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ABSTRACT

The central results concern the initial-value problem for u, = (“m)xx +
u{1-u){(u-a), =L < x < L and t » 0, under Dirichlet conditions at x = % L.
Here m > 1 and 0 < a < (m+1)/(m+3). The equiliibrium solutions of this
problem are determined for each L > 0 and it is shown that the w-limit set

w(uo) of an initial datum ug, with values in (0,1] consists of a
connected set of equilibria. This is used to determine some domains of
attraction of isolated equilibria. A novel feature of the results is that for

large L there are multiple parameter families of equilibria.

A second part of the paper gives a self-contained development of
existence, uniqueness, maximum principles, and continuous dependence on data
for more general equations up = n(u)xx + f{u). The results are employed in

proofs of some of the theorems referred to above.

Interest in these questions is stimulated by the occurrence of such

models in science, e.g. in fluid flow in porous media and biology.

AMS (MOS) Subject Classifications: 35K55, 35K65
Key Words: nonlinear diffusion, biological models, asymptotic behaviour,
equilibrium solutions, flow in porous media.
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STABILIZATION OF SOLUTIONS OF A DEGENERATE NONLINEAR

DIFFUSION PROBLEM
Donald Aronson, Michael G. Crandall and L. A. Peletier

Introduction
In this paper we are primarily concerned with the large time behaviour of nonnejative

solutions of the initial-boundary value problem

ut - (um)xx + f£{u) in (~L,L) x R+ '

(N u(tL,t) = 0 in ®" ,
u{x,0) = uo(x) in [-L,L] ,

where m > 1 is a parameter, f 18 locally Lipschitz continuous, £(0) = 0, and uq is
bounded. Problems of this form arise in a number of areas of science; for instance, in
models for gas or fluid flow in porous media (2] and for the spread of certain biological
populations [13, 16].

This paper is divided into two part. 1n Part I we consider what may be called the
motivating example, Problem I., which consists of Problem I with the special choice
(@B £(u) = u(t-u)(u-a)
for suitably restricted parameters a. We begin by describing in detail the set £ = E(L)
of ronnegative equilibrium solutions of Problem I'. Clearly E(L) contains the trivial
solution u = 0 for all L > 0. Write

E'L) = (wnfo} .

In the description of E'(L) there are two critical parameter values L, and L, with

0 < Lo < L1 < +mo, We show that:
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E'(L) = 4 for 0 <L <1,

E.(Lo) consists of one 1soiated-positive solution

with p <q on

Recently Smoller and Wasserman (18] studied E(L)

For Ly <L < Ly, E’(L) congiats of two isolated positive solutions, p and q,
For L > Ly N a positive integer, and NL1 <L (N+1)L1, E.(L) consists of one
isolated positive solution q and N j-parameter families Pj(L), J = 1,...,N, of

nonnegative solutions. If L = (N+1)L,, E.(L) containg one additional element.

In contrast to the result stated above, they find that L1 = 42 for m = 1,

situation is summarized in the two diagrams in Figure 1,

general behaviour of possible values of L plotted against Yax (the maximum of u)

v

for Problem I' in the cage

These diagrams indicate the

(b)
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Having described the equilibrium set E{(L) for Problem 1* we next turn our attention
to the question of stability of the various equilibria. As in the case m = 1, it turns
out that both the trivial solution and the large positive solution q are stable. To
establish this fact we apply a stabilization theorem proved in Part II in the general
setting of Problem I.

We begin Part II by proving various basic existence, uniqueness, comparison and
reqularity theorems for Problem I. None of these results are entirely new, but we know of
no place in the literature where they are conveniently collected. Further results of Part
I1 - in particular, the stabilization theorem - provide us with a complete metric space X
of functiong on (0,1) in which the orbits of Problem 1" are precompact. Moreover, if

0 < u, <1 and u(t,uo) is the solution of Problem I. at time t, then the w-limit
set

w(uo) = {w € X : there exists a sequence {tn},tn + ®
(2)
such that u(tn,uo) +w in X}
is contained in E(L). For n = 1 this was proved by Chafee and Infante {7].
If E(L) consists of isolated points only, as in the case of Problem I' and

0 <L < L1, we obtain that u(t,uo) converges to a limit in [E(L) as t + « (since

w(uo) is connected). 1f E(L) contains continua of solutions, as in the case for
Problem I' and L > Ly, then no such statement has been proved. However, if one can find
a closed invariant subset K < X such that X n E(L) is discrete, then for each u, e K,
ult,uy) converges to some point of K n E(L) as t + » The stability of the trivial

solution and the large positive solution q of Problem 1" for L> L, are proved by

exhibiting suitable invariant sets X.

Part I Problem I.

In this part we shall consider Problem I, assuming throughout that
{1.1) f(u) = u(1-u)(u-a), 0 < a < (m+1)/(m+3) .
First E(L) is studied and then, calling upon results from Part II below, w(uo) is

determined for various choices of L and ug.
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Section 1 Egquilibrium Solutions

We are interested only in nonnegative solutions. A function v : [~L,L] + R+ = [0, )

is an equilibrium solution of Problem I when it is a solution of the problem

(V)" + £(v) = 0 n (-L,L) ,
(11)

v(tL) = 0 .
¥hile we will write (II) in the above form, v » 0 is called a solution of (II) exactly
when w = v™ is a classical solution of w" + f(w1/m) = 0, w(zL) = 0. Clearly v =0 |is
always a solution of Problem II. As we shall show below, there are also nontrivial
solutions provided that L is sufficiently large.

