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ABSTRACT

This paper considers a sequence of piecewise linear orthogonal functions

(U ) which is complete in L . Explicit expressions for the Ui are given.

Any continuous function can be expanded in a series of constant multiples

of functions Ui under the sense of uniform convergence by group. While the

partial sum of the corresponding expression for a continuous function may fail

to converge uniformly, a certain subsequence does.
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SIGNIFICANCE AND EXPLANATION

Fourier analysis is the basis for development in many areas. Haar

funclion and Walsh function as a significant example of non-sinusoidal

functions which form complete sets provided an effectual tool in Fourier

analysis for some subjects. From the point of view of approximation theory

and its applications, a set of piecewise smooth orthonormal functions should

have some advantages. Haar and Walsh functions are piecewise constants.

Franklin considered a polygonal system. But it is not convenient to use since

its description is implicit.

This paper considers a set of discontinuous piecewise linear functions,

presents their explicit representations, proves the orthonormality and

completeness in Hilbert space L2 [0,11 . The corresponding Fourier series for

any continuous function is uniformly convergent by group.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this paper.
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A SEQUENCE OF PIECEWISE ORTHOGONAL POLYNOMIALS (I) (LINEAR CASE)
* **

Y. Y. Feng and D. X. Qi

1. Introduction

It is very important to study orthogonal functions. A number of function

sets are known which are found to be orthogonal and hence can be used for

series representation. Fourier series, a system of sine and cosine functions,

is the basis for development in many areas.

Additionally certain polynomials can be made orthogonal. These

orthogonal polynomials form a series, nx) (n=0,1,2,...) , where n is then

degree of the polynomial. This class contains many special functions commonly

encountered in practical applications, e.g. Chebyshev, Hermite, Laguerre,

Jacobi, Legendre polynomials and so on.

None of these have the essential simplicity of the Walsh and Haar

functions, the most important examples of non-sinusoidal functions, which form

complete sets of orthogonal functions for the Hilbert space L [0,1]. Having
2

this property, they provide an effective tool in Fourier analysis, With the

application of digital techniques and semiconductor technology this kind of

complete system of orthogonal functions has been considered and applied [1].

Perhaps this system has other advantages rendering its use more directly

applicable to some applications.
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In 1910, Alfred Haar (5] proposed a set of orthogonal functions, taking

essentially only two values, such that the formal expansion of a given

continuous function in the new functions converges uniformly to the given

function. The Walsh functions defined in 1923 by J. L. Walsn [6), formed a

complete orthogonal set taking only the values +1 and -1 , and were found

to have many properties similar to the sinusoidal series.

From the point of view of approximation theory, it is important to

construct a set so that functions in this set cannot be only piece-constant.

Schauder basis was obtained by integration of the Haar function. Applying the

Schmidt orthonormalization procedure to the Schauder basis, Ciesielski (1968)

introduced an orthonormal uniformly bounded sequence of polygonals (3] which

was a development of the Franklin orthonormal set discovered in 1928 [4]. The

functions in this set are implicit.

In this paper we will give a different class of piecewise linear

orthonormal functions U which are complete in L . They have explicit
1 2

expressions. We show that any continuous function can be expanded in a (U

series which converges uniformly "by group".

-2-



I

2. AN ORTHONORMAL SEKQUNCE OF PIECEWISE LINEAR FUNCTIONS

The sequence U, which is the main purpose of this paper to study,

consists of the following functions:

U 0o(X) :- 1, U (x) :- /3(1-2x), 0 4 x 4 1,

(1) := (2 6x, 102< x < 1,U2  W /3(4x-3), U 2 x : 6x, /2< X </2

u (k) (2x), 0 < x <1/2.
u (2k-1) : n (2.1)
n+1 (-1) U (k)(2x-1), 1/2< x < 1

n

u(k) (2k), 0 4 x <1/2U (2k  )  (W : n''
n+1 )k uMk

(- 1 ) U n (2x-1), 1/2< X 4 1
i n

n-i
k = 1,2,3,...,2 n 2,3,...,i

At a point of discontinuity, let these functions be the average of the

two one-sided limits.

The first eight of these functions are shown in Fig. 1.

