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ABSTRACT Jq |

Under o free-replacement warranty of duration W' the customer 15 pro-
vided. for an initial cost of (., as many replacement items as needed to provide
service for a period W, Payments of € are not made at fixed intervals of
length ' but in random vycles of leagth ¥ o= # + YOH ) where YOHT) s the
random} remaining life-time of the item in service W ume units after the be-
pinming of a cyete. The expected number of payments over the life ovele. L. of
the item 15 given by My (L), the rencwal tunction for the random varible ).
We investigale this renewal function analyucally and numerically and compare
she fatter with known asymptotie results. The distribution of Y. and hence the
renewdl tunction, depends on the underlyving failure distribution of the items.
Several choices Tor this distribution, including the exponential, uniform. gam-
ma and Weiball, are considered.

1. INTRODUCTION

Since a real or potential cost is involved, any item sold with a warranty must necessarily
be priced higher than if’ it were sold without a warranty. How much more the seller should
charge and how much more the buyer should be willing to pay depends upon the structure of
the warranty and the life distribution of the item. An analysis of pro rata and free-replacement
warranties from both buyer's and seller’s points of view is given by Blischke and Scheuer {6]
and [7).

In this paper we shall consider only the free-replacement warranty and shall be concerned
mainly with the seller’s (or supplier’s, manufacturer’s, and so forth) point of view. Of primary
importance from this point of view is the long-run profitability of the item.

An important consideration in analyzing long-run profits for items sold under a free-
replacement warranty is the expected income over the life cycle of the item. This, of course. is
a function of the expected number of replacement items sold over the life cycle. This expected

*This research was supported by the Office of Naval Research under Contract No. NOO014.75-C-0733, Task NR042.323
Code 434,
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194 WoOR.BLISCHARE AND B M SCHEUERR

number, found from the renewal function for the associated random variable. is the subject of
this investigation.

[n the analysis it is assumed that the buyer purchases an identical replacement when the
item in service at the end of the warranty period fails and that the purchase and initiation of
operation ol a replacement are instantaneous. It is also assumed that replacements are
manutactured at the same cost and marketed at the same price. These are standard simplifying
assumptions  Though chyvioush unrealistic, in practice they do not negate the results of the
anadysis bovause the raportant consideralions cre e cosy/price relativities,

Another simplifving assumption mads n the analysis is that the ife ovele of the item is a
constant.  ("Life cvele” is also called "ece + mie (" or "assumed life”) For planning purposes
and tor tax purposes. this is. indesd .« wstonuarily taken 1o be a fixed guantity. In reality, of
course, equipment is perchased at different times and life cycles viry. Accordingly. the life
cvele of the item could guite proper)sy be vonsidered to be d random variable. This. however.
further complicates an already ~ompiex problemy. Finally, it is not at all clear what might be
reasonably realistic distributionat assumptions. (We know of no studies that would suggest a
particufar distributional forin ) Secondly. this would greatly complicate the renewal function.

1t is suggested that i using the results of this paper, or any similar results. @ parametric
study be done. ali v ne £ L g, ete. (defined below) to vary over some appropriate sets of
values.

In the ensuing, we shall discuss in more detail the nature of the free-replacement war-
ranty and its associated costs/profits, the role of renewal theory in analyzing warranty policies.
and the specific renewal function encountered in the contexi just described.

The form of a renewal function depends ultimately on the underlying life distribution of o
the items in question. Typically in dealing with renewal functions, closed form expressions are 1
available only for a few special cases, although limiting results are quite generally available. We i

shal! find this to be true of the "special” renewal function under consideration here as well. !
Analvticai results will be given for the exponential distribution and, to illustrate a point, the
unitorm distribution.  Some results of a numerical investigation of the special renewal function
for gamma and Weibull distributed lifetimes will also be discussed. These depend on a4 new
analytical result and on newly calculated tables (details below),

2. THE SPECIAL RENEWAL FUNCTION AND ITS ROLE IN THE
ANALYSIS OF WARRANTY POLICIES

The Analysis of Warranty Policies

In the analysis of warranty policies given by Blischke and Scheuer [6] and [7) the basic
considerations were the comparison of vost to the consumer, and of profit 1o the supplier, of
warranted versus unwarranted items. In the present paper, we shall limit attention to the point
of view of the supplier. From his point of view, the cost comparison Icads to the establishment
of a differential pricing structure which will equate expected long-run profit in the two situa-
tions. Profit, of course, 1s a function of cost and income. In our previous work (Blischke and
Scheuer {613 we derived the eapected profit per warranty cvele. Here we are concerned with the
tong-run profit over the life cvele of the item. This can be approximated for relatively long life
cveles by pursuing an analysis afong the lines of our 1975 paper [6]. (Sce especially Sections
10 and 2.2 Our present objective s 1o oblain an exact expression for this quantity. A
result of this tvpe would provide @ basis for evaluation of the adequacy of the approximation.
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The Free-Replacement Warranty

The specitic warranty policy under consideration here is the free-replacement policy.
Under a warranty of this type the supplier provides replacements for failed items free of charge
until a speciticd period of service. B is attained  His income during this period is the price. .
charged for the initia) stem. His ey pected cost s the sum of the cost of supplying the initial
item and the expected cost of all replacements required to provide the total warranted service
time, B In the sequel we shall express this expected cost following Blischke and Scheuer [6].
as ¢l + MO where g is the cost per unit, X is the random lifetime of an individual item
and M\ (W) is the associated renewal function evaluated at M. tn this expression the quantity
1+ M UH) is the expected total number of items supplicd: that is. the initial item plus the
expected number of replacements.)

The Excess Random Variable

For the long-run analysis of the free-replacement warranty policy. it is important 1o note
that no cost is incurred and no income obtained after W unul the item in service at time W
fails. The symbol Y is used to denote the random time at which this event takes place. This
can also be expressed as ¥ = W + y (W), where y( W), the "excess random variable.” is the
(random) residual lifetime of the item in service at time W. This rundom variable is key to the
analysis which follows. 1t is also called the "excess lite" or "residual life" (Ross [13]), "remain-
ing life" (Barlow and Proschan [2}), and "forward recurrence time” or "residual life-time” (Cox
(91), and has some nnusual properties (see, for example. Feller [10]).

The Role of Renewal Functions

In the foregoing we have seen that the renewal function, M, ("}, of the basic lifetime ran-
dom variable, X, plays an important role in determining expected profit on a per-cycle basis. In
particular, expected profit per cycle is P = C — gl + M, (W)].

We turn now to the analysis of long-run expected protit. In this case we look at repelti-
tions of the warranty cycle. The first such cycle extends from 0 to V', = W + y, (W), say: the
second from Y, to Y. and so forth. Schematically, we have

Expected
Cost eIt + M W) 0 el v oM 0l 0
Time ——— ——
R T [P SR . i . 1 . .
0 " V. [ N R L.
e — e et
yl(”) }J”)
e— rt—
Y Y.
Income C C .

The total expected profit is thus seen to be 7 times the number of expected repetitions of this
process over the life cvele, L. This quantity is precisely the renewal function of the random
variable . cvaluated at L. We call this the special renewal function and denote it A, (L), We
can give a closed-form expression for A, (1) for X having the exponential distribution and for
L an intcger multiple of #. Equation 18, Also. we can find explicitly the density and the
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momerts of y{H') for X having the uniform distribution; however, the corresponding expres-
ston for M, (-) is not readily attainable, nor is a closed-form expression for M, (), in general,
However, asympintic expressions for M, (L) are available and some calculations, summuarized
in the portion of Section 4 showing results, indicate that a suitably chosen one of them can give
quite satisfactory approximations to M, (L) over a range of L values.

In our previous work we approximated M, (L) by L/LE 1Y) Our present numerical inves-
tigations indicate that this does not always provide an adeqo-.ic approximation. By using a new
renewal-theoretic result and with the aid of newly cahvalated wbles we are able to obtain an
improved, and altegether cuite satisfactory, apmoamation (see Section 4.

3 ANALYTICAL INVESTIGATION ¢+ Af, ()
General Renewal-Theoretic Results

We begin with the basic icniewal process involving a single warranty cycle. Y. ), y ), W
and L are as defined previously. Let X, X, ... be the lifetimes of the individual items within
a warranty cycle. We assume that Yy, X, ... arc nonnegative random variables which are
independent and identicaily istributed with cumulative distribution function F, (-). We write

S,= Y Yn=12 SN =00 w= EUY), and o = varlX). For any cdf. F(). we

=1

define F = 1— F . = nfold convolution of £ (-) with itself, with {for F(0—) = 0]
e Jre=o0
PO =10 1 <o,

In addition, we denote N(t) = number of replacements required in the interval (0, 1},
M) = E(N()), and m(() = M'(1).

A well-known, general renewal-theoretic result is that
(nm PINU) = nYy= """ — i),
This prnyides an immediate expression for M(7) in terms of the convolutions F'"'{(1), namely
My = i FU' . We turn next 1o the problem of determining F, () and #,"' ().

no

Many asymptotic results regarding renewal functions are available. Of primary interest
here is the Elementary Renewal Theorem (Ross [13]), which was used in our previous work to
approsvimate M, (L), By this theorem, M, (7)/¢ — 1/E(}Y) as 1 — oo A further resuit. which
we will exploit in the sequel, is (Cox {91,
t var(})

1
My = o Y S 2

It has been known for some time {e.g.. Smith [14]) | that
(3 ECY)=pull + M {H)}

Recently Coleman '8} has found an expression for the moments of y(H), from which the
moments of } can be determined. In particular,

i
(4) varl ¥ = FOYD0+ 47010 - g7+ Mo+ mlmm "y - f“ .‘ll\(u)(lul.
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13
Coleman’s result, along with newly calculated tables of M (W) and J:) M (u)du, permut the
implementation of Equation (2). These tables will be described in Section 4.

Distribution of }
Distribution of the Excess Random Variable

Since Y = H + y(H), the distribution of }is simply a translation of the distnibution of
the excess randonm variable. Thus, the fundamental result required is the distribution of y(H7)
There are several ways of expressing this result.  All, of course, relate back to the basic distri-
bution of .V since we can also write y (W) as y (W) = Sy 0 - W

The survival function for y (') is given by Barlow and Proschan [2] as

. . 11
(3) Foon ) = Plyt) 2 0l = Fy O+ 1) — f“ Fotr + B0~ by Goddu,
An equivalent expression for the corresponding density is given by Cox [9] as
13
(6) Sy = A8 + 0+ [ m OF = a0+
Mixture Representation
It is of interest to note that in addition to these classical representations, the distribution

of the excess random variable can also be expressed as a mixture of distributions (¢f. Blischke
[4) and [5]). namely

(7) Foon (=Y Ply() < [N () = ndP{N (W) = nl.
n=t

Here the distribution of N (given in Equation (1)) is the mixing distribution and the condi- - 1

tional distributions of y given N are the components of the mixture. Since the event j

{N (W) = nl} is equivalent to the event {S, < W, S,., = 1. the conditional distributions

become i
i

(8) Plytw) <IN =)= PIS,., < W+lS, < B, 5,2 8]

which can be expressed as an integral over the appropriate region of the bivariate distribution of
S, S,

One property often encountered in dealing with mixed distributions is that they may be
multimodal. This is indeed the case for the distribution of the excess random variable. a fact
that became quite apparent in some of our computer simulations. Another property of mix-
tures of the type we are dealing with here is that the moments of the mixed distribution can be
expressed as weighted averages of the moments of the components. We have not pursued this
point but it would be of interest in some applications. (For example, one might be interested
in the conditional expected residual lifetime of the item in service at the end of the warranty
period, given that it is the nth replacement.)

An expression equivalent to Equation (7) is

9 Foom() =3 Ply(W) 2 1 0 Ny(W) = n).

n={0
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In view of the remark preceding Equation (8) and using the definition of y (l) | the joint
probabilities in Equation (9) can, for n = 1, be writlen

PlytWrz rn NyWy=nl=PS,. 21+ 08, < B NS, =24

el

Il

I

PSS, Zr+HWnNns, < Wi
am

f Plr+ W—u<S, < WIX,., = ulf,Gdu
v
(1 = [ IRy = B G W= o)y
+ f""“ F{ O £ () du

The limits of integration in Equation {(11) come about as follows, In Equation (10) we require
t+ W -u<< Wsouz>zi Alsoifr+ W —u <0, ie w>1+ B, then

(12) Plr+ W—u<S, < W, =ul=r0ogs, < WY, =ul
= R\,

since we are dealing with nonnegative random vuriables. Also

(13) PlyW)r 2 e Ny(W) =0 =PV >0+ W X > 0

F'Y 20+ Wy

= F Ui

i

i

Using Equations (11) and (13} in Equation (9}, we obtain

i

(l4’ }':),1”‘)({) i':\‘(x' + W) + Z [F‘(")(]’V) fw _/.t‘(ll)lfll
n=1 !

i+ W
- f’ Y+ W— u)./\&u)du]

I

_ . 1+ W
For + W) + My(W)Eo (1) — f Myte + W = ) flu) du.

Integrating by parts in Eguation (14) and then making a change of variable in the resulting
integral yicids

_ "o
(15) Ply(W) = b= Fote+ )= [ B+ 0 = wdm Goda,
which is Barlow and Proschan’s formula cited at Equation (5) above.
The density for y (W) is, from Equation (14),

(16) ‘/.y(u)(l')

I

d .
= Ply (W) 2 ¢
dt by >

r+ B

fle + 1) +_[ ml+ W — ) fy ) d

]

which, by a change of variable of integration. is seen to be the same as Cox’s formula cited at
Equation (6) above.

To complete the analysis one has (o pursue the derivation of the renewal function for )
One approach is 10 translate the distribution of y (1) to obtain the distribution of }. determine
the n-fold convolution of this distribution with itself, and hence. by Equation (1) the distribu-
tion of N, and then determine M = £ (N} directly. Exact analvtical expressions can be found
by this approach only for a few special cases. In other cases the renewal function must be
approximated, either by computer simulation or by using asymptotic results.  The latter
approach makes use of the Elementary Renewal Theorem or, better, of Equation (2).
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Another approach to the determination of the renewal function of Y ois via numerical
integration. In principle. knowledge of /{0 permits caleulanon of Fy 0 of the £.7C v and
M (). F oy, () can be obtained from (2} [numericul difterentiation of M, (-) w0 get m ) 15
needed herel and then the resull F, (1) = F .01 — W) can be used. Then the suvcessinve
convolutions, Fy"' (), can be calculated, from which, finally. M, () can be achieved. We have
not attempted to implement this approach and know nothing about achievable accuracy or com-
puting time requirements.

Examplies

The Exponential Distribution

For the exponential distribution.

Ae M v 20
yix) =
amn 4 X< 0,

explicit expressions tor all of the above are casily obtained. We use (61 to obuain the densits o
the excess random variable. The "rencwal densitv” is mitrr = 170Y) = A. Thus.
i

(18) Y e N

= Ae M, >0
which is. of course. a well-known result. The density of Vs simphy a translated exponentic]
The n-fold convolution of this is a translated gamma distribution. with ¢.d.f.