Suppose v iz a positive solution of Problem II, i.e. it is a solution and v > 0
on (-L,L). Then there exists a g ¢ (-L,L) such that 0 < v(x) < v(g) for x ¢ (-L,L)
and, clearly, v'(r) = 0. Conversely, let us seek conditions on ¢ € (-L,L) and y ¢ R+
which guarantee that the solution of the initial value problem

(V" + £(v) = 0
(11')
v(g) = y, v'(g) =0
is also a pcsitive solution of Problem II.
If u=1 then v =1 is the unique solution of (II'} (recall (1.1) - £(1) = 0). 1If
u> 1, then f£f(v) <0 for v > 1 implies that any solution of (II') is convex on its
domain of definition and hence cannot satisfy v(iL) = 0. Thus (II') has no solutions
satisfying the boundary conditions unless u ¢ 1. Consegnently, we consider only
pe(01).
To solve Problem II' we integrate the equation in the usual way. Multiply the

equation by (vm)', and integrate the result using the initial conditions to find
1 2
(1.2) 3 (V4 () = R

where
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F(v) = f; sm-1f(s)ds .

More explicitly,

1 mt+1
(1.3) F(v) eV G(v)
where
2 m+3 m+3
Glv) = v - (1+a) el Al S

Since £ >0 on (a,1), F is strictly increasing on (a,1). Thus, if u > a, we can

integrate (1.2) to obtain

m-1

norp - |-
(1.4) f;fvmm\ to=xl

The integrand in (1.4) has a singular point at n =y, but F(u) - F(n} » 8(py-n) for some

§>0 and n near u so the singularity is integrable. Equation (1.4) defines v
implicitly as a function of |z-x| so long a8 v < y.
If F(u) < 0, then there exists a unique v ¢ (0,a) such that F(v) = F(u) and
ri(n) < P(y) for n e (v,u). In this case, (1.4) represents a periodic solution of
(v’)' + f(v) = 0 whose values lie in [v,u}l. Thus, in order that (1,4) represent a

positive solution of Problem 1I it is necessary that F(u) > 0.

The sign of P 18 determined by the sign of G and one checks that G has a unique

root a € (a,1) 4if and only if G(1) ¢ 0 or
(1.5) 0 <ac< L .

m+3

In particular, if (1.5) holds then
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P<O0 on (0,a) and F >0 on {(a,1) ,
whence we may restrict our attention to the range a € py < 1,
For u e [a,1) we have F(n) < F(py) for all n ¢ (0,u). Thus we can extend the

integration in (1.4) down to v = 0. Define

(1.6) A = /2 IS e a Cu<
‘ " 2 Jo /ATWI-F(y O @ ¥ :

If uy= a the integrand in (1.6) may have a second singularity at n = 0. However,

m-1 -1‘?5 (m-3)

-F(n) > 62nm+1 for some 8> 0 and n > 0 near 0, so 1 (-!'(n))-j/2 <8
near n = 0. Since m > 1 this sinqularity is integrable and ) 1is well-defined on
[a,1).
For a positive solution v of Problem II, v = 0 only at L. Therefore
Au) = |g-L} = |g+ul
from which we conclude that [ = 0. To summarize, we have proven the following result:
Propogition 1 Suppose 0 < a < (m+1)/(m+3). Then v 1is a positive solution of Problem II

if and only if

m-1

E u =
/:/v(x) ﬁ*‘mdn ]x] for |x) <L ,

where u e [a,1) and L ¢ R are related by the equation
(1.7) AMuy) =L

and a {is the unique root of F in (a,t).

In view of (1.7), there is a positive solution of Problem II for a given interval
(-L,L) if and only if L 1is in the range of A, i.e. L € A([a,1)). When L = A(u) we
write v(x,pu) for the corresponding positive solution. The multiplicity of these positive
solutions is the same as the multiplicity of the roots of A(u) = L, which is determined
by the shape of the graph of ). Our next result shows that the graph of i(u) always has

the general features indicated in Figqure 1.

-6-




Figure 2

Proposition 2: (i) X e Cla,1) n C1(a,1)

(ii) Ap) + +o and A'(u) » +o as y + 1.
(ii1) A'(u) + - as y + a

(iv) A'(u) has a unique root My e (a,1).

Before proving Proposition 2, we shall make a few remarks about its interpretation.

Define Lo = X(uo) and L1 = Aa). Clearly Ly

Moreover
no solutions for
Mu) = L has

one solution for

two solutions for

It is interesting to note the dependence of

a = a(m) and L1 = L1lm)- Then

> 0 and by (ii) A((a, 1)
0 <L < L0 ’
L = LO for L > L1 .
< .
LO L < L1
L1 on m. Let us write

F

{L

0 +o).

F{nim),




— m-1
= /B qam) _n
L1(m) /2 0 an .

J-an;ms
If a ¢ (0,1/2) then a(m) is defined and continuous for m » 1. Moreover, as m » 1,
-1 -
F(nim} + F(n;1) and the sinqularity of (n/F{af1):1) - F(n;1) = [n/F(-m1)) ' oat

n=0 is not integrable. It follows from Fatou's lemma that 1lim L1(m) = ©, Thus the
my1

nonexistence of the small positive solution on sufficiently large intervals is due to the
nonlinearity of the diffusion.

Proof of Proposition 2

Write

ﬂ u r‘m-'l
Atn) = - Ay} = IO M) dn

and use the change of variables 1 = n/uy to obtain the expression

m 1 ™! 1
A R S E AR

Formally differentiating the integral yields

m
. _m _p 1 met (P ()-TF' (1))
{1.8) Atu) = A - [o 1 35 9t -

(F(u)-F{1u))

t

-1 {

For p € (a,1) we have F'(y) = um f{u) # 0 and it is not difficult to verify that the }
integral in (1.8) is convergent, the equation is valid and, indeed, A' € C(qa,1}. If we

set

8(n) = 2mF(n) = n £(n)

then A' can also be written in the form

g 0( )-l)(r1)3/2 nm—1dn
(F(u)~-F(n))

) - X
(1.9) A = 5o /

-9-




To study the behaviour of A(u) as y + a, write

m~1

a M n -
o+ fu) FTooroy o0 Lo + 0

Alw)

