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I. INTRODUCTION

This report contains theoretical investigations on the electrical conduc~
tivity and thermodynamic properties of nonideal plasmas, which were carried
through in the period from 1 November 1979 to 31 December 1980 under ONR Contract
N00014-79-C~0073. 1In addition, the theoretical results were compared with experi-
mental data for nonideal plasmas., These comparisons are of a preliminary nature,
since the experimental conductivities for nonideal plasmas differ not only quant-
itatively but also qualitatively in the literature.

CHAPTER II. The dependence of the electrical conductivity ¢ of dense (non-
degenerate) plasmas on the nonideality parameters y = Ze2n1/3/KT was evaluated
by summing the probabilities for v-body interactions (v = 2,3,4,...) of the con-
duction electrons. It is shown that o is noticeably smaller than the binary con-
ductivity 9, for vy > 10_1. The theoretical decrease of o with increasing vy is

cenfirmed, however, only by some experimental data, while other experimental data
indicate an increase of ¢ with increasing y for the same pressure.

CHAPTER III. Based on the classical and quantum Boltzmann equations, the
electrical conductivities of classical and degenerate nonideal plasmas were evalu-
ated. Although in this kinetic approach many-body interactions are taken into
account only through an exponentially shielded Coulomb potential, in which the
electron-ion scattering occurs, the results give, in agreement with the experimen=
tal data, conductivities which are by about one order of magnitude smaller than the
Spitzer conductivity for ideal plasmas. The increase of the dimensionless conduc-

1/2 2
m / e o/(l(T)3/2 with increasing vy is confirmed by some experimental

*
tivity o =
data but not by all of them. The new Coulomb logarithm does no longer go to zero
for large y values (as in the Spitzer theory) but is well behaved for large elect-

ron densities, and even for solid state densities due to the consideration of

electron degeneracy.




| CHAPTER IV. With the help of quantum-field theoretical methods from the

! theory of metals, the electrical conductivity of nonideal plasmas was calculated

, under consideration of electron scattering by low-frequency plasttons (ion waves)

and high-frequency plasmons (electron waves) for classical and degenerate conditions.
' The resulting conductivity formulas agree with the Spitzer theory for y + 0 and ex-
hibit numerical values which are considerably smaller than the Spitzer values but

are still larger than the theoretical conductivities obtained in III for incresasing;

Y. The numerical values o* agree with the experimental data qualitatively but are
somewhat too high.

CHAPTER V. The possibility of anomalous diffusion and conduction transverse
to magnetic fields ﬁo was studied since large charged particle transport across
magnetic fields is of interest for MHD generators. For weakly nonideal plasmas,
the anomalous transverse conductivity was showm to be 0, = w%/Aw/fwB, where wp = j
(rxezleom)l/2 is the plasma frequency and wg = |e|B°/m is the gyration frequency
of the electrons (e,m). This formula agrees with experimental data for weakly non-
ideal plasmas, but should be also correct qualitatively for nonideal plasmas. There

i are, however, no experimental data available on anomalous diffusion and conduction
in magnetic fields for nonideal plasmas.

CHAPTER VI. In connection with the electric current transport in the elect-
ric field fluctuations produced collectively by the electrons and ions in random
thermal motion, the electric. microfield distribution of thermal plasmas was deri-
ved by equilibrium statistical mechanics. Comparison with the resulting tempe-
rature dependent microfield distribution with the classical (T-independent) Holts-

mark distribution and its later extensions, indicates that the latter theories are

approximately applicable to strongly nonideal plasmas but are invalid for ideal

plasmas (to which they are. usually applied in literature).




CHAPTERS VII - VIII. By means of Bose statistics, the contribution of the

thermally excited (1ongichinal) electron and ion waves to the free energy of
nonideal classical and quantum plasmas was calculated. It is shown that the ran-
dom low-frequency iorn oscillations contribute more to the free emergy than the
high-frequency electron oscillations. The free energy of the random ion waves
is quantitatively comparable to the free energy of the thermal (non- collective)

23cm_3) and standard plasma temperatures

ion motions for high densities (n < 10
(T < 106°K). Similar calculations were performed for dense gases, in which the
random sound oscillations lead, however, only to a small correction of the free
energy.

The theoretical research on nonideal plasmas needs further clarifications
by experiments. In particular more reliable conductivity data for nonideal al-

kali and noble gas plasmas are needed. This is a preliminary report of research

results, which will be communicated later in form of publications.
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II. CONDUCTIVITY OF NONIDEAL PLASMAS WITH MANY-PARTICLE INTERACTIONS

By

H. E. Wilhelm

ABSTRACT

The dependence of the electrical conductivity of nondegenerate,
dense plasmas on the nonideality parameter, y = Zezn1/3/KT (ratio of
Coulomb interaction and thermal energies), is derived by summing the

probabilities for v-body interactions (v = 2,3,4,...) of the elec-

trons. As an application, the dimensionless probability coefficients
for binary and triple Coulomb interactions are calculated by means 1
of simple physical models, and a conductivity formula for moderately
nonideal plasmas (0 < Yy < 1) is derived in which all parameters are

known. The theory is shown to agree with recent experimental data.
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INTRODUCTION

High pressure plasmas (101 bar £ P £ 106 bar) produced by shock wave
compression are now of considerable technical interest. A large number of
publicationsl_10 are concerned with the measurement of the anomalous electrical
conductivity of proper nonideal plasmas (10_1 Ly £1). Theoretically, however,
only the conductivity of ideal (y + 0) and weakly nonideal (y << 1) plasmas is

11,12

adequately understood. The degree of nonideality of a fully ionized

plasma is defined by the interaction parameter y, which represents the ratio of

average Coulomb interaction (Ze2n1/3) and thermal (KT) energies (n = electron

density, Z = jon charge number, e = elementary charge),

y = Zeznll3

" 1/3,-1

/KT = 1.670 x 10_3Zn [e.s.u.] . Q)

The conductivity theories of ideal and weakly nonideal (0 < y << 1) plasmas

break down for y > 10-1, since the Debye radius,

/2 ~1/2,-1/3 _ -1/2.-1/3

D= [Z/4n(l + Z)] R (2)

loses its physical meaning as an electric shielding and Coulomb interaction

length. This is seen from the number of electrons ND in the Debye sphere of a
scattering ion, which is no longer large compared with one for y > 10-1,

3/2 -3/2 -3/2
12.-312 _ -3/

N = 4n/3)[2/4n (1 + Z)] (3)

0 -3

For strongly nonideal conditions, n > 102 em - and T = 104°K, we have
y > 0.775, D < 4.881 x 10™8 cm, and Ny < 4.87 x 10721 Another reason for the

inapplicability of the conductivity theory of ideal and weakly nonideal plasmas

to proper nonideal plasmas is the standard assumption of (shielded) binary
Coulomb collisions (v = 2), whereas, in reality, the conductivity is determined
by many-particle interactions (v = 2,3,4,..,) for y > 10-1

5




''llllllllllllllllllllllllll--lIIIIl-lllllllllllll-llllllllllllil'l_-----""""""""'""""I

The many-body interaction is one of the classical, unsolved problems of
physics. For this reason, we calculate the conductivity of nonideal plasmas

and the probabilities for many-particle interactions by means of dimensional

13,14

theory. This approach gives the exact dependence on the relevant dimen-

sional plasma parameterslB’la

13,14

and numerically correct results up to a dimen-
sionless coefficient, which is in general of the order 100. The plasma
is assumed to be fully ionized and nondegenerate, 1i.e.,

~ 2.3/2 15T3/2

n=2n,<n , n=2(2mKT/h°) = 4.828 x 10 4)
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ELECTRICAL CONDUCTIVITY l

In a system of reference in which magnetic fields are absent, a linear
electric current response 3 = cﬁ exists, provided that the generating electric
field E is weaker than the critical plasma field for electron heating. For any
gaseous, liquid, or solid plasma, the electrical conductivity o = III/IEI is

given by

g = (nezlm)r , (5)

since the electrons of mass m << M dominate the electric current tramsport in
plasmas. The interaction frequency 1-1 of the electrons is the sum of the

interaction frequencies T;l for the v-particle interactions,

N
N (6)
v=2

since the probabilities (frequencies) T;1 for many-particle interactions of the

order v are additive (v = 2 for binary, v = 3 for ternary, etc.). N is related

to the total number N* of (charged) particles of the system by N = N - 1 >> 1,
For physical reasons, the conductivity o[sec-l] of a fully ionized,

classical plasma can depend only on the dimensional plasma parameters
e[cm3/2grllzs

-

ec_ll, m[gr], n[cm-3], KT|[gr cmzsec_zl, and the characteristic

dimensionless constant Z = ni/n(KT = thermal energy). The conductivity ¢ and

the parameters e, m, n, and KT have the dimensions D(L = dimension of length,

T = dimension of time, M = dimension of mass:
Dlo] = 71, Dret = LY WYY | Dpm) = M, Pla] = L3, D[xT) = ML2T72 . (7)

15,16

Dimensional theory is based on the axioms of Dupré. Accordingly, the

secondary quantity o is given in terms of the primary quantities e, m, n, and
15,16
y

KT b
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o= CZeNlmNan3(KT)N“ . (8)

Cz is a dimensionless coefficient which depends on dimensionless parameters
such as Z = n/ni, and can only be determined by means of a detailed physical

model. C, is either a true constant of order of magnitude one, C

s 7~ 1, or it

is a slowly varying function (quasi-constant). Comparison of the powers of the
independent dimensions L, M, and T [Eq. (7)] in Eq. (8) gives the compatibility
equations,

%N - 3N, +2N, =0 |, %N +N

1 3 4 -N, - 2N, = -1 . (9)

1 2 4 ’ 1 4

These are three independent equations (since only three independent dimensions
L, M, and T exist) which determine three of the four powers Ni in terms of the

fourth,

- =-1 =11 z
Ny=1-28 , Ny=-3 , Ny=5-3N , N =N (10)

Combining Eqs. (8) and (10) yields a conductivity expression ¢ = Ons which

contains a still undetermined power N,

1/2(e2n1/3/

g, = CZN(neZ/m) I(T)_N . (11)

N

In order to understand the physical meaning of Eq. (1l1), it is rewritten in

the form of Eq. (5),

a, = ne2/m'r;1 , v=N/3+3/2 | (12)

where

-1 -1, 2
T, = CZv(ne /m)

3(v - 3/2)

1/2,2 1/3,0qy . v=2,34,...N . (13)

It is now seen that Eq. (11) or the equivalent Eqs. (12) and (13) represent the
conductivity of a hypothetical plasma, in which each electron experiences only

8




many-body interactions of a fixed order v, since the probability for a v-body

interaction has the n-dependence

T—l - C—lnv -1
v Zv ’

v=2,3,4,...N . (14)

For example, for a hypothetical plasma with 2-body interactions only (so-called

ideal plasma), Eqs. (12) and (13) give

/2

-1 ~1 Am—l/zn(KT)—3 , (15)

_ 2 -1 -
g, = ne /mT2 T, sze

where the dimensionless coefficient is known from the kinetic theory of binary

/

collisions,11 C22 = (3/4)(2/7r)1 2/Z ¢n A, i.e., C is a quasi-constant which

z2
varies only slightly with n via the Coulomb logarithm %n A.

Since the probabilities T;l for the individual v-body interactions are
additive, Eqs. (12) and (13) result in the following formulas for the inter-

action frequency T = ZT;l and the conductivity o = nezlmt of actual plasmas,

in which v = 2,3,4,...-body interactions take place:

N
-1 z -lw Y3(\) - 3/2)

T = C , (16)
v=2 Zv'p
2 N 3 - 3/2)

o =ne/[m) C, o0, Y v ] , (17)

v=2 vV P
where

~ 1/2_3(v - 3/2) -

Cp = (am)~"°z C,y » V= 2,3,4,...N (18)

wp = (lmnezlm)ll2 . Y = Ze2n1/3/KT (19)

are dimensionless coefficients, the plasma frequency, and the nonideality
parameter, respectively.
In order to expose the many-body effects (v » 3) of the nonideal plasma

for comparison with the corresponding formulas of binary kinetic theory (v = 2),




Eqs. (16) and (17) are rewritten as

N

/2 -1 I(v - 2)
[, + vZB C,,(v/2) 1, (20)

S RS V) S o

N
«n* ey + 1 o T By (21)

v=3

1/2 -2

Equations (20) and (21) give the interaction frequency and conductivity of
nonideal plasmas in terms of a series in y, which converges rapidly for

0 <y <1 and converges for any vy > 1, since it 1s finite (1 << N < =),

2 1w = i + cpon® + crain® + L @D e

-1
2 and o Oys

in accordance with the kinetic theory of binary interactions. For weakly

For ideal plasmas, y - 0, Eqs. (20) and (21) reduce to T-l =T

nonideal plasmas, y << 1, Eqs. (20) and (21) show that T-l ’d T;l and 0 £ ay-
For moderately nonideal, 10-1 Ly s 100, and strongly nonideal, 100 <y<¥,
plasmas, the electron interaction frequency 1_1 increases, and the conductivity
decreases considerably — and by orders of magnitude — respectively. These
theoretical results are in agreement with measurements on nonideal plasmas,l-lo
which exhibit considerably smaller conductivities than expected from binary
collision theory.

It should be noted that Eqs. (16) and (17) or (20) and (21) are applicable
to nondegenerate plasmas only, i.e., to densities n < n or interactiom parameters

2
0<y<y , 7=21/3 ——Ze—’—'—‘-ll—z = 2.823 x 10%z17Y/2 | (23)
(KT/2mm)

For a physical interpretation of the above results, the partial collision

frequency in Eq. (13) for the v-body interaction of a conduction electron with

10




v-1 other charged particles (e,i) is rewritten in the form

1;1 ~ (nﬁ?)v_l vit , v=2,3,4,...N , (24)
where
n ~ 91 s zZ~1 ,
v~ k2,
_ 9 (25)
r~e /KT ,
: Q~ (eZ/KT)2

are, as to order of magnitude (~), the electron or ion density, the speed of
the conduction electron relative to the interaction partners (e,1), the Coulomb
interaction radius, and the Coulomb scattering cross section, respectively
@« = n;z). The bar designates the thermal average.

In Eq. (24), Qr [cm3] is the interaction volume of one scattering partner,

w = nQR [1] is the spatial probability for a binary interaction, wla

(na;)v_l [1] is the spatial probability for v-1 simultaneous binary interactions
(in a At ~ ;/;) of the conduction electron with v-1 other charged particles

(v-body interaction), and v/r [sec_ll is the frequency of interactions of the

e

conduction electron, which occur at distances r. Accordingly, the frequency for

a v-body interaction of a conduction electron with v-1 other charged particles

is




APPLICATION

For the practical use of the conductivity formula {Eq. (21)], the dimen-
sionless coefficients ch have to be determined either experimentally or by
physical arguments, since a complete kinetic equation for many-particle Coulomb
interactions is not available, For moderately nonideal plasmas, the conductivity

is in good approximation given by Eq. (21) as

(KT)3/2 .
ml/zez[C;; + ¢ (/27

o= s 0<y<1 , 27)
since the next higher term in the denominator is of the order y6. Thus, for
1 0<y<1, it is sufficient to calculate the conductivity of nonideal plasmas

from a physical model of two-~ and three~particle Coulomb interactions. In this

case, only two dimensionless constants, and C have to be determined.

€22 z3°
For ideal plasmas, the coefficient sz has been evaluated by means of the

Boltzmann equation for an unshielded Coulomb potential ¢ = Ze/r (Rutherford

« -1 _ 2,1/2
scattering cross section) as CZZ 2 7/en A, where A = [1 + bmax/bo) ] and

bo = Ze2/3KT (see, e.g., Ref, 11). Different authors prefer either the mean

ion radius,11 bmax = (3Z/4nn)1/3, or the Debye radius,12 bmax = D, as upper

impact parameter in order to avoid the Coulomb divergence of the binary colli-
sion integral. Accordingly, eitheri! 2/3y-2]1/2 ort?
-3.1/2

i . For both choices, #n A + 0 for y > 1 and

A =11+ 9(3z/4m)
A= [1+9(Z/4n (1l + 2))y
fn A << 1 for y < 1.

For a classical nonideal plasma, 0 < y < ¥, a physically meaningful Coulomb
logarithm is obtained by evaluating the binary collision integral for a shielded
Coulomb potential ¢ = Ze exp(-r/8)/r (Wentzel scattering cross section). This

approach does not require an artificial cutoff of the impact parameter and

gives15

1/2

Cpp = 3/6)@2/m) "%z an A, (28)

12




wherel5

L A = 8KT/(h%/m?) >> 1 (29)

for nondegenerate plasmas. A is proportional to the ratio of thermal (KT) and
quantum potential (h2/m62) energies of the electrons, since the scattering in
the shielded Coulomb potential is a wave-mechanical process (independent of
ns ;).15 Equation (29) contains not only the effects of binary interactions
at distances r £ § but also the collective many-body interactions at distances
r > 6.

The electric shielding length § of the Coulomb potential of the classical,
nonideal plasma can depend only on Z and the dimensional parameters e, m, n,

and KT. Dimensional analysis shows that a GN with a still undetermined power N

exists which is independent of m,

8y =C n-l/3

2. 1/3
N ZN (en

xn N (30)

The interaction length is the linear superposition § = GN + GN , since § has
1 2
to satisfy the limiting conditions,
s = [z/anL + 2 M2 e w2y, (31)
s = /3y Y3, vy 1 o w=0) (32)

corresponding to the Debye and mean ion radii, respectively. Elimination of
the dimensionless constants by means of Eqs. (31) and (32) leads to the shield-

ing length
5 = (4rn/32) Y301 + ans3) 3 + 2y Y2 (33)

By Eq. (29), A >> 1 for 0 <y < 1, and A > A(R) = 4r(32/m)%/3 for 1 < v < 7.

13
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It is seen that Eqs. (29) - (33) provide a satisfactory theory of the Coulomb
logarithm of nondegenerate nonideal plasmas.

In order to calculate the coefficient C;; for triple e-i-i interactions
(e-i-e collisions are disregarded consistent with the disregard of e-e colli-

sions in the evaluation of C;;), application is made of the model Eq. (24)

which yields

1., = = \v1= ,=
v T (niQeirei) Vei/rei » Oy <l ’ (34)

where

ni = n/Z ,

Ty - Wy Ek/mt?

- 2 (35)

ry= Ze“/3KT .

(‘)ei = (n/4) (Ze2/1<'r)2 tn A,

are the exact thermal averages known from kinetic theory.15 Comparison of Eq.

(34) with Eq. (13) shows that

~ 1/2, =
C,, = 4(8/m) T

v=1_-1
7 Z

z%0n 1) , 0<y<. (36)

1/2

Accordingly, C;; = (4/3)(n]2) Z2n A for v = 2 in agreement with Eq. (28), and

for v =3

1/223

C;3 = (1/9)(n/2) M2, o<y<1 . (37

Substitution of Eqs. (28) and (37) into Eq. (21) yields for the electrical

conductivity of moderately nonideal plasmas:

g =

1/2 3/2
73 (3/4) (2/m) (KT) , 0<y<l . (38)

m Ze2[2n A+ (n/lZ)Z-l(En A)273]

14




The Coulomb logarithm, %n A, is evaluated in Eq. (29) in dependence of n, T, and
Y.

Equations (34), (36), and (37) are based on binary e~i and triple e-i-i
collisions and collective many-particle interactions which are considered
through the shielded Coulomb potential with the interaction length & = &(n,Y),
{ Eq. (33). The approximately equal signs in these equations are a reference to
the disregard of binary (e-e) and triple (e-i-e) collisions. Furthermore, we
have restricted the applicability of the results to moderately nonideal
(0 < y < 1) plasmas, since the Coulomb logarithm has been calculated without
considering the influence of triple collisions. The latter effect is in all
probability not quantitatively significant since &n A is a slowly varying
function of A. A more accurate determination of the dimensionless coefficients
C and CZ3 has to be postponed until a kinetic equation for nonideal plasmas

z2

is available, which takes into account not only binary but at least also triple

interactions and correlations.

The experimental data for nonideal alkali and noble gas plabmaslo

(0.1 < y < 1) indicate that the electrical conductivity is roughly an order
of magnitude smaller than predicted by the theories of ideal11 and weakly

nonideal12 plasmas. In Fig. 1, isobars of the dimensionless Coulomb conductivity

m1/2 2 /2

ok = e o/(KT)3

are reproduced versus the number of electrons in the Debye

3

sphere, ND = 4nD3n/3 ~y /2 [Eq. (3)], showing (1) conductivities according to

the ideal plasma theoryll (bmax = D), (2) computer conductivities from molecular
dynamics and Monte Carlo methods (with error estimates) by Valuev and Norman,16
and (3) experimental conductivities for a cesium plasma at a pressure

Pp=5«x 104 Pa by Dikhter gg.gl.lo Conductivity curves based on the present

analytical theory [Eq. (38)] are shown for (4) lithium and (5) cesium plasmas

at a pressure p = 5 x 10% pa for comparison,

15
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Figure 1 demonstrates that the theoretical conductivity values from
Eq. (38) are correct as to order of magnitude and lie well within the errors

10,17 and the computer experiments.16 Equation (38)

of the experimental data
predicts a slight decrease of o* for ND < 0.1, which is due to the contribu-

tions from the triple interactions [Fig. 1, curves (4) and (5)]. This effect

was observed by Kulik ES.il'l7 in measurements on cesium plasmas.
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ITI.  CONDUCTIVITY OF NONIDEAL CLASSICAL AND QUANTUM PLASMAS

By

H. E. Wilhelm

ABSTRACT

The electrical conductivity of fully ionized, moderately nonideal

plasmas with Coulomb interaction parametérs 0.1 <y <1, where y = Zeznl/B/KT

is the ratio of Coulomb and thermal energies, is calculated for displaced
Maxwell and Fermi electron distributions, respectively. The electrons are
scattered by an effective Coulomb potential ¢(r) = Zer_lexp(dr/G), which

considers binary (0 < r < §) and many-body (8§ < r < ») interactions. The

shielding distance 1s given by & = a(éwn/3z)-1/3 with a = aoY-N~1 for classi-

cal plasmas and § = B(Zmn/32)-l/3

e2n1/3/ﬁ2m-ln2/3

with 8 = BOY_NT_M~1 for quantum plasmas,
where T = Z is the ratio of Coulomb interaction and quantum
potential energies of the electrons. It is shown that the resulting conductivity
formulas are applicable to densities up to four orders of magnitude higher

than those of the ideal conductivity theory, which breaks down at higher

densities because the Debye radius loses its physical meaning as a shielding

length and upper impact.parameter.
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INTRODUCTION

The theory of the electrical conductivity of fully ionized plasmasl-3) based

on the Boltzmann equation, the Fokker-Planck equation (derived by expanding the
binary collision integral for the small, successive velocity changes of

Coulomb scattering), or the Lenard-Balescu equation (taking into account the
dielectric properties of the medium) is in agreement with the experimental data

for rarefied high-temperature plasmas, y<<l. The interaction parameter is

1/3

defined as the ratio of (average) Coulomb interaction (Ze2n ) and thermal (KT)

energies (n is the electron density and Z the ion charge number),

y = ze2nl/3 3, 1/3

JKT = 1.670 x 10 ~zn ' ”/T

in cgs-units which will be used throughout. The conventional transport calcu-

-3) give an electrical conductivity of the form o ~ (KT)3/2Am1/2eZZZnA

2]l/2

1
lati
ations D

D/po for D>>p . D is

n

for classical ideal plasmas, where /= [1 + (D/pg)

the maximum impact parameter for which the Debye length is used, and P,

is the average impact parameter for 90° deflections (Landau length), P, = Ze2/2KT.
The condition,AD>>1 or ZnAD~101 is satisfied only for not too low temperatures

4)

T and not too high densities n. Conductivity formulas with this Coulomb
logarithm break down for large interaction parameters y and densities n, since

the Debye radius

D = [Z/4n (1 + Z)]l/zy-]‘/zn_l/3

becomes smaller than the atomic dimension 10-8cm and, thus, completely loses

its physical meaning as an electric shielding length and maximum impact parameter.

