(1+en((§-0) (29-0-))/[2(a-Q) (G-q) 1}
()

then s(q) ¢ C when Q < q < 5 and increases monotonously, and

S(0) = 8'(Q) = 8"(Q) =...= §'(Q) = s"(Q) =.e.= 0,8(Q) = 1 .

Let
p (0 < g <Q)
B = p{1=-8) + es (Q<q¢« 5) (2.1)
e (0 < q < =
where the constant e = max_ p, it is easy to see that the smoothness of B is the same
- (3 e
as p, i.e. peC , and p > 0. Applying (5) we have
b+ p'qa= (p+tp'q)(1-8) + es + qle-p)s' >0 (Q < q < Q) (2.2)

Consider the equation

3 -3¢, _
axi(° ax.) 0

a, (by) —+—=— =0 (2.3)
ij
where

a,.(0p) =56, + 2w, .
ij i3 q i3
The ejigenvalues of its correspondent quadratic form sij(D¢)uiuj are
=5+ Te 4= =5 .
A1 o + p'q, Xz Xn p

From (2.2} we see that all eigenvalues are positive, i.e. when 0 < q < » (2.3) is always
an elliptic equation, and a positive constant o = 0(Q) exists such that
2 - 1 2
dZai < aij(Dw)aiﬂj < p Zni .
Next we prove that the solution of (2.3), (8), (9), (11), (12), {(13) exists. From

(13) and (2.1) we see that it also is the solution of {1), (8}, (9), (11), (12), (13).

-14-




Hence concerning the proof of theorem 2, without loss of generality we can assume the

quasilinear equation (2) is uniformly elliptic when 0 € q < @, i.e. there has positive

congtant ¢ = g(Q) such that

aioi < alj(Dw)aiaj < % Zai . (2.4)
Let the function v(x) satisfy
ve c M aery (2.5)
Dy(®) = (U, 0,.0.,0)
[p(x) - Ux1]x_w =0 (2.6)
Iowx) - Det=)| € Cr "

-T T
IDp(x) = De(y)| < c, min(1, rxy)lx-yl

where

T =1(Q,) < % (the definition of T_ sgee (7)) (2.7)

0

is a positive constant which shall be determined later, U is a positive constant not to

be fixed, {for the meaning of r,, Ty See (1.9)), Cy, C2 are positive constants. The

norm of ¢(x) is defined by

1 + inf C2 .

It is easy to see all functions ¢ form a Banach space E.

tgd = |U| + max|e~Ux) + inf C
Q

We wish to find the solution of the following equations:

2
Y
a,,(0¢) Frm = 0 (2.8)
i3
Y
BNlP = -cos(N, x1)|r (2.9)
¥i,=0 (2.,10)
Let
d(x) = 6QI¥(x) + x1]/m§x|grad[W(x) + x1]| (0 <8< 1) (2.11)

Q
where the definition of @ see (12).

By theorem 1 we have ¢ ¢ E, hence a functional in E 1is defined as follows

¢ =Ty, 8) (0 <8 <1) . (2.12)
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Now use Leray-Schauder degree theory [11] to prove that for any 0 <€ 8 < 1 the
solution of functional equation
¢=Tlp, 6) = 0 (2.13)
exists. By theorem 1 and (2.8), (2.9), (2.10), (2.11) we see that when 0 =1 the
solution of (2.12) is a solution of (1), (8), (9), (11), (12), (13).
Let us verify the three conditions of Leray-Schauder degree theory.
i. From theorem 1 we have
11 (3 S "] RIS (2.14)

n-2,2+7 34

Hence T 1is completely continuous. T is also closed, i.e. when wk e E,¥ ¢ E and

nﬁ - ¢l + 0 {(k » ®») the corresponding solutions satisfying Iok -~ &1 » 0. 1If this is
not true, i.e. there is a subsequence ({k'} and positive constant § such that
1w, -8 . (2.15)

When k' is large, from (2.14) we have

+
nwk,nn_2'2+1 < K34(1 fv8)
hence (Yk,} is compact in H...1 T i.e. there exist V¥, and a subsequence
n=2,2 + 2
{x"} of ({x'} such that
ny ., - ¥y +0 .
kll - T
n-2,2 + 5
2
3 Wk"
From a, . (D¢ ,) 7——=— = 0 taking limits we have
i3 k X, Ix,
1)
2
¥,
a, (OW —— =0 .
13 axiaxj
Similarly we have
oY,
.= - N = .
™ |F cos(N, x1)|r, W.'w 0
Hence from the uniqueness of the solution of (2.8), (2.9), (2.10) we have ¥ =¥, hence
nok, - %1 +0 .