For n< a< yu,

m-1

n
¢ T n)

m=1

n
G AMEAR)

and we have already noted that the right-hand side is integrable on ({0,a], so
n-1
L) » [f = dn= Ma) as u+a .
1 0 /=-F(n)
On the other hand, by previous remarks, on each compact subset of g €« n < y < 1,
Ml e . . -
n /YF{u)=-F(n) is dominated by a multiple of (u=-n) , SO Iz(u) + 0 as y + a anAd
it follows that A e C({a,1)).
Since 6(a) = -amf(a) < 0 we can choose Y > U such that 68(y) < 8(a)/2 < 0 for
b e {a, aty)e In addition, since 8(0) = 0 we can choose § > 0 such that 1
18(m| < -8(a)/4 for n € [0,8). Thus, in particular, 4y € [(a, aty) and n e {0,8) F
imply
i
8(y) - A(n) < 8Ca) <0 . "
4 )
}
write l"
1 § 9 -9 1
‘\'(“)_z_u(foJ"(:}_‘m’*(n)_aﬁ i dnEJ1(u)+J2(u) .
Y AF(W~F(n))
Arquments like those above show that Jz(u) remains bounded as u + a. For u ¢ (a, aty)

we have

-9-




8(a) (9§ n S 10 R

J, (u) < z J .
1 8 ‘0 3/2 ]
s (F(W)=F(n))" H
. " . . m-1 - 3/2
As u + o, the integrand of (J (u) converges pointwise to n (-F{n)) which
- - + -1,/2 (m+5
behaves like nm 1(n) 3/2(m1) = n Lr2tmes) ear n =0 and so is not integrable. Yus

Fatou's lemma yields J’(u) + +o {and so J1(u), Aly) + -o) as o+ a.

To show that A{u) +» ® and A'(py) » © as u + 1 we argue similarly. First, the
integrand in A(y) tends to nm_1//FT?T:F?;5. Now F'(1) = f{1) =0 and F"(1} < 0, 3o
this has a noninteqrable singularity at 1 and it fcllows that A(p) + +«o as ¢+ 1. The
integrand in A’'(y) also tends to a nonintegrable limit since 8'(1) > 0, and it follows
that A'(p) + +@ ags pu » 1.

We now turn to the proof of (iv). For this we follow closely the proof given in the
case m = 1 by Smoller and Wasserman [18].

To begin with, we note several properties of the function £. They are all proved bv
elementary calculations using the explicit formulas for f and F. We shall omit the
details.

¢ (a,1) such that G{n) < 0 on (0,y,)

A. There is a u 4

1

and &{(n) > 0 on (u1,1L

B. There is a u, € (0-u1) such that 6'(n) < 0 on (0,u.)

2 2

and 8'(n) > 0 on (u2,1]-

C. There exists a u, € (0.u2) such that (nH'(n))" <0 on (0,y.)

3 3

an (n8'{(n)¥)* > 0 on (u3,11.
It follows from properties A and B that
A'Cu) > 0 on (u1,1)
a < My
Alu) ¢ 0D on (q,uz) .
need only consider A' for max(u,uz) [T uy

proceed we need to examine A". For this purpose, let




(Gih)(n)=h(u)’h(n), 0 < n<cy

(Gzh)(n) wh(y) - nhin), 0 < n<uy

and

(8;m(n) = W™tw = n'hin), 0<ncy .

A computation similar to the one yielding (1.9) produces

3
(8,F)(5,6')- 2 (6 6)(6.£)
1 1 1 1
(1.10) A = = 12 s v .
2u (8,F) s

Adding (K - E:ul)A‘(u) to both sides of (1.10) we obtain

3
(51F)(628‘) + 61B(Ku61F -3 535)

-1 1 1
A (w + (K = B peqy) = — [¥ " dn .
U 2 1o 572
2u (61F)
Observe next that §,0 = 2m§ F - §_f so that Kué F - 3 §.f = (Ky - 3m)§ F + 3 §,6. Thus,
1 1 3 1 2 73 1 2 1
if we choose K = 3m/y we arrive at the expression
3 2 .
. et 1 vz (616) + (6,?)(628 ) ey
Alw) + = A = — [f 73 n o dn .
2y (G'F)

In view of properties B and C above, we have
628' = pd'(y) - nd'(n) > 0 for max(ﬁ,uz) <y <1
and it follows that

2m+1

(1.11) A"t + A(uw) >0 for max{a,p.) € u <y .

2 1

As noted above, A'(uy) < 0 for < max(a,u‘) and A'(p) > 0 for u> -
Therefore A' has at least one zero in the interval J = [max(u,uz), u1]. The relation
(1.11) implies A"(u) > 0 at any such zeroc and therefore there can be at most one,

completing the proof.

-11=-

»
'



1
i

Remark: As the proof shows, the result (iv) is dependent only on the properties A, B, C
of 6.

Propositions 1 and 2 provide a complete characterization of the set of positive
solutions of Problem II. For Lo <L let u+(L) denote the largest solution of
L = A(y) and for LO €L KL let u_(L) be the smallest solution (so

1
u+(L0) = u_(LO)). We distinguish the following cases

0 <L < Lg' There are no positive solutions.

L = Lg. There is a unique positive solution v(-,u+(LO)).

Ly ¢ L € L1. There are two positive solutions pls,L) = v{e+,p (L))

and q(e.,L) = v(-,u+(L)) with p < q everywhere on (-L,L).

L > L,. There is one positive solution q(+,L) = v(-,u+(L)).

Since v(e,u) depends continuously on yu and ut(L) are continuous on their domains,
p and q are continuous functions of L on their domains.