4 0 20

E.g., for T = 10 °K, y>10

and D<10-8cm if n>10 cm-3. Moderately nonideal

plasmas with y-1 are readily generated through shock wave compression and exhibit

conductivities of the order ¢ ~ 10l - 102mho/cm5_6)

» which are much smaller than
those which would be obtained by applying the conductivity formula for ideal

plasmas in the nonideal regime.




Although there are some bulk measurements of the electrical conductivity

5-8)

of nonideal cesium and noble gas plasmas available , theoretical explanations

of these results are still missing. The momentum and energy transport in

9)

weakly nonideal plasmas, y <<1, was treated by Wilhelm”’ by means of an

exponentially shielded Coulomb potential, which permits to consider not only
short-range binary (r $ D) but also long-range many-body (r >D) interactions. This

10)

interaction model was used shortly afterwards by Rogov for the calculation
of the conductivity of weakly, nonideal argon and xenon plasmas with Debye
shielding.

For moderately nonideal plasmas, 0.1 <y s 1, various phenomemwlogical approaches
have been used to extend the conductivity formula of ideal plasmas, e.g., Goldbach

11)

et al multiply the Debye length D with a free parameter x(p)which is chosen
to match the experimental data, i.e. to compensate for the too rapid decrease of
D with pressure. A kinetic equation has been proposed for nonideal plasmas

by Klimontovichlz), which considers spatial correlations and temporal retardation

in the collision integrals. This equation appears to have not yet lead to transport

coefficients because of the mathematical difficulties associated with its solutionm.
In the following, the momentum relaxation time and the electrical conductivity

of (i) classical and (ii) <quantum plasmas is calculated for intermediate non-

ideal conditions, 0.1 < y s 1. For this region of interaction, the concept of

Debye shielding already breaks down since the number of particles in the Debye

sphere 4nD3/3 is no longer large compared with one for y > 0.1. This difficulty

13)
can not be remidied by replacing D with the quantum mechanical shielding length

(h = 2 = Planck constant),

Dy = (naoﬁkF)llz, a = :%2- R kF=2n(%)1/3 :
which is too small as D in most high pressure plasmas, e.g. DF ~ 10-8 cm
for n = 1020 cm-3. From the definition of the mean particle distance, it is clear

1/3

that the mean ion distance § ~ ni- separates the region in which an electron
21
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experiences few-body encounters (r < §) from the region in which an electron

experiences many-body interactions (r > é) in a nonideal plasma, as long as

§ > 10—8cm (n1 < 1024 cm—3). Thus, the mean ion distance evolves naturally

as the characteristic interaction distance for nonideal plasmas, for which

Debye and Fermi shielding fail. We demonstrate mathematically that § = Y-Nni-l/s

with 0 < N < % for classical plasmas and § = Y-NP—Mni_l/3

quantum plasmas (T = Ze2n1/3/ﬁzm_ln2/3), il.e. Y-N ~ 1 and F-M']-are correction

with 0 < M < % for

factors which are insignificant since the plasma conductivity depends logarith-
mically on §.

We calculate the electrical conductivity of plasmas with (i) Maxwell and
(ii) Fermi distributions of the electrons, when all ions have the same charge
number Z. The electrons are assumed to be scattered by the exponentially
shielded Coulomb potential ¢ = Zer-lexp(—r/G) which takes many-body interactions
at distances r > § into account. The considerations are applicable only to
moderately nonideal conditions, 0.1 < y < 1, up to densities n << 1024 cm-3.

Thus, the following theory is limited to densities n well below the electron

density in (solid) metals.




PHYSICAL FOUNDATIONS

The electrical conductivity o of any gaseous, liquid, or solid medium,
in which the electrical current transport is due to electrons, is proportional
to the electron density n and the relaxation time 1 of the average momentum

>
<mv_> of the electrons (m is the electron mass and e > 0 is the elementary

o = (nez/m)T.
The relaxation time 1 is determined by the scattering potential and the

(classical or quantum statistical) kinetics of the electron gas in the electric

In nonideal plasmas, the region 0 < r s § of binary and few - body

collisions and the region § < r < » of many - body interactions are separated

by the electric shielding radius §. Dimensional theory gives for classical

(n << ;) and quantum (n 2 n) plasmas (see Appendix) :

(]

#

VA

B(3Z/4ﬂn)l

A

[14m(142)]
n = 2(2mmKT/h
The nonideality parameters of the classical and completely degenerate plasmas

are defined by

(1)

(2)
(3)

(4)
(5)

(6)
)]

(8)

[T




The classical formulas (2)-(3) are the special case M = 0 (Bo- ao) of

4)

the general quantum-mechanical Eqs. (4)-(5). Eq.(2) becomes the Debye radius

of the weakly nonideal (y<<l) classical plasma for N = %, §(N=k)=D, whereas

13)of the completely degenerate (n>>n) plasma

T Eq. (4) becomes the Fermi radius
for M=% and N = 0, &6(M=k, N=0)~DF. For M=N=0, Eqs. (2) and (4) reduce to the
shielding radius of the strongly nonideal plasma, in which the kinetic energy

(KT or'ﬁzm_ln2/3) of the electrons is negligible, 6(M;N=0)~Gzlawn)l/3

, which is
the mean ion distance up to a factor a,= By ~ 1. For these reasons, the powers

M and N in Eqs.(2)-(6) are limited to the interval O < M,N < %. For non-golid

(n << 1024cm-3) plasmas of intermediate nonideality, 0.1 < y g 1, which implies

1 <T g lozsince r = (KT/ﬁzm—ln2/3)y, extremely simple relations hold as to order-

of-magnitude:

ay) - 1, 8(LD) -1, &~ Gz/em)3. 9

Based on the above considerations, the scattering of electrons by Z-times
charged ions in plasmas of intermediate nonideality is described by the shielded
Coulomb potential

6(r) = zer L exp(-r/6), O<r<w , 0.1 <ygl. (10)
which contains the binary and few - body collisions at distances 0 < r < § and the
many - body interactions at distances § < r < » . A similar Coulomb potential is
used in the conductivity theory of metals, although the use of such a "binary
quasi-potential" is questionable for densities n > 1022 cm—3.

The differential cross section 0(6,g) for the scattering (E +'§*) of

electrons by the potential (10) is in the center of mass systeml@
2
0(6,8) = (ze2/2m)%/[gsin®(8/2) + v21®, u = H/2mé (11)
>, > >
where 8 = ¥(g,8%), g = 3e - 31, g* = 3: - 31* , and
24
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the electron and ion velocities before and after the interaction are designated

by ¢e’i and ;:,i , respectively. The speed u corresponds to a de Broglie

wave length of the order A ~ §. For u + 0 or § - », Eq. (11) reduces to the

Rutherford cross section}A)
The scattering cross section o(6,g) is strictly valid only in the Born

approximationla?

Contrary to what one might expect in general for the latter,
Eq.(11) describes in good approximation the scattering in the exponentially
decaying potential (10) because of the peculiarity of the Coulomb interaction.
The Coulomb interaction ¢ ~ 1/r has the unique property that the Born approximation
and the exact wave mechanical approach give the same scattering cross sectionM)
(identical with the Rutherford formula). In the region 0 < r < §, the interaction
potential(l0) is practically Coulombic, and thus the Born approximation gives
the correct solution. 1In the region § < r < «, the interaction potential (10)
is effectively screened, i.e., the Born approximation gives the correct solution
because ¢(r) is small. In the transition zone r & §, the Born approximation
holds fairly well for reasons of continuity.

The relaxation time 71 is obtained by evaluation of the collision integrals
for the electron momentum mze for the (i) classical and (ii) degenerate plasma,
respectively. Both in the cases of classical and Fermi statistics, the particle

>
velocities 3e 1 and v: 1 before and after the interaction are interrelated by the
* ’

classical conservation equations for momentum and energy.

25




CONDUCTIVITY OF CLASSICAL PLASMA

According to kinetic theory, the average momentum density nm(<3e>-<3i>)
exchanged per unit time between electrons and ions, interacting with the Coulomb
potential (10), is given by the collision integral for mze, which determines

the momentum relaxation time T ,

-+ >
—nm(<ve> - <vi>)/T =
mf JVIE G £,G0 - £ F) £,(,)]g 0(6,g) dR dv_dV, . (12
The scattering cross section o(8,g) is given in Eq(11l) and the solid angle element
is d? = sin 8 d6 d¢. 1In response to an applied electric field E, the electrons
and ions drift with velocities <3e> and <v,> so that their distribution functions

i

are displaced Maxwellians,

> _ 3/2 1 > > 2 -
fs(vs) = ns(mS/ZWKTS) exp[—zlns(vs <vs>) /KTS], g=e,i. (13)
Eq.13) represents a 5-moment-approximation to the nonequilibrium solution of the

<
Boltzmann equation. The perturbations of fs(vs) due to viscous stresses and

heat flows are neglected in Eq.13), since they yield only corrections of

higher order to the conductivity.

9

The collision integral (12) is integrated by standard methods”’ for subsonic

drift velocities, | <3e> - <3i> l < (2KT/m)l/2, with the usual approximations

n

(m , = memi/(me + mi)

i m Zm, T = mes[('re/me) + (Ti/mi)] =z Te = T).

e es

>
For supersonic drift velocities, a linear response } = oF between current density

} and electric field E does no longer exist.g)) The resulting relaxation time is

given by:lY)
-1 _8 1/2 ,
T © = 3(2KT/mm) n, Q ’ &kr)
Q = jze?/ kn? L : @a5s)
-1
A -1
L=ce¢ El(h ) s (16)
where
A= 2KT/mu2=a+2(&m/ﬁ2)(4ﬂn/3Z)-2/3KT (17)

26

N e ep—— ——— po—; i Ml




by Eqs.(2) and (11) for the classical plasma. Furthermore

Ey(x) = - T* - In x - T D" x™n@h) (18)
m=1

is the exponential integral of order one (T'* = 0.477.. = Euler's conetant).la)

The latter satisfies the inequalities, for x > 0,18)

BSin(l + 2/x) < "B (x) < In(1l + 1/%),(1 + x0T < e"E, (x) < x L. (19)
Accordingly, Eq. (17) gives formally for small and large arguments x = A_l,
L2InA, A>>1 ;3 L=A, A<<l . (20)

Rewriting A in terms of the thermal and quantum potential energies shows that

for classical plasmas

>> 1, E, = KT, EQ z-ﬁz/maz. (21)

Combining of Eqs. (14)-(17) with Eq.(l) yields the desired electric

A= SET/EQ

conductivity of the classical plasma of intermediate nonideality, 0.1 < y g 1:
1
o = 3D 2/2(2mm) % % 2 (22)
where
L = wn(8ut > ot2(amm/32)" k1), A s> 1, (23)

by Egs.(17) and (20),

The conductivity formula (22) differs from the conductivity of the ideal
-3)

plasmal mainly through the term L. The latter has the form of a Coulomb

logarithm, L = In A for A >> 1, i.e. for all densities n and temperatures T for

which the plasma is nondegenerate, ET > Eq.(21). Numerically,

E.,
Q

A =3.482 x 10M4*2(nsz)%/ 37 | (24)
The corresponding argument AD = 2KT D/Ze2 of the ideal Coulomb logarithm1-3)

in AD, is

- 1
Ay = 1.464 x 10° 2711 + 2y o712 13/2 (25)
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Table I compares A of the nonideal plasma and AD of the ideal plasma for large

4

densities n and the typical temperature T = 10  °K. It is seen that {n AD of

the ideal plasma is unacceptably small for densities n > 1018 cm-3, whereas

22 -3
cm

£n A of the nonideal plasma has reasonable values up to densities n < 10 ’

3
if T = 104 °K. The conductivity formula (22) holds, therefore, for densities n
up to 4 orders of magnitude higher than the conductivity formula of the ideal

plasma. Eq.(22) is not applicable to n ~ T regions for which A << 1, {i.e.

|
’s
k ET << E., which weyld imply degemsrate electrons.

Q
TABLE I: A and A versus n for T = 10% °K, 2 =1, and a ~ 1.
n[cm'3] 1018 10%° 10%2 1024
3 2 1 0
A 3.482 x 10 1.616 x 102 0.750 x 10 0.348 x 10
Ay 1.035 x 100 1.035 x 10° 1.035 x 10°}  1.035 x 1072

The conductivity formula (22) becomes in cgs - units or practical units

9 x 1011 sec_l = 1 mho cm'l),

o4 372

) -1
| o =1.39 x 108 T3/2 /2 bn A [sec™l] = 1.549 x 1 Jz &n A [mho cm 1] (26)

° 1
1 where A is given in Eq.(23). Accordingly, if T = 104 Kand Z = 1, o = 1.899 x 10

- - - -3
mho cm 1 for n = 1018 cm 3 and o0 = 3.046 x 101 mho cm 1 for n = 1020 cm .

1/2 2 /2
m ‘e

In Fig. 1, isobars of the dimensionless conductivity o* = 0/(KT)3

are reporiuced versus the number of electrons in the Debye sphere,

ND = AnDsn/3 ~Y-3/2, showing (1) conductivities according to the ideal plasma
thenry 4, (2) computer conductivities from molecular dynamics methods (with er-
ror estimates) 15 and experimental conductivities 16 for (3) Cs and (4) Li plasmas
at p =5 x 104 Pa. Conductivity curves based on Eq. (22) are shown for (5) Li

and (6) Cs plasmas at p = 5 x 104 Pa for comparison. It is seen that Eq. (22)

is in good agreement with the machine calculations 15 and in reasonable accord

with the experimental data 16.




.acmqoaxn = d) seuse1d 83 (9) pue 11 (S) 103 L1043 Jues

~-21d pus ‘eq coﬂxn = d 3% seuseyd jq (%) pue 83 (g) 103 oﬂnumv Telu3myaadxa

muncOﬂuuasono dupyoew sOjWeEUAp 1BTNd3Tom (Z) .qmuow:u suseTd [eapy (1) :eaayds

adqaq 9yl uy sayd13aed jo nz 13qunu SNS1dA o £3]A
¥

F3Ionpuod 883TUOTSUaWEQ :1 °9I4

P

90




_—f

CONDUCTIVITY OF QUANTUM PLASMA
The electrons in a plasma become degenerate if their thermal DeBroglie

wave length is larger than the mean electron distance, i.e. at densities

2
n > 4.828 x 1080 1/

E.g., for T = 104 °K, degeneracy requires n > 5 x 1021 cm'3. In view of their

large mass my >> m, the ions can be treated as classical. The momentum relaxation
time 1 of the degenerate electron gas is determined by the quantum statistical
19)

collision integral for mze,

> >
- nm(<v > -~ <y > T =
(V> - <)/

> > > 1h” - > > _]__L -
m [ f v E (VOE DI - §m3fe(ve)] - £ (v) £, - > )]

x g a(8,g) do d¢e d??i (27)

where the scattering cross section 0(9,g) between electrons and ions is given by

Eq. (11). The solutions to the velocity distributions are the displaced
Maxwellian (13) for the ions (s = i) and the 5-moment Fermi approximation for the

electrons,
> 3 1 > > (2 -1
fe(ve) = 2(m/h)”~ {1 + exp[im(ve <Ve>) - u]/KT } . (28)

The chemical potential 4 = p(n, T) is determined by the integral functional
> >
n-ﬁé%,u)d%.
> - -+
Again, a linear response j = OE exists for small drift velocities <ve i>
or weak electric fields E. Integration of Eq.(27) yields, after standard

approximations, for the relaxation time of the degenerate electron gas:

4,2 L
-1 8
s 3(3)1/2 e'Zny MQ

(29)
m «r)3/?R(a,T)
where -1
AQ -1
LQ = e El(AQ ), -(20)
16 -
/\Q = -3-—;—';36*2(5%) 2/3 g Q(n,T) (31)
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an,T) =21+ 24 L, n< AT, (32)
n
4 -2 n ~
R(n,T) = 1+2 7=+ ...), < T, (33)

but

1/2 n
Q(n)T) = g( 4 —:)

n

-4/3

2 ..1/2 .
2/3 m_3m ) +...1, n> n(T), (34)

[1+ 25

k-

12

3"1/2 -4/3

n,1 3n2 n ~
7) [1+—4—(—— =) + ...1, n> n(T). (35)
n n

R(n,T) 3

Equations (32) - (33) and Eqs. (34) - (35) result from expansions of the Fermi

B(T) and

distribution (28) in the collision integral (27) for densities n <

n > ﬁ(T), respectively. Eqs.(32) and (34) indicate that AQ >> 1 for n << n

and AQ << 1 for n >> n since AQ = (2/3)(B/a)2 AQ(n,T) by Eq. (31).

The series are based on expansions of the normalization integral in Eq.(28),
which gives the chemical potential u explicitly as a function of n and T,

-3/2 n,1 -3/2

b opn{® o+ 273231, c% 3732y 2 L), n o< oa(D), (36)
n n n

Moo (3n1/2 3)2/3 (1 - _E?(3ﬂ1/2
4 3 12 ° 4

1/2

-4/3 n4 3n n
e
n

n
<) - ¢

-8/3

+...]1, n>n(T) ((37)

Combining of the conductivity formula in Eq.(l) with the relaxation time of
Eq(29) yields for the electrical conductivity of the degenerate electron plasma

of intermediate nonideality, 0.1 <Y 5 1:

_ 360’2 R(a,1)

o 1/2 2 (38)
m e

where LQ is given by Eq. (30). In the limiting cases of large and small values of

AQ,
1y = &3 &g, 1, hg>> 1, (39)

2 B2
LQ = 3 ('a) AQ(H’T) s AQ << 1, (40)
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since A, = (2/3)(B/2)2A0 by comparison of Eqs.{31) and (17).

For n/fi » 0, Eqs.(38) and (39) reduce to the classical conductivity,
Eqs.(22) and (23), since R(n,T) - 4/¢/7 and Q(n,T) -+ 3/2 for n/f + 0 by
Eqs.(32) - (33). On the other hand, Eqs.(38) and (40) give in the limit of

complete degeneracy, n/a » o

3
- @
2’tTme Z L
T - Ly
where
R A A (42)
by Egs.(34) and (35). Since M =% and N = 0 for n/fi + =,
2 -1
82 = [72/41(1+2Z) | (4n/32) /3F (43)

bv Eq.(4), i.e., 821 devending on the magnitude of T = EC/EQ, Eq.(8).
Equation (43) agrees with the expression for the conductivity of a low

20)

temperature metal.—-
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GENERALIZATION

Nonideal plasmas may exhibit not only a high degree of single
ionization but also multiple ionization, due to lowering of the ionization

energies by the internal Coulomb fields, and overlapping of the atomic wave

functions at sufficiently high pressures.Zl) In an electrically neutral plasma

with N species of ions (i) of charge Zie and density n, the electron density

n and entire ion density n(i) are related by

N N
n=x Zmg, n(i) = Loy (44)
i=1 i=1
Since the probabilities T;l for interaction between the electrons and ions
of type i = i, 2,...N are additive, the momentum relaxation time of the
electrons is in presence of N ion components (i) given by
2T ¥ (45)
i=1
From Egs.(44) to (45) follows that the derived conductivity formulas are
generalized to many-ion-component plasmas by means of the substitutions:
- N
zx>2=1t nzy/n0) , (46)
i=1
) N
z2 » 22 = ¢ n, z2/n(4), N
j=1 11
_l J T _2
Z + 2 = Z/Z . (48)

Since it is extremely difficult to calculate accurately the ion densities n

i
in many~component nonideal plasmas,zz)it is advisable to make use of equivalent

approximations [see, e.g., Eq.(9)] to avoid too cumbersomeconductivity expressions

in practical applications.
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APPENDIX

Since adequate methods for the solution of the many-body problem are
not available, we derive the shielding radius § of nonideal plasmas from

first principles of dimensional theoryz?)

This method gives § in dependence
of the relevant dimensional plasma parameters (e, m, n, KT, fi), but leaves a
dimensionless proportionality constant of order one undetermined, Co ~ 1.
The latter can, however be found from the physical argument

§ =D = [KT/4w(1 + Z)ezn]% for y << 1, n << n, (Al)
since § approaches the Debye radius D in the limit of the weakly nonideal
classical plasma. The dimensions of the characteristic plasma quantities,
which determine § of dimension L are given in terms of the fundamental dimen-
sions of length (I), time (7), and mass (M):

3/2 1 3 2,,-2 2

Dle) = L Mt ,» DI[m} = M,D[n) = L7°, DIKT] = ML“T , D[K] = ML 7L, (A2).

A. Classical Plasma. Since in a classical plasma § depends on the

dimensional parameters e, m, n, and KT, Dupré's fundamental theorem of

dimensional analysisZ3)demonstrates that

§ = Coe™ m'2 a3 ()M (A3)
where

3N 3N +2N =1, 3N +N. 4N =0, -N. - 2% =0 (a4)

ol 3 = b M FNp AN, =0, Ny 50

by comparison of the powers Ni of L, M, and T in Eq. (A3). Elimination of

Nl’ Nz’ N3 in terms of N4 = N reduces Eq. (A3) to

2n1/3/KT)-N n—1/3 ) (A5)

It is seen that § = Con—l/3 for N = 0 (strongly nonideal plasma, y >> 1, with

§ = Co(e

negligible thermal energy)and 6§ = D for N = 1/2 (weakly nonideal piasma, y << 1).