¢} y < aly

(l()) f‘('ll‘,)= no ( R ”)/
you -y l;\_‘-l_"L s PRI

V2o

o

In writing the renewal function. it will be convenient to express £ as an integer multiple of !
say L. = [l We then obtain, from Equations (1) and (19),
AN—n—=11"HW" N Z Al o M

| !
/! - Iy

20) PIN,(UW) = n) = ¢ M1 n 0¥ ’Z.

!

Finally. the special renewal function is found to be
[

3oteyawy gy )

1

20 M UW)Y = N, ()]

i

e L R e VT IR S VI T

TRV
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The Uniform Distribution

Although the uniform distribution is admittedly of limited interest as a life distribution. it
is a convenient and nontrivial example to illustrate the mixture formulation. The density is
) —1 < x <48
(22) Hlx)y=1 4
0 otherwise.
It seems sensible to assume that # > M since otherwise replacements are required with proha-
bility one. However, our analysis could easily be extended to cover the case B > 6 with the

formulas presented below.

The ¢.d.f. of the sum of # independent uniform (0.6) random variables is

0 forx <0
1 for x > né
(23) F{m(x) =
l Mo H { _ )u . (’] (v 2”)3 (- 1" n (v . "
T X AR H)" + 5 (X T A x — k#)
forhA=0.1.....n—land At < x £ (A + )4,
Recalling that W < 6, we find directly that
24) PINW)Y = n) = FI"W W) = FOen) X
3
U W
n'ynr! n+ 1y ‘
Also. from Equation (23) and the fact that M, (x) can also be written as
M) =3 Fm o, N
nod i
we find !
A _ I o ’ L |
(25) I L ‘H—’”l cxpl'\——b'/—H], A< v < hF D, :
PR ‘

A=01.2 ... h
|
The density of y (H') can be shown to be ‘
‘ | \
| = 0< 1 <6~ H
' !
(26) Syomtt) =1 " R TR
——('“*(’ " ﬂ_u‘<’<“
H
0 clsewhere.
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It folfows from this that the distribution of '} = H o+ y ) s

1
| ,
= W < v <#
#
(27 K =1 [ ; : ”]
oL " ¢ " h<r<H+ W
0 elsewhere.
with meun
) i
. ¢
(2%8) FOY)=— ¢"
2
and variance
I _— At
. , RIR . H .
(29) (’_;:(‘a N3} — 1t 6 - — «

The above results can readily be used to express /. as a mixture. The mixing distribution
is simply the distribution of N, given in Equation (24). The components of the mixture are
conditional distributions, say /,CINy (W) = gy of v(H) given Ny (W) = n These are found
1o be

1
,,,,,, o Yy < - N
i 0 <7
Ho— ~——
300) " i
(: e == = .
[N =) B — (W + =)
AMIRNIL A AL S H- W < <H
”'/w[
" - —
n+1

In applications the conditional mcans of the excess random variable given N would also be of
interest. Here we find

W W
o n + 1 n +2
30 E(y(WIN (W) =n)= — - e ——
2 [ 1
M4 - — —-
n o+ 1

The convolutions of f, () are rather tedious and we have not pursucd this o get a closed
expression tor A, (). One could. of course. use the Llementary Renewal Theorem with (281
or better. (2) with (28) and (29} 1o approximate M, (). Fmally, one might use an approach
based on the resuft (Barfow & Proschan (21

[y(s)
(32) Vi = -l
l l 3 (.\ )
in which +denotes Laplace-Sticljes transform. inverting to obtain M, G},

The Gamma and Weibull Distributions

The gamma and Wabull distributions, with respective densities
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. - liﬂr \AI J‘ Loy ‘ 2 ()
(33) ) =1 g
0 < ()
and
LA R
(34) ) =4 g
0 o<,

are two of the more widely applied life distribunons.  Unfortunately, general. closed-torm
expressions tor the basic renewal functions, Ay ()| 10 say nothing of the special re 0 4l funce-
nons, M, (). exist tor neither. There is. however, a closed-form expression for the basic
renewal function for the gamma distribution if the shape parameter, «a. is intezer-valued  (See.
for example. Barlow and Proschan [1]) The renewal density for the gamma distribution with
rational shape parameter can be obtained as well.  (See Barlow and Proschan {2] ) Series
expressions tor the renewal tunction for the Weibull distribution have been given by Smith and
Leadbetter [13] and by Lomnicki [12]. Finally. the basic renewal function and other quaniities
have been evaluated for certain gamma and Weibull distributions by Soland [16]. tor the
Weibull by White [17], for the lognormal, gamma, and Weibull by Huang [11] and for the
gamma, inverse Gaussian, lognormal, truncated normat, and Wcibull by Baxter. Scheuer.
Blischke and McConalogue [3]. We will use various of these tabulations to aid us in approsi-
mating M, (L) in Section 4.

4. NUMERICAL INVESTIGATION
Structure of the Numerical Studies

Because o1 i compienitn encountered in the analyvtical invesugation of the distribution
of the excess random variable and the evaluation of the special renewal function. simulation
Programs were writlen Lo provide an opportunity to investigate the properties ol both of these
numerically. The basic life distributions that can be used in the simulations with these pro-
grams are the exponential. gamma. Weibullo unitorm and normal. (The unitorm for compari-
son with analvtical results, the normal because of its apparent applicability in anals zing o set of
data used as an example by Blischke and Scheuer [6], and the other three because they are the
most important life distributions in the majority of applications.}

Here we shall concern ourselves only with the gamma and Weibull distributions.  Some
preliminary results concerning the special renewal function for these will be discussed below.
The purpose of the special renewal program was 1o provide a means of investigating the appros-
imation to My (1)/ 1 using the asymptotic expression (2) and Equations (3) and (3,

The specitic results which will he reported are for the tollowing parameter combinations

\ 8

Wubull “Gamma

3 lvxzx' <00
3 11983 333
3 llm“ 280
s | BUDIR 200
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These parameter combinations were initially chosen so that the tables of Soland 16} could be
used to provide numerical values for the approximation. (Soland’s tables are arranged to
always have w = 1) Subsequently, the new tables of Baxter, Scheuer, Blischke and McConalo-
gue* became available and these were used in the calculations summarized in Tables | and 2.
below. All combinations of B = 0.5, 1.0 and 1.5 with L = 5, 10, and 15 were used. (This
gave warranty periods less than, equal to, and greater than the mean life and life cveles ranging
from 3+ to 30 times the warranty period.) In each simulation 500 repetitions of the special
renewal process were performed.
TABLE | — Values of MUY L 1JECY),
and ACL) for the Gamma Distribution

‘ IParameters | YNV ‘ 101 ‘
' fa B VEGH | L N 0 15 J{ N 10 15
ST TN 0 e s e T T s
S S VA B k1 i 7500794 8Os LOTRT 9T Kjo

O A O A T 928300 840 . T9T K3y K4T
S 1/ L 902 : X9 83K Ro¥ - KIT 839 0 K73

o2 2 s 91 526 839 gnd <27 sy

SR VAT O} 822 86l 8Ty 3 <<n 7y

ST VR I R E 5330878 S88 ST STy AN

‘ SoWs l 628 839 SRT 02 330 SR <K

s a2 e 3300 394 413 38y we 0 41d

3N i 62 309 410 428 308 415 430

- 4 /4 40 37T 423 M0 3Te 42 3
LS s 4e | 380 428 3 AR 0 428 4y

TABLE 2 — Falues of My (L)Y L. 1/E(Y),
and AUL) for the Weibull Distribution
! ,Idrdmuurs( \ V0L 1

M e B MBS 10 R S 1S
= ::‘:—-f—‘—# R e e e EmEe L
OS] T3 R4S 3T T899 814 6l K03 ] 81T
| 3012 921 832 875 BR& | 831 . 876 | K9] |

4+ L1 939 869 912 927 | 874 | 916 - 93]

| 5109 | R0 882932 947 . KR4 932 94
02 1a3 ] ele 5§30 874893 15250 ST ke

3oL12 0633 S8 612 625 ] 560 606 1622
g 100 6066 S750 622 641 | 372 61w | o63s
5Ly 676 SKE 633 646 | SRT 632 L ede
1512 13 369 37 a0 ;e an o 1!
L3102 480 388 83 e 383 Loan |aas
4 110 481 396 431 449 | 383 | 432 448

i SO0 | 486 397432 453 | 88 | 437 | 483

‘These uh]u wive M (o varl N 0] and [ VL G Tor v havimg gammin, amverse Guussan, lognormal, truncated
normal. and Werbull distributions, they encompuss o broad range of parameter values and of values ol 7 We note that

! ’ >
' r Vot du lrom wineh values of the itepral can casty be obtained
1t oot

renewal process. o)

Soland™s 196X tables do not eyplictly give ( VL G dn, but do idude the varanee ol the asseciated equaliboium
1
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Results

In each of the simulations the average number of renewals, say A.I,(I.b was calculated
(along with certain additional relevant summary statistics). The basic results tor the gammua
distribution are given in Table 1 and Tor the Weibull distribution in Table 2. In each case the
values tabulated are M, (L)}/ L. For comparison purposes, values of 1/£(Y) are included. as

1 dojvartly 1
ECY) L|2E(H 2

well as values of the asymptotic approximation of - = 40[).

In the simulations we also calculated the sample variances of the number of renewals for
the random variable Y. From these results one can estimate the standard error of Af, (L) L
The results ranged from less than (002 o .009, with all standard errors except those for combi-
nations of the smallest values of B and L less than .005. Given that the accuracy of the com-
puter simulations themselves is adequate, one can therefore conclude that we have the seeond
digit determined to within one unit or so. except tor a few cases.

Discussion

It is important to note that the approximation based on the Elementary Renewal Theorem
is somewhat inaccurate:  1/ECY) always overestimates M, (L)L, with the difference. of
course, decreasing as L increases. (Thus L/ECY) would consistently overestimate M, (L)
which would lead to an overestimate of the expected income over the life cycle of the item.)

The asymptotic approximation A4 (L) gives quite good agreement with ﬂ,(LD'L. lhe
relative discrepancy between these two quantities occasionally runs up to 2™ but is mostly well
below 1" Accordingly, it is apparent that LA (L) will generally provide a satisfactory approxi-
maton o ALOLY — cernainly so in the absence of an exact mathematical expression tor
My Ly orowables of that quantity.
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ABSTRACT

Sufticient conditions are given for stochastic comparison of two alternating
renewal processes bused on the concept of uniformization. The result s used
10 compare component and system performance processes i nantained relia-
bility systems

1. INTRODUCTION AND SUMMARY

Compuarison of stochastic processes has been a rapidly growing area of rescarch. In this
paper. we will study alternating renewal processes (ARP) X = {X (7). 1 2 0} where the state
space S = {0, 1} and the holding times of the process in state | and 0 are independent random
variables having distribution functions # and ;. Throughout this paper, we assume Fand € are
absolutely continuous with failure rate functions r(r) and ¢ (1), respectively. We shall denote
such a process by (X, r (1), ¢ (1)), Similar notations will be used throughout.

Let ¥ ={X(). r€ 7 and Y =1V, ¢ € T} be two stochastic processes. We sy Vs

Al
stochastically larger than Y, denoted by X 2 )Y iff £ (V) 2 1 s0)) for all nondecreasing
functionals f for which the expectations exist. If Vand } have the same distribution. then we
N
write Y =} In a recent paper. Sonderman [8] presented a set of sufticient conditions such
that stochastic comparison between two semi-Markov processes can be made. By speciahizing
his conditions to the case of alernating renewal processes, Sonderman (Theorem 51 of 8D
obtained the following result.

THEOREM 1 (Sonderman): Let (X, r (), ¢, ()i =1, 20 be two alternating renewal
processes. Assume that time 0 is a renewal point for both processes and

st
(@) YHO) < NV,

(b)) ri{u) 2 raly),
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(©) g tu) < g,

for all w. v > 0. then there exist two ARP'S v and V- detined on the same probability space

St

€ such that Y = X' v = 1.2 and V' <V ocvernvwhere in Q.

The purpose of this note is 10 show that conditions (b) and (¢} in Theorem 1 can be
weiakened to

by rytu) 2 ratv) whenever o < vy

(Vg v < g t) whenever v < v
The proof of this result and two immediate corollaries will be presented in Section 2. Scection 3
contains some remarks on the main results.

2. PATHWISE COMPARISON OF ALTERNATING RENEWAL PROCESSES

We shall start by deseribing a construction due 10 Sonderman [8] which reproduces an
alternating renewal process (X, r(r), ¢ (1)) based on a Poisson process. In order to do that. the
following technical assumption on r (1) and ¢ {1} is needed.

ASSUMPTION: The alternating renewal process (X0 700 ¢ ()} is assumed to be wnifor-

mizable, ... there exists a real number A < 2o such that sup {7 (), ¢ f0f < A A is called the
)

wiilormization rate.

As discussed in Sonderman [8. pp. 113115, this condition can be relaxed to the case
where fuilure rates are uniformiy bounded over tinite intervals. Let A be the uniformization
rate of X, the construction can be separated into two steps. First, a Poisson process with rate A
generates a sequence of potential transition epochs {7, 1 = 0}, where 1, = 0. Then a diserete
time stochasac process is constructed on {r. 7 > 0}, determining whether each potential transi-
tion epoch 1s a genuine transition and. it so. the new state of the process. Specitically. et
TS, 400 = 0) be a sequence of ordered pairs of integer-valued random variables. where S,
has the value 1 or 6 representing the state of the process immediately after 0 The variable
Jo=mCm < )it the last genuine transition is at £, WE assume d 2enuine transition oceurs
at = 0o ey 00 The mital state Sy = V) could either be given or have an matial proba-
bility distribution. The transition probabilities of {€5,,. /0. » = O} are delined as

th PO, =00 = niS, =1 4, v =m0 200 p b, 1,0
POs, - VL~ IS, =000 =m0 2 gl b A
POs, =S, S e

L L S 70 T VY O S A ) I VST VR Y B

"

Finally . detine a new process o TV 7 2 0f by

(2) I A R

"

~

Then it follows from Theorem 2.1 of Sonderman 8 that A \

We will need the following lemna from Anas and Fehtonen G Temma 30 See also
Fheorem 31 of R]

\
vy

&,
o
%

A
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LEMMA 1t Let V={X,. n 2000 Yy ={Y,.n 200 and Z=1Z,. n 2 0} be three
aiscrete ume stochastic processes. Suppose that

N
@ (N2, =z nz20 <, =2, 120

St
and (b) (V1N =nxg ... N, =N | Zo=z,. 020 <
(VA Yy=u0 ... Y =y, | Z,=z. 020
whenever v, €1, 07 < Lofor all j 2 1. Then there exist 1wo stochastic processes

J -
. N S
band Y = {Y,. n 2 0} defined on the same probability space such that ¥ = \|
st

0
< Yeverywhere, hence, ¥ € ).
We are now ready to state and prove the main theorem of this paper.