We now show that v(e,a) = v('.u~(L1)) generates families of nonnegative solutions of
Problem II on intervals (~L,L) with L > L1. for pue (a1] we have F(u) > 0 so that,
according to (1.2) (vm)'(tx(u),u) ¥ 0. However, F(a) = 0, so0 (vm)'(tx(q),a) -

(vm)'(tL1,a) = 0. It follows that v(x,a) extended as 0 for L » |x| > L, 1is a

1
solution of Problem II for L > L, and so is

vix~-h;a} for |x=~h] < L,

r(x:h) =

0 for |x-h| > L1

provided |h| < L - L1. More generally, we may piece several such solutions together if

. For each N~

their supports are disjoint. Let N be a positive integer and L > NL1

vector [ = (51,...,£N) which satisfies

. - - - = 1, 000,N=1 +
(1.12) =L € g =Ly, § + Ly S & =Ly, 4= 1..,N1 and g +L <L,

the function

-12~
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v(x—{i,u) for Ix-ﬁil < L1

rix;E) =

0 if Ix-z:il >L, for i = 1,...,N

is a nonnegative solution of Problem II. We shall use PN(L) to denote the collection of
functions v(+,f) where £ ¢ RN satisfies (1.12).
Clearly a nonnegative solution of Problem II is either positive or belongs to some
P“(L). We thus have:
Proposition 3 For L > L, let N be the integral part (L/L,] of L/L,. Then with
N
P(L) = U P,(L) we have
j=1 3
L 4
E (L) = {q(e, L)} v P(L) .
Remark. If L/L; > (L/L;] = N then P“(L) is a true N~parameter family, while if
N = L/L1, P“(L) contains only r(x;E&), Ei = (i-1)L1 + L1/2. Combining Propositions 1.1,

1.2 and 1.3 we arrive at the complete description of E(L) given below:

Theorem 4.

{0} for 0 <L <L ,

E(L) = {0, p(esL), ql(+L)} for Ly <L <L,

{o, qle, L)} u P(L) for L1 <L .

Section 2, Stability Theory

We now turn to the question of the large time behaviour of the solution of the

initial~-bounday value problem

u = (™ __ + €u) in (-L,L) x R
XX

t
() ulsL,t) = 0 in R
u(e,0) = “0 in (-L,L)
where f is given by (1.1) and
(1.13) 4y € L7-L,L), 0 <uy €1 a.e.

-13- ¥




In what follows we shall, for convenience, write

Q= (-L,L), o =@ x (0,7, 9= @ xR .

Definition. A solution u of Problem I. on [(0,w) 4is a function u : [0,=) + L‘(Q)

with the properties
(1) wectio,® : L@ 0@y for T> 0.

(A1) foumem - [[ (uo, +uy, ) = fouge(e) + [[ £a)e

for all T > 0 and ve C2(Q) such that v »0 in Q and ¢ =0 at x = £L.

A subsolution (supersolution) of Problem I' on [0,») 1is a function satisfying (1)
and (ii) with equality replaced by < (respectively, ).
Theorem 5 (Existence and comparison)

(1) If (1.13) holds Problem 1’ Au; a unique solutien u on ([0,w)
and 0 € u < 1 a.e.

(1i1) If u 1is a subsolution and 2 is a supersolution of Problem I'

then u < G a.e, on Q.

Theorem 5 is a consequence of more general results in Part II (Theoxem 12 and 13). We
will denote the solution of Problem I' with the initial value uy by u(t,uo). Let X be
the complete metric space with the metric 4 given by

X={uet™(Q) : 0<uc<!ae. and u” ¢ H1(Q)} ’
(1.14)

A(u,v) = lu-vi 1 + |(um - vm) []

L'(a) * 12
Recall the definition of w(uo) (Introduction, eq. (2)). A stablization theorem (Theorem

18) is proved in Part II which applies to Problem 1¥ to yield:
Theorem 6 (Stabilization): Let uq satisfy (1.13). Then (u(t,uo) s t » 1} is a compact
subset of X, w(uo) is nonempty and connected in X and m(uo) c E(v).

We will use these results to show the stability of the equilibrium solutions v = 0
and v = q, For this purpose we introduce the notion of sub-and supersolutions of Problem
11,

(v™" + £(v) =0 1in (-L,L), v($L) =0 .

~-~14~
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A (weak) subsolution of Problem II is a function v ¢ C{[~L,L)) for which
,fgw"v“‘ + ¢E(v))Ax > 0 for all ¢ e C(R), ¥>0 and v (L) = 0 and v(tL) < 0. A
(weak) supersolution is defined by reversing the inequality and requiring v(iL) > 0.

Let v and v be respectively a sub-and a supersolution of Problem Il and let
fv,v] = {w e L*(Q) : v <w &va.e. on a} .

Proposition 7 et u, ¢ {v,v] satisfy (1.13). Then
(1) utt,ug) e (v,v] for t >0
and
(11)  wug) < ly,v] 0 X
Proof. It follows from the definitions that !(;) is a time-independent subsoiction
{supersolution) of Problem I’. Hence Theorems 5 and 6 imply (i}. The assertion (ii)
follows from Theorem 6 and the fact that [!,;] n X is closed in X.

Corollary 8. If u_ ¢ [!,;] satisfies (1.13) and [!,;] n F= {g} is a singleton, then

]

u(t,uo) +g in X as t + o,

We next give three applications of this Corollary to the determination of domains of
attraction of the various isolated elements of E(L).
(1.15) Let L € (LO'L11' Choose £ ¢ [LO,L) and f ¢ (~L,L) such that -~L < { - 8,
£+ £ < L. Set
plx-E,2) for x e [g-2,E+2) ,
vix) =
4} for x & {¢-£,8+2] .
Then v is a subsolution of Problem II. Clearly vz1isa supersolution. Since
[ 4 (LO,L),
v(g) = p(0,2) > p(0,L) > p(E,L)
(see Figure 3(a) below) and it follows that
lv,v] n E(L) = {q()} .
It now follows from Corollary 8 that u(t,uo) + q(L) in X as t * » whenever

u, € !g.;;l-

-15-

R

|
]

Lo




(1.16) Let Le [LO'L1)‘ Chose £ ¢ (L,L1] and n ¢ (-L,L) such that
n~-2<=-L, L<n+ 2, and let

wix) = plx-n,2) .
Then w is a supersolution of Problem II. Since w = 0 is a subsolution, [!,;) is
invariant. In this case (see Figure 3(b))

w(0) = p(-n,2) < p(0,£) < p(O,L) .