This contradicts to {(2.15), therefore T 1is closed.
From (2.11}) we see that T 18 continuous uniformly in %, hence the deqree of (2.13)
ta inderendent nf 3,

ii. When 4 =10, 4 =0, {.e, (2.13) hag only the solution y = 0. Therefore, the

deaqree nf (2.13) is equa’ to 1.
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iii. To prove the solution of (2.13) is bounded in E, in other words, to prove that
the solution of (1), (8), (9), (11) and
max q = 8Q (0 < 8 < 1) (2.16)
is bounded in E, which shall be p;:ved in the following two sections, first notice that
from (2.16) we have

max q € Q . (2.17)
Q

] §3. The interior and boundary estimates of solution.
Let ¢€ E satisfy (1), (8), (9), (11), (2.17). Consider (2) as a linear equation in
. ¥, from (2.5) and the Schauder estimate (notice that we have (7) and (2.7)) we have
¥ E C(3+T)(Q) n C(2+T)(Q+F) .

Differentiate (1) about X}, we have

) )
= (a, . 2E—) =0 (u is the abbreviation of = - uh) (3.1)
Bxi i3 axj axh
where the definition of aij see (3).
Assume the sphere Ix—xol €p lies in £ and 0 < 6 < 1, Let
1 Ix-xol < u(1-6)
3 1
= ! = —_— - - - - < .
cix) = gix, u, 6) o (u I x xol) u(1-8) < |x xol " (3.2)
% - ? .
3 0 | % xOI M

2
Multiply (3.1) by & (x)u and integrate, we have
2
f; a,.,u u dx = -Zfa,,uu g dx .
i x, %, i3 7x,77x,
i73 i 73
From this formula and (2.4) we have

Ofcz(grad u)zdx < Liflecz(grad u)2 + % uz(qrad c)zldx .

In this and the following sections the constants Lyr Lpsens depend on @, I' only. € \is

an arbitrary positive constant. Take eL1 = % we have
fcz(grad u)zdx < szuz(grad L)zdx . (3.3)
Take 6 = % from (3.2), (3.3), (2.17) we have
/ (grad u)Zax < L3u"'2 . (3.4)
[x=x,1¢3
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Let n be a constant., Multiply (3.1) by the function
2
{': (x)(u=n)  (u > n)
0 (u < n)

and integrate, we obtain similarly

2 2 2
| ¢(graa w)“ax < L, [ (u=m)*(grad ax . (3.5)
usn u’n
We denote the sets u(x) z n in sphere lx-xol <y by A , B respectively,
n,u n,u

From (3.2}, (3.5) we have

f (grad u)zdx < L. mes A ! max [u(x) - n]2 . (3.6}
AL > N (ou)? xea
nyH=0u Ne
Similarly we have
( 2 2
] (grad u)"dx € L, mes B 3 max {n=u(x)] . (3.7)
B .
n,u=-0u ow) xcen,u

From (3.4), (3.6), (3.7) and applying the result of [3]: There exist constants L, and
11 = 11(Q,F) (0 < 11 < 1) such that for any x, y €  we have
T ™
lu(x) - u(y)| € L7rxy | x=y| . (3.8)

Note. In [3] the inequality (3.8) is proved under the restriction |[x-y| € Lsrxy. When
lx-y{ > LgTyyr the validity of (3.8} is true by (2.17).

We now turn to the boundary estimate., From (7) we see that there is a local
parametric expressior for a little part of T

(2+To)
X, = xi(E‘,..-,En_1) € C

in the neighborhood of any point PO e I,

Choose variables (51,...,Cni suitably such that inside the small sphere w with

(241 )
center P, we have E eC 0 , on point PO(E1,...,Cn) for a unit orthogonal axis
system, and En coincides with the direction of normal on w o I'. The method for choosing
is as follows: First take 51""’En-1 such that they form the unit orthogonal axis
system on Pg. DPenote
cos{N, xi) = Ai(Cl,-..,En_1) (i = 1, .e0.,n) é

on [I. Then the inverse function 51,...,5n of
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X, = x;(i,l"toin_.,) + g

i 1

1
n fo A6+ 06 peeer§  *+ 0L )0 eudo

satisfies all our requirements.