THEOREM 2: Let €X' r (1), ¢,(t)), =1, 2, be two uniformizable alternating renewal
processes. Assume that time O is a renewal point for both processes and

@ V) < YN0,

() ri(u) = rilv) whenever v < v,

(¢') ¢1(v) < ¢>tu) whenever v < v
then there exist two new processes X' and X? defined on the same probability space €} such
that &' = XN Iy and X' < ¥? everywhere in Q. hence Y' % X2

PROOF: The proof is a modification of the one used by Sonderman [8] to prove his
Theorem 2.2, Since both processes are Poisson-uniformizable. let A = 2 sup {rt), ¢,
The basic idea of the proof is 10 generate potential transition epocis for both processes by the
same Poisson process. Let {¢,, n = 0} be a sequence of eveuts generated by a Poisson process
with rate A. In view of Lemma 1, we need only to show that the two discrete time stochastic
processes 1S}, 7 = 0} and {57, n = 0} constructed according to (1) and (2) from Y' and \*.
respectively, satisfy the following stochastic order relationships:

s
(S8 =54 ... S, 1 =5 1, n 20 <

(S71S

f=I "

=85 S =5 0.0 20

whenever s, < 57,0 < i < j— I forallj 2 [, or equivalently,

3 Ps) =
PS: =

|
=

Il
R

Il

e 20 g

L,on oz 0)

!
[
=
|
P
Tra
[
ro
I
o
ro

whenever ' < 2. 0< i< - 1forallj > 1.

'

N 3

Suppose (54, ... Sae o8 ) and det SNy = kY and JS ) = A°. where
<A <y - land0 €
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CASE 1 Suppose s,' | = 1, hence, s, = 1.
Then by (1) and condition (b'),

in this case, A' 2 A7 and 1 <1 - g

feft hand side of (3) =1 - r (g, = ’p'/'\ < 1=l =1 'n = right-hand side of

(3

CASE 20 Suppose »H o= Oand s = 1
bhsoof (30— gyt - A< LD Vel /0 = rhis ol (3)

CASE X Suppose s} =57, =0

Inthiscase. A" % A and 1 1 >, - f.». Then from (1} and condition (¢'). we have
Lhiso ol (3) =g e 00 <oty = 1 0/A = rhus of (3.

The conclusion of he theorem now foltows from Lemma | since

N

S{‘ U LN \7“)) = S(;

Q.E.D.

The following corollaries are immediate.

COROLLARY I Conditions (a), (b'), and (¢) in Theorem 2 can be replaced by
(M v < Yo,

Gy ry ) or r0r) is noninereasing in 1.

Git) ¢ () or ¢2Ur) 18 noninereasing in o,

) rle)y Z )y and ¢ (r) < gt forallr 2 0.

PROOL: Suppose v < v. I (1) s nonincreasing, then r(ud) 2 ) 2 ) IF
rt1) s noninereasing, then riG) 2 ratu) 2 (v} Henee. in cither case, condition (b') of
Theorem 2 s satistied. Condition (¢) can be checked in similar fashion. QED

COROLLARY 20 Let (X, r(0), ¢{)) be a uniformizable alternating renewal process.

Then there exist two alternating renewal processes (). 7 (00 gy () and (2 r, 000 ¢, (D),

where

r ) = sup i), g,(0) = inf ¢ls).
L LN

ryt) = inf r(sy, gyt = sup g ls),
beoae oy -

such that Yis hounded stochastically from below by / and from above by ).
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PROOF: Clearly the functions r, (), ¢, (). ryl) and ¢y (1) are non-increasing in /.
Therefore, the conclusion is a direct consequence of Coroflary 1. QED

3. COMMENTS AND ADDITIONS

(1) In Theorem 2. the assumption that time O is 4 renewal point for both processes can
be relaxed. 1t is sufficient to assume that at time O, if both processes sre in state 1. then - has
been in state 1 longer than A, and if both processes are in state 0. then A has been in state 0
longer than \”.

(2) In a loose sense. the processes 7 and ) in Corollary 2 may be viewed as the greatest
lower bound and least upper bound, respectively, for process X within the class of alternating
renewal processes whose holding times in both states are DFR (decrcasing failure rate).

(3 An aliernating renewal process may be used 1o model the performance of a repairable
component in a maintained reliability system (see [3] or Chapter 6 of [21). The successive
operating (or repair) times of a repairable component are assumed to be independent iand ident-
ically distributed random variables.  All components operate independently of one another. Let
V(1) be the state of a component at time 7. where

1 it the component is up at tme #

VIO =10 otherwise.

then X' = {X (1), r = 0} is an altiernating renewal process. Therefore, Theorem 2 may be used
1o compare the performance of two maintained reliability systems consisting o # repairable
components.  Specitically, let ¢ be a coherent structure function (see 121 and \; = RYIFRR
1 > 0} be the performance process of the ith component in jth svstems, where 7= 1,
2o =120 Define Y= (NG 00 N =10 20 By forming the product of
probability spaces for individual components. the following result follows directly from
Theorem 2.

PROPOSITION 1: Suppose that
M XM < X foralli=1. ... n

(i) All component performance processes are uniformizable and the failure rates satisfy
the conditions of Theorem 2.

Then there exist two stochastic processes &' and & delined on the same probability space ()
- st “ s s 5 - N ~ s )
such that &' = {6 (X G 1 2 000 7 = [ G, 1 = 0l and ' < &7 everywhere in
st
Hence lb (VU 2 00 < b (X G 12 o),

(4} 1t is interesting to point out that an example of Miller |5, example G, p. 308] shows
that increasing the failure rate of downtime distribution of a component does not necessarily
increase (stochastically) the time to first system failure or system availabtlity  Our result (see
Corollary 1) shows that for systems whose repairable components have DER uptime and down-
time distributions. decreasing the Tailure rates of uptime distributions and increasing the Lailure
rates of downtime distributions do improve the system performancee
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{3 Theorem 2 may be used to establish bounds tor performance measures of maintained
refiability systems.  For example, one can bound the performance process of a repairable com-
ponent by that of a component whose uptime and downtime distributions are exponential (This
is @ special case of Corollary 1 here or Theorem 5.1 of [8]) Maintained systems with exponen-
tial uptime and downtime distributions has been discussed in Brown {41, Ross {6 and 71, [low-
cver. the bounds obtained in this fashion are usually quite loose. Finally, we present the fol-
fowing example to itlustrate the ideas involved:

EXAMPLL: Consider o two-component paralich sssiem. Let £(G) be the uptime (down-
time) distribution of component 1 and A be o constant failure Crepair) rate for component
2. Assume the system starts operation with buth components new. Suppose we are interested
in the expected time until tirst system footure, £ 07,). By conditioning on the state of the
second component when component ' ¢ s for the first time. it is not ditticult to see that

EXT) = J‘“h Wi+ [f“ Ponvdt (1)] : [1.’(minll),l o+ U‘l, ¢ M dG G )l I:'(’I],'l

where D) s o random variable having distribution ¢ (exponential distribution with parame-

terad and P4 = X—H— P Te— e T ATer somie simplification, we have
S N

4
IR ” /'“(m//m]-lf“ « ’“(l—(:‘(ﬂ)d\‘l -

AV e e 2 = UG,
o A .
[ pawar ol f e raGon
l. " 1 J ) N
Theretore, we s . bounds for £.C1) for a two-component paratlel system whose tirst com-
ponent has the same performance process as above and the second component performance
process is uniformizabie with failure rate function A {7) and repair rate function (1), 1 2 0,
Specifically, let A = sup (A A = inf N} g = sup lw (O} and = 'm!; (Y then
11 r 0 P [

BEGAN ) < ECLY < G ).
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ABSTRACT

New closure thearems tor shock models in religbility theory are presenied
I the number of shocks to Galure and the times between the arnvals of shocks
have probability distributions of phase tvpeo then so has the tme to failure
PH-distnibutions are highly sersatle and mas be dsed 0 model mamy guahita-
tive features of practical interest. They are also well-suited for algorithmic im-
plementition  The computational aspects of our results are discussed 1 some
dotail

1. INTRODUCTION

Shock models which relate the life distribution /() of a device. subject 1o failure by
shocks occurring randomly in time, have received considerable attention in recent years, It /2,

is the probability that the device survives A 2 O, shocks and N (/) is the random number of

shocks in (0,1], the survival probability, HG) =1 = HC)of such a device is given by
() Hiy = EPy,, =Y P PIN() = &)L
A1)

The most general shock models are those that correspond to (1), such that (N7 2 0F s a
general counting process and 1 2 Py 2 Py 2 Py 2 .00 Interest in and published results for
shock models center around proving that, subject to suitable assumptions on the point process
N1} of shocks, various reliability characteristics of the shock resistance probabilities /% are
inherited by the survival probability /{) in continuous time.

The first systematic treatment of such shock models was given by Esary. Marshall and
Proschan [5]. when N (1) is a homogencous Poisson process.  A-Hameed and Proschan con-
sidered the cases when AN (1) is 4 nonhomogeneous Poisson process [ and a nonstationan

*This rescarch was supported by the Natonal Science Foundation under Grant Mo ENG-TO0K3S ] and by the A Foree
Oftice of Scientfic Research under Grant No AFOSR-77-3216

**This rescarch was partially supported by research project 4417CMDS-APRAD gt the Indin Institute of Manapement
Caleutta

2i3

e —




214 MOENPUES AND A O BHATTACHARIEL

pure birth process 12}, Block and Savits [4] treated the case when the interarrsal time between
shocks is NBULE (NWULE) or NBU ANWLUD and Thall 18] denved interesting. but comparatisehy
weaker, results when V() s a clustered Poisson process

In this paper, we obtain preservation theorems for the shock model (1) when £ s of

phase-npe and so is the distribution of the interarrival time between shocks. V() s then o
phase type renewal process [7]. The relevance of phase tvpe distributions (hencelorth abbrevi-
ated as PH-distributions) 10 the algorithmic analvsis of the time dependent behavior of stochas-
tic models has been discussed by Neuts in a series of papers starting with 6] A comprehen-
stve treatment may be found in Chapter 2 of 8] PH-distributions provide an aliernative point
of departure in modelling real lite distributions without the classic memaornyfess property and
with possible proper unimodality or multimodality. PH-distributions include the exponential.
Erlang and hyperexponential distributions as very special cases. In addition. they have the
desirable property of being closed under both finite convolutions and nuntures. o feature pos-
sessed by none of the well-known nonparametric classes of life distributions.

In Section 2. the basic properties of PH-distributions. needed in the sequel. are bricth
reviewed. The main theoretical results are discussed in Section 3. Algorithnuic considerations
are presented in Section 4.

2. PH-DISTRIBUTIONS

A density {p] on the nonnegative integers is of phase nvpe i and onfy 1 there exasts
tinite Markov chain with transition probability matrix 72 of order » + 1 of the form
S 89

A -

P=to
and initial probability vector 8.4, .1, such that {p} is the density of the time till absorption m
the state + + 1. The mutrix /- 8 is nonsingular and the stochastic matris S < (1 g )
57 B may be chosen to be irreducible,

The density ipd s given by po=g, and p, =g S* VS tor A 2= 1 In this paper 1p, |
will be the density of the number of shocks to fuslure in a rehabilitv shock model. We will
assume throughout that 3, .. = . We also clearly have that

po= Z poom BS e torh >0
y ok

The mean w1 of {pd is given by g 5 e

A probability distribution 7 ) on 100 s of phase npe it and only i there exists a finite
Markov process with generator Q0 of the form

with tnitial probabiliy vector oo )0 such that 700 s the distnibution of the time il

absorption i the  state m o+ | The  matniy 7 s nonsimgular and the generator
|

[+ o, ) 7 T o may be chosen o bearreducible The distribution 7 C1 s given

2y Fivy b aexp o, for v 0

. e a4
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We shall denote 1 — F(x) by F(x). The mean A[ of F(-) is given by A= —a I 'e The pars
(. T) and B.5) are called representations of F ) and {p, ] respectively. Renewal processes i !
which the underlying distribution F(-) is of phase type were discussed in [7].
Muny derivations related to PH-distributions involve the Kronecker product [. ¥/ of
two matrices L and M. This is the matrix made up of the blocks 1L, M} Provided the matrin )
products are defined, we have that
(3) (L®M)(K® H)= LK & MH.
This property is repeately used in the sequel. .
b
3. CLOSURE THEOREMS
We first consider the Esary-Marshall-Proschan (E.M.P.) shock mode!l [3.5] in which
{N(D} is a Poisson counting process of rate A.
THEOREM 1 *

If the number of shocks to failure has a discrete PH-density {p, .k = 0} with representa- .
tion (8.5). then the time to failure in the E.M.P. model has a continuous PH-distribution #/( ) ;
with representation [8. A (S — )]

PROOF

Since P, = 8 S*¢. for k > 0, we obtain

—_ > A
H(1) = z e M% BS*e=BexptS— NDile ftorr 2 0.
A=0 ‘

This proves the stated result.

A number of interesting quantities may now be expressed in computationally convenient
forms. The j-th noncentral moment of # (-} is given by

(4) pi= N 'BU=S) e, forj 1. !
The deasity A(1) = H'(1), is given by ‘
(s) W) =NBexp (S~ 1i]S° forr >0, |

|

and the failure rate r(1) = () H (1), equals
Bexpr SIS

fori 2 0. I
Bexp (1S ’

, (6) r() = A

Theorem 1 is a particular case of a more general result in which the arrivals of shocks
occur according to a PH-renewal process [7]. This result is proved next.

I et the interarriv 4! time disiribution F7(-) be of phase type with irreducible representation
(. T) of order m. W.en a,,,; = | —« ¢ is positive, a geometrically distributed number of
shocks occur simultaneously at each shock epoch. As in [7]. we introduce the matrices (A7),
A 2 0,1 2 0, which satisfy the system of ditferential equations
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(7) PO.1)= PONOT,

A
Pk)=PkOT+ Yo, Ptk —v 0T, k21,
0=
tor ¢ 2 0. with initial conditions P(A.0) = 8, /. for A 2 0. The element £, (A1) is the condi-
tional probability that the Markov process with generator Q* = 7+ (I - a,, ) ' Ta.is in
the state / at time 7 and that A shocks have occurred tn (0, ¢ ], given that it started in the state
at time 0.

The Markov process O* may be started according to any initial probability vector y. With
y=(1—a,.;) "a, the PH-renewal process is started immediately after a renewal cpoch,
With y = ~A{ 'aT ', where A{ = —a T ! ¢, is the mean time between shocks. we obtain the
stationary version of the PH-renewal process.

THEOREM 2

If the shocks occur according to a PH-renewal process with underlying representation
la.T) and the process Q* is started according to the probability vector y and if’ the probability
density {p) is of phase type with representation (8,5) of order s, then the distribution H ) is
of phase type with the representation

(8) K=y®3.
A=T®/I+T°a®U -a, 5)'S.

of order rm.
PROOF
By the law of total probability, we have

(9) Hn =y 3 Pl -8S*e

LN

=(y®B) Y Plki) ®S* (¢ ® )

A -0

=(y®8) Z() (e ®e).  fort > 0.