Hence

fw,w] n E(@) = {0}
and therefore u(t,uo) +0 as t + @ in X when u0 € [!,;].
€ (-L.L) such that

(1.17) let L > L,. For X .,x

1772
- - - +
L < x1 L1 < x2 L1 < x1 L1 < x2 + L1 <L

define

v+(x) = max(p(x—x1,L1), plx-~x ,L1))

2

v (x) = min(p(x—x1,L1). plx-x ,L1)) .

2

See Figure 4. It is easy to verify that vt is a gubsolution and v~ is a supersolution
of Problem II. Moreover,
+ -
tv ,11 n E(L) = {q(w)}, [0,v ] n E() = {0} .

Thus

+
lim u(t,uy) = q(L) for all u, ¢ (v 1)
£+

and

lim u(t,u ) = 0 for all wu e to,v 1 .

o

0

~-16=-

ki




Figure 3

O "yl VN R -

lq(-,L)

Z4h /-»p(',L)

!
[ {
| ~T TN
'y e | CoN \ D {*,L) «TEex-n. ) 3
f ] T ke
7 ! —p(--¢,2) g I N
! 1 P e , N | X !
-L -2 4 I+l L -L n L n+i &
(a) Domain of attraction for q{(-,L) (b) Domain of attraction for O H
where L € (LO,Ll] when L ¢ (Lo'Lll §
L8
Figure 4
¢
;
1 1 }
T 1 T ‘ Y | ) 'L
o | | '
| s
T
...p(--xl,Ll)
L -L xl-Ll x24-Ll L
7
(a) bDomain of attraction for q(°,L) (b) Domain of attraction for O
when L > Ll when L > L1
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It is clear that more elaborate domains of attraction for q

Part II. General Theory

and 0 can be

constructed. We leave further constructions to the interested reader.

In this part of the paper we first prove existence, uniqueness and continuous

dependence on initial data of solutions of Problem I of the introduction together with

comparison results. These results are all more or less known in various contexts, but the

presentation here collects them quite conveniently. (See the remarks at the end of this

section.) After this the stabilization result used in Part I is proved.

Section 3. A Preliminary Estimate

Consider the problem

w, = r\(u)xx + glx,t) (x,t) e Q ,
(I11) u{tL,t) = wt(t) t e (0,» ,
u{x,0) = uo(x) X € Q

where we assume that n and the data g, Qt and u, satisfy the following set of

agsumptions:
Af. n: R+ R is locally Lipschitz continuous and nondecreasing,

A2. g € L1(QT) for each T > 0,

Ry e L;Dc(lﬂ,“]).

4 L7
A4. u0 € .

These will be called "assumption A".

Definition. A solution u of Problem III on [0,T) is a function

properties:

(1) wec((o,m : L (D) n L"(QT) ,

-18-
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(i) [ouerAe) - [f (ug + ntue )+
Q
t

t
[o ¥, (8) )0 (L,s) = n(y_(s))¢ (-L,s)ds

= [g 5Pt +é[ o
t
for all vg¢ Cz(aT) such that ¢ 20, ¢y=0 at x =4%L and 0 <t < T. A solution on
{0,) means a solution on each [0,T), and a subsolution (supersolution) is defined by
(i), and (ii) with equality replaced by <« (>).
Proposition 9 Let 3 be a supersolution of Problem III on {0,T] with data g, %0, 3:
and u be a subsolution on [0,T] with data g, gy, W* all satisfying assumption A.

Then if wt < $t we have for each A >0 and 0 <t < T

At A + AL+ As A At

(2.1) e’ [q (utt) - Gee))” < fﬂ (ug-a))” + [[ e™ig-g + Au-u))
Qt
+
where r = max(r,0}.
Proof. Since 1 (u) is a supersolution (subsolution) and ¢ >0 (< 0) at x = ~L(+L),
A

we find, using n(wi) > N(W*) (by AY)

[, fute) = Geenece) - [f (u - Ve, +ae_ ) <

Q o t XX
(2.2) o N R
< fq tug = Bywio) + I/ ta -39

Qt
where a = (n(u) - n{d))/(u - 3) for u+ 0 and a = 0 otherwise, for all ¥ ¢ c2(§T)
such that ¢ > 0 and ¢=0 at x =tL and 0 <t <T. By A1 and the boundedness of
~ @
u, u, we have a €L (QT) and a » 0.
We now congtruct a special sequence of functions {Wn) to use in (2.1). Fix T > 0

and choose a sequence {an) of smooth functions such that

<a < lal +
L o)
Sy

3
B

and

-19.
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(an-a)/v’-a—n+0 in LZ(QT) .

This is easily seen to be possible. Next let y ¢ c;(m be such that 0 < x < 1. Finally

let Yn be the solution of the backward problem

Yoet av Awn for x ¢ R, t ¢ [0, T) ,
(2.3) ¢n(tL,t) =0 for t ¢ [(0,T) ,
$L0xT) = x(x) for x ¢ 4 .

This is a nondegenerate parabolic problem and has a unique solution ¢ n € CG(ET).

Lerma 10 The function %n has the following properties:

A(t-T) =

(1) 0<wn<e on QT'
2

uy ff oate 2" <e

O

2
(111)  sup [, (¥ _)(e) < ¢
octer 8 X

PR LN

where the constant ¢ depends only on Y.

Proof. Part (i) is immediate from the maximum principle and 0 < x < 1. To prove (ii) and

(ii1), multiply the equation solved by v by w and integrate over  x (t,T) to
n nxx

find - after an integration by parts -

;‘ _f: Iﬂ Wrut\anxt: + fi IQ anwnxx)

or

1 2 T n 2
2 Iﬂ (wnx) (&) + It IQ anwxx) *A f: Iﬂ wnx) 2 IQ (Xx)

! from which we have the desired estimates.