Accordingly,

¢ = Lan(1 + )72 (46)




by Ec. (Al), Eqs.{A5) and (A6) are combined in an illustrative form for classical

plasmas:

,. 2 1/3
Zen " "y-N gg_)l/3

o KT (Ann
This is Eq. (2) where ao(Z) is defined in Eq. (6).

§ =a , 0<N<1/2 . (A7)

B. Quantum Plasma. Since in a quantum plasma § depends on the dimensional

parameters e, m , n, KT, and fi, Dupré's theorem23) gives

s = ¢ &M a2 a3m ™ 1S (A8)
where

3 — l - - - - =

ENl - 3N3 + 2N4 + 2N5 =1, §N1 + N2 + N4 + N5 = 0, N1 2N4 Ns 0 (A9)

by comparison of the powers Ni of L, M, and T, in Eq. (A8). Elimination of Nl’

NZ’ N, in terms of N, = N and N. = 2M reduces Eq. (A8) to

3 4 5
1/3 2.1/3
2n -N e n -M -1/3
= £ LI,
6= GGt (o © : (410)
fim n
It should be noted that Eqs. (A5) and (A7) are the special case NS = 0 of Eq.
(A8) and M = 0 of Eq. (AlD), respectively. For M = 1/2, Eq. (AlQ) reduces to
the Fermi shielding 1engthl3) of the completely degenerate plasma (n >> n).
Eqs. (A6) and (Al10) are rewritten in an illustrative form for quantum plasmas:
1/3 1/3
_ o (Ze?n "7 -N Ze2n -M , 32.1/3 1
87Tk e G oM Mg (AL1)

This is Eq. (4) where Bo is defined in Eq. (6).

In the above formulas, the power 0 < N < 1/2 characterizes the nonideality
(N = 1/2 for y << 1, N =0 for y > 1), whereas the power 0 < M <1/2characteri~
zes the degeneracy (M = 0 for n << n ; M= 1/2 for n >> n). Although dimensional
theory alone does not provide expressions for M and N, it is recognized that a(y)
[Eq. (3)] and B(y, I') [Eq. (5)] are of magnitude-of-order one, i.e. § - (3Z/lwm)1/3

for nonideal classical and quantum plasmas of intermediate nonideality, 0.1 < y g 1.
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In the conductivity tl ory of metalszo’ZQ’zsl the mean ion radius

1/3 is used widely as shielding length of the ion potential,

r, = (32/4mn)
based on phenomenological arguments. The presented dimensional analysis
provides the first mathematical justification not only for nonideal plasmas

but also for metals.
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ELECTRICAL CONDUCTIVITY OF NONIDEAL QUASI-METALLIC PLASMAS

A. H. Khalfaoui
Department of Engineering Sciences, University of Florida, Gainesville, Florida
Abstract

Electrical conductivity formulas are derived from first principles for fully
| ionized nonideal plasmas. The theory is applicable to an electron-ion system with
a i) Maxwell electron distribution with an arbitrary interaction parameter

y = Ze2n1/3/KT (ratio of the mean Coulomb interaction and thermal energies) and

.. . . . . . 2
ii) Fermi electron distribution with an interaction parameter T = Ze2n1/3/h2ﬁ1n /3
(ratio of the Coulomb interaction and Fermi energies). The momentum relaxation
time of the electrons in the plasma is calculated based on plane electron wave

functions “nteracting with the continuum oscillations (plasma waves) through a

shielded Coulomb potential Us(r) = eseeexp(—r/GS)/r, which takes into account
both electron-ion interactions (s=i) and electron-electron interactions (s=e).

; It is shown that the resulting conductivity formulas are applicable to higher
densities, for which the ideal plasma conductivity theory breaks down because
the Debye radius loses its physical meaning as a shielding length and upper
impact parameter. The conductivity obtained for classical plasma is of the form

3/2/ml/2e2 and agrees with the ideal plasma conductivity formula

*
o, =9, (KT)
with respect to the temperature and density dependence for y/Z -+ 0, but its

magnitude is significantly reduced as y/Z increases. For quantum plasmas, the

conductivity obtained is of the form g. = o*h3n/m22e2, which shows that the

Q Q

degenerate plasma behaves like a low temperature metal.




L. INTRODUCTION
The electrical conductivity of nonideal plasmas has been subject to
many experimental and theoretical investigationsl:l? The theory of the electrical
conductivity of fully ionized plasmas, based on the Boltzmann equation,§)
the Fokker-Planck eauationg)(derived by expanding the binary collison integral
for the small, successive velocity changes of coulomb scattering), or on the
Lenard-Balescu equationlg)(taking into account the dielectric properties of
the medium) is in agreement with the experimental data only for rarefied high
temperature plasmas, y/Z<<1.The interaction parameter y/Z is defined as the

ratio of (average) Coulomb interaction (Ze2n1/3) and thermal (KT) energies

(n is the electron density and Z the ion charge number),

y = ze?nl/3/gT = 1.670 x 10~3zn!/3/T
(cgs-units are used throughout). The conventional transport calculations

8-10)

=2
and weakly nonideal plasmas}7—£ive an electrical

d
- tl+<;oﬂ)211/2 z 4y /p,

for classical ideal pnlasmas

conductivity of the formo ~(kT)3/2/ml/2e22£nAD, where AD

for‘%>>po. The impact parameter for 90° deflections (Landau length) is =
7e?/3KT. The condition, AD>>1 or EnA6~101 is satisfied only for not too low
temperatures T and not too high densities n. Conductivity formulas with this
Coulomb logarithm break down for large interactions parameters v /7 and
densities n, since the Debve radius

do = [z/4n(142)]3/2y 71/20=1/3

becomes of the order and smaller than the mean particle distance a~1/3 for Y/Z ~

-1

10 and v/Z > 10_1 , respectively. Thus dD loses its physical meaning

as an electrical shielding length and maximum impact parameter. For this
reason, a new shielding length § is introduced through dimensional analysislll,
Moderately nonideal plasmas with Y/Z ~ 1 arc readily gererated through shock
12-13)
m—,

wave compression and exhibit conductivities of the order ¢~10'-102mho/c

which are much smaller than those which would be obtained by applying the
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conductivity formula for ideal plasmas in the nonideal regime. Although

there are bulk measurements of the electrical conductivity of nonideal

Cesium and noble gases plasmas availablelz:lél, the formulas are valid only

1-2)

Y/Z. The momentum and energy transport

16)

in weakly nonideal plasmas (y/Z << 1) was treated by Wilhelm—

for small interaction parameters
by means of
an exponentially shielded Coulomb potentia’, which permits to consider not

only short-range binary (rsdD) but also long-range many-body (r>dD) inter-

2)

actions. This interaction model was used shortly afterwards by Rogov—

for the calculation of the conductivity of weakly nonideal Argon and Xenon

7)

plasmas with Debye shielding. Later, Wilhelml— applied his theory to

nonideal plasmas by deriving a shielding length and Coulomb logarithm which
are valid for 0 < y/Z < 1.
For moderately nonideal plasmas (0.1 < y/Z < 1) various phenomenological

approaches have been used to extend the conductivity formulas of ideal

4)

plasmas, e.g., Goldbach et al—" multiply the Debye length dD with a free

parameter x(p) which is chosen to match the experimental data, i.e. to

compensate for the too rapid decrease of dD with pressure. A kinetic equation

19)

has been proposed for nonideal plasmas by Klimontovich—’, which considers

spatial correlations and temporal retardation in the collision integrals, but

1)

does not take into account many-particle collisions. Ebeling et al-

20)

. . L2 .
recently kinetic—*= and correlaton functlon—l) methods to derive a resistance

used

formula for nonideal plasmas, which is applicable only for y/Z << 1.

28)

Herein, we extend and apply the Bloch—" transport theory to nonideal

plasmas, based on concepts similar to those used for solidszgl and liquid

metalszﬁigzl.

The application of this model to nonideal plasmas is justified
since a plasma exhibits a quasi-crystalline structure for y/Z > 10-1, becomes

a liquid for v/Z . 1, and undergoes a diffuse transition into a solid, metallic

state at a critical value Yo' The role of the longitudinal phonons in the
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theory of metals is assumed by the quanta of the plasma oscillations (plasmons).

The theory to be presented provides a momentum relaxation time for

i) classical plasmas (n<ii, ﬁ==2(2anTP/2/ﬁ3) with an interaction parameter Y/Z
and ii) quantum plasma (n>fi) with an interaction parameter r/Z(T=Ze2n1/3/

#2m~'n2/3). The results are compared with previous theories and

experiments.
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I1. ELECTRON-PLASMON INTERACTION

We consider the electrical conductivity of nonideal plasmas due to the many-
body interactions of the electrons with longitudinal plasma waves (similar
to the interaction of electrons with phonons in liquids or solids). The
plasma under consideratior. is a continuum of volume ( containing N elsctrons
and N/Z ions, which exhibits 3N (high freauency branch) and 3N/Z (low
frequency branch) characteristic frequencies ws(q) of longitudinal osciilations
(s=e,3). The high frequency branch corresponds to electron plasma oscillations
and the low fregquency branch are the ion sound waves.

The motion of electrons in a continuum is affected by the continuum
oscillations (many-body interactions). In ideal plasmas, the change in
motion is caused by binary collisions of the electrons with the plasma
particles. In nonideal plasmas, however, the electrons interact with the
fluctuating Coulomb ‘ield of all charged particles. Therefore, this
interaction can be treated as a scattering of the electrons by the
random longitudinal waves of the plasma continuum, which are thermally
excited.

As in the theory of metalsgﬁl—gz)we are considering a free electron
model, which is applicable to nonideal plasmas. For dense plasmas with
Z electrons per ion, the electron wave functions are approximated by plane
waves -~ exp(ii-;). The electron energy E is given in terms of the wave
vector k by E=h’k?/2m, so that the Fermi surface is spherical.

- th , . -
Let we(q) be the e eigenoscillation with wave vector q of an electron wave

th
(e-plasmon) and, wi(a) the i eigenoscillation with wave vector 3 of an ion
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sound wave (i-plasmon). Taking into consideration conservation of energy and
momentum, i.e.‘ﬁw(ﬁ) =E' - E and‘ﬁa = ;' - ;, where E', ;' and E, ; are
respeccively the energy and momentum of an electron before and after a collision
with a plasmon of energy'hm(g) and momentum‘ﬁa, we see that an electron or ion
interacting with the plasma as a whole can emit and absorb plasmons which are
quasi-particles with energy'ﬁw(g) and momentum'ﬁ;.

The quasi-particles or plasmons obey Bose-Einstein statistics, and their
distribution function is

= 1

N, = . 6D
! exp[ﬁ——q—ﬁé )y _ 1

-

Let P(E, k') be the transition probability per unit time that upon a collision

of the electron with a nlasmon, an electron in a state k moves to another state _l:' which
is not occupied by any other electron. If f(E)is the Jistribution function of the
electron occupying the state K and f(t‘) the distribution function of the electron
in the state E', the number of electrons which move from the state K to the state k'
is (Pauli principle) N

Pk, KDEWI1 - £(k")]
Since there exists always an inverse transition to the above foreward interaction,
the total rate of change in time of f(ﬁ) due . electron~-wave interactions is

obtained by summing over all K',

-
s -1 PELDEEDN - €@ - P, k£ - £RDD) (2)
1
The interaction processes are calculated by perturbation theory. According to

, 26 27
Akhlezer-—%r Schiff——z the probability of transition from an initial state E to

a final state ﬁ' is

"2 2
PR, K = ZEM | % SR, - B . (3)

Ek' and Ek are the energies of the electron in the states ﬁ' and E,respectively.
<> >
]Mkk,lis the matrix element of the transition k?k'. For the absorption of a plasmon,

IMkk'liS proportional to ﬁq, and for the emission of a plasmon it is proportional to
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(ﬁq + 1). The more remarkable dependence of |M is on the Fourier transform

ol
: of the potential Us(r), by means of which the particles in the plasma interact.

» 2
‘ Similar to the matrix element of a metal given by Sham and Zimansg), |Mkk'| for

electron (s=e) and ion (s=i) oscillations with different frequency ws is
; 2 52 ~» 2 2
| Mg 17 = Ta 17 Gare )" [U (@7, s=esi (4)

where
. =S

) s = ——9 i
i laql stnsws(q) for the absorption of a plasmon |,

i (5)
3 —r— -—
E l S|2 ‘ﬁ(Na + 1)
, a .
: q = EE_;—E—??T for the emission of a plasmon
E s 8 s
Tor plane vvaves normalized in a unit volume, the Fourier transform of Us(r)
(e = -e, e, = Ze) is given by
e i
amele |
U (@) = ——7%, q= |k'-K| . (6)
s 2 2
§ +q
m is the mass of the particle s, ns is its density,|az| 2 is the mean square amplitude

of the qth mode of an oscillation of frequency ws(a), Zq is the unit vector direction of
the propagation vector a, and [US(E)I2 is the square of the Fourier transform of
the potential (through which the electrons and ions are interacting in the plasma).

1)

Instead of using a phenomenological pseudo-potential=— Us(r) with adjustable parameters

we describe the nonideal plasma with classical (Y/Z) and quantum mechanical (T'/Z)

interaction parameters by means of a Yukawa potential with a shielding radiusllp
6s~n;l/3(n=ne=N/Q. ni=N/ZQ):

Us(r) =. esjeexp(-r/5s) , s=e, i , ¢
where

5, = 4m/3n 31+ w3 na v 1 2quy72y @

with 61 = dD for v/Z << 1 and 61 = (4ﬂn/3z)—1/3 for v/Z >> 1.
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The plasma system consists of two components, electrons and ions where
every charge (-e for s=e and Ze for s=1) is assumed to be uniformally spread
over a spherical cell of Wigner-Seitz type of radius ﬁs(s=e,i), from which
the electrons are scattered in accordance with the exponentially shielded
potential v, Si being defined above, a radius 6e is to be defined in order
to take into account the electron-electron interaction. 6e is assumed to
coincide with the shortest wavelength ie = ZW/;e for n>n  and I'/231, and ae
is defined by the conservation of the total number of degrees of freedom of

the electron gas, i.e.,

~

e

@m0 anglaq = 3. (9)
[o]

For n<n and Y/Z<1, the minimum wavelength is obtained through the mean

A = -1/3

particle distance Ae YT, where ;e = (4mn/3) « Accordingly
6, =2masrmy L o, (10)
6, = Gm/nTHE L aa, an

1. Electron Oscillations. The high freqeuency branch of the space-charge waves

—>
is due to longitudinal electron oscillations. Their frequencies u%(q)(s=e in

Eq.(5)) are for classical (n<<n) and completely degenerate (n>>n) electrons

2.2.1/2

wg (@) = mp(l + a“q”) (12)
al = Ci/wi R n<<n (13)
2 32,2 o
a = 5\)F/wp N n>>n ) (14)
where the speed of sound Cm and the Fermi Speed Vg of the electrons are
¢ = (.Kkr/my1/? v = bGPy Y3 m 15)
m e ’ F >
and the critical electron density n and plasma frequency mp are given by
h o= 20mkr/md) 32 (16)
mp = (4ﬂne2/m)l/2 , . (17)

(re = (Cp/Cv) = 5/3 for the electrons and m is their mass).

46




For all wave numbers, 0 < q < q, 2“/60, the electron oscillations propagate

with frequency w = w(q) > wp in nonideal plasmas.
2. lon Oscillations. The low frequency branch of the space charge waves is
due to ions sound waves, which are coupled with the electrons. Since the
ions are nondegenerate, the frequency of the ion oscillations is 3D
KiKT 1/2
wy (@) = v(@Cgq, cC_ = v , (18)
where
Z(x _/x.)
v = (14— 1Y nedi (19)
142y k(g8 )~ /(36™M)
e e
and
v(g) = 1, n>>n . 0)

v(q) is a correction factor of magnitude-of-order 1, which shows the influence
of the electrons on the ion oscillation (M=ion mass, Ki = Cp/cv = 5/3 for the

ions) where 0 < q < q; - 2n/6i .




TR AW T

III. RELAXATION TIME

The distribution function f(i) in Eq.(2) is not symmetric with respect to the

23)
origin in the K—space"‘, since it is 'polarized” by the electric field . 1f B

is in the ;—direction, f(ﬁ) has the form

£ (1-£ )
= =—if—o— _3_&:._0_3_
£(E) = £,(B) +¢ , ¢ 38 T 3E KT ) (21)

The Fermi distribution function describing the thermal equilibrium of the
electrons is

fo(E) = [1 + e E-E)/KTy=1 (22)

where & is the Fermi energy,and ¢ is proportional to a function C(E) of the energy

E of the electronsgz)

¢=e|a&C@). (23)

If equation (2) is changed from the discrete summation over t'to an integral
[where the volume Q is set to unity because the electron plane waves have been

normalized for a unit volume in Eq.(6)] Eq. (2) becomes

5 ’é—n)sf { (K, EDERY) (1-£(B) ] - PEIDE® [1-£ 1K . (24)

The full expressions for P(i,ﬁ') and P(E:ﬁ) are given by Eqs. (3) - (6). For

absorption of a plasmon,

—-s 2
N
(kK" = ug(a) | 8 (E"-E-tuy) (25)
B mgngwg(q) 'S ’
where
E' = B+ , K =k+4q . (26)

For emission of a plasmon,
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2
Pk = Ty )2 6(E-peny) 27

mghg ws(Q)

where

E' = E - fug, k' =k - a . (28)
Due to the fact that in equilibrium %% = 0 for a Fermi distribution function,
it is easy to show that (detailed microscopic balance for direct and inverse
interactions)
WK = PEK) £o(R)(1-5,(0)] = PRIK (R [1-£o (k) 1= w(K, k"), (29
Accordingly, the linearized interaction integral of the Boltzman equation is

obtained by substituting Eq.(21) in Eq. (24), under ccnsideration of the

relation (29). Limiting ourselves to first-order terms in ¢, Eq. (24) becomes

é_i - 1_2_/ WEL D ok~ o) 1a’R , (30)
(271) KT

According to Hauggg)a momentum relaxation time exists 1In a closed system of

particles in presence of an electric field, and the interaction integral can be

written as:

—=-—="$ ’ (31)

where the relaxation time T is in general a function of energy E. Hence

T(E) = - E— . (32)
st
Eq.(32) indicates how the relaxation time T(g) is related to the collision term.
We distinguish the cases: i) A classical plasma of low density n<il, at any
degree of nonideality Y/Z £ 1, for which we expect the thermal energy of the electron

to be much greater than hug, i.e.,1ﬂus<< KT. 1In this case, only elastic scattering
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of the electrons bv the plasma waves is considered, E' = E. 1i)} A nonideal quantum
plagma with ['/Z <1 at high densities, n>f, and for which in general,

we can no longer neglect ﬁws compared to the electron energy E, i.e. for which
Dugz KT. 1t is recognized also by inspecting the relations of the

frequencies to the wave vectors [Eqs. (12) and (18)] that the effects of the
electron-electron interaction (electron-electron waves) and electron-ion

interaction (electron-ion waves) on the relaxation time are to be studied as

two distinct cases.




i o) Al e L s Ol

IV. CLASSICAL PLASMAS, n < 1
The two frequency branches of the longitudinal oscillations are given by
Eqs. (12) and {(18) for the electron-electron interaction (s=e) and electron-ion

interaction (s=i). The relaxation times TeéE)(s=e,i) are by Egs. (21), (30),

(32, (25), and (27)

(afO/SE)¢
Tes(E) =(E?7gzz———— » s=e,i s (33) !
where
2 2
0 a“lu_@|° _
(§£> S S J‘ ———?Es———— NS [fo(ﬁ')(l - fo(ﬁ))]é(E' - E + fug)

st 3 8 mSnSKT k! wgt 4
> > ¢! K I
+ fo(k)[l - fo(k')] S(E' - E - Ty) (1 - Q—-]d k' . (34) :

} For the evaluation of Eq. (34) we assume that a) ﬁws<< E (classical plasma),
8) E'=E, ri'l = |K| (elastic scattering) and y) isotropic scattering (no

angular dependence before interaction). With these assumptions, the transformations

in the Appendix A yield with Eqs. (33) and (34),

8/55m1/2E3/2msns

Tes(E) = S > .
s 47U (@)]"dq (35)

wg (@) (exp( E,T_“’s] - 1)

0

o g,

Before evaluating the integral in Eq.(35) for the two frequency branches under
2

consideration,we first observe the behavior of |Us(q)| in Eq.(6). In the

q-domaine, lUéq)[2 is bound between the limits

222 2.4
167 n ee § 22224

5 25 < |u (q)|2 < 16n°n"e e”6_, s= e,i , (36)
(1 + 4r°) s ®

1. Electron-Electron Wave Interaction

For the interaction of the electrons with the high frequency plasma oscillation

of frequency mg(q) [Eq. (12) ], the relaxation time is evaluated by means of Eq.(35),

and the plasmon distribution function ﬁz of Eq.(1l) as
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t (E) = B ’ 37
ce 2nhH ne4 Ie (37)
q
T = se 2 ot R
- W,
€ A (de + qu%l-k'azqz)%(exp[RTE(l + azqz)%] -1 s
h(q )fe > 4 P
= q q q G & ’
e 1 Y » 0<q < g
o (1 + azqz)f(exp[i¥g(l + quZ)%] -1) € e
where
: (6 /m*
h(q) = = (8 /= » a_=2n/8
(l +625§ )2 e e e (39)

in accordance with the mean value theorem for integralsgé)since Us(q) is bounded

[Eq. 36) in the interval (0, ) and q is approximated by the mean value of the two limits
e e

of the integral. With a proper change of variables the integral in Eq. (38) is

evaluated (Appendix B) as

4dmuw )
= L7
1e ‘ﬁne e(ep ? aqe) ’
~ 2v 2v
© B_ € @ B, €
- 2 - 2v e 1 2 2v'p
R(e,aq)=1-%¢ +4) - 1-%¢ +4) 2P ___
~ 1
e’ ’p e 5 e vel (2v + 4)2v! (aqe)é S p 51 (2v + 4)2v!
- ~ 2V
® B, €
- [1-S5r 2] Sy
(aq,) v=1 v :
2v
© B ¢
4 p 2v%p
+ -
(aq )4 ! 3 v2 ) (2v + 2)2v!
qe v=1
€e '
+ 4 Zne =1 + € - ée (AO)
(ad )" e P |
e e P_ 1
32)
B, are Bernoulli numbers=—=<£, and
e ] ./—dD ul 2.2 .1/2
= o =2 - Y = . 2 =
o ey te T M e s 0 Re T mDE o B T e (4T ) (41)
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where dD is the Debye length. By Eqs. (37) and (38), the relaxation time due

to the electron-electron wave interaction is

V2 mVQKeE*&

T e(E) =

. : (42)

8mne Re(ep,aqe)
where R (e ,ai )~ 1 for n<< .
e p e

2, Electron-lon Wave Interaction

For the interaction of the electrons with the low frequency oscillations,of frequency
mi(q) = qu [Eq. (18)], the relaxation time Tei(E) is evaluated by means of Eq. (35)
and Eq.(18) with v(q)-1, and IUi(q)I from Eq. (g). By applying the mean value

theorem for integrals as in Eq. (38), one obtains

cn¥/ZMEY?
T (E) = _.E_____ 3
ei 4 : (43)
2T™hzne 1,
i
where
I, = h(q )Sqi g dq
p T gy 0<q, <q '
i i , q, £ q , (4%)
° fexp hC g A -1 i
KT
A . - 4
a; =5 » h@p = (& /m (45)
i ‘KC
The integral Ii is of Debye-typéxl), which becomes with b = EEE and bq = X,
bq, .
i 4 4 .
_ 1 x dx 474 -
L, —(ci/nﬁ’ R S % =8 /my = Ri(bqy) (46)
b e -1
)
- A\ 2
X 2bq % B,,(bq,) Y .
Ri(bqi) =1 - 5 + 4v=1 v ¥ D207 ’ bqi < 2n . (&7)
Here again BZv are Bernoulli numberéEQ, The magnitudes of b and bqi follows from
the relations,
ﬁcs Vomihy - A -
b =—— =k, X, , X, = , bq, = 2n/c, A, /6 (48)
KT i1 i (MKT)% i i 174
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Combination of Eqs. (42) and (44) yields, for the relaxation time due to electron-

ion waves interactions:

T . (E) = ———'77———£—:— » (49)

where Ri(bcii)~1 for n<<n.