The matrix Z(1) = ¥ P(k.r) ® S* satisfies
L =0

Z'(1)

Pki)®S'= 3 Pt} T® S
0

A= A

oo A
+ Y Ya,\Pk—v.) T2 ® S
=l -1

>~

il

ZMT®N+Y P T a®S - o, 8!

[t

m

TR+ Ta® - a,.,5 'S

and clearly Z(0y =1 ® |

o

PR—
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This tmphes that Z0 = eaptAzdr, tor ¢ 2 0 Upon substitution mta (94, the proot s
complete.

Purncular Cuses

I If the number of shocks to tailure is geometrically distnbuted. e, 2 =07 for & 2 0.
< #H < 1. then

L Hin =y Y Pt ¢ =y expild =00 #0001 alil o

for r 2 0.

2 In the maximum shock maodel. tailure occurs it and onhy 1t a shock occurs whose magnitude
exceeds a oritical randomized threshold Fowith distoibuton GO I the magnitudes ol succes-
sive shocks are independent with common distribution £ (-) . then

(an Po= [ FoovdGio. tork 20

N

[t tollows from (10} that
112) i = f yooxp LT 4 08 = FO0n) o e dG v,

for ¢ 2 0. se that HE) 15 o muxture of PH-distributions It (00 as w diserete distribution with
tinite support. then H ) Qiself is of phase tvpe. Case 1 oabove corresponds 1o G bemy
degenerate at H.

30 In the cumudative damave model, the damages are additive. With the same distributions £ ()
and G as i the preveding model, we obtain
(13) po= [ FtiouGio. fork 20

I

If the distbution GO s of phase tvpe with representadon (3,00 and X 0 0 0 Y ure 11d
with common distribution £} then

Po=f  Gooralt (o= EGOLY v X

= FEdexplicy. « o+ Nie=

1>

A'e,

where 4 = f exp (Lx) dFtxy. Tuis readily seen that A is a substochostic matrix of spectrad
radius less lhaln one. The density {p, i is tnerefore of phase wpe. [f the shocks accur according
to a PH-renewal process. Theorem 2 mv be apphied to evaluate 0. The matnix s
obtained by numerical integration for general distributions £ I F ) atself is of phase type
with representation (o R) | then

(I A =f“ exp (Lvdg exp (RXIR "
:(IXtL)f” exp Iy 8exp (RO de I R
= - RV LRI+TRR] KR,

The cigenvalues of Loand R all lie in the open left halt-plane. The same then holds true tor the
Kronecker sum [0 %2 /7 + 1 & R. so that the imverse exists

The nonnegative rectangular matrix 3= (7 X/ 4 /3 RY (J K Ry may casthy be
computed by solving the system
(L®IT+ 1R = IR

by block Gauss-Seidel itergtion
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4. ALGORITHMIC ASPECTS

We shall discuss the computation of the function /(). which is given by Theorem 2. h
readily follows trom (1) that the mean A7 of H ) is given by Ay, . where A and u are the
means of 1p ] and /1 C) respectively. whenever the Pl-renewal process of arrivals is started at a
renewal epoch. With general initial conditions, the mean A is given by Aju| + A — A[. where
)\| =" Y / lﬁ‘.

Knowledge of the mean /if of /) is useful in determining the interval over which we
wish to evaluate ). We may. c.g.. wish 10 choose the mean as a convenient unit of time.
This 1s accomplished by replacing A by AR A different rescaling may be chosen if the ele-
ments of /A are very large or if a different time scale is desirable for the practical problem at
hand.

We now assume that the matrix A has been appropriately rescaled. The function (1) is
computed by numerical integratrion of the system of linear differential equations

Y] VU = )A, fortr 2 0,
W) =y &3,

and setting //40) = (e for @ 2 0

It is convenient to partition the vector vir) as v, (1), vyt where the vectors
Vo) are revectors. Wealso set M= (7 — a,,.,S) 'S, The system (15) may then be rewritten
AS

M . "
(e VO = Y A T e Y v ) T M
- o

for I s ;= o This system may be conveniently solved by a classical integration procedure.
14

such us Runge-Kutie. We see that the vector |3 v, (1) T% | M does not depend on j and needs
oo

to be evaluated only once in cach computation of the right-hand sides of (16},

In many PH-distributions of practical interest. such as, ¢.g.. finite mixtures of Erlang dis-
tributions, the order m of 7' may be large, but 7. 7 7and o have very few nonzero entries. It is
then advantageous to write a special purpose subroutine to evaluate the right-hand side of (16).
By so exploiting the sparsity of 7. 77 und a. it is possible to reduce the computation time
greatly. The mean 2L or in general the scaling factor used in sclecting the time unit, may also
be utilized to choose the step size /7 in the numerical integration of the system (16). In similar
problems. we have usually made two runs at least, one with 1/30 of the time unit and one with
17100 of the time unit. It the results at corresponding time points are not sufficiently close.
further runs with smaller steps are made. The computation times of such runs increase rapidly
and efficient programming is desirable. Other methods with a variable step size and error con-
trol may also be implemented. These classical topics in the numerical integration of ordinary
differential equations need not be belabored here. In all cases. the use of the particutar struc-
ture of the matrix A'is fully worthy of the additional programming cftort.
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AN EARLY-ACCEPT MODIFICATION TO THE TEST PLANS
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ABSTRACT

This paper is concerned with the statistical test plans contained in Mihtuny
Standard 781C, "Reliability Design Qualitication and Production Acceptance
Tests: Exponential Distribution” and the selection and use of these plans
Modifications 1o the fixed-length test plans of MIL-STD-78IC are presented
which allow early-accept decisions to be made without sacrificing statistical vali-
dity. The proposed plans differ from the probability ratio sequential tests in the
Standard in that rejection is permitted only after a fixed number of falures
have been observed.

1. INTRODUCTION AND SUMMARY

Military Standard 781C, "Reliability Design Qualification and Production Acceptance
Tests: Exponential Distribution” [2] covers the requirements for reliability qualification tests
{pre-production) and reliability acceptance tests (production) for equipment that experiences a
distribution of times-1o-failure that is exponential. These requirements include: test condi-
tions, procedures, and various fixed-length and sequential test plans with respective
accept/reject criteria. This paper is concerned only with the statistical test plans and the selec-
tion and use of these plans. The Standard contains both fixed-length test plans (Plans IXC
through XVIIC and XIXC through XXIC) and probability-ratio sequential tests (Plans 1C
through VIIIC and XVIIIC). Each fixed-length test plan is characterized by its discrimination
ratio (d), its total test time (7)), and its maximum allowable number of failures to accept (A ).
If a fixed-length test plan is selected, the total test duration is essentially set in advance. The
only way in which one of these plans can terminate early is by rejection. For example. Test
Plan XVIIC terminates with a reject decision at the third failure if this failure occurs before 4.3
units of total test time have transpired. An accept decision can only be made when 4.3 units of
total test time have accrued. Even if the second failure occurs very early. an early reject deci-
sion cannot be made; nor can an early-accept decision be made if no failures have occurred,

*This research was supported in part by Contract NOO014-79-C-0751 with the Office of Naval Research
**This research was supported in part by Contract NOOO14-75.C.0561 with the Office of Naval Rescarch.
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sy, by time 4.0, In both of these situations, an carly decision would Lack statistical vabidiny in
failing 1o guarantee the operating characteristic of the sclected phin Morcover, an carly rejedt
decision by the consumer would probably violate contractuad agreements with the produce
However, an carly -aceept deciston by the consumer wouid not be subject 10 such an objection
Such a decision might seem very desirable to the consumer (povernment) if testing costs were
substantial or it schedule deadlines were near. This paper presents modifcations to the lised-
length test plans of MIL-STD-781C which allow carly-aceept decisions 1o be made without
sacrificing statistical validity.  The proposed plans differ trom the probabilitn ratio sequential
tests in the Standard in that rejection is permitted onby atter o fixed number of falures have
been observed.
2. THE EARLY-ACCEPT CRITERION

The carly-accept criterion we will consider is as follows. Consider a test plun 2~ with
discrimination ratio . totaf test time 7. maximum atlowable number of fatlures 1o aceept
Ath = 1), and consumer’s risk 8. Consider alternative test plans A0 2. ... £ with the
same discrimination ratio, maximum allowable number of failures to accept 700 <0 < A and
total test times /2~ 5 Ve wWhere v s o as the Y130 pereentide of o chi-squared
distribution  with 2, + 2 degrees  of freedom” The  producer’s risks for test plans
LA K €AY are in decreasing order of g, the test times are inincreasing order of 20 and the
consumer's risks are constant in 7 teach is 3).

The carly-aceept criterion is as follows: aceept at tme /0 at miost 4 falures have
occurred up to that time. The reject criterion remains as before  reject at the (A - 1y talure
The carlv-accept modification alters the original test plan 2 by alowimg carly ~accept deaisions
to be made at A tme points prior to the 1ot 1es ime 1o NS aoresalt the producer™s nisk for
test plan .2 s altered. Also. even though cach test plan © A S s consumer's sk
B.and even though the alternative test plans 2. 2 0 0 A were onby imveived with aceept
decisions, the consumer’s tish of the resulting test s not mamntaned at g and cadecd. may be
significantly greater than 8. e is true that i an carly -accept deasion s made ae tme /0 then
test plan 2. had it been sclected prior to the start of testing. would have reached the same con-
clusion. But. by allowing the test results to effecunvely dictate wineh test plan s used. the pro-
bability calculations involved in deternuning the consumer’™s risk are modihied by the condi-
tional probabilitics which must consequently be incorporated mio them  The producer’s and
consumer’s risks for the modified test plans are computed os totlows  Tet 72,1 denoie the
probability of accepting when the true mean time between tattures (NITBEY s 1A

4
Py = ¥ Priaeceptat tme /1

i)

Let 1) = Priaccept at time 7).

THEOREM 11 Suppose the true MITBE s LA, Then

Wy expt-ary ! I I0) eapt AU TN
1y = )IRIUR o ¢ ‘,,.
! pt !

PROOF: If an accept deciston as made at time T then exacth ] fadlures must have
occurred up to that time (since i fewer than [ taitures had occurred. an aceept deaision would
have been made carlier). Thus,

“hrs Chonee s somesw hat aebrtears . bat s mativated by the use of His 1ole o rtiatanteoe o mv et consamer s osk fol o

Bved-fength west plan
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o
[a%)
s

Priexactly /s failures in [0.T)} = Pr | (o) laccept at time T and

(j = D) failures in (T, T )1}

where |n) represents a union of disjoint events.

(NT)"exp(=AT)) ] INT, =T} Texpt=A(T =Th
” = z A44) - — - e s LV L
J! P (j—Nn!

The consumer’s risk for the early-accept test plan is P, (1) and the producer’s risk is
1= P, /d).

3. EARLY-ACCEPT TEST PLANS

It has been proposed that the early-accept criterion be used with the existing parameters
of the fixed-length test plans of MIL-STD-781C. The effect of incorporating the carly-aceept
criterion into these fixed-length test plans (without further modification) is shown in Table |
In all plans except Plan XXIC the consumer's risk is increased and the producer’s risk s
decreased. (Test Plan XXIC is unchanged since it only accepts when there are no failures)
The changes are substantial, often the consumer’s risk is more than doubled and the producer’s
risk halved. By altering the test time and the maximum number of fuilures 1o accept. itis pos-
sible 10 correct for the effect of the early-accept modification and closely match the operating
characteristics (at two points) of the standard fixed-length test plans. The corrections tor cach
of the MIL-STD-781C fixed-length test plans are given in Table 2. Accept times for these
early-accept test plans are listed in Table 3.

The corrections were computed by defining funciions f, (7.A) as the producer’s risk for

an early-accept test plan with parameters 7 and A, and f3(T.A) as the consumer’s risk. As T

increases f, increases and f; decreases. and as k increases f, decreases and /,; increases.
Because of the integer restriction on A, it is not always possible to design a test plan to achieve
specified values of «, 8 exactly. However, an algorithm which will determine an approximate
solution can be constructed. The algorithm from which Table 2 is derived first fixes A and uses
a guasi-Newton method to determine a value of T which will achieve the desired a-value. The
process is then repeated. varying A in accordance with a bisection search. to determine a A-value
for which 8 is also close to the desired level. Some additional checks to reduce the calculations
are also incorporated. 1t should be noted that the test plans of Table 2 arc designed to have o
and B levels close to the nominal values of the standard test plans, not the actual vatues. (Sce
Tables 11 and C-1 in {2]).

4. PERFORMANCE OF THE EARLY-ACCEPT TEST PLANS

Table 2 shows that the maximum test times for the carly-accept test plans are substantialiy
increased from the standard test times. However, the expected test times for the early-accept
plans are much smaller than the maximum times, and compare quite favorably 1o the ixed
test times for the standard plans.* Graphs of expected test duration versus true MTBI for the
early-accept test plans appear in Figures 1-12. For comparison, the figures also graph the
expected test duration versus truc MTBE for the standard test plans. The carly-accept plans

"The expected test times for Barly-Accept Plans INC and XC exceed those for the corresponding standard plens tor
considerable range of the true MTBE. The reason lor this s that these two carh-aceept plans have prodacet’s and
consumer’s risks substantially closer to the nominal values than do the standard plans
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TABLE 1 — Changes in Producer's and Consueer™s Rishs \
Reswdung trom Incorporatmy Larly - Lccep i
Cruaerion mto MU-STD-"S1C Test Plany i
[ I Without Farly - Aceept Opuon®™ With Farlv- Aceept Oplion® i
Test Discrimination - . ' . !
Plan Ratio J Producer’s ' Consumer’s  * Producer’s | Consumer’s |
e L RISR G RISR RIS G Risk )
TOOIXCT T s 'M‘%m“l’f,n T 9.9 HERt | 381
\C , 1.5 R TIAY 214 RIE T SN X
XIC IS SRR 21 oX 1 Sed !
XIIC ‘ 20 ‘ 9.6 ' 1.6 47 3K !
XHIC | 2.0 9§ 209 14 axd 3
XIVC j 20 199 , 10 1.3 * 428 »
XV( 30 9.4 : 9y 29 AR :
XVIC 3.0 10.9 ‘ 203 ‘ o8 ‘ 3N )
\VIIC 3.0 175! 19.7 LS 0 ;
(High Risk | | ‘
Plans) | 1 ‘ \
XIXC 1.5 288 303 A EA) S0 % }
XXC 20 28K 8S Co194 L 4o k
LN 30 er | e 33 '
“Taken tfrom Labies TEand T of MIL-STD-TR1IC and s for the tese plan wetions Carly -accept maodification *,\!
“True risk when the early-aceept cnterton is incorporated ’1
TABLE 2 — Specitications of Standard and Larly-Accepr Tosi Plans :t ;
‘ CMIL-SED-TRIC Fest Plans™ 3 j
Test ‘“l\LTIﬂH‘lhl(l(lﬂ;— Tost ‘ No oof Baures ‘ Test l\u of battures Producer’™s Risk Consumcer’s Rish '
Pln Ratio ! Ilmc‘: to Rejedt ! llmc‘; 1o Rejedt tor Corrected tor Corrected 1
j | ; ; S Plan t 0 Plan ¢+ )
= { S § ) 1‘ o St 1 B 1 s : ]
‘ INC \‘ 13 ‘ SN 37 | 722 ©NS ' 2 i ':
PoNC i3 | 299 = 26 SET 40 o 1ox L
| NC s \ MR s 18 Iy 24 204 NIE
R ¥ 1 G 20 L IRB ERE) RGN a7 104 I
| NHIC w 20 ‘ 124 2 10 Sl R 94 ‘ [N
| NIV | 20 j 78 . 2o J 126 N 20 . IS 3
N in VR ) R - i N
RS TE S Y 4 R C s o e
NV R 43 ‘ PR “ A R 19" ' v
~Ehgh Risk | '
VoPlans ! ‘ |
e s 7 e T e
NN 20 ‘ 17 [ E KIS 3 ACES IR
e l oo i P SR W 3N