From the definition of the sequence U , it is clear that the function

U (n>2) is to be used, with the horizontal scale reduced one half and
n

the vertical scale unchanged, to form the functions U (2k-) and (2k)
n+1 n+1

the former of which ts even and the latter odd with respect to the point
' / (k) ,n-2

x = 1 All the functions U (n ) 2, k - ,2,...,2 ) have then
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value r3 at x = 0 and (-1)k+V3- at x = 1, the functions

U (k ) (n > 2, k - 2n- 2 +1, 2n -2 + 2,...,2 n- ) have the value 1 at x = 0
n

and (-1) at x = 1.

Now we consider the orthogonality of the sequence U. At first we

establish the following lemma.

LEMMA 1 If g satisfies f g(x)x dx = 0, i 0,1, and g1 is given by
0

g(2x), 0 4 x < 1/2,
91 (-I) £ g(2x-1), 1/2< x 4 1, t is an integer

then

1/21
f llX i dx f glx)x idx = 0, i = 0,1.

0 /2

This lemma follows easily from the change of variable y = 2x and

y = 2x - 1.

THEOREM 1 The sequence of functions U ( i)} is normal and orthogonal. I.e.
n

f u (k ) (X) (J) (x)dx 6 (2.2)
0 n M n,m

n-1 rn-ifor n,m = 0,1,2,..., k = 1,2,3,...,2 j = 1,2,3,...,2 -
, with

=6 1 i J,

PROOF It is easy to check that any two functions U (k ) are normal and
n

orthogonal if n ( 2.

Assume this fact to hold for n = 2,3,..., N-1 and 3 4 m < N. Then

1 (.) (k) ( ) J) (k) (j)
f UN  (x)UmN Wu M in f UN (x)U (x)dx (2.3)
a 0 /2

But, by the method of construction of the sequence U, both integrals in (2.3)

-5-
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agree, except possibly for sign, with an integral of the form

1
2) )u( (24

U -i (Y)U 1(y)dy 
(2.4)

after the change of variable y - 2x or y = 2x-1 here

respectively.

According to the induction hypothesis the integral (2.4) equals zero if

N~m or k#j. We conclude

1

--k (x) U (  (x) dx = 0 for m > 3, m N or k # j (2.5)

0

Using Lemma 1, it is easy to see that

f U (k) (x) u0 (x)dx 0, Uk)(x)u(x)dx = 0
uN 00 0

(2.6)

kx)(1) (x)dx = 0, f U(k) (22 (x)dx 0.
0 U) 2 0 N 2(x)u x

From (2.5), (2.6) we conclude that

I
1(k) (i)fUN (x) U (J(x)dx 0, N # m or k#J. (2.7)

N m0

By (2.7) and

1 1/21

f c (x)]2dx f 2 Nl (2x)1dx + f2- 1)) = 1,

we confirm that '2.2) holds for n = N, and complete the proof.

We denote the collection of all piecewise linear functions with

-6-



partition A k by

)p2,A k?

k-i khere Ak is the uniform partition on 2 intervals. Its dimension is 2

since each of its elements consists of 2k - 1 linear pieces and each piece

has 2 freely choosable coefficients.

It is easy to see that

u(k) e I2,'A (m - 0,1,...,n, k 1 1,2,...,2 n- 1) (2.8)m 2 n

Hence M C ],

n -span UU (1) (2n
'I)

nI1 in n

nBut since dim H 2, we get

M n = 2A (2.9)
2 k

From (2.9) we obtain the following theorem.

THEOREM 2 If f is a piecewise linear function whose breakpoints can only

appear at , here q is an integer and p is a power of two, then f can
p

be exactly expressed by finitely terms of the series q aiU

-7-



3. CONVERGENCE PROPERTIES

Before studying convergence properties we consider the number of sign-

changes of functions in the sequences U. At first we define

S (f) :- sup {n : a tl <t2 <...<t n+,f(t i)f(t i+1)<0)

to be the number of the sign-changes of f on (0,1].

It is easy to see that
s(u O) s-(U) 1, s- 1) 2 and S (2)- u 2  ) =2ad -(U 2) = 3.