3. Electrical Conductivity.

The electrical conductivity q:is related to the energy dependent relaxation times by:

ne 1 1 _
C’C - T, <T> - z <P > ’ s=e,i ’ (50)
s es
where
- = (51)
Tes” S T, (EYE(E)dE J’f(E)dE 1,
o o
For classical plasmas, f(E) is the Maxwell distribution, f(E) = == E_ <E/KT

/7 (kT)¥Z © ’

which gives

nY2¢ r<.(k‘1‘)3/2
<> = . e i _ - , (52)
Y21 ame [KiRe(ep,aqe) + Z KeRi(bqi)]

From Eqs.(50) and (52), we obtain the conductivity for a nonideal classical plasma:

.k (kT) ¥?
g = ie 5 , (53)
¢ pem)YelL
where
- - - 4
L KiRe(EP , aqe) + Ik, Ri(bqi) s _ (54)

The above results will be discussed in section [VI].
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4. Thermal Conductivity of Nonideal Plasmas.

Charge and energy in a Coulomb system are transferred simultaneously
during the motionof the electrons, no matter whether this motion is caused
by an electrical field or a temperature gradient. In each case both an
electrical and thermal current appear. The same methods used for the
evaluation of the electrical conductivity may also be applied to the thermal
conductivity. They are related by the Lorentz number (‘nz/3)(K/e)2 through
the Wiedemann-Franz law which assumes, however, that the collision processes
are such that a common relaxation time exists for an electric and thermal field,
which is always satisfied at high temperature i.e. iw<<KT, and hence

A “2 K, 2

i TR 3
C

and the thermal conductivity is simply by Eqs. (53) and (55)

K K (n/Z}Ai(KT)S/Z
e i (56)
1/2L ’ -

3e4m

where L is given by Eq. (54).
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V. QUANTUM PLASMA, n>n.

For plasma densities n<n, it was proper to ignore ﬁws compared with the
energy E of the electrons which is of the order of magnitude of KI. At high
pressures where n>>ﬁ,'ﬁ%;can no longer be ignored compared to E.

Our approach to the quantum Boltzman equation follows the Kohler variational
methodzz), which is frequently used in connection with the resistivity of

metals. Combining the collision term (30) with the electric field E yields

. of
(_)= —l—ja(i{',i{)w(k') - 0@ ] = - v —2 eE , (57)
s (2mykrd ® x OE

<>
Only Vo appears since E is assumed in the ;;direction, E = (E,0,0).
According to Eqs.(32) and (55), (21) and (23), the interaction term

(dfldt)s andthe function ¢ are

3f
33
(56)= - veag o (58
S
afo
¢ = - eE_aE VxC(E) . (59

In order to determine the function C(E), we follow the idea of Bloch

and expand C(E) in a power series of (E - £).
C(E) = Ecu(l-: -g)“-co+cl(z-g)+...., (60)
u
Where this series is treated as a trial function in the Kohler variational method

to determine the coefficients of the series Cu'

By Eq.(C-11) (Appendix C), the Cu are determined from the system of equations

\2} CP =N, , (6D
with
D, = —13——SSv € - 0" kD E -0Y -v (- Y] Pk, (62
oo emkr J) X X x
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and @

3fo "
N =- S—B—E(E-g) F(E)dE

o
, (63)

: ./1/' vi ds
F® = E=const ldE dkl
where ds is a surface element.
Eq. (14) indicates that for the high frequency branch (electron oscillations) and
n >> n, the frequency uéq)depends on vp, the Fermi speed (high pressure
quantum Pplasma). Contrary to the classical case where n<<ﬁ, in the quantum
case the thermal energy of the electrons is small compared with the Fermi energyéﬁ).
Accordingly, the series exvansion (59) is approximated by the first term Co . This assumption
is widely used in the transport theory of metals ("Bloch approximation') and gives

good results especially for the electrical conductivity. Eqgs. (322 , and (56)-

(61) give as relaxation time in the approximationC(E) = c,

Tes T _13_J"[vi FER,DIL - :—;(]d}l: FEI ©9
(27) KT X

where No and Doo are to be evaluated. The integral No in the numerator of

Eq. (62) is of Fermi-type and since the contribution to the intergrai arises in

. the vicinity of E = £, the limits have been extended to O and «® . Following the

22)

approximation made by Haug—’, we have

N° = F(E) -+o((KT)2) s (65
E=E

where F(E) is given in Eq.(61), with vi = ﬁzkz ﬁoquuF, ds = k2 sina da d¢ and

2 .
dE/dk = i"k/m (the angles a, and ¢ are defined in Appendix A.). Accordingly,

L 2T
3 3/2
F(E) - ll;_ s‘ cosza sina da d¢ = %:-l 2—‘;—) E3/2 ’ (66)
a=o0 ¢=0
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_4m2m\3/2,_ \3/2 L a2 22/3H-
} No - 3m<ﬁ2> (Eo) ’ Eo (317n) 2m °

The denominator Doo of Eq. %2 ) contains ﬁ(ﬁ,i') defined in Eq.(29), which
contains the transition probability P(i',i). This latter function has

1 different forms for the absorption {Eq.(25)} and for the emission [Eq.(27)] of
a plasmon. First consider the case of the absorption of a plasmon with

E' = E + fuwg-and Doo = D:o.

Using Eq.(25) and (29) in the denominator of Eq.(62) we get after

integrating over E

+ % Viqles(q)Izﬁ:
%0 " om nm H wg @ EL(EX 1 - £ (E + ).
. [ v)'{] ds' ds
1 -5 1 %" m 9>
X
where E' = E + fiw_, ds' and ds are elements of the energy surface. With
§3f @ = angle between K and the ;—direction, Y = angle between k' and the

x~direction, 6§ = angle between K and ﬂW » and ¢, Y = azimuthal angles

! around K and k' respectively, ds and ds' are expressed as

ds = kz sina da d¢ = Ei 2m sina do d¢ ,
il
' 12 k'
ds' = k' siny dy dy = x4 dq dy ,
where
v; v' cosa’ k'
;; * T cosa "k (cos Y + tan a siny cosy),
22
k' Hiw, - h°q7/2m
K cos y 1+ 5E ,
Vx - k_cosa
] ’
Av'v k 'h2
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(63)

(6%)

Gn)
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; After evaluating the angular integrals and expressing ﬁ:. |q§q)|2 by their

respective expressions in Egs.(l) and (6¢), we obtain

&

qf(E)[l-f(E+'ﬁw)] w22 =
S e [_a-lmE - %E dE dq. (72)
o) .

52+ q )ug(q)[exp(ﬁ s)— 1]

4

32ﬂ m n e e
pt = J
0o

3‘ﬁmKT

o0

The double integral of Eq. (72) is evaluated using the mean value theoremgé) as
+° q 3
s ¢°f (E)[1 - £ _(E +he ] [(2 2 Tw
q __S q <4q 73
h(qy) IS ) o imE ~ 2g |[E9Edd . O0<q<qy (73)
2 {q) [exp{__s}- 1]
° KT
. where
? 4
; s = (5_/m* (74)
| h(E) = — 555 = (6 /m" .
s a + quz) s

In Eq. (70), wéq)\s=e)isthedispersionof.the longitudinal waves of the degenerate

(n>>fi) electrons and f(E) is the Fermi distribution. With the change of variables,

Hw ‘Hw

- (E-1¢&) __=58 - KT ¢ - P 3

n KT ’ € KT ’ wS —’h ) € P KT s ( 75)
which gives
2
q3dq — ; e(e - ez)de ,
P
(aep )

E=nunKT + & , dE = KT dn ,

‘_ﬁ_u_)5= eKT

2E  2(nKT + &) *
2,2 2

ﬁZ 2 . A7 (e” - g)) ,

4mE 4m azﬁf(nKT + £)

; £(E)[1 - £(E + fiw ) Je —2 . L 11 a6
" + 1A+ L-e5le"+1 e™E 4 1
Eq.(72) becomes
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€ 2,2 2
+  3netste e 2_ 2" ¢ "% ) g
Do =" 2.3 4 (€ - e N5 -5~ ¢ g€
3ur“R KT (ag_ ) P |4m a % 1-e €
P
4
dn
H(e) =5 — s
o "+ D" 1 an
where
§ = e (1+a’ “2)!’ (78)
e p qe ‘

The integral over n in the H-integral is easily carried out and is equal to
e/l - e-e), while the integral over ¢ is developed in a series of integrals

of Einstein type32) s

¢ x> e® dx
=) Tx .2 : (79

n v

o o8 - vev-l
- - 1
J = 2 Snx\)e nxdx = 2 % ene P e\) + P + y.
= p n
€

v!
+...:\-; } . (80)

Doo = E aan ’ (8l)

where the a_ are to be defined shortly, and the sum over n has only a
few terms. For the emission transition, K = k- E , E'=E -‘ﬁub. D;o is
obtained from D:o by replacing E by - E and wsby - u%.that is € by - €, and by

adding a factor (-1)n+1 to the numerator. Accordingly

- +1
D, = r§(~1)“ a, J_ - (82)

- +
The total denominator Doo = Doo + D°o of Eq.(62) is by Eqs.(81) and (82)
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1l
D, = E A+ DT a I (e9)

The terms with an even power of ¢ in the integrand of Eq.(?7) vanish according
to (B3). Only terms of odd power remain whose coefficients are the same as

+
those of Doo apart from a factor 2, Hence,

(e:2 - ez)ze eede

P — : (84)
e - 1)

e
- 24 nel'é4

3112mHKT (as:p )6

D
oo

M L™, M >

P
In the range of pressures and temperatures in which this equation will be applied,
the variables of interest will be ep, civen by Eq{@5) and aﬁe both of which can
be expressed in terms of nondimensional parameters, with &e = 21r/6e,

2/3 1/3

ag, = /9 @n3@a ) 3em ™2, (85)

e, - 2127 8 imy Y3t ? . (86)

The integral in Eq. (83) is a sum of integrals J\’ » v =25, 3,1, defined in
2 4

Eq.(81), with different coefficients a > namely a5 =1, a3 = - Zep v a8 = ep .
Hence
D =B[J—2€2J+ el‘J]=eF(e aq ) (87)
co 5 p 3 p "1 p’ e’ ?
where
4 4.4
8 = 2 ne 8¢ . (88)

302 mﬁKT(aep)6

The relaxation time for electron-electron wave interaction in a degenerate quantum

plasma (Eq.(62)) is obtained from Eq.(65), (87) and (88) in the form

3n5ﬁKT (aep)6

T
ee 4.4 *
e g Fle,s aq))

. (89)

At high pressures for which ep > 1, we can easily terminate the series of the

function F(t»:p ,aqe) .
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W’

F(e ,aq ) = 8 2 (e )1 + é—] + 0( -e’/ez) > 1 (93)
p?3% €p €XP ep 5 e P €p .
6 2 ~€
Letting (1 + —) = a,and F(e , aq ) & 8a €~ e P, ‘ (91)
& p’ e P
3niﬁKTa6e3 .
Tee = 4 & 2 , ep > 1, for n>n and /221, (92)
8e aéee P

where a, €p» Ge are given by Eqs. (14), (43) and (10) respectively. For the
quantum plasma, the ions are still classical, and a relaxation time resulting from the
electron-ion sound wave interaction can be derived from Eq.(43) with E = Eo

(Fermi energy) since hmi << E for all densities under consideration. Thus

3 x,‘ﬁ3
T, = 1. (93)
et ZAmZe4 Ri(bai) )

For quantum plasmas bai can be quite large, so that the series in Eq. (47) does not%

converge for bqi>2ﬂ. Hence in the present case where binZn (bii = x),

o B x?v
_ 2x 2v _ o, x<2m , (94)
R =1-5"+4] Gomm
v=1
O S LR APURE RV I T A
X v=1 v'x vx v X v X

where £(5) = ] k—5 is the Riemann Zeta—functionég).
k=1

The effective relaxation time due to both electron-electron waveand electron-ion

wave interactions in a nonideal quantum plasma is

Tei Tee Tei
Teff T 7+ 1. 1%6(D) ° (96)
ee el

where the relaxationtime ratio is

T .
G(T) = % ) N

ee

For Co + E ~ KT andAﬁwe<<kT, Eq. (92) and (93), averaged over a Maxwell distribution give

the classical electrical conductivity derived in Eq.(53). On the other hand, if we
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assume'ﬁwe>kT and complete degeneracy of the electrons, the electrical conductivity (50)

of the quantum plasma with the relaxation time (96) is
3mok4h

4 2

- — (98)
2'm’ze R (bq,) (14G(T))
4

21 -3 24 -3 3 4
where for all cases of interest, i-€., 107 cm “sng 10" em “and T=10"-10 °K,

G(T)<<1l. But for higher densities and lower temperatures G(T) can make a significant
contribution. The electrical conductivity OQ is a linear function of the density
n but less sensitive to the temperature T. Eq.(98) agrees with the exprescion

for electrical conductivity of a low temperature metalgil. Further discussions

and applications follow in section VI.
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VI. APPLICATIONS

1. Classical nonideal plasmas.

L In order to apply the formulas derived above, we propose a study of the electrical
conductivity as a function of the relevant parameters involved. For applications
of the theory to strongly, intermediate and weakly nonideal plasmas, it should be

noted that the dimensionless y/2Z, €p =‘ﬁwp/KT, aae, bai and n/n occuring in

Eqs. (53) and (54) for the electrical conductivity of classical nonideal plasmas cannot be
varied independently. Since y/z increase with increasing n and decreases with increasing T,

cpvariesoveralargen—Tregionandhence,sodoesée,similarto y/Z. Numerically,

- - -71/2 -1 -16 -
1073,1/3,71 /2, n 16 -3/

vyiz = 1.67 x /i = 2.07 x 10 ~ nT 2, (99)

>

e = 4.328 x 10
P

where for v/Z2 21,

/ /2

ag, = @/ )Gzt (100)

Ep is given by Eq. (86).

For %ﬂl, aae>>l and hence from Eq. (40) eelepaﬁe, i.e.,

s 11/6

e

(32¢ )1/? (n/a) /3 (101)
and for %21, a&efl, Eq. (40) reads,

/3 -l]l/Z(n/ﬁ)l/3' (102)

e, = 26 (20 + e (i)

In accordance with Eqs. (102) and (103), it is clearly seen that Re(ep, a&e)é 1
for all %Zl' as long as n<<n.

So far the parameters studied are related to the electron-electron interaction.
For the electron-ion contribution only ome characteristic parameter bﬁi occurs
in Ri(bai) of Eq. (45). For this case of relatively low density plasma, n<i and y/Zs1, h

61 given by Eq. (8); the expression of bqi (qi = 2w/61) as a function of the relevant

dimensionless parameters is

3/2

bai (2m) (81T/3Z)1/3 Kil/Z (m/M)l/2 [1+ Zo(y/z)_ll2 ]El(n/ﬁ)l/3 (103)

A
o]

/33 (an(rezy) 12 , (104)

and numerically,
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ba; = 4.129 x 10t (m/my /227113 [1+zo(y/z)'1/2]'1 (n/m)1/3 (105)

Hence b§i<<l for n<il and RL(bq9=l according to Eq. (45). In view of this order
of magnitude of Re(ep, aae) and gfbai) as n/#+0 ,the electrical conductivity of the
classical nonideal plasmalEq.(53))is a very weakly varying function of the shielding
parameters ds(s=e,i) defined in Eqs. (8), (10), and (11). The weak dependence is
3 attributed to the many-body interaction character of the present theory, since the
electron is interacting with the plasma as a whole rather than with individual
particles.

The electrical, conductivity formula presently derived for classical nonideal
plasmas is only weakly dependent on the density of the electrons.n,and goes as

~ T3/2. Hence, in this respect it does not only agree with the usual kinetic

1-11)

theory results (ideal plasmas) as n gets very small compared to n or y/Z<<1,

but also with the recent theories for nonideal plasmas as wel}llﬁ;lll.

The nonideal effects of the plasma on the electrical conductivity are then

governed by the Coulomb interaction alone through the nondimensional Coulomb

conductivity o*(y/Z) which we define by

3/2
5, = o, (/2) —;%%%ii——— , (106)

and with Eq. (53) it is shown that,
K Ki//fh 3/2

e

*
% (v/z) = L(y/Z, n/n)

(107)
L(y/z,n/f) is defined in Appendix D as
L(y/z,n/n) = KiRe(Y/z,n/ﬁ)+ZKeRiéy/z, n/a) (108)

where for n<n

1/3 -1.1/2 /2

R_(v/2, n/@) = 1 + u (a/n) /2yt

1+ ao(Y/Z) ]

+ al(Y/Z) + ..., (109)

and

R (V/2, n/f) = 1- b [1+ZO(Y/Z)-1/2]—l(n/ﬁ);/3+ b, Iz (/o VA 2mmdl3,.,

_ (110)
The constants M1» b etc., are given in Appendix D. Comparison with the existing




i € maiars v T

~= ok (4/2) would be o, (/D=13@/m a1 tnle vz )

results such as ideal plasma

1/2

with a« = 3/2(4n(1+42)) and is valid only for y/Z<<l. Similar nondimensional
o

Conlomb conductivities can be expressed from the formulas which are of special
applicability to only weakly and intermediate nonideal classical plasmas, i.e.,

1
%<1. From the first case (Ebeling et al—)), o*(y/Z) can be shown to be:

/2

’zl/fzn[uo(y/Z)’3 ], (111)

oxey/zy = -0/220) (v/2)°

1 *
where f = 1.73. And from the second case (Wilhelm—l)), a(y/2) is:

1/2 - 4m.1/3 ~1/2, ,.\=1/2
or (y/2) =jzifi§%%f—5§ 5 AT L s ey 2™ },
ﬁz/mﬂ?

(112)
where 6L=dD for y/Z<<land 64:=(4mn/3231/3f0r ¥/Z>>1. Table I compares these different
nondimensional Coulomb conductivities over awide range of densities expressed as a ration/fl at
typical plasma temperature T = lOa°K with Z=1., At high densities both o: and 0; show
a sudden jump at n>1019cm_3, and would give a negative value at nlezocm'—3 and thereby
their applicability comes to an end at these and higher densities. 0: (y/Z) on the
other hand, shows significant nonideal effects of the plasma, which can be attributed
to the argument of the logarithm which is 0En_z/3 for y/Z>>1 and behaves like the ideal
Coulomb logarithm argument for Y/Z<<1l which is “n_l/g This behavior is observed in
Fig. 1 where we draw 0:(y/z) as a function of y/Z along with the other Coulomb
conductivities. c;(y/z) shows evidence of its limitation to only weakly nonideal
plasmas as it behaves (besides a very small difference in magnitude) identically with
o:(y/Z) of the ideal plasma. c:(y/Z) of the present theory, on the other hand,

shows much more evidence of the effects of the nonideality of the electrical
conductivity. It shows an important difference in magnitude for %>l and yet converges
to o:(y/Z) of the ideal plasma as y/zZ»0. 0;(y/;) does not show this later behavior as
v/Z+0 which is due to the quantum mechanical scattering involved, Curves similar

to 3 and 4 of Fig. 1 have been reported in experimentsggl}g).
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Fig. 1. Dimensioniess Coulomb Conductivity Versus Interaction
Parameter Y/Z of Different Theories at T=104 k.
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TABLE I: The Nondimensional Coulomb  Conductivity o*(y/Z)

at T=10A °K, Z=1.

n/f o: o: c: 0;

present theory ideal [17] [1]

8.40x10”’ 0.109 0.130 0.045 0.129

8.40x107° 0.102 0.175 0.053 0.173

8.40x10™° 0.120 0.268 0.064 Q.261

% 8.40x10™" 0.139 0.571 0.080 0.530
8.40x1073 0.191 - 0.105 -

Fig. 2 shows the electrical conductivity of classical nonideal plasma presently
derived and given by Eq. (53), versus the variable interaction paramdter Y/Z and constant
density n. It is seen that the value of dc is slashed by
several order of magnitude as Y/Z goes from ~10.3 to y/Z210, through variation
of the temperature T at a fixed density n. It should be noted however that a slower
increase is expected in the electrical conductivity . with increasing y/Z by
varying the density n at:fixed T. This later behavior is due to the dependence of the
Coulomb conductivity 0: on Y/Z and n/fi through L(y/Z,n/d). Such anincrease would not
have existed if L(y/Z,n/#1) were a constant, since y/Z~T-ln1/3 and oc~o':/ (Y/Z)3/2. A
numerical illustration of this point and of the order of magnitude of A is shown in

Table II for a typical Temperature T = 104"1( at different densitiés for a H~-plasma. The relation

between the cg®e units and the practical units is 9 x lOll mho—cm-ls 1 sec-l.

4
TABLE II: The Electrical Conductivity o, at T =10 °K and Z=1.

n cm-3 Y/2 9, mho-cm-'1
10" 0.077 . 2.930x107
1019 0.36 | 3.630x10"
102 1.67 8.590x10 "
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Fig. 2. Electrical Conductivity [mho-cm'1 Jof Classical Nonideal
. Plasma Versus the Interaction Parameter ¥/Z for Constant
: Density n,
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2. Comparison with Experiments

The alkali plasmas are being the more commonly used in the measurements,
due to their lower ionization potential and the material characteristics they
offer as wires, powders and vapors. Although, a bulk of experimental results
has been accumulated over the years on the electrical conductivityéllgiléizgz
the measurements reported are mostly those of weakly nonideal plasmas, i.e.