Let
9k . 9
ujk = 3;1 3;5 (3.9)
i i
we have

ajqu - ij (3, k= 1,e00e,n) (3.10)

0
a, =0 (3 = 1,00e,n=1) (3.11)

3“‘mnr

From (3.9) we have

2 2 - -
g =ZIu, = a,uu (u, = SE—) .

Equation (1) is the Euler equation of the variation problem § f F(q)dx = 0 where
Flq) = f pqdq. Under the transformation we have
3(x,....xn)

8§ [ rigrgaE =0 {J = STE:TTTTTE;T )

or
3 -
= (Joa, . u,) =0 . (3.12)
Bij i35
Differentiate (3.12) with respect to Eh we have
3u
3 h
35.(Jeij T + Bi) 0 (3.13)
3 3
where
[ befied
Bis T P%5 * ¢ %ik®5m K m (3.14)
da
3 ~ . km = = -
Bi agh (Jaij)puj + 2Jp quij agh uj“kum . (3,15)
From (3.,10), (3.14) we have
' -
pé. + G ) . (3.16)

B.,‘ = (p§, . .
ijlp, i3 g9 13p,
Hence when the radius of w is sufficiently small, form (2.4}, (3.16) we have
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2

P (3.17)

[} 2 2
= < < =
2 Zki eijxixj 5 X
Denote the image of w, w N @, wn T by w, &, T« (8) becomes
un‘f =0 . (3.18)
Let Z{(E, pu, 9) be the function defined by (3.3) with x, %, changing to £, EO,

restrict in this case that the sphere with center §£ radius p lies entirely inside

OI
®. Multiply (3.13) by
3G -m (B> m
4 uh n uh
o (Gh <n)

and integrate, but in case h = n restrict n 2 0. Integrating by parts we have
du
h 3 2,-
JE < Sy . - = . .12
i3 agj Bi) 3€i (¢ (uh njldg 0 (3.12)

. (38
mn{uh>n}

since there is no surface integral in (3.19), we only need to check the case 1 = n.

When h = n, on F by (3.18) we have Gn - n<« 0. When h#¥n, j=n from (3.18) we have

aw, 3u
3T, = 552’_ =0, when h#n, j#n, from (3.11), (3.14) we have 8 __| = 0. And
n'T n'l nIly
the bi defined by (3.15) has the property bn{_ = 0 when h ¥ n, the reason is, from
r
aan.
{(3.,11) we have an, _=01(3 # n), and this induces sz—l _ =0 in the case j # n,
T n T

h ¥ n, combine with (3.18) we have bn = 0.

From {3.19) by applying Schwarz inequality and (3.17) we have

r - 2 = - 2
< Qg - 1 (3.
JﬁqA (grad u )" df < Ly mes(lt o Amu)((gu)2 Legi: fu (6) = m1® + } (3.20)
k,u-8u nsu
Define _
- Up(Eyreesdb g0 =€) (h#n)
U (Eareeesb ) = (3.21)
0 (h = n)
- ; a3 - (o) - . .1 - 5
in the part of w outside §, then apply (3.18) we have uy e C (~) W, {(~)s From
(3.20), (3.21) we have
=20~




/ (grad Gh)zdﬁ < 2L mes A {~—2 max [Gh(ﬁ) -mZe

2 VB )2 Cen

A
n,u-0p Y

(restrict n 2 0 when h = n).
By the same process we can obtain two formulas similar to (3.4), (3.7).
From the result of (3] we have, Gh(h = 1,.0.,n) satisfy a Holder condition in w
i.es there exist L10 and TZ(Q, ) (0 < 12 < 1) such that for any x, y € 7" w we have

T
lutx) = wly)l € L 1x-yl 2, (3.22)

§4. Estimate of solution in the neighborhood of =,
Assume that the solution ¥ of (1), (8), (9), (11), (2.17) satisfies
cecPayncMa+n . (4.1)
when ¢ € E, from (2.5) and applying the Schauder interior estimate twice we have
eec® @ M .

Let 0 <8 < 1, 0 < 01 <1, A\ is a positive constant, R, R are large positive

numbers. Let

Pk R{140) € |x] < i(1-s1)

Cix) = zix, R, R) ={ R'(130)* l%%:ﬁ R < Jx} € R(148) (4.2)

Ro-eph Bl Rice ) < ixl < R
91R

Using this { we can obtain (3.3) also. When A < 1 - %, from (2.17) and (4.2) we see
that (3.3) 18 also true when § = L(x, R, ®).