If we set t =T and v =v¢  in (2.2) we obtain

-20=-




(2.4) [q tat) = Sty = [f w-d (a-a )y <

Op

< fq tug = 80 (01 + [ (g8 + A(u-lnre

Op

< fg tug - 8" e 4 [ (g-§ + aquetnt D

QT
Since
la-anl
[ Vama tte b = [ == t/ale D
O 9 m
we have, by Lemma 10 (ii),
(a-an)
Ha~a )¢ 1 _ < 1, va_ v 1
n’ o nxx L1 an LZ n  nxx L2
1/ (a-a )
2 n
€ c I—7::——IL2

which tends to zero as n + «» by the choice of a . (The spaces L' and 1?2 here are

taken over Qn..) Thus, letting n » =» in (2.4) we obtain

' e_XT + ff (g-§ + re-int c\(S-T)

(2.5) [q (afT) - WTHIx < fo (u) - v
QT

0

This inequality holds for every 1y € C:(Q) with 0 < x < 1. Hence it continues to hold

E +
for x(x) =1 on {x : u{T) > AT} and X = 0 otherwise (i.e. y = sign (u(m)-2(TH ",
completing the proof. (Clearly T may be replaced by any t, 0 < t < T in the argument.)

Corollary 11. Let u and U be solutions of Problem III with data 9, ug, wt and

G, G Then

0’ %

A A t
(2.6) Jlult) - ule)r <l - un + fo 1g(s) - G(s) . ds .
L (Q) L () L ()

~21-
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Thus, in particular, solutions of Problem III are unique.

Proof. Setting A =0 in (2.1) we obtain

[o (ate) - acen” < [qtug - 8% + [ (g - §*
9
t

and

+ + +
[o Bter —uen” <« o @ -up” + [[§ -0 .

L

Adding these estimates yields (2.6).

Uniqueness and continuous dependence for Problem II.

We now return to Problem I. Here we take nlu) = lulm.1u which satisfies A1. By a
solution of Problem I we mean a solution u of Problem IXI with g = f(u), W: = 0 and so
on for sub-and supersolutions. Since solutions are bounded by definition,

g€ L”(QT) S L1(QT)’ and we may use the previous results.
Theorem 12
(i) Let u, G be solutions of Problem I on [0,T] with initial data uq

and GO respectively. Let K be a Lipschitz constant for f on [-M,M]

where M = max(flul , I }+  Then

L"’(QT) L"’(QT)

fult) - (e <e " -G .

L R AP

(ii) Let u be a subsolution and u a supersolution of Problem I with initial data

uq and GO‘ Then if Yy < G\ i+ follows that

A
u<<u .

Proof. With the assumptione of (ii), Proposition 7 yields

At A + A L+
(2.7 e’ [ tult) = Geen” < fotag =)t 4 f

A .
. e e - BN ¢ A - an

0‘q '
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Set A = K (defined as in (i)). Then r + f(r) + Kr is nondecreasing on [-M,M] and
A A+ A+
(£(u) - £(3) + K(u = 2)) € 2K(u = d)~ .

Thus if we write

ey = e [ tue) - den’
(2.7) implies

h(t) < h(0) + 2K [f h(s)ds

which implies, by Gronwall's lemma, that h(t) < h(O)eth or

+

ke IQ (uo - Go) .

fo tae) = den” < e

This proves (ii). The assertion of (i) follows by adding the corresponding inequality for
(3 - w*.
Remark. The proofs here are correct for any n satisfying A1 and do not require

0 <ug, i}o<1.

Section 4 Existence

We begin by regqularizing the problem. Let € > 0 and consider

m
“t = (u )xx + fe(u) (x,t) ¢ QT
(Ie) u(tL,t) = ¢ t e (0,7
u(x,0) = uo(x) + € x e

where
£ (u) = f(u - ¢) .
€

The properties of f and uy we will use are:

~23-




(H) £ : R+ R is locally Lipschitz continuous, £(0) = £(1) = 0

@
and uocz.m),o<u0<1,

which we refer to as hypotheses H. For a while we also assume u, € C:(Q). Then
Problem Ie has, by classical results, a unique solution ue € 02’1(6T) and

(2.8) e < u, €1+ € in QT .

Multiplying the equation of Ie by (u:)t and performing obvious manipulations yields

mH1 2
4m t 2 1 m 2
:;:::5 IT fn (“ € )t * 2 IQ {(ue)x(t)} -m In Fe(“c)(t)

(2.9)
1 m 2
=3 1a ) (0} == [oF (u)(D)

for 0 < T <t <T, where
n-1
4 .
(o= [1s7 e (oras

In particular, putting «t = 0,

mE1 2

2 m 2
(2.10) ff o w? ), sup [ (™ ()} <x
0 ‘Q € t <t €T a € x

where K depends on f, fﬂ(u:)i but not on ¢ € (0,1} or T. Set vE = 02. Then (2.9),

(2.10) imply




em < v, < (1 + e)m

Iv_(£)1 < /K
= 2
(2.11) 1 2m
2 2w+
w1 = T (e 2™
tio, 722 (o) e € ¢
w1

It follows from (2.11) that {ve}, 0 < e< 1 1is equicontinuous from ([0,T! into LZ(Q)

1
with values in a bounded subset of H (f)) (which is compactly imbedded in LZ(Q)). Hence,

by Arzela-Ascoli's Theorem, there is a v ¢ C((0,T]: Lz(n)) and €, + 0 such that

ve +v in c({o,Tl: Lz(ﬂ)). Then “e > vi/m Zu and “2 + um in c((0,T]): Lz(n)).
n n n
It is very simple to show that u is a solution of Problem I, and we omit this. (Note

that ¢((0,7] : t2(a)) < e,y : 1N @

It remains to remove the restriction u, ¢ c;(n). To this end, let wu, satisfy (2.8)

0

o
and choose a sequence {u0n} c Co(n), 0 < Yn < 1, such that

(2.12) fu -u_ 1 +0 as n + »
0 ol

Let u, be the solution of Problem I with initial data Uy,+ According to Theorem 12(i)

(2.13) sup lu,(t) ~ u (t)t <e fu, ., - u 1
0<t<T LA 0 ok

where X 1is now a Lipschitz constant for £ on [0,T). By 0 < uj <1, (2.12), (2.13)

there s a u € C({0,7) : L(R)), 0 <u < 1, such that S R van.