0 < y/Z < 1. Here we present in Fig. 3 the Coulomb conductivity given by Eq.(107)
corresponding to a classical, weakly nonideal Lithium plasma. For Lithium (first

ionization potential I, = 5.39 ev) conductivity data are reported in Refs. 36,37.

1
By letting KT[1+(1/z)] = p/n, where p is the plasma pressure we have

3/4
n= [(z+1)e2 ] (113
and
/i - a1p3/8(Y/Z)lS/8 ’ o‘1=(_ﬁ3/2)(27,m)3/2&15/4 (/2 1378 (114)
Thus Eq.(107) becomes
1/2
x . KeKi/(Zﬂ)
. (v/z,p) = LGz p) , (115)
where
Lz = (575 {2 we M trra, /™ 200 81 Bra vy

H2%

/2318 o184 b 0 M3 sz iy H A 12 44 4 ...}5

(116)
with ay defined in Eq (114), ags 3y etc... are given in Appendix D, and
Ke = K4 = 5/3. 1In Fig. 3 oz is shown for two different pressures 500 and 125
atmospheres at Z = 1. The theoretical curves are isobars in the low interaction
parameter range which agree with the experimental results for a Lithium plasma.

* %
Along with 0. O, given by Eq. (112) is depicted and its agreement with the

70




0.7
Lithium Plasma
06
05
o.
04
/
/
03 /
/
/
/ ?)
/ ( : )
0.2 / S
/ e
/ 7
7
// 7 "”’/@
0.1 — —
254 ®
é/‘/
— - - /
0.00e=—— i 1 1 1 . L 1 |
0.1 0.2 03 04 05 0.6 0.7 08
Y/Z
Y Fig. 3. Electircal Conductivity of Nonideal Plasma.

1) Spitzer's Formula; Experiment (36]: 2) 125, 3) 500 atm
Present Theory: 4) 125, 5} 500 atm
[17]: (6} 500, 7) 125 atm




*
experimental results is also good. One can observe, however, that o, shows a
slight increase of the Coulomb conductivity with increasing the pressure p over

*
the entire range 0sy/Z<l. The pressure dependence of o, is given by:

_ 1/4 ~5/4 _
A, =(8n/h2) (4n/32) 2/3 (“ZLBT’ (ze2)>/* Yo ey V2o (117)
A P
with ¢ = (lm/3Z)1/3 [2/4n(1+2) ]1/2 » and hence
* 1/2
o, = (3/42) (2/7) 0 Aw . (118)

*

It should be noted that while oc, ow and the experimental results of Fig. 3

are in a close agreement in the range 0.3 s y/Z s 0.5, the Coulomb conductivity
*

o of the ideal plasma is clearly inadequate over the entire range of the non-

ideal regime.




3. Nonideal Quantum Plasmas

As it was shown in section V, jin connection with the relaxation time ratio G(T)
given by Eq.(97), the electron-electron wave interaction contributes little to alter

-3

’ the relaxation time of the electron in high density plasmas in the range n-lO20
24
-10" "em T,i.e., G(T)<<l. The electrical conductivity is mainly due to electron-ion

waves interaction. 1In order to apoly the conductivity formula (98) to nonideal quantum

plasmas, we express the dimensionless formula o /wpas a function of the relevant para-

Q

meters, the quantum interaction parameter I'/Z, n/n etc... From Eq. (98) we

observe that the traditional logarithmic term associated with the ideal and weakly
nonideal classical plasmas is represented in our formula by Q = Ri(bqi)(1+G(T))'

! Since G(T)<<l in the range of densities of interest, Eqs. (®4) and (95) permit

to express Q in the form

Q(n/n) = 1-c0(n/ﬁ)1/3 + cl(n/ﬁ)z/3 + ..., bg <2m, (119)
and
o/iz B (n/a) ™ msexpl-, w/m Y 1A ragm/m M a4
% +A4(n/h)+A5(n/ﬁ)4/3] + .., bgp2m, (120)
; where the constants Ao’ Al’ Bo etc . . . are defined in Appendix D.
' In dimensionless form, Eq. (98) becomes,
0/8, = gt/ g/ie) iy Ryt (121)
where
oq@/a) = 33w a1y ey (22)
Xe is given by Eq. (41) , dF is the Thomds-Fermi screening length,
dF=[(ﬁ2/4me2)(w/3 )1/3]1/2 given numerically with n/f in Eq. (99), and
s a /%, = 12.30 2 M6 p1/2 niy o 1.88ax10® 071/3, (23)

By Eq. {(115), cQ/mp decreases with increasing - interaction parameter I'/Z.

Since I'/Z is independent of the temperature T and decreases with ‘increasing n Jlike
-1/3

r/Zn , the nonideal quantum plasma (n>n) becomes more ideal with increasing

density n in contrast to the classical nonideal plasma (n<n), which behaves
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1/3

more '"nonideal” as n increases since v/Z . n . Consequently, the electrical
conductivity of nonideal plasmas(n;h) has a minimum as a function of the pressure
(or density n) at some pressure ﬁ {(or density fi). Along these lines, similar

| conclusions have been reported in experiments on the electrical conductivity of

alkali plasmas>+32). This behavior should not be attributed only to the exponential

electron density increase (with increasing pressure) due to (nonideal) ionization

potential lowering, but also to the quantum effects (n>fi) resulting from electron
i shell overlapping, electron tunneling, and electron transport in an ordered
liquid-like ionized medium. All these effects contribute to the minimum observed
t in electrical conductivity data. The behavior of the electrical conductivity
derived for nonideal quantum plasmas in Eq.(98),_is shown in Fig. 4, which gives

6., versus the interaction parameter T'/Z. A numerical illustration of the order

Q

of magnitude of oQ{Eq.(98)]is shown in Table III for a typical temperature T=104

°K

at several densities of the degenerate electrons of a hydrogen plasma.

R TABLE III. Electrical Conductivity of Quantum

Hydrogen Plasma at T=104°K(Z=1).

22

alem 3] 10 1023 1024

1] 1 2

o, [mho-cm™ 7.240x10 7.870x10% 9.480x10°

74




105 '
104 |
Oa
[mho-cm"] 103
103 -
102
101 H -plasma
100 L I L
0 5 10 15 20

Iz

Fig. 4. Electrical Conductivity [mho-cm'1] of Quantum Nonideal

Plasma Versus the Interaction Parameter [/Z at
T=10% K.




APPENDIX

A. TRANSFORMATIONS.

-
The integration over k' in equation (32) is transformed to an integration
over E' by the following change of variables

2,2

L}
gro= BE 2g0 L2 132 [A1]
2m ﬁ3

The square bracket of Eq.(32), defining ¢ , transforms to

k! C(E")
1-+2 = 1-5

- X (A2]
¢ k_ C(E)

where k; and kx are related to k' and k. In accordance with the scattering diagram

we have

k
cos o = =7, kx k' cos ek'x’ cos ek'x cos o cos 6 + sin a cos(¢x ), [A3]

with this change of variables, thg integrals in Eq. (32) are over the energy E', the
angle 6 and the azimulthal angle ¢, where the latter integration over ¢ cancels the

term containing COS(¢x' ¢) s since for each interaction we have a constant E'

Hence,

3/2
LN [44]
H

a3k = 27siné do

Considering the triangle (i, K', E) in the above diagram indicates that
)
q2 = k% + k? - 2Kkk'coso R
where

2
k'] = |X] , (1 - cose) = —35 ,  sine do = 394
2k

76




B. INTEGRAL Ie

The integral in Eq. (35) is of the form

4 e q>dq
m (8™ j 2 2.1 i 2 2%
o (1+a%q) [Explzl (1+ a"qD)™) - 1]
Hw Hw

21
Let € = o— (1 + a'q )'i and €p = XT °* then Ie becomes

2
(e” - ep)zde

32)

Eq.[B2] contains integrals of Debye =

x © 2v

t"de Sl x + 2 By X

- 1 n 2(n+1) (2v + n) (2v)! ’
o

v=1

type which are given by

with n = 4, n=2, and n=0. For n=0 Eq. [B3] has a logarithmic solution and

for n << n we have ¢ << 1, £ << 1, azﬁi >1. Thus, Ie becomes

P e

4 -
. I = —2—— Re(ep, aqe) ’

: where

»2“ 2v
2 €

[B1]

(B2}

(B3]

[B4]

! B
Y Sy 21 - 2 2v e _1 _ 2v_p
. Relepr ad) =1 - 5e, + 4 2 L@V F DT T @ [1 s T4 §=1 v + 5)2\»!]

4 ge B ezv
T2 [P o3 ot Z (2v |t

(aqe)

€ © B 82\; e

4 __P 2v 'p 4 e -1 -

(a5 ) [1 3t ? vzl (v + 2)(2\))!]'+ @ )" e Tep-eE
€ 8 e -1

It is s , aq ) = e .e. n
een that Re(ep aqe) 1 for € << 1, i.e. for n<<n.
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E C. Expansion of C(E)

: -
i Introducing an integral operator L representing the integrals over k',

Eq. 35} can be formally written as

{ af
‘ L(VxC(E)) = - Vx —3E °’ [ci}
where the function C(E) is to be expanded in a power series of (E - £). Define
_ - 1)
| g = v CE) = v, E C (E - &) [c2}

In order to determine the coefficients of the series Cu, we use the Kohler

3)

variational principlel— , which makes use of the expression

W, Ly) =wa(w>d3i , [C3]
ol fff
’ x BE 3E ’

where the integrationsare carried over a constant energy surface of the electron

and

before the interaction.The gperator L is defined by Eq.(55) with the integration

over K', and y is the series [C2]. Furthermore,

(v, Ly) =} C C D [cs]
H,V ¥ v ke
and
afo
W, - v R = g CN, - [c6]
with
Dyv = “—13 v (E- ¥ @D € -pY - v (@E - 5)Y] ¢k k' (c7]
WV 2wk x x
and
2 af y
No= - )2 e et [c8) i
We seek the maximum of (¢ , Ly) with the suppleméentary conditiom— 2) {
’f |
(W, L“’) = (‘b’ - VX—TE- s [C9] ‘
or |
|
y ccp_ =YcnN , [c10) |

H v uv
H,V uuu
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by Eqs.[C5] and [C6]. For this purpose we add the constraint [C9] to Eq.[C6]

multiplied by a Lagrangian parameter A and obtain the maximum from the condition

d
= — CCD +X)CN =2)CD + AN Cl1
dCu zvuvuv zuu 2vuv u 11l
Multiplication by Cu and a summation over u yields by comparison with Eq. [C10]

A= =2, Hence, Eq.[Cl1] reduces to the system of equations

CD = N {c12]
vouv u

=z

which determine Cv' In particular Co = ﬁg
00
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D. Evaluation of L{(y/Z, n/n)

. I ~ = R

In accordance with Eq.(54) L(y/Z,n/n) kR ¥ ZKeRL where Re and Ri are
given by Eqs. [BS5] and (47) respectively. By Eqs. (100) - (103), Re(Y/Z,n/ﬁ)
becomes for n<ii:

)1/3 -1.1/2

R (v/z,0/8)=1 +u, (/8) P 1va (/)T (izy
+ aptu, /m) P e it (o

+ /a3 e (/22 (v

+agn, m a7 am?Pva i .

[D1]
where
a = (4n/3)2/3er, a1=—(36)1/3/n5/3Ke, az=—4(18n)1/3/:e [D2]
b= - (32)Y% s ,
e 28/3 a2 /9 ’
[D3)
u3=4/5 /(3“2)1/3Ke ’
u4=‘“4/90
In accordance with Eqs. (47) and (104) RL(Y/Z’ n/fi) is given for n<d by:
- - s 232
R,y /zon/m) = 1 - b (/i (z (/AT 4 1 b/ v/3
v=
S 7 s N [04]
where
b = /) en>? (303 w2 [Ds]
_ 2v/3
b, = 432\)(51)0/2) J(2v+ 2)2v!1 [D6]
Based on the definition in section VI, Q(n/f) = R£(1+G(T)) = Ki(n/ﬁ) for
G(T)<<l. 1In accordance with Egs. (94), (95) and (8) with y/Z>>1, Ri(n/ﬁ) is
given by:
o 1/3,, © 2v/3 .
R/ = 1-c /)24 T < nrm) VAL kg (7]

80




where
c0=<8/5)n<2n<i)1’2<32)'1’3(m/M>1’2 : [p8)
cv=32v(5co/2§“/3/(2v+2)2v! . (D9}

BZv are Bernoulli numbers and v is an index of summation. Furthermore,

. =43« 1/3 1/3
Riﬂn/n) = Bo(n/n) - 4v§1 exp[-vA,, (n/h) ] {Avl + sz(n/h)
+Av3(n/h)_2/3+Av4(n/ﬁ)-1+Av5(n/ﬁ)-4/%’. by>2n ,  [D10]
where
_ 4
B =967 (5)/(5C_/2) , (D11}
vo = 5C,/2 ’
A\)l = l/\) >
- -1, 2
A,y = 4(sc /)7y
- -2, 3
A,y = 12(5C_/2) /v
54 (p12]
Ay, = 26(5C_/2)7 )y
A - 24(5c0/2)‘“/v5 ]
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V. ANOMALOUS DIFFUSION ACROSS MAGNETIC FIELDS IN PLASMAS

By

H. E. Wilhelnm

Abstract

The anomalous diffusion transverse to a homogeneous magnetic

field Eo resulting from the interaction of the charged particles
with the electric microfields in plasmas with an approximate local
thermal equilibrium is analyzed by means of statistical methods
based on the Langevin equation. The correlation functions of the
stochastic velocity and electric microfields are calculated in clo-

sed form, from which an anomalous transverse diffusion coefficient
D, = (kT/m)/(3/Y2)|w| and momentum relaxation time T = (/flwl)-l
are derived for particles of charge e 5 O, mass m, and gyration fre-
quency w = eBo/m (kT = thermal energy). Comparison with the pheno-
menological Bohm diffusion coefficient DE - kT/lGIelBo indicates that
anomalous diffusion in nonturbulent plasmas is considerably stronger

than in turbulent plasmas.




e )

INTRODUCTION

According to the kinetic theory (binary interactions) of plasmasl), the charged

particles (electrons or ions) should diffuse across an external magnetic field io with

2

a diffusion coefficient D, = (kT/m)7/(1 + w 12), where T 18 their momentum relaxation

time and w = eBo/m is their gyration frequency (kT = thermal energy, m = mass, e 5 0

= charge of particles). The dependence D, « B;Z on the induction has been observed

for w2T2 >> 1, e.g., in weakly ionized plasmas in which the charged particles inter-
2)

act mainly with the neutrals.=— For plasmas with predominant Coulomb interactions,

the experiments frequently iIndicate an anomalous diffusiom D, « B;l, e.g., for low

3)

pressure arcs— , hollow cathode discharges of ion thrustersa) magnetically contained

fusion plasmasz), magnetically insulated diodeséz and magnetically insulated ion
7)

beams—" . Bohm was the first to investigate anomalous diffusion across magnetic fields

in low pressure mercury arcs and derived from the experimental data the transverse

8)

diffusion coeflicient—

DY = kT/16]e|B_

Following the original suggestion by Bohm that the anomalous diffusion is caused
by turbulent particle transport across the magnetic field lines, some not quite success-
ful attempts have been made at explaining "Bohm diffusion' within the frame of plasma
turbulence theoryg’lg). Except for the dimensionless phenomenological coefficient
C = 1/16, the Bohm formula can be readily deduced by means of dimensional analysis.
More recent experiments indicate that 1/20 < C < 1/2, depending on the type of plasma
and the level of turbulence presentll”lZ).

We consider herein nonturbulent plasmas in a homogeneous magnetic field, which
are fully ionized or contain neutrals only in small concentrations so that their
interactions with the charged particles are negligible. For the diffusion processes
the usual assumption is made that they perturb the Maxwell distributions of the

electrons and ions only slightly. Based on the Langevin equationslé’ié)for the

electrons and ions in a homogeneous 'ﬁo-field, the correlation function for their




f—*

stochastic velocity fields and for the random electric microfields are calculated.
The thermal equilibrium fluctuations of the electric microfield are shown to pro-
duce random particle drifts across ﬁo, which result in an anomalous diffusion coef-

ficient D, « B;I. The anomalous diffusion coefficient {s of the magnitude of the

maximum diffusion coefficient in a magnetic field, i.e. D, > Df.
Bohm diffusion in turbulent plasmas can be treated in an analogeous manner.

The evaluation of the correlation functions of the macroscopic velocity and electric

field fluctuations in turbulent plasmas requires , however, different mathematical

methods.




THEORETICAL FOUNDATIONS

>
The stochastic motion v(t) of a charged test particle (m,e) under the influence
>
of the random fluctuations E(t) of the electric microfield of a quasi-homogeneous plasma

is commonly described by the Fokker-Planck equation or the corresponding Langevin equa-

tionlé’lﬁ). Within this theoretical approach, the diffusion coefficients perpendicular

-+
(D,) and parallel (Du) to an external homogeneous magnetic field BO = (0,0,Bo) are

given in terms of the mean square particle displacements at time t by 13,14

D, = <Ax2(t)>/2t, <Ax(t)2> = <Ay(t)2>; D = <Az(t)2>/2t. (1)

Eq. (1) contains the assumption that the plasma is isotropic in all planes perpendi-

cular to ﬁo (Dx = Dy =D, ¥ D,). The particle displacements AT(t) = ftz(t)dt are de-

H termined by the Langevin equation for the magnetoactive plasmall’li):

dv, A = S(E, (0 + ¥, 0B ] - 2 ) , )
dv.(0)/dt = £E.(0) - 1 V.00 . &))
m Tn

In Eqs. (2) and (3), E(t) is the stochastic longitudinal (nonrelativistic) microfield
produced collectively by the charged field particles (electrons and ions) of the thermal
equilibrium plasma at the position of the test particle (m,e), whereas 3(t)x§o is the
stochastic Lorentz field generated by the random motion V(t) of the test particle charge

across the field lines 30. The averages of the stochastic fields for an ensemble of .

test particles vanish,

<v(t)> = 6, <§(t)> =0 . “)

The ensemble averages over the stochastic fields are time-independent, since they are

identical with the time averages over periods t>> 1, t,, in statictical equilibrium.

These averages are calculated by means of the velocity distribution of the test part-~

icles, which 1s a Gauss or Maxwell distribution (Markoff process) for times t >> T, T%,.
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Accordingly,
<v§(t)> = kT/m, i=x,y,z. (5)

The test particle experiences a friction force -m(V,(t)/r + v, (t)/1,) as it moves

through the random impulses from the fluctuating microfield ﬁ(t), i.e., T = T{E.}

and 1, = t"{ﬁn} are integral functionals of f(t). Since the transport mechanisms in
the directions perpendicular and parallel to io involve and are free from inductiom,
respectively, 1 and 1, are necessarily different,

In accordance with the theory of the Langevin equation, the velocity ;(t) of
the test particle changes significantly during a relaxation time T, but may vary only
by a fraction of the change |3(t + 1) - ;(t)| during a single field impulse E(t)%é’lﬁ)

In rarefied plasmas this condition 1is satisfied if the plasma frequency w is

P “E
large compared with the relaxation frequency (eo = dielectric permittivity of vacuum,

e° = elementary charge, mo = electron mass)li)

wpy >> 1_1, T, wp = (nei/e:omo)l/2 . (6)

For the Brownian motion of a macroscopic test particle (colloid) in a viscous
fluid, the relaxation time t is given by the Einstein-Stokes formula. For the sto-
chastic motion of a microscopic particle, the relaxation frequency t-l has to be cal- !
culated as a correlation integral of the microfield. The fascinating idea of the

interrelation between relaxation time and microfield has been first formulated by

Einstein in his investigation on the thermal equilibrium between atoms and Planck
15) ‘

radiation+—
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ANOMALOUS DIFFUSION

We consider a fully ionized plasma of n(T) electrons (e = e, m= mo) and
n(_{') /Z ions (e = Zeo, m = M) per unit volume in a homogeneous magnetic field é’o =
(0,0,Bo). A weak density gradient Vn(-;) is assumed to be present so that i) the

plasma can be considered to be statistically isotropic in planes perpendicular to -ﬁo

and i1) the associated diffusion currents perturb the local thermal equilibrium only
slightly. The Langevin equations (2) and (3) represent two coupled differential
equations for the transverse components vx(t) and vy(t) and one independent differ-
ential equation for the axial component vz(t) of the velocity fluctuation of the test

particle, which have the formal solutions:

vx(t) = (uocoswt + vosinwt)e-th
t
+ (e/m)/e_(t-s)/T[Ex(s)cosw(t-—s) + Ey(s)sinw(t-s)]ds, )
0]
vy(t) = (vocoswt - uosinuut)e—t/T
t
+ (e/m)/e—(t_s)/T[Ey(s)cosw(t—s) - Ex(s)sinw(t—s)]ds, (8)
0
t
vz(t) = woe-t/r" + (e/m)/Ez(s)e-(t-s)/T“ds . (9)

where 0

w = eBO/m§ 0, e

VA
[

, (10)

>
and (uo,vo,wo) = v(t=0) is the initial value of the stochastic field. Scalar multi-
plication of the solution vector -\'r(t) with the initial vector -\;(t-O) and averaging

ylelds, after generalizing the resulting correlation functions for "init1al” times t'

in the limit t >>7, 1, :
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lt=-t"'
<v_(t)v_(t')> = <v_(t)v_(t')> = (kT/m)cosw(t-t')e |t l/T, (11)
x x y y
-le-t 12
<v (E)v_(t')> = (kT/m)e le-t! |/, ' a2
since <u2> = <v§> = <w§> = kT/m. The mean square displacements in the directions
o
perpendicular and parallel to io are proportional to t,
tt
<Ax(t)2> = <Ay(t)2> =[/<vx(t)vx(t')>dt dt' = 2% t/(1 + mztz), (13)
00
tt
az(t)® =/]:vz(t)vz(t' )>dt dt' = 2(KT/m)t1,t , (18)
0

by Eqs. (11) and (12). Accordingly, the transverse and parallel diffusion coefficients

defined in Eq. (1) are

D, = (kT/m)t/(1 + w2t?), Du = (KT/m)te i (15)

D, and 1, are known from the diffusion theory for plasmas without magnetic

fieldslg).