Denote the inversion point of x about the unit sphere by X, then (3.3) becomes

/ cz|x|4'2"(Axu)2dx <, f u2|x|4'2“(Axc)2dx . (4.3)

1
Take X = 2 - n, 9 = 1, R=o and let R- u, from {(4.2) and (4.3) we have

f (grad u)zdx <L un-2 . (4.4)
u X 1"
|X|<3
Similarly we have
r 2 1 2
. (grad, u) dX < L mes A max [(u(X) = n] (4.5)
A -1 X 2 MeEoeu)? xea
n,u(i+y) i, u




! max [(u(x) - n]2 (4.6)

NH 602 xen

2
f (gradx u) "dx < L13 mes B

B -1
n,u(1+5) Ned

<
where A are the sets of u(X) >n in |[X| < p respectively.

. B
Nsu N,y
It is easy to prove that u(X) g w; in a neighborhood of the origin (which includes
the origin). From (2.17), (4.4), (4.5), (4.6) and applying the result of (3}, we see that

constants a = alQ, T) > 0 and Lig exist such that in the neighborhood of the origin the

following inequality is valid:

a
- .7
la(x) = uly_ | <L, 1x] (4.7)
where ulx=0 =ul g, T u(w) is defined from (11). Let u(x) - u(w) = v(x), then (4.7)
becomes
-a
lvix)| < L14|xl . (4.8)
Apply a linear transformation x = x(y) such that the matrix (aij)x=m becomes an
unit matrix. Then (3.1) becomes
32 ey, o) = 0 (4.9)
i 3 Yj
where cij(m) = S:j. Combining with (4.8) we have
-a
- . .10
Icij(y) sijl €L, lvl (4.10)
Multiply (4.9) by czv and integrate to obtain
/ gz(qrad v)zdy <L ! vz(grad ;)zdy (4.11)
by us’'ag the same method as (3.3) was obtained, where gl{y) = z(y, R, R) is determined
from (4.2) by changing x to vy. Take 8 satisfying
n .
0(8(5-1, R a . (4.12)

In (4.2) take X = 1 =~ % + 8, R = ©, § = 1, substituting in (4.11) and applying (4.8) we

have

2(8-a)

flr) = [ |y|2x(qrad v)zdy <L,r

J
lylor
Fstimate bv extending the method of [4]. Denote the unit spherical surface with

(4.13)

~enter origin by 4, let r < R, and denote Iyl = y we have




R 2
2 2 -1
f(r) = | Iyl * M graa v)2ay > [ aw [ [5&) N,
r¢ly <R w vy v
(4.14)
R R 2
-n+1- -2+
> [ a7 2ay) aw > (2420 P2 [ ()i e
w r °¥ r w
where in the above expression Schwarz's inequality was used. Iet R + » in (4.14).
Applying (4.8), (4.13) we have

n-= 2 -

ey > (ne2e20r™ 2 20 1 VP ir)de = (n-2¢20) [ Iyt '2as . (4.15)
w lyl=r
Combining (4.12), (4.13), (4.15) we have
1128224y ¢ L 289 {4.16)
18
lylor
Let
qR(r) = f y 2)‘ci. gx— %!— dy . (4.17)
r<ly <R 3oy yj
Integrating by parts and apolying (4.9) we have
22X
gptr) = (f -] vl VEyy By o8N,y )ds -
fyl=r lyl=r i
(4.18)
22-1
f Iyl A Ve, %—— cos(N, y_ }dy
r<|y| <R ] yj 1
where N is the normal directed toward

o, When R = = from (4.10),

(4.13) we see tht
the left hand side of (4.18) has a limit,

from (4.13), (4.16) applying Schwarz inequality
we prove easily that the last term in the right hand side of (4.18) has a limit when

R + ®, hence when R + o

2
f Iyl xvcij f:;’— cos(N, y,)ds (4.19)
lyl=r i J
has a limit. If this limit value is a constant p # 0, then applying (4.10), (4.13),
{4.15) when u large enough we have
2 2 2 2Xx-1 2
p° < L1R{ {yl lel fgrad vlas)® <1 u [ fy! 12
19
ly)=n byl=u

( |Y|2A(qrad v)2ds
lyl=u

< [-L19uf(u)f'(u)f'(u7]/(n ~ 2+ 20

Integratina we aqet

2 R 1.2 R
P (n—2-2k)1nu/r,mlqn< -3 £ (',,HRO (R, <R (4.20)




(4.13) contradicts (4.20) when R + o, hence the limit of (4.19) must be zero. Let