Clearly u is a solution of Problem I and so we have proved:
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Theorem 13. Let hypotheses H hold. hen Problem I has a unique solution u. Moreover,

0 €u < 1,

Section 5. Regularization

In this section we shall prove a reqularizing property of the solution operator of

Problem I. )

Theorem 14. Let hypotheses H hold and u be the solution of Problem I. Then for each

T > 0 there is a constant Mr' independent of ug, such that
m o«
(i) u (t)x eL (Q) for t > 1

and

lum(t) L <M and essential variation um(t)x < Mr

(i1) L ()

for t > 1 .

Proof. Following {6) we denote the solution operator of Problem III with nl(r) = lrlm-1r
and wt =0 by S(t,u;,g9) - that is, S(t,uo,g) is the solution of Problem III at time ¢t

if this problem has a solution. By Corollary 11, S has the Properties

A A ~ t A
(2.14) Istt,ug,q9) - S(t,uo,g)ﬂ ;< by - uol .t IO tg(s) - g(s)i \ds
L L L .
s
i
and
A 2 o
(2.15) N SOt,ug,9) = S(t, ™! U ! g0r A >0

where qx(t)(~) = g(At)(+). Tn establish (2.15) one merely checks - using n(r) = 'r|m-1r

? 1

1
m-1 m-1 ™1
- that ) s(xt,uo,q) is indeed a solution of Problem III with data ) Uy A 9, in
place of u,,g and invokes the uniqueness. Now the solution u(t,uy) of Problem I is
exactly a solution of u = S(t,uo,f(u)). By Theorem 7 of (6], properties (2.14) and (2.15)

of S and the Lipschitz continuity of f imply that for 1> 0, 0 < h < 1, t »0

~26= T
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1 111
& faltrth,ug) - u(t+1’.uo)lL1 = < ({ mlenueug) - u(r,u(t,uo))lL1

1
<< e(T, lu(t,uo)lL1)

where E is a nondecreasing function of its arguments. Since 0 < u < 1, we have

lu(t,uo)l 1 < meas @ = 2L and it follows that r-tE(r,ZL) is a Lipschitz constant for

L
t > ult+ttuy) on [(0,®).
The proof is completed by means of the follows lemma:
Lemma 15. Let v(t) be Lipschitz continuous with constant L, and w(t), z(t) be
continuous from ([0,®) into L‘(Q) and
= + ’ .
V=W otz in DY(Q)

Then w(t)x € L“(Q) for each t and

{2.16) essential variation w(t)x <L 4+ 1z(t)) -
L

We apply this lemma to the equation
m
u, = (u ey + £(0)

which holds in D' (i.e., in the sengse of distributions). As shown above, t + u(t,uo)
is Lipschitz continuous from (t,®) into L1(n) with a constant LT independent of ug,.
By Lemma 15 um(t)x e Lm(ﬂ) for t » > 0 and the variation of um(t)x is bounded by
L_+ If(u(t))d _,

T 1

L
v(1) - v(0) for some a € (0,1) and then

which is bounded. If v : [0,1] + R is smooth then v (a) =

v 1 < |v. (a)} + variation v
x e x x

< 210vl + variation v .
L” x

By approximation with smooth functions we conclude

l(um) ] < 2luml + ess variation (um)
X L“ L“’ X

€ 2 + ess variation (um)x .
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Thus the assertions of the theorem are established.
It remains to prove the lemma.

Proof of lLemma 15. Define the averages

Indeed, these averages can be defined for an arbitrary distribution F on Q by
R 1 t L)
FLl¥) = FL & ](t_h)w for ¢ € Cy(Q)

and then it is easily checked that the operation commutes with differentiations. Hence

h"(v(t) ~ v(t-h) = v, =W .+ z. We conclude that Yhxx © L' and

variation whx - Iwhxx' 1 <L + Izh(t)l

L L1

+ L + fz(t)t , %8 h+0 .
L

1
Since Whe Who remain bounded in L (Q), Whoe is bounded in L“(Q) and Yix + v in
Lp(ﬂ), 1 <p ¢ ». Letting h + 0 and using the lower semicontinuity of the variation we

obtain (2.16).

Section 6. Stabilization

Let 0 < u, €1 and u = u(t,uo) be the solution of Problem I emanating from u,.
For each 71 > 0 define the semiorbit
YT(uo) - (u(t,uo) st > 1} .
According to Theorem 14, YT(uo) c )(_r where xT is the complete metric space consisting
of those w € L”(Q) such that
Dcwet, (WH er™@, wH <M
x x o 1

L
(2.17)

and essential variation (wm)x < MT .




where Hr is as in Theorem 14, equipped with the metric

(2.18) Au,v) = tomvl 4 (" - vm)xl ) .
L Lé(a)

One easily checks that xT is complete. Moreover, )(.t is compact, Indeed,

1'*(2) and is thus precompact in L. 1

{wm twe XT} is bounded in, e.g., W
follows that {w : w € XT} is precompact in L1(ﬂ). Similarly,

{(wu)x :w @ xT} is bounded in L°(Q) and in variation. Thus it is precompact in

L’(Q) and then, by the Lo boundedness, in every Lp(ﬂ), 1 < p < . The compactness of

xt follows. We also let
(2.19) x={uet@ :0<uct, M eria)
equipped with the metric (2.18). Observe that

(2.20) {u}cX and Bu - ul +0==>u€X and d(u ,u) + 0 .
n T T n

ALY

.This is the standard remark that weakening a metric of a compact metric space produces the
same topology.
To study the large time behaviour of u(t,uo) we introduce its w-limit set:

«Kuo) = {we x: u(tn,uo) +w in X for some sequence (tn} with tn + ® as n + o},
We collect some basic remarks.
Proposition 16. Let hypotheses H hold. Then

(1) Yr(uo) is a precompact subset of X for T > 0.