For the evaluation of the transverse relaxation time 1t in D,, the sclution (7)

is squared and averaged,

<v (t)2> = <(u coswt + v sinwt)2>e—2t/T
x o o

tt

+ (e/m)ze-Ztlézyz(r+s)/T[<Ex(r)Ex(s)>COSm(t-r)cosw(t-s)
0

+ <Ey(r)Ey(s)>sinw(t-r)sinw(t-s)]dr ds, (16)

since 3(0) and E(t) are statistically independent and <Ei(r)Ej(S)> = 0 for 1 ¢ j.
Eq.(16) becomes after integration over the coherence strip by means of the trans-

formation £ = r - s, n = (r + s)/2, in the limit t >> t:
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kT/m

4o
% (e/m)zt/ ¢(g)coswedg a”n

where

®(£) o(r-s) = <Ex(r)Ex(s)> = <Ey(r)Ey(s)> (18)

in view of the isotropy in planes l-io' Eq. (17) gives the relation between t and
El(t) through an integral over the microfield correlation function ¢{f), which will
be shown to decrease exponentially with increasing |g|.

The correlation function for ﬁl(t) can be expressed in terms of the correlation
functions for 3L(t), since these stochastic vector functions are interrelated through

the Langevin equation. By Eq. (2),

E o= v,x B+ (@/e)v,/t + (a/e)dv, /dt (19)
or
E& = -31 x §o+ (m/e)3i/r , t > T, (20)
17)

as known from the general theory of the Langevin equation—'. Since the correct
2 . > 31D
<Ax”> and D, are obtained in the limit t >> 1 (dv'/dt + 0)~—", the correlation func-

tion of the microfield is directly calculated from Eq. (20) as
<E (t)E (t')> = Bz<v (v (v )> + (m/er)2<v (t)v (t')>
X X oy y y y
- ¢ !
(mBo/eT)[<vx(t)vy(t )> + <vy(t)vx(t )>1. (21)

The method used for the determination of the xx and yy velocity correlations in
Eqs. (11) and (12) yields, by means of the solutions (7) and (8), for the asymmetric

velocity correlations

-lt-t'|/

<vx(t)vy(t')> = +(kT/m)sinw(t-t')e (22)

'
v (v (t') = -(kT/m)sinm(t—t')e—lt—t 03 (23)
These weak correlations are caused by the rotation of the charges in the magnetic

field, and vanish for w = eBo/m > 0. Substitution of Eqs. (11) - (12) and (22) - (23)
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into Eq. (21) gives the desired correlation function for the microfield components

E (t) or E (¢v),
X y

- - -t
<E(E (£)> = (1 + wt?) (w0) 2 (kT/m) B cosu(t-t' Ye et |/ (24)
Combining of Egqs. (24), (17), and (18) results in an eigen-value equation for the
relaxation time,
4
1= %—(1 + wzrz)r_l./[e-‘gl/TcosszdE . (2%)
2 2 2 2
Since the integral is 21(1+ 2w 17)/(1 + 4w"t"), Eq. (25) has the solution
22
wtt o= 1/2; o]t = 1/V2 . (26)

This remarkable result gives for the microfield driven diffusion of charged particles

(e,m) transverse to a magnetic field % [Eq. (15)] the transport coefficients:
o 'E4 P

D, = (kI/@/[GHVD|u|l , 1 =V7 |u . @n

For electrons (e = e, m = mo) and ions (e = Zeo, m = M) at the temperature T, the

anomalous transverse diffusion and relaxation frequencies are:
Dy = kT/(3//2)e B, th=VleB /u_, (28)
< oo e 00 o

Dy

-1
= kT/(3//§)Ze°BO, =2 Ze B /M . (29)

This completes the theory of the anomalous, microfield driven diffusion of charged
particles across a homogeneous magnetic field in nonturbulent plasmas, which are in

an approximate local thermodynamic equilibrium.
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DISCUSSION

The anomalous diffusion of charged particles across magnetic fields 1is due to
the eigenvalue character of wt [Eq. (26)], which reflects the interrelation of elec-
tric and velocity field correlation [Eq. (24)]. The mathematical maximum of the

transverse diffusion coefficient is obtained from Eq. (15),

ap, /dt = (1 - wzrz)(l + mzrz)-lkT/m =0 . (30)
as

D, = kI/2mlu| , ¢ = |ul : (1)

The actual diffusion coefficient in Eq. (27) is somewhat smaller, but nearly equal

to the mathematical maximum in Eq. (31), D, s 61 since 3/¥2 = 2.121 » 2. Thus, in

approximate thermal equilibrium, transverse diffusion is practically optimum.
Comparison of Eq. (27) with Bohm diffusioné) indicates that D, = SDE. Although

the phenomenological coefficient "8" is subject to experimental errors, it appears

safe to conclude that transverse diffusion in plasmas is considerably weaker in

presence of turbulence than in approximate thermal equilibrium.

The condition (6) for the applicability of the Langevin equation to electrons

(e) and ions (i) becomes
e w, > /2u_]| , (1) wp »> V2]e ], (32)

by Eq. (26). These inequalities provide upper limits for the magnetic field intensity,

(e) Bo << (mn/2£o)1/2, /2.

(1) Bo << (M/Zm)(mn/Zeo)1 (33)

W+ (32) or (33) corresponds for Z-~1 to the (illustrative) condition that the r.m.s.
. > 2

induced field <(vls x %O) >l/2 of the random electron (5 = e) and fem 1o = & o+ o+ o

is small compared with the r.m.s. electric microfield -f:\l j

X}




plasmas without magnetic fields,

@ Camty o« B2 @ @amt?s <« EY2, (34)

wherelg

Es =201+ Z M yakn/e ) (35)

These inequalities, which can probably be relaxed from small (<<) to smaller (<) in
applications, are in general realized in plasmas in which anomalous diffusion is
observed.

In experiments, the plasma is not always in an approximate local thermal equi-
librium. Since the characteristic times for thermal relaxation Te - Ti + 0 between
electrons and ions and thermal anisotropy relaxation Ty - Tu + 0 in the magnetic
field are large compared with the momentum relaxation time (1), transient plasmas
may be encountered with Ti # Ti. In this nonequilibrium situation the diffusion

formulas are still applicable if one sets T = Tf in Eq. (28) and T = T} in Eq. (29).

Plasmas with diffusion in weak density gradients are stable and remain so even
for larger density gradients due to the stabilizing effects of the homogeneous magn-
etic fieldlg). In more complicated plasma systems, e.g., low pressure arcs with
current flow due to external electric fields, various convective instabilitieslg)

19)

and electron-ion streaming instabilities—' may arise. Anomalous diffusion in un-

stable and turbulent plasmas will be treated in a seperate investigation.
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VI. COLLECTIVE MICROFIELD DISTRIBUTION IN THERMAL PLASMAS

By

H. E. Wilhelm

ABSTRACT

The temperature and density dependent probability
distribution W = W(E;T,n) of the collective microfield E
in fully ionized, ideal plasmas is calculated from first
principles of statistical mechanics. For typical 1deai
plasmas, the average microfield Ew = [127(1 + Z"]‘)nKT]l/2
is by one to two orders of magnitude larger than the char-
acteristic field (nearest neighbor approximation) E, = EH(n)
of the Holtsmark microfield distribution P = P(E;n). The
Holtsmark theory and its later extensions are shown to be
approximately valid for strongly nonideal plasmas only.

The interrelations between (average) kinetic, interactionm,
collective microfield, and electric self energies is dis-
cussed. In particular, an equipartition <§2/8n> = 3(1+Z-1) x
nKT/2 among (average)microfield and kinetic particle energies

in gtatistical equilibrium is derived by means of a thermo-

dynamic model of plasma formation.

96




INTRODUCTION

The probability distribution of the stochastic electric fields E produced
by the electrons and ions in random thermal motjon, is of basic interest for plasma
physics and for applications such as the evaluation of the transport properties, the
Stark broadening of spectral lines, and the prejionization of atoms. Holtsmark cal=
culated the probability P(E)df for the dimensionless electric microfield to be found
with a magnitude between £ and £ + df for a system of n/Z point charges Ze per unit

1)

volume with the result —

3/2
PE) = /ME Y x sinx e~ F/E) T4y
0
where
E = ]EI/IEH » By 2ﬂ(4/15)2/3zl/3en2/3 .
This integral functional of £ shows the asymptotic behavior P(E) = (3/2)13'-5/2 for

E + » so that already the second order moment (average field energy density) does

not exist, <E2> = fQP(E)Esz = =} Consecutively, Gans 2 believed to have derived
0
the correct distribution in form of an integral functional P(£) with converging

/3

moments by considering non zero raddii L < (lmn/3Z).1 of the charged particles,

which make zero distance approaches and infinite fields impossible. Both the Holts-
mark and Gans distributions are independent of the temperature of the field particles,
and describe essentially the fields of the nearest neighbor particles at an average

/3

distance 1 = (41m/3Z)-'1 since E, = e/?z. These theories are, therefore, approxim-

ately valid for strongly nonideal plasmas, in which the thermal energy KT is negli-
glble compared with the average Coulomb interaction energy Zezl; (electron-ion inter-
actions). This conclusion has been confirmed experimentally by Vidalz), who showed
2n1/3

that observed Stark broadening by 'cold" microwave discharge plasmas (Ze % KT)

is in good agreement with the Holtsmark or Gans distiibutions.




3
4
]
{
i

The later developments of microfield theory have been concerned with correcting
and extending the Holtsmark theory under consideration of thermal effects and particle
correlations. The formulation of a rigorous theory of the microfield in thermal
plasmas of arbitrary nonideality is aquivalent to the solution of the general many-
particle Coulomb interaction problem, and has not been achieved yet. However, sig-
nificant contributions to this problem were made with the help of collective coordi-
nate and discrete particle methods by distinguished researchers, e.g., Broylesé’é),
Baranger and Mozeré’Z), Hettner and Wagnerg’g), and Hunger and Larenzlg’ld).

Most laboratory plasmas, e.g., glow discharges, arc discharges at not more
than atmospheric pressure, and thermonuclear fusion discharges, are ideal systems
in which the Coulomb interaction energy is small compared to the thermal energy.

An interesting counter example for a nonideal plasma is the ball lightning phenome~

8cm_3) of low tempera-

non, which consists of a highly ionized air plasma (n » 10l
ture (T ~ 103°K). In ball lightning, the plasma appears to be in a highly viscous,
quasi-liquid state due to the balance of thermal and (negative) Coulomb interaction

energies, Zeznl/3 " KT, the spherical shape and long life-time (At ~ 1 sec) being -

12)

explainable by minimum energy considerations.—" 1In the following, we are concerned
only with ideal plasmas, for which we derive the probability distribution of the
collective electric microfields from first principles, i.e. the results are limited
to interaction parameters

2.1/3

y = ze2al’3/x1 = 1.670 x 1073201317 1c

< 1.

By the fundamental axiom of statistical mechanics of ideal systems in thermal
equilibrium, all equilibrium distributions can be derived without consideration of
the interactions which bring about the equilibtium.ll) By extending this principle
for many-particle systems with discrete energies to continuous media with random
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energy densities u = E(;;)Z/BW y we derive the probability distribution of the

collective microfields E(;,t) in ideal plasmas without approximations. Previously,

14)

we have gerneralized the methods of statistical mechanics for hydrodynamic—" and pla-

15)

sma-— turbulence based on the generalized entropy principle for nonequilibrium systems.




PROBABILITY DISTRIBUTION
Subject of the considerations is a homogeneous, fully ionized ideal plasma of

volume Q containing n,6=n electrons and n, = n/Z ions per unit volume. In thermal

equilibrium, the kinetic energy densities of the electron and ion components are

given by (ms = particle mass)lg)

8
<

u

n Q, s = @g,i. (1)

i g~1 2

m 3 2 > = 2-n QKT, N
1 s sH 2 s

During the random thermal motions of the charged particles, a continuous transform-
ation of kinetic particle energy into potential electric energy occurs, and vice versa,
due to the particle interactions through their longitudinal Cculomb fields (transverse
electromagnetic interactions are negligible for msc2 << KT). By means of a thermo-
dynamic model for the formation of a fully ionized plasma, we demonstrate that an
equipartition of average random electric and kinetic energies exists in statistical
equilibrium [Eq. (42)],

< %/81 > = %(1 + 27kt . (2)

The electric field E(?,t) produced collectively by the electrons and ions at
any point T ¢ Q of the plasma and the field energy density u = ﬁ(?,t)Z/Sn fluctuate
with time t about the average values < E>=0and < 32/8n> # 0, respectdvely. The
proposed problem is to derive the probability W(E)dsf for finding the collective field

fluctuation % in the volume element d3ﬁ = dExdEydEz about the point E = (E_ ,E ,E)
X"y 2z

of the field space subject to the thermal equilibrium conditions (1) and (2).

In order to determine experimentally the collective microfield distribution
w(ﬁ) = W(E2/8n) in a homogeneous and isotropic plasma, one would have to measure the
fluctuating field £ or the fluctuating energy density E2/8n in the vicinity A3; of a
fixed field point TeQ at consecutive times t = Vev, vV a=1,2,3,...5 within experi-

mental errors Atv<< ev, where ev is a time interval which is large compared




with the correlation time of the stochastic field so that éi(;,t) i(;,t + ev )>=20
(within these limitations, the magnitude of Bv may be changed from one measurement
v to the next v +1). In a large number of such measurements, N + » , the energy
density ﬁi/sn would be observed N1 times, ... ,the energy demsity fﬁ/Bn would be
observed N, times, etc., where §§/8n means an experimental value measured with an

error A(§2/8n). The resulting step-shaped energy distribution Na = Na(fi/8n) is

represented by the partition

N1 N2 N3 cos Na ces NM
22/8n Ei/sn /e ... E:/sn ﬁ;/&r (3)
where
N HN, # Ny + ol N N = , (%

2 2 2 2 2 2
N By/8n + N,E)/8n + N,E/8n + ...Naﬁa/SW + oo NE/BT = N<ET(8m> . (5),

N is the total number of measurements (¥ > =) and N < §2/8n > is the total field en-
ergy density measured in the ¥ independent observations. The entire energy density
N < §2/8n > can be distributed in a large number II of ways over sets'{Na}N of numbers

Na . By elementary combinatorics,ls)

= 1 t ]
n= N/ NLONL N NP Ny ! . (6)
The energy distribution Na(§§/8n) observed in statistical equilibrium is the most
probable one. Thus, Na(EiISn)is determined by the condition for a maximum of i) the

number [ of realizations or ii) the entropy S ~ lnll , subject to the constraints

(4) and (5).




T

Accordingly, we determine the probability distribution Na(E§/8ﬂ) from the

maximum of the function 1nll = f(Na) s

1nll = §(Iny - 1) - E Na(lnNa -1 €))
a=]
with
M
In, =0, N , (@)
a=1
¥ o5 3 -1
uleaEa/SW = §5(1 + 2 )nKT v N e , (9

as constraints. Eq. (8) holds by definition of N, whereas Eq. (9) holds for a
large number N of measurements and the average energy density <E2/8w> of Eq. (2).

Addition of the constraints (8) and (9) multiplied by the Lagrangian multipliers

- X and -uto Eq. (7) leads to the compact maximum conditions for 1nll, 4

_ 2 y a2 B
aF(Na)/BNa =0, QAFN)/N <0, o=1,2,...H, (10)
where
M M M 32
F(N) = ¥(lnV - 1) -azl Na(lnNa -1 - xazlua - uaZ N a/&r . (11)

The solution of Eq. (10) gives the distribution N: of the "discrete' energy densities

Ei/Bn in the form

2
N = Ae-uﬁa/sn’ Az (LD

N . (12)

Henceforth, the subscript a is dropped since Ea can be any point t in the field
space. The dimensional constants A(A) and py are then given by the normalization

conditions (8) and (9),

A?e-uEZ/Sn
0

4vE’QE = N (13)
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m 2
Af @2/8mye B4 0p2ap - Basz Hnkr (14)
0

as
A= [8n2(1+z'1)nxT]'3/2N, u=1/(1 + z'l)nKT . (15)

For this normalization, which still contains the number ¥ of measurements, the

probability distribution (12) for the microfield energy density is

N _E2/8r(1 + z )kt
72 © ’

2
W,(E“/87) =
4 (872 (1 + 2 1ynk1)3

In theoretical applications, one is interested in the probability dP = W(i)d3§

>
for finding a microfield E in the volume element d3E about the point t of the field

space, with the normalization SfdP = 1. The corresponding distribution function w(E)

of the collective microfield ﬁ is obtained by renormalization (W » 1):

-3 /2e-ﬁ2/8n (142" Yy nKT

W) = (821 + z-YynxT) X (17)

This fundamental distribution has the form of a Gaussian, i.e. all its moments ex-

ist, e.g.,

A

=1
v
[

4o
1% = [/f tud it =1 , (18)

4
S <[ tedE=§ , (19)
32 TP 220 2 o -1
<E“> = [ff E“W(E)A'E = 12m(1+27 )nKT . (20)

The most probable (EM) and the r.m.s, (Ew) collective microfields are by Eqs. (17)

and (20)
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Ey = [8n (1 + Z—l)nKT]I/Z » (21)

E, - [120(1 + z‘l)nxrll/z . (22)

For considerations concerning the fluctuation of the collective microfield

ﬁ(t) at a point TeQ with time t, temporal averages can be defined by

— +1
_ lim 1032
2] - o s [ fae : (23)
—_ +1
320 lm 1,2, ) (24)
e 2T,

The fluctuation of E(t) is defined by Aﬁ(t) = f(t) - ﬁ(t) with E(t) = 0. In stat-
ionary equilibrium, the time averages are identical with the ensemble averages.

By Eq. (17), the mean square (temporal) fluctuation of f(t) is

sEZ = B - IE] = @3- %)lm(l + 27 Yy nkr . (25)

TABLE I compares the r.m.s. field E . and the r.m.s. fluctuation (AEz)l/2 of

W
the collective microfield with the nearest neighbor Holtsmark field EH - 21(4/15)2
eZ1/3n2/3

3,

in dependence of the electron density n for typical ideal plasma condi-

tions (y << 1, T = 104°K, Z=1). It is seen that Ew and (AE?')]'/2 are one to two

orders of magnitude larger than EH in the range of ideal plasma densities n < 10]'8<:m_3

For these reasons, the Holtsmark field EH represents a small contribution to the

microfield in ideal plasmas. The result Ew >> E, 1s readily understandable since

H
for ideal plasmas

1 Ze2n1/3

2 -
a+2z) . XT

B2 /ED = (n/3) 4/15)4/322/3

<y << 1 . (26)
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The probability for observing a collective microfield with intensity

E = IEI in the range between E and E + dE is P(E)dE = W(E)ANEZdE, where H(E)

1s given by Eq. (17). The maximum of the probability density P(E) is P(Eh) - i
!

L

4e_1[8ﬂ2(1 + Z_l)nl(T]u2 by Eq. (21). Accordingly, the normalized probability

density is P(E)/P(E,) = (e/lo)[81r2(1 + z'l)nx'r]'lexp[-EZ/sn(l + Z-l)nKT] 1.

Fig. 1 presents P(E)/P(EM) versus 0 S E S 108[ch_1] with nT = 1012 - 1022
[cm_3°K] as a parameter. This distribution is a displaced Gaussian with a

max imum P(E)/P(EM) =1 for E = Em, which shifts to higher abscissas EM = [8m %
1+ Z'.l)nKTII/2 with increasing nT-values (pressures). The scattering width
of the distributions AE = §8ﬂ(1 + Z'-l)nKT]l/2 increases "f(n'l‘)ll2 with increas-
ing nT-values (note logarithmic scale of abscissa). The increasing quantitat-

ive importance of the collective microfield in ideal plasmas with higher

pressures p = (1 + Z-l)nKT is obvious.
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ENERGY RELATIONS

A fully ionized plasma consisting of electrons and Z times ionized ions in
thermal equilibrium at a temperatuvre T exhibits various macroscopic energies, the
average kinetic energy <X> = %{1 + Z—l)nKTQ, the average electric field energy
<U> = <§2/8n> 1, the average interaction energy <¢> and selfenergy <y> of the
electrons and ions. In order to derive the interrelation between these energies,
the formation of the plasma by an electric charging process is considered. For
this purpose, we assume that the electrons and ions are initially dispersed at
infinity where they have only selfenergies. The plasma is then built up by mo-
ving one charge after the other from infinity into the volume @, which requires
work against the resulting Coulomb field of the charges already present in Q.

The thermodynamics of the charging process is illustrated by i) a reversible
isothermal and ii) an adiabatic or isotropic model.

The electric charging work expanded in moving N electrons of charge e, = -e
and N/Z ions of charge Ze against their collective Coulomb fielf from infinity

into the (finite) volume Q is (* designates exclusion of terms with u = v)

N, N, N/Z N/Z
1 2,41 i -1
=3 2 z 5 2 (ze)“|¥. - T |
=1 v=l \)=1 =1 v U
N N/Z
) Ze2|'{f’ _ .r,i -1 (¥3))
p=1l y=1 v
where ?S’i (;3’1) are the position vectors of the p-th (y-th)-electron (e) and ion

(1) in the volume Q, respectively. The collective microfield of the N electrons

and N/Z ions at a field point (?,t) is the superposition

N N/Z
EG,o = J BG,0 + ) B, (28)
u=1 ™ v=1 V




where ﬁﬁ(?,t) and Et(;,t) are the individial Coulomb fields produced at the field
point (?,t) by the py-th electron and the v-th ion, respectively. By Eq. (28), the

electric field energy of the plasma Q is

U = %_"I{ZI BZ,0%32 =0+ v (29)
where
N, N N/Z
1 % 3> 1 L 1 21 3>
0=go L DT+ 1) IR B
=1 v=1 =1 v= Q
N N/Z .
1 i 3>
+ ‘BraF , (30)
4“u=21 \;Zl',sfzﬁfi d
=1 =1

are the (e-e, i-i, and e-1) interaction energy and the (e and i) selfenergy of
the plasma, respectively. Comparison of Eq. (27) with Eq. (29) reveals the inter-

relation

U-v¥v=29

it
>

(32)

Thus, we see that the field energy U is the sum of the interaction energy ¢ and
the selfenergy ¥ [Eq. (29)]. The charging work A leads to an increase of the in-
teraction part ¢ of the field energy U [Eq. (32)]. The selfenergy V¥ of the charges
is independent of the spatial locations of the charges, i.e. ¥ is the same before
and after the charging process.

Another independent energy relation is obtained by multiplication of the
coupled Newtonian equations for the accelerations dzr (t)/dt of the py-th elec-
tron (s = e) and the v-th fon (s = i) by their respective velocities vs.v(t) =

d?ﬁ v(t)/dt and subsequent summation over all particles y and v. The resulting
’
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expression can be brought into the form d(X + ¢)/dt = 0, which demonstrates that

the sum of kinetic (X) and interaction (¢) energies is an invariant Ho’

K =
+ ¢ H0 (33)
where
K= g 1a 3e + 5 2 (34)
u=l 2 e vel 2 i v

and ®=A ig defined in Eq.(27). Eq. (33) expresses the conservation of kinetic X
and interaction ¢ energies in a plasma, in which the electrons and ions interact
by longitudinal Coulomb fields.