R + » jin (4.18) and denoting qn(r) by g(r) we have
2x-1  3v

glr) = -f |y|2)‘vcij %X_ cos(N, yj)ds - 2\ f 8] VN dy
lyl=r £ lylar
(4.21)
-1
-2 f ly)2A viey = 8.4 %‘y’— cos(N, ydy = I, + I, 41, .
lyl>r J i
Applying (4.10), (4.13), (4.17) we have
glr) = [1 4+ 0(r H1f(r) . (4.22)
Applying Schwarz inequality to I, and applying (4.10), (4.13), (4.14) we have
-1 2 2 2
Iﬁ <r | ly12* 2as J 1yl A[cij %%— cos(N, y,)]%ds <
lyl=r lyl=r i
nf(v) 2) v -a 2
puryrrd 17755 + Iyl "otlgrad v %ds <
lyl=r
- 2\ 2
[1 4 0(r Irf(x)/(n-2+22) | lyi“"(graa v)“as
lyl=r
(4.23)
= {1+ 0(r M) (re(r) €' (r)]/(n-2420) .
Integrate 12 by parts
o0
- - ]
I, = =22 f u2X+n 2du f v v Ay = -l(uzx n-2 f vzdw) _
2 du u=Y
r w w
® 2x+n-3 2 23-1
+ 202y [ ey o vfae = (1 - 2 ay Pyl <7
2 J (4.24)
r w fyl=r
vias + g(1 - g +8) ly|‘”'2 vzdy <0
lyl=r
the validity of the above formula has used (12) and the relation
+n-
(uzx n-2 f vzdu) -0 .
u—oo
w
From (4.15) we have h
o0
-2-2 1 -1-
f Ivl” 2 “vzdy <K—— [ 2"du / Iylz)‘(qrad v)zdy {4.25)
‘ n=2+2}
Iyl<r r lyl=r
-2q
< LZOr f(r}) .
From (4.10), (4.13), (4.25) and applying Schwarz inequality to estimate I3 we have
22 -1~a -n
|13I < L21 f 1yl Ivl lgrad vidy < Lzzr f(r) . (4.26)

{yl>r
Substituting (4.22), (4.23), (4.24), (1.26) into (4.21) we have
- - 1
[+ 00 ™1 €0r) < (11 + 00r D] (rflr) £ (1)) /(n=2491)5"2

or
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£(r) < [1 + Olr 3 (~r€'(r))/(n=242)) .

Integrating we get _
r, n=2+21 0(r %)

2=n=-2)
£(r) < £lr () e CL,r (e >x (Q, 1)
or
f 12 ™28 (graa viZay < L23r'23 . (4.27)
fylor
Substituting (4.27) into (4.1%) we have
el ™28%5s <1 28 . (4.28)

lyl=r 24

Take Yy satisfying
n
0<¢y<z-1, Y<28 .

In (4.2) taking A =1 - % + Y, R = o, 8 = 1, sgsubgtituting into (4.1) and applying (4.28)

we have
2-n+2 2 2 2 -n+ 2
1yl <™ Y(qraa v)“dy < z°(grad v)“dy < Lo | byt 2, dy <
lyl»2r ly >R
(4.29)
-1-4R8+2y ~4B+2y
L J'R u dp € LR .
Note that (4.29) improves (4.13).
Repeating the above process we prove that
-n+2 -
f |Y|2 Y (grad v)2dy PR
i 28
lytor
Continuing in this way, after a finite number of steps we have
{ (grad v)?ay < L2 . (4.30)
29
fylor
We need the following result of [2] extended to the n Adimensional case:
-2/n-1
! (graa v ay <1, 272" L (4.31)
_ Iylor
Proof. Let S be a closed surface which lies in § and contains T in its
interior. TIntegrating (1) and applying (9) we have
[ 02 cosn, x 048 = [ o2 ai =0 . (4.32)
‘s ax i r N
when % changes to xh + €, the changed function will be denoted hy addinag the
subscrint ¢. Dennte by §r the surface 5 translated by (0,...,0, =+, N,...,0N), then

from (4.32) we have
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3¥

_ (e _—T): cos(N, x,)d§ = [g o 3;: cos(N, x,)ds_=0 .

ax
i

Differentiating with respect to the parameter

r 3¢ S =
)E aij axi cos(N, xj)ds

|

After linear transformation (§ changes to

[ e,
s i3 ay1

From (4.30) we see that we can take )\ =

e and let € = 0 we have

[ a e cos(N, xj)dg =

s ij Bxi
¢ 3¢ -
. (o Bxi)e‘c=0 cos(N, xi)ds 0.