“In mutuples of o,
Erom Tables thand 1Hm MIESTD T8 IC

Corrected Tor use with carly-accept atenan to achues e trae producet’s and consumet s ishs dlose 1o nomanad levels

asgivenan Table C-F ot M STD-TRIC
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TABLE 3 — dccepr Times of Earlv-Accept Test Plans

'[Eslm P-l;:!n . o . /‘\L'L'Cl\l I»l_n_k‘s'r e ]

XCTT =AY T =60 1i=79 0 T=93 T,=110 |
=124 T.=139 T-=153 Ty=166 Ty=18.0
Tiw=193 T, =207 T;=20 T,,=233 T,=245
| l‘]\ = 3*8 'I““, = 271 /,‘1 = 283 TIX = 296 IV|L)= 3()8
=300 Ty =333 a= 345 Iy, =358 Tay=370
[T =38 T =394 1= 406 Iy=418 Ty =430
./” 442 ""ll = 334 —/4;] = 6.6 I.“ =478 T“ = 490
H Vl; %()\ Tu, = 5‘3 T»U = 525 '143)( = 537 T}‘) = 548
lho= 300 [43=25872 Ty=3583 7[,:=1595 Tu=0607
P T =618 Ty= 030 Ty=641 Tyu=653 Tu=0665
Io-076 Tq =088 [la=699 Tg=711 Ty=722!
LT, =32 7, =50 Ts= 6.6 T:= 8.1 Ty=95 |
i r.=109 I,=122 /-=136 Iv= 149 Ty=16.1
D Tw=174 0 T =187 T =199 T=212 T,=224
7= 236 Ty=248 T1-=261 [ =273 Tu=284
7‘3“ =296 T2| = 308 T}j =320 Tz_x =32 TN =344
Ty =356 To=2307 To-=2379 Tw=391 Th=402
Tw=414 Ty =425 Tyu=437 Ty=448 Ty=4060
\ | Tio=3471 Ty=483 Tp=494  Ty=506 Ty=517"
LOoXIC ) Ty =30 =438 =62 Iy=17%8 T,=92 .
7= {05 Iy=119 r;=132 To=144 Ty= 157
Tm = ]70 T” = 182 le = 195 Tl‘\ = 207 Tl-l = 2]9
Tys=231 T,p=243 T;-=255 Ty=267 Tug=219!
I=291 T5 =303 Typ=314 Twy=1326
XIIC 1,=37 7 =36 Ih=172 7.=88 T.= 103
I.=11.7 Te= 131 r-=144 Ty= 158 Ty= 171
Tw=184 T, =197 71,,=210 T,=223 T, =235
! Is=248 T, =260

f XHe o, =28 T, =46 7 = 6.1 Ti= 175 7,=89

| Is= 103 T I-=129 Te= 141 To=154

T“]= 166 TH= 179 ”l’= 191

X1vC T,= 2.7 7, = 4.4 =59 7.~ 173 T,= 87

To= 100 T,= 1123 S 126 :

XvcC 7y= 35 Ty=34 »= 1.0 T:= 80 Ty= 100 |
To=114  T,=128

XVIC T,= 25 T=41 I,=156 T;=170 T,=83

XVIIC r,- 22 =138 =152

XIXC 7= 2.1 7, =37 /h=51 7.~ 64 Ty=17

Ti= 189 I,=102 T.=114 Ty=12.6

XXC r,- 18 7, =32 Ty = 4.5

XXIC | Ty= 11

il

XC

i

—
i
',:‘
~ e~ o~

, .

“Aceept at ime Toaf 7 tailures have oceurred to thai ime
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cannot be conveniently used i an estmate of the true MTBE is required. I a standard test
plan 15 used under these circumstances. the test continues even it a sutlicient number o
fathures 1o reject oceur prior to the total test time. A graph of this plan (without early rejection)
also appears i the tigures. s not surposimg that the carty-aceept test plans generatly have
smuadler expected test durations

Fhe expected test duratons are computed as follows T et - he the (random) test dura-
e

(l‘ liAi.‘. i Z\/“w e .‘/""\\':"/ :‘\’
) A R L AN £ R

where £, denotes the indicator Yoocin  of the event BLotel, £y cquals Tt the event oceurs, O
atiiersise. Fo compute the toas oo the second summation in (D)0 note that at deast 7 and @t
most A Lalures must occun e bl ] A toswer than /7 failures oceur. the test will aceept by
ume i more than A Yadares sccur. the tost will reject by time 7, ) Given that r failures

occur i {07 1 G €0 - A1 end iven that the test does not terminate by time 7, ;. the test
will reject o UL T and ool A o+ 1 2 fadlures oceur in (T, 40 T10 By the memoryvless
praperty of the exi-. -0 istribution, the expected test time under these conditions is

I

SV S N A R I

where /(20 ds g gamma density with parameters A and A + 1 - 7 Thus. by a conditional
capectation argument

L /o
2 P D s b= 200t f (1 4 D) de

where QU = Profdo not aceept or reject at or belore time 10 and ¢ fuilures in {0771},
(; ~. 11}
THEOREM 2 for g <01 S 4
(NTY expt A L) ! N IOl texpt ACT - 1)
OG-~ Torms e 'J/T' S
Iz .

'! ton
PROOE. tor g < < AL

Pricvacts ¢ fadures in {007 1 /’JtU paccept at e J,
o
tnecessarily with 1 falures)
and U D Yailures in (1, T )

FO0

NIy eapt AT ‘ At IOV eapt ACE TN
- ' Xt - iy UV

r P O

Al that remains is to compute the integral in (2Y This integral can be expressed in terms
of the incomplete gamma distnbution and evaluated by standard computer subroutines {11
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A TWO-STATE SYSTEM WITH PARTIAL
AVAILABILITY IN THE FAILED STATE
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ABSTRANCH

A eonvtalization of the alternatme renewal model vl gorep e b s oo o

pornut partisd avaeabdiy g the Ldoed scae s mrodacad Joas saow ow b

Makoie use ot an embedded alicrmannye tenewal procose we v e e
CAPressIons Fot o Vattous moasures o of o svstoo avanl ey Foaitos s Lo
poert avadabaity of the pencrabzeod progc -~ o oo

1. INTRODUCTION

Consider a two-state system, i.¢.. @ machine subject to stochastic failure and repair 15 1S
assumed that the sequences of periods of operation and repair constitute an alternating renew.f
process, a variety of expressions for predicting the availability of the system. known s av.ili-
bility measures, may be derived (see, for example. Baxter [2]). These formulae can readiiy be
evaluated by means of the cubic splining algorithm of Cléroux and McConalogue [4] (see also
McConalogue [5]. [6]).

The model assumes that g breakdown will wholly incapacitate the system. but this need
not be the case, c.g., a large machine dependent on auxiliaries may be able 1o operate at o
reduced capacity if some of the auxiliaries fail. An example of such a machine s & coual-fired
boiler in which the fuel is supplicd by a number of mills: while the failure of one or more ot
the mills will reduce the cffectiveness of (he boiler, a total breakdown will nol necessarih
oceur. In this paper we present a generalization of the two-state system which permits partial
availability in the failed state. 1t will be shown that we can formulate this generalized model in
terms of an embedded alternating renewal process and hence make use of existing theory and
numerical techniques.

1t is first necessary to introduce some notation. Let 2 and ¢ denote the distrsbution fune -
tions of the failure and repair times respectively and suppose that these have finite oxpectations
. hl . . . . .
and variances wy. wo, i, and o5, respectively. Define the indicator variable of the Ivo-state
system
1 if the system is operating at ¢

LD =10 otherwise

Sy rescarch was pertormed while e aathior was ar Unpversis Collees Fooddon Foelondd
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where & = 001) if the system enters the down (up) state at 1 - 0 M Jobne e Stcies o
volution of two functions, Puand @ say, each with support on the ronoesative teas by -

Peow={ Pu—w aun

and the n-fold recursive convolution of P(7) is denoted 72 /v ik o0
two-state system is defined as 4, (1) = p{/, (1) = L} 1t cin b snows
(0 A0 = Fl) + £ » H(
(2) A0 = Gl = G« Hn
where
{3) H() = i F'! o« G )
=1

denotes the renewal function of the sequence of toilures fropairs: enied il

renewal process if there is a failure (repair) at 1 = ¢ and where foo | P
non P{r) such that 0 < Ptr) £ 1 for all 1 (see. for example Bovoer 121

2. THE GENERALIZED MODEL

There are many ways of gencrahizing the alternating rons sab e 1o aitose Tor paigl

avatlability in the failed state. We could, for example. assume rooveds of partial gyl Odvhe,
hence generalize the two-state system to an {n + Li-state sem-Muarkos oocess s waond
result in a considerably more complex model for a refutiveds Dube o crcaae i goneralin

The approach adopted here is (o assume that a proportion y. (0 < 3 < 1 o breuk-
downs exhibit partial aveilability and that the level. \. is a random varizble. independent of the

failure and repair times, with distribution function M. The value of \ s assumed 0 remain ‘
constant during any given period of repair - The distribution M s conditiond on 1\ > 1)

(although we could equally consider a distribution which assigns a4 mass of rrobabilinn + g 10 3
the value 0). This model is equivalent to a three-state semi-Markon ocess with transition k
malrix 4

0Oy | -y] Available
1 o 0 Partially available
1 0 0 Wholly unavailable.

We now define the mudtistate variable
| il the system is fully available at 7
JCr) = 1A if the system is only operating at level A (0 < A < 1) at s
0 if the system is wholly unavailable at 1.

In particular, {J, (1), r > 0} denotes the generalized process in which there is a tailure (repair)
at t=0if A = 0t1),

A wvariety of types of availability measure can be detined for the process [/, 7 > o)
We could. for example, consider the expectation. tn part:cular
(4) EMJ A0} = 4,00 +y EXC\) 4,0
I (5) E(o(0) = )0 +y F(\) 3,00
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Similarly, the expected proportion ol time for wineh the system s wiolly o partrally wvailabie
in (.l iy ziven by

Il
(6) [1-f Jotuvduy = a ) vEUND i
Ja
. 1t or .
(7 B o - atn sy FOv
. , I r , . i - |
N . P bardi reneies the average wvailat it of the provess [ 60 1 > 0
f
il p e
IASRY NS
Consider the alternannye Polson process, e, Flr) =1 — ¢ and Gy =1 ¢

this cose s well kitown that

e ‘

ro ¢
[ - ‘!( i - )J
¢ it i T )
Lo u O e
Suppose tha A Bore oo 3r ome o L tVE = e L g Substituiing those onpres-
stens ot 3 end S aivaes us e same tormutae Yor FJ (0 and £ o
C v o o ayr il = 43 )
Pl IR H_T_0 , b
(e e v f3) G+ ) Lo - 3
[ v ta ~ 3 v .
ARy gt pB o ay pla YL
b= w0t ta o+ 30 G+ b ta v 3 :
THE AT GMENTED PROCESS b
Ihe expoctation of the multistate variaole is of imized use as there is no obyvious exien- F

sion oo dor example intescad avaibabibtys del ply = T 20 Lo ) 120 Further. ihis

measure s not very sensitive to the distribution of Ao only £ 0\ s required and henee wden

cal foreeosts would result from two distributions with the same mears S v e

_ . _ [ '

Observe also that. tory > 00 L/ o e Cad nen @ £ - f ./H.u/ut st Thus, iy ]
. J .

positive value of Ve mater Dow small dncreases tre measure of system availabtinn s

ooetbe an unrealistie assumption s practice iF A is close to 00 1 may not be worthwhile i

atlempuny to use the machime annt 0is fully repaired.

An alternatve approach. switich s mare bkelv to he of use i practce. s 1o regard the sys-
femeoas apera ng sabstacionty b v s A and as broken down otherwise. The s ostem can thus
undergo an arbitrars aumber of Changes of state without becommy unavarlable provided that ;

cach repar periond exbnbits partiad avalability at a level exceeding AL The alternatmy seyuence
of periods of svalabibity aradevel noloss than A and penods of reparr i which A - A clearhy
constitutes an embodded alternatimg renewal process tor fined A Thus, if we detine

(1 o L

)
! 0 otherwase
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we can apply the arguments of Baxter (2] to derive expressions for probabilities of the form
plJL) > A0V 1 € TY where Tis an index set comprising an arbitrary (finite) series of points
and intervals. tor the process {I¢r), 1+ > 0}, which we call the augmented process. In particular,
we shall consider {L(l), 1 > 0}, the augmented process in which there is a failure with A < A,
(repair) at ¢ = 0 for &k = 0(1). It is important 10 appreciate that the interpretation of the sub-
script A is not the same tor functions defined with respect 1o the two-state system and those
defined with respect to the augmented process. For the former, the values 0 and 1 are used 10
denote a failure and repair at r = O respectively, whereas for the latter, these values denote a
tuilure at 1 = 0 such that the level of partial availability during the succeeding downtime is less
than A, and a repair at 1 = 0. respectively. 1ty = 0, the augmented process degenerates to the
two-state system and the interpretations of the two subscripts coincide.

Let = denote the duration of an "uptime” in the augmented process, i.e., the time from a
repair following a downtime with A < A, 10 the beginning of the next such downtime. and sup-
pose that this has distribution function . It is easily seen that

(8) S =(1-a) ¥ a" F" " s G ()

=t
wherea = ypl\ > A )=y .W()\(,) and where
o 1 ifr20
GTO=19 i <o.
We can readily derive expressions for the mean and variance of = by means of conditional
expectation:

+ au,
(9) prz)y = HLTK
| —a
1 variZi = ——a——((rf+(r$)+-L—r(,ul rua)+odf
| — « - (1 —a)

Observe that if « = 1, both mean and variance are infinite. This is to be expected a¥ in this
case the system is always available. Similarly, if « = 0, the augmented process reduces lo_the
alternating renewal model and E(Z) = u |, var (Z) = o (.

=

EXAMPLE

Consider the alternating Poisson process. The Laplace-Stieltjes transforms of Fand G are
given by f*(s)=uv/(s +v) and g*(s) =u/(s +u) respectively, and hence the Laplace-
Stieltjes transform of @ is

vl —a) (s +u)

*(s) =
¢ (s (s +v) s +u) —avu
=v(l - 3 + #
e TG T G A G+ B
where AB = % [ +u) + \F{(u +u)1-— dvu (1 — a)}].