The thermodynamic functions of the plasma depend in general on the volume 2,
the number Ns of particles in I, and the particle averages of the random kinetic
energies %-ms3§ and the random field energy densities §2/8n. Accordingly, we
assume Uth = Uth(T,a,NS) for the thermal energy and S = S(T,e,NS) for the entropy,
where

3KT/2 = <%-msv§> . £ = <E2/8w> . (35)

For plasma formation by isothermal reversible charging, the volume Q 1is
embedded into a heat bath of temperature T. The transfer of st charges e from
infinity into the cavity § requires on the average the charging work dAs =
dS<U - ¥ = dS<U> by Eq. (32), and their thermalization at a temperature T con-
sumes on the average the energy dU‘S:h = %-KTst (s = e,1). The difference of these
energies, dQs, is supplied by the heat bath., Summation over "'s" yields, in acc-
ordance with the first law of thermodynamics

dq = auth - g4<p> (36)




Y

since no other than electric charging work is performed on the system (dil = 0).

The associated entropy dS = dQ/T is a complete differential,

th 1 9 , th 1 3 , th
- <UPAT + T30 (U - <U>)de + Y gy (U = UHAN_. (37)

s=e,i s

2w

ds = 3T

1

Application of the condition aeaTs = BTBES to Eq. (37) yields the partial differ-

ential for constant NS and T,

autP/ae = a<u>/ae . (38)
Since Uth = 0 for € = 0 (no thermal energy in Q before charging), the integral
of Eq. (38) is

uth - g . (39)

Eq. (39) could have been derived by other thermodynamic plasma formation
processes, e.g. by adiabatic charging of the cavity £. 1In this case dQ = 0,

and by Eq. (36)

dq = dautP - dw> = 0 : <u> = yth . (40)

Finally, <U> can also by determined as that equilibrium value which maximizes the

entropy,
ds = 'r‘l[duth - d<U>] = 0 : <> = ytP ) (41)
Eqs.(39)-(41) indicate that an equipartition between thermal energy and
average microfield energy exists in statistical equilibrium. This fundamental
result is explicitly
3+ 27 hwr - ad?/en : (42)
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The virial equation for the fully ionized plasmaw, the averages of the
field energy equation (29), the energy conservation equation (33), and the ener-
gy balance equation (42) represent four independent equations for the average
kinetic energy <X>, the average field energy <U>, the average interaction ener-

gy <¢>, and the energy invariaat H :

X> + -;-<¢> - % P, (43)
<> - <d> =¥ (44)
k> 4+ <> =H_ , (45)
U> = <K> . (46)

The pressure p of the plasma is assumed to be known (measurable). The self
energy ¥ = <¥> is independent of the random motion and spatial distribution of
the particles in the case of ideal plasmas, and can be calculated from the charge
distribution in the electrons and ions.

As an illustration, the plasma energies are calculated by means of Egs.
(43) - (46) for the case that p and ¥ are known: <U> =<k>=pQ + ¥/3 > 0, <¢>
= pQ - 2¥/3<0, H = 2pQ - ¥/3 > 0. By definition, ideal plasmas are systems
with weak Coulomb interactions, which preserve their electrical neutrality and
collective behavior. 1In applications of Eqs. (43) -~ (46) to ideal plasmas, it
should be kept in mind that the interaction energy <¢> is always small but never-

theless nonvanishing,

0<yn |<¢>|<1{> << 1, “@n

"




CONCLUSION

In ideal plasmas, the distribution of the collective microfields is strongly
temperature and density dependent. For typical temperatures and densities of ideal
plasmas, the r.m.s. collective microfield is by orders of magnitude larger than the
characteristic Holtsmark field. The temperature independent Holtsmark theory is
approximately valid for strongly nonideal plasmas only, for which thermal effects
are negligible. In statistical equilibrium, a balance among (average) kinetic par-
ticle and collective microfield energies exists, which is independent of the thermo-

dynamic process of plasma formation.
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VII. FREE ENERGY OF NONIDEAL CLASSICAL AND DEGENERATE PLASMAS

By

H. E. Wilhelm and A. H. Khalfaoui

Abstract

A quantum statistical theory of the free energy of a nonideal electron-ion
plasma is developed for arbitrary interaction parameters 0 < y < Yc
(y = Zeznlé/KT is the ratioof mean Coulomb interaction and thermal
energies), which takes into account the energy eigenvalues of (i)
the thermal translational particle motions, (1i) the random collective
electron and ion motions, and (i1ii) the static Coulomb interaction energy
of the electrons and ions in their oscillatory equilibrium positions.
From this physical model, the interaction part of the free energy is
derived, which consists of a quasi-lattice energy depending on the
interaction parameter y, and the free energies of the quanitized electron
and ion oscillations (long range interactions). Depending on the degree
of ordering, the Madelung '"constant' of the plasma is a(y) = a for y>>1,
a(y) = a for y > 1, and a(y) 4==Yl/2 for y << 1, where a ~ 1 is a constant.
The free energy of the high-frequency plasmons (electron oscillations) is
shown to be very small for y > 1, whereas the free energy of the low-
frequency plasmons (ion oscillations) is shown to be significant for

y > 1, 1.e. for proper nonideal conditions. For weakly nonideal plasmas,

Y << 1, both the electron and ion oscillations contribute to the free emergy.
Thus, novel results are obtained not only for proper nonideal (y > 1)

A but also for weakly nonideal (y << 1) plasmas. From the general formula
for the free interaction energy AF of the plasma for 0 < y < Yoo simple
analytical expressions are derived for AF in the limiting cases, y >> 1,

Yy 21, and y << 1., Applications to astrophysical problems are discussed.
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INTRODUCTTON

In the classical work of Debye and Hueckel on electrolytes, the total
Coulomb interaction energy is calculated from the continuum theoretical
picture of every ion interacting with its surrounding space charge cloud.
Using more sophisticated methods, similar results were obtained for
weakly nonideal plasmas (y<<1) by Mayer1 (cluster expansion), Ichikawa“
(collective variable approach3), Vedenov and Larkin4 (graphical density
expansion), and JacksonS (hydrodynamic continuum interaction model).
Based on different methods and approximations, investigations of moderately
(¥ > 1) and strongly (y>>1) nonideal plasmas were given by Berlin
and Montrollﬁ'rheimer and Gentry7, Ecker and Kroells, Ebeling, Hoffman
and Kelbgg, and Varobev, Norman and Vilinovlo, respectively.

In spite of differences in the theoretical approaches, the leading
terms of the analytical vesults for proper nonideal plasmas (y>1)
give essentially the same formula for the free plasma energy, AF/NKT = -ay +

2nl/B/KT is the

blny + ¢, due to Coulomb interaction, where v = Ze
ratio of electron -~ ion interaction energy and thermal energy, and
a, b, c are constants depending on the respective approximations
and assumptions. The thermodynamic functions of strongly nonideal
plasmas (y>>1)were also determined with the help of Monte Carlo and

11 12 13
computer metheds by Brush, Sahlin, and Teller =, Hansen =, Votobev et al

14

and Theimer™ ', respectively. Although computer methods provide limited

physical insight, they are useful for checking the quantitative validity

of analytical theories .

At sufficiently high electron densities, for which Y2 1, classical

statistical theories fail due to thermodynamic instabilityls, which is
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inhibited by quantum mechanics. The classical plasma pressure would collapse for
Yy > 1 du2 to the negative electron-ion interaction energy, whereas in reality

the pressure remains positive in a plasma due to the Fermi pressure (exclusion
principle) of the electrons. For these reasons, we present herein a quantum-

statistical theory for nonideal plasmas based on concepts similar to those
16)

used by Debye for solids The application of this model to proper

nonideal plasmas (y > 1) is justified since a plasma exhibits a quasi-
crystalline structure for y >0 before it undergoes a diffuse transition
into a solid, metallic state at a critical value Yo The roll of the
longitudinal phononsof the Debye theory is assumed by the quanta of the
plasma oscillations (plasmons) in the case of the quasi-crystalline plasma.

The theory is also applicable to weakly nonideal conditions, since the quasi-

lattice energy reduces for weak ordering, y << 1, to the free interaction

energy of weaklv nonideal plasmas.
The theory to be presented takes into consideration (i) the energy
eigenvalues of the random, collective electron and ion oscillations and

(ii) the static Coulomb interaction energy (quasi-lattice energy) of the

- -
o LD

electrons and ions in thelr oscillatory equilibrium positions. Thus,

= S

all significant long and short range Coulomb interactions are considered.

The results are applicable to arbitrary nonideal plasmas, 0 < y < Yo where Ye

-

is the critical ordering parameter at which a phase transition into a

solid metallic state occurs.,
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PHYSICAL FOUNDATIONS

Subject of the theoretical considerations are quasi-homogeneous high- #
pressure plasmas consisting of electrons of charge -e and density n = N/V and
ions of charge +Ze and density n/Z = N/ZV, with typical densities in the range

. o _ 3 4
1020 cm 35 n 102acm 3 and temperatures of the order-of-magnitude T-10- 10 °k.

IN

2 -k
For these conditions, the Debye radius D = [4nne” (14Z)/KT] *

is D = 6.901 x
[T/n(l+Z)l/2 < 10-8cm,i.e.,o is smaller than the atomic dimension and the number
of particles in the Debye sphere would be ND:AWnDB/B < 1 for D<10—8cm and
n<1024cm-3. It is seen that the concept of Debye shielding completely breaks

down, and statistical theories containing the Debye length as a characteristic

parameter would be physically meaningless for high density plasmas.

The nonideal behavior of plasmas is determined by the interaction parameter

v, which is the ratio of the Coulomb interaction energy ~Ze2nl/3 and thermal
energy -~KT,
= Zeznl/3/KT= 1.671 x 10'32nl/3/'1‘. (1)

3 3

It follows that 0.5Z < v s 15Z for 107%™ < n < 10%%cn™> and T - 10* %k, For
y £ 1, the nature of the plasma changes from a "thermally expanding' (y<l) to

an "electrostatically contracting" (y>1) plasma. For y>1, the collapse of the
plasma due to Coulomb attraction between electrons and ions is inhibited by the

Fermi pressure of the electrons, i.e. by the quantum mechanical exclusion prin-

ciple. Thus, in the region 0 < y < y the plasma undergoes a diffuse transi-
c
tion from a nonideal classical plasma (y < 1) to a quasi-crystalline plasma

(1 <y <y ), with an incomplete ordering comparable to that of a liquid.
c

An understanding of strongly nonideal plasmas has been attempted via the

(6-14)

model of discrete interacting particles in a dense gas . For the above

reasons, however, it appears to be more adequate to calculate




the thermodynamic functions of proper nonideal plasmas from the picture of
collective electron and ion oscillations. In this approach, the free inter-
! action energy 1s due to the static Coulemb interaction of the electroms and
ions in their "equilibrium positions" (Madelung energy) and their oscillation
energies about the equilibrium positions (plasmon energies).

Since the plasma volume V contains N electrons and N/Z ions, there exist
3N (high~frequency branch) and 3N/Z (low frequency branch) characteristic fre-
quencies w; of longitudinal oscillations. Each plasma oscillator of frequency
w, can only have the energy (ni + %)ﬁwi,ni=0,l,2,..., so that the energy E{i}

of a plasma state with n, plasmons of frequency Wy is

E{i} = [nfu, (2)
{i}l 1
where {i} designates the entire set of given eigenfrequencies w, Ac-

cordingly, the partition function Q of the longitudinal plasma oscillations is

2 e-E{i}/KT
{1}

~fw _ /KT
i

qQ = =Il1/¢1-e ). (3)
{1}

From (, the thermodynamic functions such as the pressure, internal energy,
entropy, etc., are derived in the usual way, e.g., the free energy of the
plasmons is

F = -KT 1n Q = KT ) 1n(1—e‘ﬁwi/KT

). (4)
{1}

In the limit Vo« | the discrete eigenfrequencies w; are replaced by con-

tinuous ones, w=w(k), in accordance with the dispersion law for space charge

waves of wave length A = 2n/k, 0 < k ¢ ﬁ.

1. Electron Oscillations. The high~frequency branch of the space charge

} waves is due to longitudinal electron oscillations. Their frequency w is for
classical (n << n) and completely degenerate (n >> n) electrons given byll)

w’ = w; [1 +(Ke/4ﬂ)ZY—1(k;e)2] , n<<n R )
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1 2/, ~
w?=u? [1+ % () /3(%) /°(Z/Y)(k‘r'e)2], as>an (6)
where
. 3y
n = 2(2mKT/h2) 2 N
1
wp = (4mne?/m) h . (8)
1
;e = n /s . 9

are the critical electron density, the plasma frequency, and

the mean electron distance (KéS cp/cv of the electrons, and m is

their mass). Since k -~ 2n/r_ (oscillations with A < T are
max e e

physically inconceivable), the electron oscillations propagate,

w = w(k) > wp , in nonideal plasmas.

2. Ion Oscillations. The low-frequency branch of the space

charge waves 1is essentially due to ion sound waves. Since the ions

are presumed to be nondegenerate, the frequency of the ion oscillations

is given bylz)

- Y
w = 8(k)(k iKT/M) k (10)
where
Y .
5(k) = [1 + Z(ga/Ki)_] — ] 2 , n<<n, (11)
1-+(Ke/4w)Zy (kre)2
(k) = 1 , n>n, (12)

is a correction factor of magnitude-of-order 1, which shows the

influence of the electrons on the ion oscillations (M = mass, K =

c /¢ of the ions).
P v
In weakly nonideal plasmas, y << 1, the electron sound waves are

strongly damped for wave lengths A < D, due to trapping of the resonance
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electrons with thermal speeds comparable to the wave speed. For proper
nonideal plasmas, y > 1, the number of particles in the Debye sphere
4mD3/3 1s no longer large compared with one and D < 10_8 cm is smaller
than atomic size, so that thermal Landau damping is no longer feasable.
For this reason, electron oscillations should exist for wave length

»>7r if v > D.
- e e
The ions are nondegenerate since n, << gi(ZwMKT/h2)3/2 for the n - T
region under consideration. The electrons are considerable degenerate
for n > n by Eq. (7), i.e. their kinetic energy is essentially given by

the Fermi energy E = £2(372n)2/3/2m for n > n. For this reason, the non-

F
ideality of the electrons increases with increasing n as long as n < A,
but then decreases with increasing n as soon as n 2 i. From the condi-~
tion ze?nl/3 = EF follows that the electrons form again an ideal gas for
n >> 1023 z3, This anomalous behavior is expalined by the stronger in-
crease of EF «n2/3 yith n compared with the Coulomb energy Ec « nl/3
It is recognized that the effects of degeneracy and nonideality
on the dispersion of the ion sound waves, Eq. (10), are negligible.
Similarly, the effect of nonideality on the dispersion of the sound waves
of the degenerate electrons, Eq. (6), is negligible, but in the disper-
sion equation of the classical electrons, Eq. (5), Ke has to be inter-
preted as a polytropic coefficient, where xe(y) ~ cp/cv as to order-of-

magnitude.
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STATISTICAL THERMODYNAMICS

In the plasma under consideration, the electrons and ions interact
through their longitudinal Coulomb fields (transverse electromagnetic
interactions are negligible for KT<<mc2). The electrons (s = e) and
ions (s = i) have thermal velocities ZS and random collective mean
mass velocities és due to their oscillatory wave motions about the
equilibrium positions, so that fheir local velocity is ;s = és + 8;, with
<gs>= ¢ and <Vs> = 33, where <dg> = fffﬁs fg d3 VS is the average of szith
respect to the normalized velocity distribution fs of the species s. The

resulting Hamilton function with Coulomb interaction leads to a free energy

of the plasma of the form:

M

Fe TP 4 og + IF, (13)
s=e,i s=e,1 )

Féo) is the ideal free energy of the noninteracting plasma components

s. EM is the Coulomb interaction energy of the electrons and ions in their
equilibrium positions. Fe,i is the free energy of the electron and ion
oscillations, i.e. of the high and low frequency plasmons, Eq. (4).

It should be noted that Eq. (9) takes into consideration all
significant short-range and long-range Coulomb interactions by means of
the Madelung energy EM and the plasmon energies is. As is evident from

17)

the derivation of Eqs. (5)-(6) and (10), in which terms of order m/M are

neglected compared to 1, Eq. (9) contains the e-e, e-i, and i-i Coulomb

interactions at distances A > n-1/3.
1. Free Energy Féo). In high pressure plasmas, the electrons are
4 : ~ ~ 15.3/2 -3
1 partially degenerate for densities n>n where n = 4.828 x 10°°T [em 7},

whereas the ions behave in general classically. Fermi statistics gives

for the free energy of the ideal electron gasls)
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(o) .

F, ' = - NKT U3/2(u/KT)/U1/2(u/kT) (14)
where -

U (u/KT) = = f x? dx =1/2, 3/2

Al ~ T(o+D) Wk, Pt (15)

0

and

n = 2(21TmKT/h2 3/,2 Ul/z(u/KT) (16)

19)

defines the Sommerfeld integrals , and determines the chemical
potential p =pu(n, T) of the electrons, respectively. The free
energy of the translational degrees of freedom of the classical,

ideal ion gas is 18)

FiO) = - (N/Z) KT 1n[(27rMKT/h2)3/2 <—rzl—>] an

2. Quasi-Lattice Energy EM' The equilibrium positions of the

electrons and ions, about which the electrostatic oscillations
occur, form an electron "lattice" and an ion "lattice", with
an incomplete ordering. In the Wigner-Seitz approximation,

the Coulomb interaction energy of the electron-ion lattices is,

independent of the lattice type,

Ey = - ayNKT , a2 =T?)— (411/32)1/? v > 1. (18)
As the ordering of the plasma increases with y, a(y) is a weak
function of y such that asymptotically a = § for vy >> 1. Eq.(18)
indicates that —EM/N ~ Zez/éiis of the order of the average
e-1 interaction energy. For weak ordering, y << 1, it will be shown

1
that o « y/z.
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3. High-Frequency Contribution Fe. Since the number of longitudinal

modes with wave numbers between k and k + dk in volume V is VArk2dk/(2w)3,
Eq. (4) gives for the free energy Fe of the high-frequency electron

oscillations of energy “fw (k)

. %
Fe/KT(V/2n2) = fe Ln{l-exp[~tw(k)/KT]} k2dk (19)
0
whire
l
w(k) = W (1+a%k2) 2 | (20)
a? = c;/wg = (Ke/4ﬂ)(Z/Y);§ , n<<n , (21)
1 2, 2 ~
2 - “ 2.2 - 9 (M ko =
a® = (3/5) VE9S = 357 ( 6 ) (ﬂ ) (Z/Y)re » n>>n , (22)
by Egqs. (5)-(6). The speed of sound n and the Fermi speed Vg
of the electrons are
c = (x KT/m)I/2 v, = ﬁ(3ﬂ2n)kg/m (23)
m e ’ F )

The number of modes in (O, ke) and V equals the number 3N of

degrees of freedom of the electron gas, i.e.,

k . 1
em 3y fe 4mk2dk = 3N, k, = (1872n) i ) (24)

0
Integration of Eq. (19) by parts yields, under consideration of

kg KTV/672 = 3NKT, for the free enargy of the high-frequency plasmons:

~ THw R’ Tw o
F = 3NKT(1.n{1 - expl - —B (1+a2k?) 2]} - F(—&, ak )) (25)
e e e
KT KT
. where R
X R " k -1
1 F(_mP_., ak ) = EE(ak )3 ? e x' (1) fgy . (26)
KT € KT € 0 e(‘ﬁwp/KT)(l-sz) h_ 1

! and

1 - 1
, o /KT = (47) /Z(Ae/re) i, Ay - t/@xn) % 27
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A 1 1 -

ake = Kellz (9“ /zla)l/s(Z/Y) /2 ’ n <<n ’ (28)
~ 1 1 .1 1 -

ak_ = 2518 9 2 @/R) B2, nxa. (29)

By means of the successive substitutions, (i) x=sinhf, dx = cosh £ d¢
and (ii) ¢ = (ﬁmp/KT) coshf, de = (ﬁmp/KT) sinh £ dg the integral (26)

is transformed to

- ~ - € 3 -1
F(ep,ake) = (akeep) 3 fe (sz—ezp) é(ee—l) de (30)
€
P
where
: 1+ (ak )%
€, ='ﬁwp/KT, €. = % o . (31)

Since the leading expression in Eq. (25) is the logarithmic term, it

is sufficient to give for F(ep, ake) the series approximation (Appendix),

" %o v3. ~h .
F(ep,ake)/z (ake) € a

oo oo 5
- 3 -3 + " R .
I e ] (f;‘)(Zep) PS4, e Jm), €< e, (32)
m=1 n=0
where -
5 £ - 3
5 R 7 +n e p 3 +n -mu
Yy(>+n, (¢ e )Jm) =m f u e du (33)
2 e p
0

20)

is the incomplete gamma functio . Since in general y/ZE 1 for

~

ep <eg < 3€p, the expansion (32) is useful where simple approximate

relations do not exist.
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4. Low Frequency Contribution F With the number of modes in the

e
interval dk at k and volume V given by vunk2dk/(271)3, Eq. (4) yields for the free

energy %1 of the low-frequency ion oscillaticnz of energy tw(k)
ki
Fi/KT(VIZNZ) = S 2n {1-exp[-fw(k) /KT]} k2dk (34)
0
where
w(k) = G(k)ch, 35)
1/2
¢y = (K KT/M) . (36)

by Egs. (10) and (12). The number of modes in (O, ki) and V equals

the number *N/Z of degrees of freedom of the ion gas, i.e.,
i

~ 1
2mn v yrk2dk = 3N/Z, k, = (187°n/2) 53 . 37)

Partial integration of Eq. (34) gives, under consideration of

k; KTV/6m2 = 3(N/Z)KT, for the free energy of the low-frequency plasmons:

> fic PN .
F. = 3(N/Z)KT (zn{l-exp[- M sk )k, 1) - G(k) (38)
1 KT i’ i
where ~
- tic ki '
Gk,) = — 3 S [8(k)+%s’ (k) Jk3dk (39)
i i .
KT Lo /KD
0

Since the dispersion factor §(k) is a bounded function varying very

1 -
little with k such that 1<6(k) £ (1+Z) h for k e(0, ki), §(k) can

. be approximated by an average value §,

§(k) = 8§-~1, nid . (40)

Since in addition the logarithmic expression is the dominant term in Eq. (38),

the integral (39) is approximated by
€

~ ~ A i
G(ei) = Ei-aj 53(e€-—1)'1 de
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where
€ = ‘ﬁcMSk/KT, €, = ‘HCMGki/KT.
20)

G(éi) has the semi-convergent series expansions,—

SR TR I 1-2 :
G(ei) = 3[1 T +...1, €y << 1,
- [T "
m -€,
G(ei) =5 ¢y + 0[e 1], Y >> 1

This completes the formal mathematical aspects of the theory,

the physical implications of which require further elaboration.