S) we have

cos(N, yj)ds =0 .

(4.33)

0 in (4.21), and it become (by using (4.33}))

atr) = = (v - ¥ie, %;——- cos(N, y.)ds (4.34)
lyt=r )y )
where
v = f vdS/mes S .
lyl=r
From Wirtinaer's inequality
2
f (v - 9)%as < — {(grad v)?% - <%)2ms
lyl=r lyl=r
andi (4.10), (4.34) we have
V-1
< f -2 2
9t eV Tas ¢ 2,_-:_1 { ey —;;’ cos(N, v,)1°as <
yl=r i
2
A= | [(qrada v)? - (%\, las +
lyl=r
L f r(i!] + L, r Maqrad v)z]ds = (14 0(r D (grad v)24s
2/n-1 - AT 31 2/n=-1 ;
[yl=rx lyl=r
= -r[1 + O(t_a)]/(ZJn-1)q'(r) .
Integrating we have -a
r ;) — 0(r ")
atr) < gtz P e 0 s r (0, ™ . (4.35)

From (4.10), (4.17), (4.3%) we obtain (4.31).

-?

6=




Combining (4.30), (4.31) we obtain

(4.36)

/ {grad v)zdy <L rn-4_26 (6>0) .
32
lylor
Substituting into (4.15) we have
2 -3-
f vds<x.33r"326 .
lyl=r
Hence we have
w
-n+ - -
Iy 2™ 8%y = [ x2 ey g vias < LR &,
ly >R R lyl=r
Reverting to the variable x we have
Iy127™*6 J2ax < L3§R-6 .
|x|»R -
Let ¢ = w-Ux1 where U 18 defined by (11) above, then from (4.36) we have
-n+ -
|y|2 n s(gtad w)zdx < nL_. R s

Ix >R 35

Let X be the inversion point of x about the unit sphere and let % = u, the above

formula becomes

lez-n-é

X<y

2
(qradx P) & < nL35u6

(4.37)

Fixing a point xo € Q, without loss of generality we can assume temporarily that

x
v(xo) = 0, hence Y(x) = -q”xg + f 0 vhdxh, and combining with (2.17) we have
x

lutx)) < Lg!x!
or
-1
X . .
twxyl < Ly lx! (4.38)
From (4.37), (4.38) we have
1
Ve W2 in |x]| < uo(Q. T)
and the following Sobolev decomposition formula is valid [12):
wx) = f v Ay + | N R (4.39)
1Y]<y IYteu, h
where [ and wy are known bounded functjons.
From (4.37) we have
1= - 2=~ 2 1
] "Iqrady vlay < [f tvi$May | fy) <" G(qrady »2ay)2
1¥Y1<y 1Yl<y 1Yl<u
Hence the right hand side of (4.39) is a continuous and bounded function when |[X| < uo.
Therefore y(x)| exists, and
X=oo
Tolxy | < Lig » (4.40)
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Denote Y(x) = Y(=} still by ¢(x). Then from (3.8), (3.22), (4.8), (4.40) we obtain
that the solution of (1), (8), (9), (11), (2.16) is bounded in E.
All the requirements of Leray-Schauder degree theory are satisfied, hence theorem 2 is

proved.

§5. Some properties of subsonic flow.
Theorem 3. The solution of problem (1), (8), (9), (10) is unique in the subsonic
range,
(2) (1)

Proof. From (2) we obtain that, the difference G =y -y of two solutions

w"’, w(Z) satisfies the following equation

(2) (2), 3% ¥
ij(u1 reesely ) 3% ox. | bk %, 0 (5.1)
i k
(1) (2)
where u(1) ég;__. uiz) a:x and
i i
_ (2) (2) (1 (1, (2) (2)
bk = [aij(u1 resesn S0, uk+1,...,un ) aij(u1 R N 2 (1) (5.2)
(1) u(1))]/[ (2) _ u(1) 3%y
b "SR A Y ko axaxg
From (8) we have
éi =0 . (5.3)

From the last section we have: v P4 (after subtraction of a suitable constant)
satisfy (2.6), hence we have
(@) =0 . (5.4)
From (5.1), (5.2) by applying the maximum principle [5] we have, when ¢ is not a
constant, then it cannot taken a positive maximum value or a negative minimum value in

% + T, so combining with (5.4) we have ¢ = 0., This proves the theorem.