0 1 2 2

By the method of construction of the sequence U,

S-Un( 2 k -
1 ) -2S-(U(

k )

and

S- " (2k) - (U(k)SUn+ ) =2S nU ) +1
n+1 n

thus,

S-(U (k(x)) = 2n- 1 + k-i,n

since this formula holds for n=2 and follows for the general case by

induction. Hence, each function U(k )  has one more sign-change than the
n

preceding. Therefore, it is convenient to use the notation U0,UIU2,U3,...

instead of U k )  When we study their sign-changes from now on, we would
n

(k)
like to use both (U } and (UN} freely. Obviously

n N
(k)n-U k n = U n-i for n = 2,3,..., k = 1,2,3,...,2n 2n-+ k-1

Thus we get the following theorem.

THEOREM 3 S-(U ) = m, m - 0,1,2,3,.... I.e. S'(U (k) 2n- I + k-1m n k-
n-i

for n = 1,2,3,..., k = 1,2,3,...,2

Now we begin to study the convergence properties. The Fourier series of



a given function F in terms of the functions U i  is

F ~ iui (3.1)

i=O

with
1

i := (F, Ui) = f F(x)Ui(x)dx. (3.2)
0

Let

n
PnF I a U1  (3.3)

i=0

be the n-th partial sum of the series (3.1).

Then P F is the best L2 -approximation to F from M = span (U)n
n n 0

Hence it is convergent to F if F is in L2, since Mn is dense in L2

Thus we get the following theorem.

THEOREM 4 If F e L 2(0,1], then

lir IF - P FI = 0
nn 2

Next we will prove that P F uniformly approximates F e L . It isi2 n

well known (2] that

IF - P F1 < (1 + nP U) dist (F,M

m n C n

and we know

up I upP <w
2n n 2

since least-squares approximation for M = is local and M is
n 2,An

dense in L . Therefore we get the following theorem.

THEOREM 5 Let F e C[O,I], P n be L 2-projector onto M n on C[0,11, then

lir IF - P Fl = 0.
n 2cn



4. NOT EVERY CONTINUOUS FUNCTION CAN BE EXPANDED IN TERMS OF THE SEQUENCE U

In this section we prove that there exists a continuous function whose

expansion in terms of the U's doe:i not converge at a point of the

interval. Our proof rests on a beautiful theorem due to Haar [5].

suppose ( i} is a complete orthonormal system on [a,b]. For a

function f, the partial sum f of its formal Fourier-series is defined byn

b
f n(S) :=f K n(s,t)f(t)dt

a

with

n

K ni

b
THEOREM 6 (Haar [5]) Let w (a) : f K n(a,t)Idt, here a is an arbitrary~n a

a
point on [a,b]. If w is not uniformly bounded for n, then there exists a

continuous function F e c [a,b] such that the series F ns) is divergentn

at the point s = a.

In effect, this is one of the first examples of what was called later the

principle of uniform boundedness. In our case the kernel is

K(J)(xy) := U (x)Uo(y) + U (x)U (y) + ... + u(J(x)U(J) (y).

From theorem 5 and 6, for j = 2n1 f (Jn(a,y)dy is uniformly
0

bounded for n. For general j let

j
-10-



n-2
K(J)(x,y) K 2 ) +n n-1 n !

Ioe.

R (xy) : U )(x)U )(y) + "." + U (x)U (y).
n n n n n

Therefore is is sufficient to prove that the integral

1
c(J) (a) Z= J R(j)(a,y)Idy
n n

0

is not uniformly bounded for all n,j.

The following table shows the value of C(k)(0) for small value of nn

and for each value of k 4 2n-1

n=2 3/2

n=3 3/2 3/2

n-4 3/2 3/2 9/2 3/2

n-5 3/2 3/2 9/2 3/2 21/8 9/2 21/8 3/2

We have the general formulas

C ()(0) = c(2 n-2(0) = 3/2,
n n

c(2k) (0) C k (0)
n n-1

c(2k+1) (0 /2 (C(k)(0) + c(k+1)(0)) + 3/4.
n n-1 n-I

nn

so f IIR 1 (0,y)Idy is not uniformly bounded. we conclude
0

THEOREM 7 There exists a continuous function f e C(0,1] whose expansion

, " i



I f f (X)U (x) dxU
i-1 0±

in terms of (u i does not converge to f(x) uniformly.
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