(42)

43) !
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APPLICATIONS

For applications of the theory to strongly, intermediate, and weakly
nonideal plasmas, it should be noted that the dimensionless parameters
Y/Z,‘ﬁwp/KT, aie, and n/n occuring in Eq. (25) for the free energy ie
of the high-frequency plasmons can not be varied independently. Since
both y/Z and Ae/;e increase with increasing n and decreasing T,
‘ﬁwp/KT - (Ae/;e)(ylz)kévaries over a large n-T region similar to (y/Z)!,

Eq. (7). Numerically,

-1 1 71 - 23
v/Z = 1.670x 10 on B/T, Tw /KT = 4.328x10 Tabyr, n/m = 2.071x10 a1 %,
Kk = R PP ~
ak —'1.58b ke (Y/2) , <<
~ . l/ -lé
ak, = 3.308(n/n) B(y/2)” 2, n>>i. (45)
4o s 1421 -3 S
E. g., for T=10 K, Y/Z21 if n2 10" cm and‘ﬁmD/KT z 1if
n 2 5x102%m 3.  For T=103°K, y/z 2 1ifn 2 lOlscm_3, etc. Thus,

for typical conditions of nonideal plasmas y/Z and'ﬁmp/KT are of the
same order of magnitude. It is also recognized that in general

n/d >> 1 if y/Z >> 1, and n/n<<1 if y/Z<<1,

In Eq. (38) for the free energy %i of the low frequency plasmons,

~

only one characteristic parameter e, occurs since §(k)~ ¢ ~ 1, By Eaq.

i
(42), this parameter is

) fic, 5k o1 A 5 _1 1y /3.
e, = M (1802 /3"1 hy i - 2.158x1072 ’3(%) éi,za«l (46)
T
KT r
i
where
1 - =1
Ay = -h/ (MKT) h , Ty = (n/2) A . 47

Accordingly, for typical nonideal plasma conditions, it is £i<< 1

since Ai/;i<< 1 (classical ions) although in general Ae/;e > 1 (degenerate

electrons) for vy/Z2>1 or‘ﬁwp/KT> 1.
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The deviation AF of the free energy of a nonideal plasma from
ideality is by Eq. (13) due to the quasi-lattice energy EM and the plasmon

energies ﬁe T

AF (48)

[}
2"
+
o~
L)
[7)

17)

Since the theory of electron oscillations— has not yet been
developed for arbitrary degrees of degeneracy (n$ ﬁ), the contributions
of the electron oscillations to AF in the cases n*n and n2p have to

be estimated from the dispersion equations for n<<n [Eq. (5)] and

n >> n [Eq. (6)], respectively. Fortunately, it turns out that

lFe|<<|AF| for y/Z>1, so that quantitatively relyable approximations

for \F can be derized.

1. Strongly Nonideal Plasmas., By Eq. (6) the spectrum w(k) of

electron oscillations extends over a band Aw ~ w_ above the plasma
frequency for y/Z >> 1 since k;és ie; ~1 and (n/ﬁ)%%ZY~1~ 1. Application
of the mean value theorem for integrals to Eq. (25) shows that the free
energy %e of the high-frequency plasmons vanishes exponentially for

e » o, 1l,e. y/Z>o:

P
~ ~ 1
F_/3NKT = (En{l - exp[-e_(1+a%k_2) é]}
e P e
€ (al;e)-3 ak, 4 _Y
- P 7 i x (14x2) %x)»O, E_ >}
exp[ep(1+i2) 2)-1 P
0
< " < 7
0 -x = ak_. (49)
e
. Accordingly, |§;|/3NKT<< 1 for e, >> 1, i.e., y/Z>>1. On the other

hand, the free energy of the low frequency plasmons is by Eq. (38) for

nondegenerate ions




F, = 3(N/Z)KT[Lne, -(1/3)] =
3(N/Z)KT{Lny + Ln[(1812/2%) B3 (—"?i'Ll - /)y,
es/n

™

1 << 1, (50}

It is noted that y/Z >> 1 is compatible with €y =‘ﬁcMiig/KT<< 1 as

explained above.
Equations (49) and (50) demonstrate that the contribution of the

electron oscillations to the free energy is negligible in strongly

nonideal plasmas, y/Z >> 1. In this limit, the nonideal part of the
free energy is due to the quasi-lattice energy EM and the ion
oscillations,

AF/NKT = - ay + (3/Z)4ny + (3/2)£n(scM/vB) - (1/2), vy/z >> 1, (51)
where \

4 1
vy = €2/, 8= (18r2Z hhoo (52)
Note that £ny depends on both n and T whereas ZnBcM/vB depends only

1
on T, where the Bohr speed is vp = 2.118 x 108cm/sec >> ¢y = (KiKT/M) é.
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It is remarkable that the electron oscillations contribute little
to the free energy compared to the ion oscillations for y/Z >> 1, This
result holds even for moderately nonideal conditions, y/Z > 1. Thus,
we disagree with the formula "F = ne  + 3NKT£n(ﬁm0/KT)” stated without
derivation for nonideal plasmas by Norman and StarostinZl, according
to whom "all the vibrations have exactly the same frequency wy

near the plasma frequency wp The derivation of this formula requires
Hw (k) /KT << 1 for the electron oscillations, which implies v/Z << 1,
but the latter inequality contradicts their assumption w(k) = w, = wp,
since the frequency spectrum extends over a large Land Aw > mp above

wp for y/Z << 1. For these reasons, the free energy proposed by them

is not applicable to proper nonideal plasmas, y/Z > 1, nor is it correct

for 1SS nonideal conditions, y/Z < 1.

2. Intermediate Nonideal Plasmas. For intermediate nonideal

conditions, 1 ¢ y/Z < 10, the spectrum w(k) of electron oscillations
extends over a region Aw < O[wp] above mp by Eq. (6) since (n/ﬂ)%%Zy—l<1 and
k;ei ﬁe;e~ 1. Also in this case, a relatively simple formula can be
devised for the free energy. The logarithmic term in ie’ Eq. (25)

is negligible compared to that in Ei’ Eq. (38), for v/72> 1 since

ep > ﬁcnéﬂi/xr for v/Z>1 by Eas. (45) and (46), respectively.
Accordingly, the nonideal part (48) of the free energy is for inter-

mediate nonideal plasmas:

AF/NKT = -ay + (3/2)8ny + (3/2)£n(scM/vB) - (3/2)6(51)

- 3F(ep.ake), v/z 2 1. (53
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For y/z > 1, the ions can be assumed to be non-degenerate , éi =‘ﬁcM3ki/KT << 1
by Eq. (46), so that the lon integral (41) reduces to

G(e;) =1/3, €5 << 1. (54)
Since ée> Ep > 1 and akeep > 1 [Eq. (45)] for y/Z 2 1 the electron

v

integral (30) is significantly smaller than G(€i) =1/3,
0 < Fle_,ak ) < (2-62) 2 (ak e ) 8u(l-e"®€/1-3°%) << 1, v/22 1.  (55)
p’ e e p e’p

The iower and upper bounds of F(ep,ake) have been obtained by means of

the mean value theorem for the integral (30),
' e b (e S
F(ep,ake) = (akeep) (e -ep) f(e -1)de, Ep < €< gy (56)

€
p

While for strongly nonideal conditions, the contribution of the

electron oscillations to the free energy is completely negligible,

this contribution is still insignificant for intermediate nonideal
conditions, Yy/Z > 1, by Eq. (55). For more exact evaluations, the
small term F(ep,ake) in Eq. (53) can be computed from Eq. (30) or (32).

3. Weakly Nonideal Plasmas. Although the theory of weakly
1-5)

nonideal systems is well understood, it is interesting to investigate

whether the present model for proper nonideal plasmas gives reasonable

results in the limit y/Z << 1, For v/Z << 1 it is ake >> 1 by Eq. (45),
and the spectrum w(k) of electron oscillations extends over a large

region Aw >> wp above mp by Eq. (5). The electron integral becomes for

ake >> 1, aﬂe
C C N3 £ -1
F(ep,ake) = ep(ake) f (P 1) T3, y/z << 1, (57)
0
i.e.,
Fle ,ak )=Y41-2(c ak ) + (e ak )2 ...]. e ak << 1 (58)
p’T e 8 "pe 200 p e el e :

132




P

Although epake is independent of y/Z by Eqs. (27) and (28), the expansion
(58) 1is valid since the electrons are certainly nondegenerate, Xe/; << 1
for y/Z<<1, and

1 1 1 _ -
epake = (4mx) k (9m /2/4) s AT, << 1, Aty << 1. (59)

For nondegenerate ions, the integral (41) is G(éi) = 1/3 by Eq. (43)
since éi << 1., Thus, one obtains from Eqs. (18), (25) and (38) for

the interaction part of the free energy of weakly nonideal plasmas:

AF/NKT = -o(y)y + (3/Z)£ny-+(3/Z)£n(BcM/vB)
+3n(e ak) - (427H), y/z<<l, (60)
where the logarithmic term in Eq. (25) has been expanded for
epaie << 1.

In Eq. (60), a(y) is the Madelung constant of the weakly nonideal
plasma with weak electron and ion ordering, a(y) 0 for y—-> 0. Comparison
of the term -a(y)Y(NKT) in Eq. (60) with AF =
Y03, 2

¥, 23)

1 -
-(NKT)(2/3)7 @(1+z) (KT) of the Debye-Hueckel theory—

(weakly nonideal plasmas) yields the result

1 1 3 1
aty) = @/l qszHR ko yzeen, (61)

The previous theories of weakly nonideal plasmas do not lead to the
logarithmic terms in Eq. (60) since they do not take into account the

effects of electron and ion oscillations.

4. Numerical Tllustrations. Fig. 1 shows the (negative) free energy Fo
of an ideal Z = 1 plasma versus n and T based on Eqs. (14) - (17). Fo Serves
as a reference quantity, relative to which the quantitative significance of the

nonideal contributions are measured. |Fol increases with increasing n and T.
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FIG.1: Free energy F0< 0 of ideal plasma versus n[cm ~]

with T[OK] as parameter (Z2=1).
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Fig. 2 shows the deviation AF<0 of the free energy of a Z =1
plasma from its ideal value Fy<0 versus n and T based on Eqs.
(48), (25) and (38). In the n-T reglon under consideration, |AF| is
of the same magnitude-of-order as lFo[, i.e. 1s considerably larger than
| the thermal energy ~NKT. AF/Fo exhibits only at large densities
n >1019 cm_3 a significant T - dependence.

Fig. 3 shows the free energies %e and ii of the high (e) and low (1)
frequency plasmons of a Z = 1 plasma based on Eqs. (25) and (38). I%il is
considerable larger than Iie], in particular at higher densities. The
T-dependence of %e,i/ Fo increases with increasing density n. Comparison
of Figs. 2 and 3 indicates that AF = F, + ?1, i.e. the quasi-lattice energy
Ey [Egqs. (18) and (61)] is not the dominant nonideal effect.

The Figs. 2 and 3 demonstrate the quantitative importance of the nonideal

effects AF = EM + }e + Pi’ in particular of the low (i) and high (e) frequency

plasmon contributions ﬁi and ie (%i > fe), for the evaluation of the free

energy F = Fy + AF of high density plasmas.

For quantitative calculations, it is noted that the free energy AF is
hardly affected by inaccuracies in the large maximum wave numbers Ee and ﬁi’
which have been determined in accordance with the Debye theory which implies
strong coupling (y >> 1), For weakly nonideal plasmas, Yy << 1, it appears
to be more meaningful to determine ks = ZW/XS from the minimum wave length
-1/3

A is the mean particle radius, s = e, i.

[TH

s 2rs where r = (hnnS/B)

Both models give, however, essentially the same result since ﬁg /ﬁg = (3/n) -

@3z
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FIG.2: Deviation AF < 0 of free energy from Fo< 0 versus n[cm-3]

with T[OK] as parameter (Z=1).
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versus n[cm 3] with T[OK] as parameter (Z=1).
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APPENDIX: Expansion of F(ep,ake)

The integral (23) is conveniently rewritten in the form

-~ ~ _3 N
F(ep,ake) = (akeep) I(ep,e) (Al)
where -
I(e_,e) = 1 (62—52)3/2(e5-1)_1ds O0<e_ < ;: < o, (A2)
p’ I 1 ’ P
p

Since € > 0, i.e. et < 1, there exists the series expansion,

-1 = Y ™, e>0. (A3)
m=1

~

E-€y 3 3y
j pu h (u+2€p) h e M, (Ad)

The substitution, u =€ - ep‘ du = de, and Eq. (A3) transform Eq. (A2) to
I(C ,E) = z e-mep
P m=1

u=o

For u< Zep, i.e., € < 3ep, the binomial expansion,
¥ % 5 %
2 - 2 /3 u \n
(u+2s:p) (2ep) ) (“)(_ZEP) , u/2ep <1, (AS)

n=0
is used, which reduces Eq. (A4) to the double series:
- 3 S - * 3 - ) -
. ) me_ ¥ % n_-(3+n A
Leppe) = 2e) [ ™% ] (D2 a Ty (340, e m),

m=1 n=0

-

< 3e_,
£ €5 (A6)

where
€ 3 4n
u 2 e-mudu. (A7)

5 - T T
Y(5 1, (e-cp)m) =m S

0
is the incomplete gamma function, which is tabulated.zo) In an

amologous way, the integral (A2) can be solved for u > 2ep, i.e.,
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VIII. FREE ENERGY OF RANDOM SOUND OSCILLATIONS

By

A. H. Khalfaoui and H. E. Wilhelm

ABSTRACT

Thermal equilibrium properties of a monatomic gas are
investigated by taking into account the energies of the random
sound wave oscillations. The free energy is derived by a quan-
tum statistical mechanics due to Bose. The system is considered
as a macroscopic continuum in which random acoustic oscillations
are thermally excited. It is shown that the contribution AF to

the free energy due to the sound woves is significant for high

density gases, in particular at moderately high temperatures.




INTRODUCTION

In solids and liquids, the effect of sound waves on the thermodynamic
quantities was studied by Landau and others(l). In ionized gases, the
electrical oscillations (plasma oscillations) affect the thermal equilibrium

of the system(2-3).

Similarly, we are considering the contribution of the
sound wave oscillations to the free energy of noncondensed gases. In
thermal equilibrium of gases, the acoustic oscillations share the partition
of energy and,thus, change the thermodynamic Ffunctions of the system. The
distribution of the sound wave quanta is determined by Bose statistics,

which is used herein.

The problem under consideration is concerned with gases as a macroscopic

continuum, which exhibits a set of separate elementary exitations, the sound
wave oscillations. These exitations behave like ‘'quasi-particles" moving

in the volume occupied by the gas, and have definite energies. The free

energy of the gas evaluated by the theory to be presented will take into
consideration, in addition to the random thermal energies of the gas

particles, the energy of the random sound wave oscillations. It will be shown,
that the effect of the sound waves is important only at high temperatures

and high gas densities. The results of this theory are applicable at
temperatures and densities for which the gas is not in a condensed state . .

(liquid or solid).

Although nonideal effects due to finite particle size are not taken into
account explicitly, it should be noted that the gas under consideration is not
an ideal one. The existence of sound waves in the gas implies that there
are particle interactions, since a gas can not perform the ordered, collective

mean mass motions of random sound waves without such interactions.
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THEQRY

Consider a gas as a continuum of volume V containing N atoms. Because

the velocity of the gas in a sound wave 1s in the direction of propagation,
the sound waves are longitudinal. Each osclllator of frequeney mo of the
longitudinal sound waves can only have the energies (H = h/2n =

reduced Planck constant)

1
Eno =H wo(no + 2), no 0,1,2,...o . (1

The frequency of the suund waves with wave number kc is (M = mags of atoms)

3
w, = kc cs, C, = (YKT /M) (2)

where vy & Cp/cv is the ﬁolytropic coefficient. Accordingly, the partition
function of the gas oscillations is:
-BRC k /2
© 1 e s g
=11 -BAC.k (n+3) M — gk (3)
Z =y nz=0e sog o 2 ¢ l-e BﬁCsk°

(4]

where B=1/KT (K = Boltzmann constant, T = Temperature of the system). From

the partition function Z, the thermodynamic quantitites, such as pressure,

internal energy etc.» are derived in the usual way. The free energy of the

random sound oscillations is given by:

AF = KT n Z - (4)
In the limit V » =, the discrete eigeﬁfrequencies w, are replaced by a continuous j
spectrum, w = w(k), in accordance with the dispersion law for sound waves, of
wave length A = 27/k,

w=kcs.0§k512 . : (5)

The theory to be presented is sensitive towards the cut-off wave number
i, which is large in all cases of interest. Since acoustic waves with wave-

lengths A<max(r,L) and mean free paths L<;=n-1/3 are not possible in gases,
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k = 27/X is determined by the mean free path L,

k = %1 , L=1L(n,T), (6)
where n = N/V is the density of the atoms. The number of (longitudinal) wave
modes with wave numbers between k and k + dk in volume V is g(k)dk = V 4= kzdk/(Zn)3.

Accordingly, Eqs. (3) and (4) give

k
KTV 1 2,, a"ﬂﬁCsEiE
~-BRC k
l-e s

dk. D)

The integral in Eq. (7) is decomposed into the contributions i) from the ground

state (nc = 0) and ii) higher states (ng > 0). By Egqs. (3) and (7)

AF = Fl + F2 (8)
where
vﬁts k 3 iz 2
F1 = 2 j k™ dk = V‘hcs(z—n- 9)
4m
(e]
; and -
; °3 s vic. K3
‘ F2 = Yk 5 n@ - e’BﬁCsk) - zs J. ks%z k (10}
68T 6t A e s -1

by partial integration. The integral in Eq. (10) can be solved for "high" and

"low'" temperatures by series expansions which give

R .

3
F, = Vk Slen - e -
6R™
and .
°3
F2 2 Yk 7 Pu(l - e ) -
637

(4,5),
2v

o B, x
1, x, 4 2v
3*5”\)21 v +3)2\)!§’ x < 2 a1
1 [ 2 -mxfi 3 6 6 |
2. lecs) - ( + + + } .
<3 n=i nx 22 n3x3 n4x4 ,




-

L TN

and Bzv are the Bernoulli numbers, and 7 (4) = n4/90 is the Riemann 7-function.
For comparison purposes, AF and the classical free energy Fo of the ideal

monatonic gas (M = atomic mass) are stated:

h2 3/2
FO = NKT |4&n 5;§E¥ n -1 (14)

and 29
VAV ~3 o B, x
F = k- Vk e Xy Ll x_ v o _2v
AF = v‘ﬁcs(lmj + 5 {Zn(l e ) 3 + 8 z Ty ¥ 3) o’ x<2T. (15)
6hRm v=}
iZ ’ V£3 -X 1 4 - -nx
AF = VﬁCS i + 5 n(l - e ") - =3 [6&(4) - X nz e X

687

1 3 6 6
(;;+ 77+t 33"t 44)] } x> 1 , (16)
n"x n”x n x .

for "high" and "low" temperatures, respectively.

It is interesting to compare the specific heat of the ideal gas (Co) and
the sound oscillations (AC) in the high temperature limit, x = Bﬁcsﬂ << 1.
By Eqs. (14) and (15),

Co=-T32FO/8T2 = 3NK/2 (17)

AC = -T32aF /3T~ —231(V/L3)x <<c  for T = 13 ey (18)

In the derivation of Eq. (18), it should be noted that AFE(VR3/68ﬂ2)Zn X

for x << 1 where x « T-I/Z. It is seen that AC < Co at high temperatures since

r < L.

This completes the mathematical aspects of the problem, the physical

implications of which will be discussed next.




i

e TR

DISCUSSION
In a hypothetical ideal equilibrium gas without particle interactions,
. . . - > > 3> . .
the average particle velocity is <¢> = f cf(c) d7¢c = 6, i.e. the particles have
> -
pure thermal velocities ¢ with a Maxwell distribution f(c). No random mean mass
motions or collective particle motions, such as sound oscillations, exist due
to the absence of particle interactions. The free energy of the ideal or
non-interacting monatomic gas is, therefore, FO, Eq. (14). 1In any real gas
. . . . > &>

with particle interactions, stochastic mean mass motions <v(r,t)>

i d

= v f(J.?,t)d3C # 0 exist due to the presence of thermally excited sound waves

- . . A . -> - >
[f(v,r,t) is the local distribution of actual particle velocities v = <v> + c].
Since the total energy of the gas is distributed both over the thermal particle

. -> . . -»> >
motion ¢ and the stochastic, acoustic mean mass motions <v(r,t)> , a free
energy contribution from the random sound waves exists. Thus, the free energy
ZF of the random scund oscillations represents a nonideal effect which is
ultimately due to particle interactions, which make a hydrodynamic or continuum
description of a gas possible.
In the contribution AF of the sound waves to the free energy F of an

ideal gas as given by Eq.(5) or (16), we idemtify two parts. i)Fl which is
the contribution of the '"zero oscillation” mode which corresponds to n0=0 in

Eq. (1), and ii) F, the higher mode oscillation contributions n0>1. The

2
explanation for the increase of the free energy of the sound quanta fw with
temperature is given by statistics. In the high temperature limit, the number
N“ of sound quanta of frequency w is Nm * KT/fw, i.e. increases proportional with T.
In Fig. 1 we have drawn AF/F0 for monatomic helium gases over a range of
temperatures and densities to show the variation of AF. The overall contribution
of °F is larger at higher densities but decreases rapidly for lower densities,
especially at high temperatures. Quantitatively, AF represents a noticeable

3

effect only at extremely high densities n of the gas [n>1021cm ). For this

reason, the free energy AF of the sound oscillations has to be considered in'the
evaluation of the thermodynamic functions of high-temperature gases only at

hieh densitira. . i

Ly
N SR T
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Fideal

n=1022

T

5x1020

103 N .
101 102 103 104
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Fig. 1: Free energy AF due to sound waves in helium gas -3
as function of temperature T[°K] and density n [cm™)




Gases with a considerable acoustic noise background are encountered
in various high temperature engineering systems, such as gas turbines,
jet engines, rocket exhausts, etc. The theory presented permits calcula-
tion of the free energy AF of the acoustic degrees of freedom in such
systems, provided that the acoustic noise is in thermal equilibrium.
Considerably larger free energy contributions are to be expected under
nonequilibrium conditions, particularly if the acoustic fluctuations

exhibit intensity levels corresponding to turbulence.
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