@® o«
Theorem 4. There exists a positive constant qc, such that when 0 € U < qd.r the
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solution of problem (1), (8), (9), (10) exists in the subsonic range (this solution is
unique by theorem 3). Moreover, the function Q defined by (12) satisfy
Q(u) € cl(o, q:), and
Ulig Q(u) = 9, ¢ (5.5)
+q -0

The proof is divided into several points as follows:

1) Let {¢n} be any sequence of solutions of (1), (8), (9), (11), (12), (13) with
Q, U substituted by Q ., U . If sup Q < q., then from §2, 1ii we have that chl is
uniformly bounded in E, {wn} is compact by theorem 1, hence a limit function ¢ exists,
it is easy to prove that ¢ is a solution of (1), (8), (9), (11), (12), (13) also and its
corresponding Q 1is a limit point of the sequence {Qn}.

2) Take any solution ¢ of (1), (8), (9), (11), (12), (13), we define U = U(Q,v)
by (11). Fixed Q(0 € Q < qc) and denote the infimum of all U(Q,¥) by V(Q), i.e. a
solution sequence {wn} exists such that U(Q,wn) + V(R). By 1), there exists a limit
function ¢ = ¢(Q), which is the solution of (1), (8), (9), (11), (12), (13) (where we
substitute for U by V in (11)).

3) Let 0 < Q0 < q.+ We prove that the interval [0, v(Qo)] is covered by the set
of all (U,¢) (0 € Q < QO).

If this is false, i.e. constant U, exists such that 0 < Ug < V(Qy) and the problem
(1), (8), (9), (10) (where in (10) we substitute for U by Uo), has no solution in
0 <Q < Qg

If there is a positive number sequence en with en + 0(n + ») such that (1), (8),
(9), (10), (where in (10) we substitute for U by Uy - en), has a sequence of
solution Yn in 0 € Q < QO' then by 1), the limit function vy is the solution of (1),
(8), (9), {(10), where in (10) we substitute for U by Ugs in 0 <€ Q « QO' and this
contradicts the above hypothesis.

Hence a constant U1 exists, satisfying 0 < U1 < UO' such that the problem (1),

(8), (9), (10) has no solution in 0 € Q < Q0 when U1 S UK UO.
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Now apply Leray-Schauder degree theory. to the set = < U < vé(UO + U1) in the
space E (for the relation of the element ¥ ¢ E and U gee (2.6)). We obtain a
solution to problem (1), (8), (9), (11), (12) for any given 0 ¢ Q < Q0 and this solution
possesses the following property: U defined from (9), (10) satisfies 0 < U < UO. Hence

inf U(Qy) < V(Qy)

This contradicts the definition of V(Qy), which proves 3.

4) The function V(Q) is strictly monotone increasing in the interval (0, qc).
Otherwise there are 0 < Q1 < Q2 < q such that V(Q1) > V(Qz). From 3) we have, when

0 <Q < Q1 the set of U(Q,¥) covers the interval [0, V(Q1)], hence we have

Q ¢ (o0, Q1] and a ¥, such that U(QO, vol = V(Qz), contrary to theorem 3.

0
V(") is strictly monotone increasing and has supremum . hence V(qc - 0) exists.
S) Let
® = v 0)
e e *
From 3) we have, the set of U(Q) (0 < Q < qc) covers the interval 0 < U < q:. In other
words, the solution of problem (1), (8), (9), (10) in the subsonic range exists when
0<U<q.
q.-
The above solution is also unique by theorem 3, hence the function
@«
Q(u)y, 0 <UL a, -
is determined uniquelvy.

For fixed Un in [0, q:), it lies in the number set U(Q(Uo),w), hence we have

V(Q(UO)) < Uo . (5.6)

'From §2, iii, but substitute Q by QO, positive constant K exists such that the
solution of (2.13) satisfying ||v || < K. Take F be the part of sphere ||¢ || <k+1
satisfving

o< U CYylu, 4 U (¥ = Uxy 4+ ¥, DY) = 0)

then (2.13) has no solution in the neighborhood of the houndary of F. From §2, ii we
have, the learee of solution is 1 in F when 9 = N, comhine with §2, i and applying
Leray-Schauder iearee theory we obtain that, when 0 < * <1, (1), (8), (9), (1), (12)
in F has at least one solution.
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6) From the definition of q: there exigts Qn *q, - 0, such that V(Qn) + q:.