Thus, on inversion, we see that the density of = is

d(1) = K(AI—:([;—)_ [de ""— Be B — e Y'—¢ W),

R x--._ R
- .3 .

v
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FWOSTATE SYSTENCWELHE PARTINL AN A ABHLTY

[
(9]
I

Observe that ¢ (0 s a speciad case ol the deasity of the first passage tinte to absorption an the
Chiang-Hsu alternating renewal process with an absorbing state [3)

4. POINT AVAILABILITY
The pomnt availability At = pticey = 1) of the augmented process 18 the probabibity that

the system s avalable at 7 or that it s under repair and that the level of partal avaitabilin
cxceceds A The tollowing expressions tor 4,01) and A,,(1) are obtained by substituting

(1 - a) />

G = = S
- frisher(y)
and ¢ (51 into the tormulae tor 1760 and 1560, performing some rearrangement and invert- b
ng;
th ,:lltl)—': -Ll."‘n]ﬁl'
(2 L0 =11 a) 4,00 a G
As would be expected. i‘ vl =t b a = Ok = 0,1 asin this case {iA(I). 1 > 0} reduces .
to LG, > 01 Similarlyv. if @ = 1 the svstem cannot fail and hence A, (rh =1 and '
A0 = G 1
‘5
Expression (11 clearly corresponds o 700 wirereas expression (12) does not correspond |
so obviousiy 1o (5 an mterpretation © o, result s, however, more evident if we make use of !
(2) to rewrnite (1) as ‘4
TR P00 = 0 = aG o> HO. ;
!

We now see that we are increasing 1,,00) the point availability of the two-state svstem, by the
probubility that the system fals 1t < and that the succeedimg repair ume. which exhibits
partiad avatbabihity ac a devel exceeding A iy greater than 1 — w. for cach « € (0.7]

EXAMPLE

On substituting the tormutace tor the point availabilities of the alternating Poisson process
into (11 and (12) we obtain the folfowing expressions tor the point availabilities of the ,
corresponding augmented process:

i potar ALz ade ;

Ajl(,j =
¢t ot ou ‘
3 + ! (b =) G b ‘
B = BTN D e e,
ot ot
. N i
On applving the kev renewal theorem to (4), (3), (1D and ({21, we see that }
. By b
m 40 = -
c e My + Mo

. . oty ROV
of im i) = —— "~ T
C [YRRRL Y T O

Fxpresstons for other availability measures are readily derived but, i general. we do not
obtain formulac which. like those for A, (1), are simple modihications ol the corresponding
expressions for the atternating renewal modcel
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AN ANALYSIS OF SINGLE ITEM INVENTORY
SYSTEMS WITH RETURNS*

John A. Muckstadt and Michael H. Isaac
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ABSTRACT

Inventory systems with returns are systemns in which there are unmits re-
wurned in a repairable state. as well as demands for umits in a serviceable state.
where the return and demand processes are independent. W begin by exa-
mining the control of 4 single item at a single location in which the stationary
return rate 18 less than the stationary demand rate. This necessitates an oocu-
sional procurement of units {rom an outside source. We present a cost maoded
of this system, which we assume is managed under & CoONUNUOUS FEVICW pro-
curement policy, and develop a solution method for tinding the policy parame-
ter values. The key to the analysis is the use of a normally distributed random
variable to approximate the steady-state distribution of net inventon

Next, we study 4 single item. two echelon system in which o warchouse
(the upper echelon) supports N(N 2 1) retailers {the lower echelont. In this
cuse, customers return units in g repairable state as well ay demand units in a
serviceable state at the retailer Jevel only. We assume the constant system re-
turn rate is less than the constant system demand rafe so that 4 procurement s
required at certain times from an outside supplier. We develop a cost model ot
this two echelon system asstming that each location follows & continuous te-
view procurement policy. We also present an algorithm for finding the polics
parameter values at each loca 1on that is based on the method used to solve the
single location problem.

1. INTRODUCTION

Many models have been developed during the past 15 vears pertaining to various aspects
of managing repairable item inventory systems (e.g.. [1].[4] 101 [111{12].115), and [te]p ]
Most of these models contain the assumption that the failure of a unit simultancously generates
a demand for a unit of exactly the same type, i.e., the demand process for serviceable units and
the return processes of failed units are perfectly correlated.

In certain instances, however, this assumption of perfect correlation between the demand
and return processes is not valid. For example, this can occur in situations where equipment ts
leased. rented, and/or sold. such as found in the telephone. computer and copying machine
industries. Returns do not necessarily correspond to failures in these cases, but rather to lease
or rental expirations. At the time a umt is returned, it may have to go through a repair or

“This rescarch was supported in part by the Office of Naval Research under Contract NOOBTS TS 1172
A reparratde ifem s an item which faids, but which can be repaired and subsequenthy made avalable 1o satsy o lutwre
demand or an existing backorder
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overhaul process before reissue. There is no reason to assume that the custonier will request
unit of exactly the same type when a lease or rental agreement expires. Similarly, when a cus-
tomer requests a particular type of unit, there is no reson to assume that the customer will
return one of exactly the sume type.

The authors studied a real two echelon inventory repair system managed by a manufac-
turer of reprographic equipment. This system closely resembles the onc described in Section 3.
For that system we found the demand and return processes to be independent Poisson
processes. That is, we tested and could not reject the hypotheses that the demand and return
random variables had Poisson distributions. and that the return and demand random variables
were independent. The research described in this paper reflects our study of this system’s
behavior. Consequently, we assume in the remainder of this paper that the demand and return
processes are independent. We call such inventory systems, inventory systems with returns,

Only a few papers have been published on inventory systems with returns. These papers
contain simplifying assumptions which make them of limited practical value. Heyman [6.7]
considers optimal disposal policies for a single item inventory svstem with returns. but his
assumptions include instantaneous outside procurement {implying no backorders or lost sales)
and no fixed cost of ordering (implying no lot size reordering). Hoadley and Heyman [8] con-
sider a two echelon inventory system with outside procurement, returns, disposals. and trans-
shipment, but their model is a one period model. and all of the mentioned transactions are
assumed to occur instantaneously. Simpson {16] develops the optimal solution for a finite hor-
izon. periodic review model. His model allows for correlation between the return and demand
processes.  Backlogging is permitted, but both repairs and outside procurements are assumed to
be instantaneous.

For the most part, the methods of analysis in these three papers rely heavily upon the
assumptions of instantaneous repair and procurement. Their approaches are of little use when
analyzing situations in which repair and procurement times are not zero.

Finally, Schrady [14] solves for repair carcass and procurement lot sizes for a completely
deterministic system.  Gajdalo [2] extends this 10 a ‘continuous review repair policy™ for an
inventory system with stochastic (compound Poisson) returns and demands.  He uses computer
simulation 10 test several heuristics for computing the reorder point and lot sizes for both pro-
curing and repairing items.  All Jead times, including repair times. are assumed constant

Our approach differs substantially from those taken in these previous studies. We begin
in the next section by analyzing a single item, single location inventory system with returns.
We develop the stationary distribution of two key random variables that describe the probabilis-
tic behavior of the inventory system. This analysis is used as the basis for a cost model. A
solution method is then presented for finding the values of the policy parameters. The results
of the single echelon case are then extended in Section 3 o a specific two echelon situation.,
which corresponds 10 the real environment mentioned carlier. In Section 4. we conclude with &
brief summuary and some final comments.

2. THE SINGLE ECHELON CASE

The system we study in this section consists of a single type of item managed at a4 single
location. A schematic representation of the system’s operation is given by Figure | As
shown, this location is assumed to contain both a repair Facility for returned units and a ware-
house, or storage facility, for serviceable inventory.
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procurement
¥
source 1
|
a serviceable
E : inventor: demands at _
returns at > XXX R -~ 7 _ =
rate Y . rate A
a !
. e s et 3
repair facility storage facility ‘,
Fioeri T A schemuatic representation of the inventory sy stem

We assume returns of repairable units occur as a Poisson process with rate y. and
demands for serviceable units occur as a Poisson process with rate A. As we have stated. we
also assume that these two processes afe independent. y is assumed 10 be less than A . so that
an occasional procurement of units trom an outside source is required. Units procured in this
manner arrive in a serviceable state T time units after they are ordered.

The repair facility behaves as a firsi-come, first-served queueing system with Poisson
arrivals (the Poisson returns). All returned units require repair, and repair times of returned
units are independent. Since y < A, the repair system is always operating as long as repairables
are present. No other assumptions about the queueing repair system (e.g.. scrvice time distri- \
bution or the number of repair servers) are made. ‘

o

Te output of this queueing repair system is input 1o the stock of on-hand serviceable
inventorv, as is the arrival of outside procurement orders.

All demands that are not satistied immediately are assumed to be backordered.

We define ‘net inventory’ ai a point in time to be the number of on-hand serviceable
units in the storage facility minus the number of outstanding backorders. We also define {
‘inventory position” at a point in time o be the sum of net inventory, the number of units in :
the repair queueing system, and the number of units on order trom the outside procurement |
|
!

source.
Let i
I(t) = the inventory position at time .
N1} = 1the net inventory at time I,
R (1) = the number of units in the repair queueing system at time 1. 1
P{r) = the number of units on arder from the outside supplier at ime 1. {
O(1) = the on-hand serviceable inventory at time 1.

and  B(1) = the number of outstanding backorders at time .
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Then
1) = N+ Ru) + P,
and

Ntry=00) - Bl).

Our final assumption concerns the form of the procurement policy. We assume that o
continuous review ((.r) procurement policy is followed. i.e.. when the inventory postiian drops
below r + 1, and order tor Q 2 1 units is placed immediately. Since the repalr queuzing sys
tem is assumed to be operating continuously, our objective 1s simply 1o find values of ¢ and ¢+

Our analysis begins with the derivation ot the steady-state distribution of inventorny posi-
tion.  This result is used in the derivation of an approximation of the steads-state distribation
of netinventory. and is followed by a discussion of the accuracy of the appreximuation.

1.1 Derivation of the Stationary Distribution of Inventery Position

Changes in the state of the inventory position are caused only by demands and returns.
State 14 = r + Lor+ 2.0 .00 can be cniered from state ¢ + 1 when a demand for a serviceable
item oceurs, state /4 Go=# 4+ 20 4+ 3 .0 can be entered from state /- 1 when an item is
returned.  In addiion. state + + O can also be reached trom state 7 + 1 when 4 senviceable
item is demanded tan order for (2 units is placed immediately when the inventory position
drops below r + 1) The ume between state transitions is exponentially distributed, since the
return and demand processes dare Poisson processes. The state transition flow diagram is given
in Figure 2. with the transition rates as indicated.

Let w, = lim Probt/ ) =y + 1 + i} the stationary probability that inventory position is
.
equal to r + 1 + i This limit exists because the states of this svstem are the states of an
irreducible, ergodic. Markov chain [13]. The steadyv-state balance cquations corresponding 1o
this svstem are
(1 A+ oy, - YN
A+ yhuy = yuot A,

N+ yhus = yuy+ AN

(P Yl T oyun ot Rl A

(A 4+ Yl cyig o0t N
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T+l ¥ r+2 Y r+Q+1

ot ke 20 State transition flow diagram for invertory position

A generating function qpproach can be used to solve for the u,. Define the generating
function G(z) tobe G(z) = 2 z'u,. Using (1) we find that

=0

. A -y (a-:9
(z) = ~ -
2) Gz QO -2V —y:)

from which we find that the «, are given by

0 i <0,
1+
- X
A . -
(3) u = —é—'—, Ugng_l.
- Qrl ' ¢
X 1 - X
A | A
0 iz 0
and the mean and variznce of the stationary distribution of inventory position are given by
@) Elim 10} =r+ 1+ G = v 14 Lol
F Rt 2 S- -y
and
(%) Varllim 1(0] = G + G'(1) — [P = L= 4 Ay
[ 12 (A - y)’
respectively.

-

It Q =1, Figurc 2 is the transition flow diagram for an 7741 queueing system in which
the ‘arrival’ rate s y und the “service” rate is AL Inthes case 30 reduces 1o the geometric distri-
bution, which is the steady-state distribution of the numuer of customers present in an M/ A/ 1
system.

Note that when y = 00 w4 (5) and 13} reduce to the mean. sariance, and probability
distribution, respectinely. of a unitormly distributed random varniable, which is a well known
result (see Reference S)

2.2 An Approximation to the Stationary Distribution for Net Inventory

Next, we develop an approximation to the stationary distribution of net inventory, which
is the basis for the cost model used to determine optimal values of Q and .
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Recall that 7. the procurement Jead bime. s constant  Thus, any umits on order at tume
r 7 owill have arrned by ume ¢ Simularly . any order placed atter tme 1 - 7 will not have
arrived by time 1. Therefore, we see that

(6) Nty=104 7y R )y~ /70 v Du - o).
where R U 1) = the number of units in the repair ssstem at time 1 — 7.,

Z (5.0 = the output of the repair system in the interval (1 — 7.7,
and Dt z.0)= the number of demands in the interval (- 7).

Rt - 1) s subtracted from /(r — 7) so that we do not double count the units in the repair
system al time 7 — 7 that complete sersive by time +. Therefore., net inventory at time 7 con-
sists of units on order. already serviceable, or backordered at time ¢~ 7 (all measured in
I = 7)), plus those units completing repair by time ¢ — 7. minus demands over the interval
tr —r.1].

Let us separately examine the individual terms of (6). The steady-state distribution of
{{r — 7) has already been obtained. The number of demands over the interval (¢ — 7.7] is
Poisson distributed with mean yr and is independent of the other three random variables on
the right-hand side of Equation (6},

The distributions of R(r — 7) and Z(r — 7.1) are readily available for many queueing sys-
tems; but, they arc not independent of each other or of /(1 — 7). The joint distribution of
these random variables is difficult to develop analytically. Consequently, an approximation to
the distribution of net inventory will be developed. using (6), rather than developing the exact
distribution.

We initially observed that the steady-state distribution of net inventory for numerous test
cases (obtained via simulation) closely resembled a normal distribution.  As a result. the nor-
mal distribution was considered to be a candidate approximation to the steady-state distribution
of net inventory.

Equation (6) is used to determine the mean g and to approximate the variance, o, of
this normal approximation. Letting r — oo, we have
(7) w=EWNG)) = EFU— 7)) = F(RU — 7))+ 20— 7.00) = DG~ 7.0))
r+1 +Q—2——]+A—l——- E(RU - 7))+ yr — AT,
- Y

li

using (5), and noting that the expected output of a gqueucing system over an interval is equal to
the expected input over an interval of the same length. Also, by ignoring covariance terms. we
approximate o’ by

(8) o’ = Var(N () = Vart/tr — 7)) + Var(R(; - 7))

+ Var(Z G ~ .00 + Var(DG — 7.1))

= Q————] + _ Ay + Var(R(r - 7)) + Varl/(r — 7.0)) + A7,

hd

12 A —y)

using (5}, Note that exact cxpressions and good approximations for FE(R (G - 7)),
VarlR (7 ~ 7))}, and Var(Z (r = 7.6)) arc available for many guecucing systems (c.g.. see [3]).
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The accuracy of the normal approximation, whose mean and variance are given by (7)
and (8), was tested using an incomplete factorial experiment. The variable factors were the
number of repair servers. the repair service distribution, the repair system traffic intensity, the
procurement lead time 7, the procurement lot size Q, and the ratio y/A. In each test case, the
accuracy of the normal approximation was first measured by finding the area between the nor-
mal curve and the curve representing the continuous version of the distribution of net inven-
tory, which was obtained via simulation.