(11) u(~,uo) e C((0,®) : X).
(1i1) u(uo) is nonempty and connected in X.

(iv) If we m(uo), then u(t,w) e w(uo) for t » 0.
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Proof. Since Yr < xT which is compact, (1) follows. By (2.20), t + u(t,uo) is

continuous into xT on t > 1 if and only if it is continuous into L1(Q), whence we
have (ii). The assertion (iii) follows at once from (i) and (ii). For (iv), we use that
u(t+t ,u4) = u(t,u(tn,uo)) so 1if u(tn,uo) +w {in X (and so in L1(ﬂ)) we have

1

u(t+tn,uo) +u(t,w) in L (and hence in X) by Theorem 12. Thus u(t,w) € w(uo).

Next congider the function V : X + R given by
vig) = [o (™2 - arcoax
where
m=1

Fir) = [0 0" £(o)dp .

Clearly V : X + R 1ls continuous.

Lemma 17. Let hypotheses H be satisfied. Then

m
(u 2 )t e Lioc(o,w : Lz(ﬂ)) and
mbl
4m t 2 2
— Jg Jqllu T )} + viutt,a)) € viuls,u)) for £>8>0 .

(m+1)

The proof is postponed briefly while we establish the next result.
Theorem 18. Let hypotheses H be satisfied. Then m(uo) < E.
Proof. By Lemma 17 ¢t » V(u(t,uo)) is nonincreasing on t > 0. Since V is continuous

on X this implies

V(w) = inf V(u(t,uo)) EA for we m(uo) .
t>0
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By the invariance of m(uo), Viu(t,w)) =V _ for t >0, we m(uo). Combining this with

m+1

Lemma 17 we deduce that (u(t,w) 2 )t =0 and thus u(t,w) = ws The definition of a

solution of Problem I then implies
[ W™+ £(w)p) = 0
Q xx

whenever Ve Cz(a), ¢ >0 and v (tL}) = 0. But this implies (w’n)xx + f(w) =0 in Dv.
Since we L” and f is Lipschitz, the equation holds classically (i.e., W e cz(ﬁ))
and w=0 at L. Hence w € E(L).

Proof of lLemma 17. We go back into the existence proof where, assuming u

i
0 e C0 Q), we

constructed smooth solutions “e of approximate problems Ie' Putting 1t =0 in (2.9)

and letting € tend to zero through the sequence €, as in that proof yields

mt1
4m t "2 2
(2.21) —/s fn (I Vlutt,ug)) < viug) .
(m+1)

We note also that since ut -fe H;(n) for €t » 0 and (2.10) holds, we have

W e n;(n) for t > 0. To deduce (2.21) for general u, € H;(n), chonse {“On} c c;(n)

0

so that uOn +> “0 in X as n + o, Writing (2.21) for u, = u(t,uOn) in place of u

and letting n + « establishes the inequality. The lemma now follows if we show

u(s,uo)m e H;(ﬂ) for s > 0. But we know u(s,uo)m e H;(ﬂ) for u_e€ H;(n) and that

0

(u(s,uo)m)x is bounded in Lz(ﬂ) (even Lm(ﬂ)) independently of u,, 0 < u, < 1, whence

0

the result.

Remarks on Part II

Section 3. The reader should notice that the whole development of this section is valid if
f is a domain in R’ rather than an interval of R. For this one replaces n(u)xx by

An{u) (or En(u) where E is a suitable elliptic operator) and modifies the statement

o
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of the boundary conditions in Problem III. The estimate (2.1) remains valid as stated.
Various of the ideas used in this proof occur for example, in [14}, {15], [17]. The paper
{19] is an early example of L1-type estimates.

It is known in nonlinear semigroup theory that Problem III (with @ < RN) has a
unique solution in the sense of this section if wt =0 and g € L'(QT). Moreover, for

this n need only be continuous (not locally Lipschitz continuous) and the estimates (2.1)

and (2.6) are valid for these solutions (with Wt = 0). However, the proof goes by showing
uniqueness (without establishing the estimates) and obtaining the estimates in the
construction of the solutions. See [6] and its references concerning the uniqueness. See,
e.g., (1], (8], [12] concerning the semigroup theory. One will not find the claimsg above
presented clearly in these sources, they are (true) folk-lore. Moreover, the semigroup

1 and

theory provides solutions to Problem III (with Q < RN, *z = 0) if g is merely L

u, is merely L’ and n need not be a function but a graph. One can algo take
u, e H-l(ﬂ), fe L‘(O,T ] u"(n)). However, one does not then use the above notion of
solution ~ in particular, u need not be bounded. See [5] concerning the w! theory.

1

Similar remarks pertain to Problem I, although now it is the L semigroup theory (rather

than H™') which should be used.

Section 4. We have given the quickest existence proof suitable for our purpose. 1t is
rather standard and restrictive in that it requires u0 > 0. Alternatives are provided by
the semigroup theory (see above), but this is clumsy as regards approximations by smooth
functions. To allow u, to change sign and n to be less reqular, one can approximate
'n by smooth ne and regqularize the equation by u = A(nc(u) + ¢u) + f(u). (Again the
proofs in this gection work for Q c RN).

The argument for taking the limit in this section works in essence if lulm'1u is

-1
replaced by n{u) where n is strictly increasing and either n or n is Lipschitz

continuous. For general n, the semigroup theory is best. With it one has that




u = An(u) + £(u) in QT B

ul 0 t>0 ,

a

ul‘:‘O = u, in Q@ ,

has a solution (in the semigroup sense) under very mild conditions which we do not detail

here. See also [11), ([3].

Section 5. The relevant reference here has been given - [6]. This section depends on

N = 1 in that an estimate of Aum in the space of measures provides compactness of W

in 12 only if N = 1. Moreover, we use strongly the special form lulm-1u of the
nonlinearity. The only related work on more general nonlinearities we know of is [9]),

[t0].

Section 6. Owing to the remarks concerning Section 5, these arquments do not adapt to

N > 1. Stabilization results in higher dimensions remain an interesting open problem.
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