If U satisfies 0 < U < V(On) and Q(U) > Qn. Combining with (5.6) we have
u > V(Qn), this contradicts U < V(Qn)- Hence when 0 < U ¢ V(Qn). we have

0 < Q(U) < Q, <a, - (5.7)

7) Let {Um} satisfy 0 < u, < V(Qn), Um + Uo, Q(Um) »> Qo. From (5.7) by applying
1) we obtain that the limit function ¢ 418 the solution of (1), (8), (9), (10), where U,
Q are given by Uo, QO in (10), (12) respectively. Applying theorem 3 we have
Q = Q(Uo), in other words Q(U) e C[0, V(Qn)]. letting n + » we have

() € clo, q ) .

8) From the above points we see easily that lig o(U) = qc. then the functional
U+q -0
c

value of the continuous function Q(U) oscillates finitely in the interval (Qo,qc), and
every point in [Qo,qc] is the limit point of Q(U) when U » q: - 0. Hence we have

Um *q. U; *a, such that Q(Um) - QO' Q(UA) *1@ (Q0 + qc)- By 1), the limit functions

¢, ¥ of corresponding solution sequences {yv_}, {v'} are solutions of (1), (8), (9),
m m

(1), (12), (13), where Q 1is given by 0, and DE(QO + qc) respectively. Hence

Qu*d,

« M
U(Qo) q, " u( 3 )

or the problem (1), (8}, (9), (10) (substitute U by q:) has at least two solutions in
the subsonic range, which contradicts theorem 3, hence (5.5) is true.
The theorem is proved completely.
Condition (11) restricts the incoming flow is in the positive Xy direction. Now
remove this restriction by only assuming
” = (uees,u) (5.8)
1 n
is given. Because (1), (R) is invariant under axis rotation, hence by theorems 3, 4 we
have, the solution of (1), (8), (9), (5.8) exists and is unique. Let
= u)x, + 5.9
0= ux, ¥ (5.9)
and regard ¢ as a solution of the linear nroblem, by theorem 1 we have

L]
lwnn-2,2+r < L39|u . (5.10)
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Now prove that the solution of (1), (8), (9), (5.8) depends continuously on u by the

following sense.

1
Theorem 5. There exists a positive constant L40, such that for any two vectors um' ,

um’2 in the class

1u” <V(-—Q—- W eee, 2 u)
o 1 @® n
lu’} lu™} 0o
{the definition of function V see theorem 4) the corresponding solutions v( , ¥ 2) of
(1), (8), (9), (5.8) satisfy

(1) ®, 2 “11‘

w2 -y <Llu’® -u (5.11)

n=2,2+71
where the relation of ¢ and ¢ 1is given by (5.9).

(2) (1)

Proof. Let ¢ = Y -y from (2) we obtain that V¥ satisfies (5.1), (5.2).

Prom (8) we have

- o2
%%h = -luy

o,
- uy } cos(N, xl)lf .
Applying (6), (5.10) it is eagy to show that the bk defined from (5.2) satisfy conditions
(1.7), (1.55), (1.59), and from (5.10) we get (5.4). Hence from theorem 1 we have (5.11).
This completes the proof.

Theorem 6. For every non zero subsonic flow around a given profile, Apnax cannot be taken

on 3 or at o, In other words, can only be taken on T. And

Imax
L, lu”l (5.12)

Anax < LgqlY ) *
Proof. If «qp .. > 0 is taken by P ¢ Q, then after a rotation of axis we arrive at

grad ulp = 0,¢4.,0) and (1), (8) remain unchanged, hence u, takes the maximum

(qmax'

value at P. And u; satisfies the elliptic equation (3.1), hence from the maximum

princivle {5] we have, u, 1is a constant, i.e. uy = q hence u, =...= u = 0. From

max’ n

(8) we have Tmax = 0. This is a contradiction.

From (5.10) and applying the result of (2], we have that Tnax Cannot be taken at
(5.12) is a special case of (5.11) with um’2 = 0. The rroof of the theorem is thus
complete.
Theorem 7. u]x_m exists for any subsonic flow in the neiahborhood of o and (4.8) is

valid. An the subsonic flow in the whole space is uniform.
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Proof. For subsonic flow in the neighborhood of », because (4.4), (4.5) and (4.6)
are valid, hence the existence of ulx_‘ and the validity of (4.8) follow from [3].

Concerning subsonic flow in the whole space, ulx_a exists by the above argument,
hence it ia a special case of flow around profile, i.e. (4.32) is true for every closed
surface. Hence (5.10) is valid, and we can apply theorem 6, i.e. except q is a constant,
a, cannot. be taken by any finite point and ». And when q is a constant, u is a
constant vector by theorem 6, i.e. the flow is uniform.

The theorem ig thus proved.
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