The conclusion drawn from this experiment was that the major factor affecting the accu-
racy of the normal approximation is the ratio of the return rate to the demand rate. y/A. In
fact, the normal approximation is quite accurate when y/A < .6. However, a closer analysis of
the normal curves revealed that the normal approximation was an excellent one in the left-hand
tail of the distribution of net inventory in all the test cases. (We discuss in Section 2.3 why the
left-hand tail of the distribution is all that is needed to determine optimal values for Q and r.)
The difference between left-hand tail percentiles of the experimental distributions and the
corresponding approximating normal distributions were computed. The percentiles never
differed by more than a few percent. Based on this observation we conclude that the steady-
state distribution of net inventory can be accurately approximated by a normal distribution
whose mean and variance are given by (7) and (8), respectively.

2.3 Cost Model and Solution Method

The optimization model we will construct includes a fixed procurement order cost, a hold-
ing cost, and a time-weighted backorder cost. In particular, let
A = the fixed procurement order cost (§/procurement order),
# = the holding cost ($/unit-year),

A

and 7 = the backorder cost ($/unit-year).

Our objective function, K, is the sum of the expected annual procurement ordering, holding,
and backorder costs. It will be evaluated by taking the sum of

(1) A4 x (the expected number of orders placed per year),

(2) h x (the expected serviceable on-hand inventory at a random point in time),
and {3) # x (the expected number of outstanding backorders at a random point in time).

Both the expected on-hand inventory and expected backorders at a random point in time will be
calculated using the normal approximation to the distribution of net inventory.

Note that we need not consider holding costs charged against units in repair. Due to the
assumption that no inserted idleness in the queueing repair system is allowed, these holding
costs are independent of the values of the procurement policy parameters.

Let ¢(-) and ®(-) be the standard normal density and standard normal disiribution func-
tions, respectively. Let /1{x) be the normal density, which is the continuous approximation to
the steady-state distribution of net inventory, whose mean p and variance o° are given by (7)
and (8), respectively. Thus, the expected number of backorders at any point in time is

_ e
ao

- ud

(9) mbl“i
T
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which can casily be obtained by evaluating
f‘n ) xh(x)dv.
Since
£ (on-hand inventory) = £{inventory position) + £ (buckorders)
L {number in repair) -~ £ (number on order).

the expected on-hand inventory is equal 10

- ud

ATy a 3

(1)) /‘+I+$)—;—]‘+~—L— +‘rrrl)[‘li

= E“l - AR — (- y)r.

Note that the last term, the expected amount on order 4t any point in time. is equal to the rate
at which demands are ultimately met by outside procurement. A — y. times the constant pra-
curement lead time, 7.

In what follows. it will be easier to think of u and o as functions of r and
Specifically. let

)
(i) M= —% + .
and
(12 RGN /
2 - = 12 o,

where ]
(13 (:—X—+lf/;‘(R(l))~()\—y).~

Ay 2
and

Ay ! :

trd) d=—="— — — + Var(R()) + (A + y)7,

(A — y)- 12
where we have used the approximation that Var(/Z( -+, 1)) = y7. This approximation is
exact for ViMIis and MIGleo queueing systems. Note also that the constants « and o are !
independent of 7 and @, and that the restriction that @ be greater than or equal to one guaran- 1

tees that o is positive.

Finally. the rate at which demands are met by outside procurement, A - y. divided by (.
the procurement lot size, gives the expected number of procurement orders placed per veur.

Combining our previous results, we see that the optimization problem for finding the i
optimal Q and ris
- . . (A - y)id .
(s minimize K = Ayt gy h) «rd)[‘& ub L I
¢l Q a a
|
+ hr + H O+ d.

where « s given by (13). This formulation of the problem came as a result of & number ol hey
assumptions and approximations, which we now summarize:
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to
$a
s

(a)  The demand and return processes are independent Poisson processes.

(b)  The return rate is kess than the demand rate.

(¢) A continuous review (Q.r) policy is followed.

{d)  The procurement lead time in constant.

(e} All demand not immediately satisfied is backordered.

(1) The distribution of net inventory is approximated by a normal distributior: whose

mean and variance are given by (7) and (8), respectively.

The objective function A is not convex in (), but is convex in r. This is easily proven by

noting that the backorder function od ‘:—;— —ud|- % isconvex inu.r=u - (.2 . and

ris not related to . Thus, the optimal value of r satisties ar = (). that is.
.

h

T D
T+ h

o

(16) b

Thus, for a fixed value of (. the variance of the normal distribution representing net inventors
is tixed. Only the mean, or "location” of the curve. is decided by choosing a value of r. There-
fore. Equation (16) indicates that once the variance is fixed. the "location” of the normal curve

. L . h . .
should be chosen so that the cumulative area to the left of the y-axis is -, as illustrated in

T+ h

Figure 3.

h(x)
. _ ol
shaded areas =
T+ h

/A
7 N

Fica ke 3 T ocation of the normal curve

In most real situations, the backorder cost 7 is large compared to the holding cost /. This
N h o . L
makes the fraction -;——7 small. Recall that this fraction is the area to the left of the v-axis
T+ h
under the normal curve. The expected number of backorders is calculated using Equation (9),
and the expected on-hand inventory is calculated in Equation (10} also using (9}, Thus. as we
stated carlier. accuracy of the normal approximation is required only in the tail of the distribu-

tion, since - 1s usually small.

T4 h

v

- e

e

o o AR A
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Returning to (16) and rewriting it in terms of r* and Q* the optimal values of r and Q.
respectively, we have

r*+—92:+(‘ .
¢ ; Y
.(u+d T !
12
or
(0")? « 1
(17 o [ e - Lo
’ ’ TR o b

For a fixed value of Q, the optimal value of ris given by Equation (17).

To find the optimal value of . one can rewrite Equation (15) in terms of r and Q. Using
Equation (17) to write the objective function solely as a function of Q. (15} simplifies to

—_ 2
I\'=()\—q-m+(fr+h)-‘/%+d-d>

This can be seen to be a convex function of Q. While the original objective function, K, is not
convex everywhere in both  and r, upon deriving an optimality condition (17), K is convex in

both Q and r over the region of interest. Setting Z—I\ = 0, we find that Q* is the value of @

0

r
T+ h

q)*l

that satisfies

3 —
(19) Q _ 120 y)A,
[Q «
12 d
where
a =7+ M| | —F
T+ h

If QO* < I.thenset Q* = 1.

Note that in realistic situations d > 0 (see Equation (14)), so the left side of (19) should
increase with Q. A search method, such as either the Fibonacci or binary search technique. can
be used to find Q* in this case. Note, also, the similarity to the usual lot size formula. Ignor-
ing some of the constants, (19) is roughly of the form

0= -\/(}‘—_hlli - constant.

Also, observe that (19) is independent of r. Thus, once Q*is found. r*is foun : using (17).

3. THE MULTI-ECHELON CASE

In this section we study a two echelon system. which corresponds to the real system
examined by the authors. The upper echelon consists of a warehouse having both repair and
storage facilities that support the N lower echelon retailers. The retailers only have storage
facilities.
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All primary customer demands and returns are assumed to occur only at the retalers. We
dgdain assume that all customer demands not immediately satistied are backordered. and that the
demand and reiurn processes are mutually independent Poisson procosses. Mo dise assume
that lateral resupply is not allowed between retallers.

Let

A, = the customer demand rate at retaiter j(; =1, ... . N,

vy, = the customer return rate at retailer j(j =1, ... N),

T, = the constant transportation time between the warechouse and a retailer. and

7> = the constant procurement lead time for the warehouse from an outside source.

The assumptions that transportation times are identical between the warchouse and any of
the retailers, and that customer demands and returns occur only at the retailers are made tor
notational simplicity only. It will be apparent that relaxing these assumptions poses no addi-
tional problems.

Recall that repair facilities exist only at the upper echelon. Consequently. we assume tha
when a customer returns a repairable unit to a retailer it is immediately sent to the warchouse
from the retailer and need not go back to that same retailer after it is repaired. We also assume
that the repair process at the warehouse operates as a first-come. first-served gqueucing system.

Since transportation times are assumed 10 be constant. returns of repairable units to the
\
wdarehouse occur as a Poisson process with rate v, = Z y,. Therefore, it is equivalent. and
/7']
more convenient, to think of returns occurring only 1o the warchouse, and as a Poisson process
with rate yy.

We assume that retailer j uses an {5, — 1. S} continuous review ordering policy. ¢ . a
constant inventory position (net inventory pius on order} of S, is maintained. This imphies that
retailer j immediately orders one unit from the warehouse every time a customer demand
oceurs at the retailer. Since each order placed at a retailer also results in a demand being pl‘mc\d

upon the warchouse. demands on the warehouse occur as a Poisson process with rate A, Z

A,

[Note the importance of the assumption of following an (S, — 1. S policy at retailer
If the retailers followed (Q.r) ordering policies. then the time between the placing ol orders
upon the warehouse would not necessarily be exponential. nor would the orders necessanly be
for individual units. Thus. the demand process at the warchouse would no fonger be a simple
Poisson process.]

We assume that yo < A, so that an occasional outside procurement is necessary. The
warehouse is assumed to follow a (Qn.ry) policy, i.e.. when its inventory position {net inven-
tory plus on order plus in repair) falls below ry + 1, an order for ¢, units is placed upon an
outside procurement source.

§
g
{
¢
g

|
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Warchouse procurement orders are assumed o arrive at the warchouse 1 tme units atter
the order is placed. However, an erder placed by reteiter upon the woarchouse does not neces-
sarily arrive at the retailer 77 tme units after 1t1s placed  In addinon o the transportation
time. theie may be o delay due to the warchouse being cut of serviceable stock Alb demuands
made upon the warchouse that are not immediately satisticd are backordered.

A schematic representation of this system is gnven by Figure 4

N

[ warehcuse

} Return rats
l Demand ra-<e

time 7T {
Lead time 5

b
O
L

(QO’PD) col

Pie ke 0 Schematic representation of the multi-echelon system

Finally. let the system cost parameters be as tollows:

iy, = the holdine costal Be warchouse 0t seart,
h, = the holding cost at retailer j (8 unit—year) (/= 1. ... M)
7, = the backorder cost at retailer j($/unit-year) (=1, ... M),
and 4 = the fixed warchouse procurement order cost (8/order).
Given values of (i = 0. ... N).#. G =1 ..., NMicand 1 all assumed to be nonne-
gative, the problem is to determine values for Q. rycand S €/ =1 ... V) that will minimize

the expected annual sum of the retailer holding and backorder costs. and the warchouse order-
ing and holding costs. Thus. the optimization problem we want to solve iy
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\
Q0 min {Y th, - £{0n-hand Inventory at Retailer /)

oo |5

+ 7, - I {Backorders Outstanding at a Random

Point in Time at Retailer /1)
}\ll ~ Yu .
+ - T + /1, - £ |On-hand Inventory at the Warehouse)
[}

subjectto Up 2 Lory 2 0and S, =01, ... forj=1 ... N

The expected on-hand inventory at the warehouse can be found using Equation (10): however.
the expected on-hand inventory and backorders at retailer j cannot be determined as easily. We
will subsequently show how these expectations can be calculated.

Note that we have not explicitly stated a value for 7. the warehouse backorder cost. and
that this cost is not included in the objective function that is to be minimized. Given the
interactions between the two echelons of our inventory system, the cost of a backorder at the
warehouse is not an explicit one but rather an imputed one. It is measured by the eftect of a
backorder at the upper echelon on the expected performance at the lower echelon.

The optimal stock level at retailer j. §*, is a function of the procurement resupply time.
that is, the expected time from the placement to receipt of an order by a retailer. This procure-
ment resupply time is then the transportation time. 7)., plus the expected delay due 1o the
warehouse being out of serviceable stock. Clearly. costs at the retail echelon can be lowered by
reducing the expected resupply time. This can only be accomplished by decreasing the
expected warehouse backorders at a random point in time, which is achicved by increasing ()
or ry (or both). This, in turn, raises holding costs at the warehouse. Thus. a tradeoff exists
between holding costs at the upper echelon and holding and backorder costs at the lower
echelon. We will present an iterative algorithm based on this tradeoft which alternates between
finding stock levels for the upper and lower echelons. The basis for this algorithm, presented
in Section 3.1, is founded on the resuits developed in Section 2.

3.1 Analysis
Suppose the imputed cost of a warehouse backorder is known to be %, Then we can use
(17) and (19) 1o find optimal values for r, and Q. These determine a "performance level” 5.

where

B = the expected backorders at the warehouse at a random point in time

.
al

and where ¢ and o7 are the mean and variance, respectively, of the normal approximation to
the stationary distribution of net inventory at the warehouse.

= (,-élﬂ'_ — ,u(p
b2

Then the expected resupply time for a retailer is
(21 T =T+ B/x,.

— e

-
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since the expected delay time per demand is the expected number of backorders at a random
point in time divided by the demand rate. This is a direct application of Little’s Formula
L = A W. Then, using Palm’s Theorem [1] as an approximation, we assume the number of
units in resupply at retailer j to be Poisson distributed with mean A, T

Note: Palm’s Theorem requires the independence of resupply times, making this system
analogous 10 an M/G/o queue. Resupply times in our system are not independent: consider,
for example, a demand by a retailer which cannot be immediately filled by the warehouse.
Then it is more likely that the next demand placed by a retailer upon the warchouse also
experiences a delay than if the preceding order had been immediately satisfied. This approxi-
mation of the distribution of the number of units in resupply at retailer j(j =1, ... . N) was
tested for the special case in which the repair facility at the warehouse behaves as an M/ D/ oo
queueing system. The exact distribution of R_,(I), the number of units in resupply at retailer j,
was obtained from comparison with the Poisson approximation. Our analysis indicates that the
Poisson approximation improves as the expected warehouse backorders, or the probability of
delay at the warehouse, decreases. In particular, the Poisson approximation was found to be
good as long as the expected value of net inventory at the warehouse at a random point in time
is greater than zero. (In the test cases in which this condition was met the maximum absolute
difference between R,(s) and its Poisson approximation was less than 3%.) This will. of
course, be the case for a reasonably large ratio of backorder to holding costs.

Once we know the value of 7 and have the form (approximately) of the distribution of
the number of units on order by retailer j, we can solve N independent subproblems to obtain
the optimal value for S,. The subproblem at retailer j consists of finding the optimal stock level
§*, assuming a constant procurement resupply time of 7. where T is given by (21). This is
accomplished using Lemma 1.

LEMMA |: Suppose the procurement lead time is a constant 7 and demand is Poisson
distributed with rate A,. Then the optimal value S} for an (§, — 1. S)) policy is the largest
integer S; such that

h
(22) PN, T) > —2—
m, + A
where Plxu)=3 plrip)
and plrou)=e¢™* %

The proof of Lemma | can be found on page 204 of Reference 5.

Let K,(S,.T) be the expected annual holding and backorder costs at retailer j when the
inventory position is S, and the procurement lead time is a constant 7. As can be shown (sce
Reference )

(23) KAS,.T)= (&, + h) I\, TP(S, = 1.\, T)
= SPS A, DI+ IS — A, ThL

For a fixed value of 7 (and therefore of B) we define the minimum total expected costs at the
lower echelon, K'(B), as

A
(24) K'(B)=3 K871

1=l

_d
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where A, (-, ) is given by (23), Tis given by (21}, and S satisfies (22).

dK(B)

dB  |yp
effect of a warehouse backorder on the expected total lower echelon cost. It is easy to show
that

Note that when B = b, is an estimate of 7, since it measures the marginal

dK'B) _ 1

A
B o Y Wa, + h)IN,P(ST N, T) = hAL

1=1

(25)

Next, let K“(B) represent the minimum expected warehouse ordering and holding cost
given that B, the expected number of warehouse backorders outstanding at a random point in
time, is fixed. In particular, we define

0
ro+ — + B+ ¢

A —
K“(B) = min {~L_Y° 3

Qo=1 Q()

!“30

'A+h()‘

subjectto B =y {(T — T)),

where the constant ¢ is given by Equation (13).
We conclude this section with the statement of two additional lemmas
LEMMA 2: K“(B) is convex decreasing in B.

LEMMA 3: Let T be a constant resupply time. If the optumal stock  .els S ¢
1. ..., N) are continuous rather than integer valued. then A (R} is g cancave it g tam
tion of B, where B = Ao(T — T). These lemmas can be proved by appl: 1w the ¢ ainsule 10
take derivatives. The details can be found in Reference 9.

3.2 Restatement of Problem 20

Problem (20) can be restated based on the interrelationship between the +irchou » an
the retailers developed in Section 3.1. As we have demonstrated. the two >chelons are hinked
through the value of B. Then an alternative way of writing problem (20) is

(26) min K'(B) + K*(B)
B20
where B = A()(T - T|)

Figure S represents a typical graphing of K (B} and K“(B) as functions of B. We observed in
all test cases that, under the conditions of Lemma 3, K“(B) + K (B} was a convex function of
B. Thus, the minimum cost will occur where

&l
(7) dK'(B) _ _ dK“(B)

dB dB

The algorithm presented in the next section takes advantage of the fact that problem (20) can
be restated as problem (26) and that the optimal solution must satisfy (27).
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cost

3

N
>

Fircu ke S0 Minimum upper and lower echelon cost functions vs. B.
3.3 An Algorithm
The following algorithm can be used to solve problem (26}
STEP 0: Let 7= /:nl1.u)$\ (m,).

STEP 1. Given m,, solve for Qu.ro using Equations (17) and (19, and determine the
corresponding value of B, say b.

STEP 2: Let T'= T, + b/A,. find the 5% using Equation (22).

-l
STEP 3: Using these S7, find {5}
dB

this value, and return to Step | unless the stock levels and costs have converged
sufficiently.

evaluated at B = b, using Equation (25); let mr,, assume

The first few steps of the above algorithm are illustrated in Figure 6. The algorithm
begins by setting m, = max {m,). This is an upper bound on the optimal value of 7. since

this value implies that a backorder at the warehouse always results in a backorder at the retailer
with the largest backorder cost. Then @, and r, are found using this upper bound on 7. This
determines a value of B (say B = &) (and therefore of 7). which is a lower bound on the
optimal value of B (and therefore of 7). These computations vield point @ on the upper
echelon cost curve in Figure 6.

Using this lower bound on the optimal value of 7. we find a lower bound estimate of
S*(=1..... N). which determines a value A (b)), and poim@ in Figure 6. Next we set
o= dK I(B_) 4

dB  \s-»,
of the optimal B, the new estimate of 7, is an upper bound on the optimal value of 7,,. but it is
smaller than the previous estimate. Using this new estimate of . B will increase to a value,
say hs. as a result of resolving for ry and Q4 using (17) and (19). These calculations produce

Since A'(B) is concave in B. and since we have a tower bound estimate

g B . .
point @ in Figure 6. The procedurc continues by letting 7 = 7+ r and finding A '(h,),
0
which leads to point{4). The algorithm continues in this manner until convergence occurs.
Discussion of convergence and other aspects of the algorithm can be found in Reference 9

The algorithm was tested on 50 problems. In general, the values of Qf. r8 and S
(GG=1..... N) were found after only three iterations of the algorithm. This occurred in 48 of
the SO test cases. The curve K(B) is very flat compared to K“(B)_ so that convergence to the
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L
cost K*(8)

Vv

Frou ke 60 First steps of the algorithm

correct value of 7, occurs quickly. As we noted earlier, K'(B) + K“{B) was convex for all of
the 50 test problems. The reason this occurred was because A /(B), although concave. is
almost linear.

4. SUMMARY AND CONCLUDING COMMENTS

We have developed simple methods for obtaining parameter values for a procurement pol-
icy for certain inventory systems with returns. The key was the use of a normal approximation
to the steady-state distribution of net inventory. This led to the development of cost maodels
which were easily solved.

In the single location model, we assumed the procurement policy to be a stationary (().r)
policy. This policy is not the optimal one. In Reference 9 it is shown that. for the special cases
of M/M/1 and M/ (/o queueing repair systems for which the transient distributions of ths
repair system’s output are easily developed. one can lower total expected costs by redefining
inventory position and allowing variable reorder points as follows. {nventory position is
redefined to be net inventory plus the number of units on order. The analysis proceeds exactly
as described in Section 2 (with some of the constants redefined). This results in a reduction in
o, the variance of net inventory. since the variance of the number of units in repair is no
longer included in ?. The reorder point. expressed in terms of inventory position, is then a
function of the number of units in repair, rather than a constant. Reduciions in total expected
costs can be achieved by using a state dependent reorder point when the variance of the
number of units in repair is very large. A 10% reduction in total expected cost was wchieved
using the variable reorder point policy in an M/M/] repair system with traflic intensity
¢ = 499/500. This is an extreme case, however. The average annual cost of using the station-
ary (Q.r) policy was within 1% of the averase annual cost obtained using the nonstationary one
in almost all test cases. Since this is the case. and since a stationary (Q.r) policy is casy to use.
the stationary (Q,r) policy is an attractive policy to implement.

Next, we showed how the single location solution method can be incorporated into an
iterative algorithm for setting stock levels in the single item, multi-cchelon inventory problem
with returns. The algorithm can also be extended to find stock levels in an Af-cchelon inven-
tory system with returns. The only requirement would be that an €5 - 1..5) procurement pol-
icy must be followed at cach of the lower M — 1 echelon locations.

O S
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ABSTRACT

The operating characteristics of (5.5) inventory systems are often difficuit to
compute, making systems analysis a tedious and often expensive undertaking
Approximate expressions for operating characteristics are presented with a view
towards simplified analysis of systems behavior.

The operating characteristics under consideration are the expected values
of: total cost per period, period-end inventory, period-end stockout guantity.
replenishment cost per period. and backlog frequency. The approximations are
obtained by a two step procedure. First, exact expressions for the operating
characteristics are approximated by simplified functions. Then the approxima-
tions are used to design regression models which are fitted to the operating
chracteristics of a large number of inventory items with diverse parameter set-
tings. Accuracy to within a few percent of actual values is typical lor most of
the approximations.

1. INTRODUCTION

There are many situations in which an inventory system’s designer can use estimates of
operating characteristics of the system. For example, management may desire forecasts of
inventory on hand, or system operating costs. Our goal in this paper is 1o develop simple
approximations that designers can use to estimate the following operating characteristics of a i
periodic-review inventory system: average holding cost per period. average backlog cost per
period, frequency of periods without backlogs, average replenishment cost per period, and aver-
age total cost per period. These characieristics are defined mathematically in Section 2.

ted and there is a fixed Jead time between placement and delivery of an order. Demands during
review periods are represented by independent, identically distributed random variables having
mean u and variance o°. Replenishment costs are composed of a setup cost A and a unit cosl
«. There is a fixed lead time [ between the placement and delivery of each replenishment
order. At the end of cach review period, a cost /i or pis incurred per unit on hand or back-
logged, respectively. The criterion of optimality is minimization of the expected undiscounted
cost per period over an infinite horizon.

We consider a periodic-review, single-item inventory system where backlogging is permit- 1
!
|
:

Under these assumptions it has been shown that there exists an optimal policy of the
t5.5) form Clgichart [31). That is, a replenishment order is not placed unless the inventor
position (on-hand plus on-order minus backorders), x, is less thuan or equal to s, at which time

“This rescarch was supported by contracts wath the Ofhice of Naval Rescarch and the US Armiy Research Oftice
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an order of size § — xis placed. Computational methods have been developed (Veinott and
Wagner [6]) for calculating optimal policies and their operating characteristics.  Unfortunately.
the computational effort required is prohibitive for practical implementation.  Furthermore.
exact computation requires the complete specification of the demund distribution, a tevel of
detailed information that is unlikely to be available in practice.

In this paper we develop approximations for operating characteristics in a two step pro-
cedure. We start with exact analytic expressions for the operating characteristics and approai-
mate the exact expressions with simplified functions. Then we generalize the funclions and fit
their parameters to the observed characteristics of 376 items using [cast-squares regression,
The resulting approximations are accurate and require for demand information only the mean
and variance. In Section 2 we derive the simplified functions from caact expressions for the
operating characteristics, and in Section 3 we present the results of the regression analyses.
Finally, in Sections 4 and 5 we analyze the accuracy of the approximations and draw conclu-
sions.

2. ANALYTIC APPROXIMATIONS

Consider the model of Section 1 and assume that demand follows a probability density
& () and cumulative distribution ®(-). Let ¢ *"(-) and & *"(-) be the n-fold convolutions of
these functions. We consider the following operating characteristics of fixed, infinite-horizon
(s.5) policies:
(1) H = average holding coslt per period.
B = average backlog cost per period,
P = backlog protection, i.e.. frequency of periods without backlogs.
R = average replenishment cost per period, and
1" = average total cost per period.
Let
mi) = 2 d*(),
n-

and

<

Z P H),

no

M)
The functions m(-) and M () are renewal functions which govern the frequeney ol replenish-
ments. and, therefore, the evolution of the inventory positions. We have, as in Roberts [4].

the exact relationships

Il S
2) H=hll+ M) '{fn s e om G dd

5
+fﬂ (S5 - x )d)"""(.\)d\‘}

i
B=plH/h+ L+ D - ST+ pll+ MDY lf” am )y
1
P=0+ M f“ GS - O m G dy + s

R=AI[+ MDY
F=H+ B+ R,
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where
D

I

S -

Noiice that a constant term cu has been omitted from the expression for replenishment cost /2
since it does not affect the choice of an optimal policy. [t is difficult to obtain any msights from
(2) regarding the sensitivity of the operating characteristics to values ot model paramsiers
Indeed, it is exceedingly complicated just to calculate values of the characterisuics for a wiven
set of parameter values. We proceed to simplify the form of expression (2) by introducime
approximations for the functions m(-), M) and ¢*'/ """ ().

Replenishment frequency in (2) is given by [1 + M(D)} ' To approximate M) we

use the following result of Smith [5]:
M(x) = x/u + 0¥/ Qu?) ~ 1/2 4+ 0(1), x — oo.
This yields the approximate value for replenishment frequency
3) + MWD "Zuw/ID+ (w+ o/l =p.
To obtain approximations for the other characteristics in (2], we first need 10 find o sim

ple expression for the function m(:). We identify the quantity (5 — 1) in {2) as the naonton
position (after ordering). with stationary distribution function /() given by

o MO+ M) s <5 -3 <8
The probability density £(-) of the inventory position (after ordering) on the interval s, 53 s
SIS —v)=m()/ 1+ MD)]

We approximate f(-} by a constant ¢ on the interval [5.s). There are two reasans why this
should be a reasonable approximation. Firstly, the result of Smith (3} shows that st o
asymptotically constant as v grows large. Secondly. we know that f) o exacth constani for
the special case of an exponential demand distribution.

We find a value for ¢ by normalizing the approximated distribution. Starting with an cvac
expression, we have
5
(s) J S = d = M+ M),

Then we substitute ¢ for f() on the left side of (5) and use €3 on the right side of (S v
ing

(6) c={-plD.
We use (3) and (6) in (2) o get

I A
(N //:'/;[lu oDV s e o,

S
+p J‘“ (S - x)p*im (\hl,\l

B=plH/h+ (s Dy S+ D2
P G sy 4 [ prD] r, dhel s vl

R =pk.
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The expressions for £ B, and £ in (71 sufl require the specification of the demand distri-
bution. We obtain a further simplification by approximating the demand distribution with a
gammui distribution. Ay we show below, this approximation leads to expressions for /1 B and
P that require tor demand information only the mean w and variance o, The class of gammu
distributions provides good fits for a wide variety of unimodal or nonincreasing densities on the
positive reul line and should be a reasonable approximation in our application. For inventors
items that have significantly non-gamma demand distributions. an analyst could produce a new
set of approximaiions by making the appropriate substitution in (7} and proceeding in the
manner described below

Let g i+, 8) be a gamma density function with purameters o and 8. Then we have
i T _ , A leaplo gt et v 20
(8) & (V)= glyva. 3 = 0 v <0
A
OO 2 Givle. 9= [ e la. e
where
a = U+ Durer
L{ = ‘, N
We detine the notation

h
brin = 1h) - 1 lad,
o

and use (R) in (7) 1o yield

(9 12 phSGUS i, B) = aBGES e + 1.3))
+ (hO = 2D G (o, B) = 208xG xla + 1.8)
¢

+ la + Dap” Gixlae +2.8) | IS'

B<plttin + (L + - S+ - pip/2

) S
P=pGSla.g) + {1 - p),"‘/)]{.\'(/(\"(t,,B) —afBG i+ 1.8) ]

N

R =ph.

Observe that the approximations (9) depend on the values of 5.8, the cconomic parame-
ters. and the mean and variance of demand. The function ¢ must be catculated by a numerical
procedure. We use a series expansion for Gixla.8) when vis less than the minimum of 1 and
a3, and a continuced-fraction cxpansion otherwise. The procedure is part of a package of com-
puter programs entitled "The IMSL Librany” which is marketed by the International Matheman-
cal and Statistical Libraries, Inc.. Houston, Texas.

Despite the effort required to compute (70 the expressions in (1) are an enormous
simplification over €2). In Section 5 we mention the possibility of using 4 normal distribution
function in licy of the function G Emploving the normal distribution would facilitaie manual
computations of the approximations we derive below.

3. NUMERICAL ANALYSIS

In this section we use expressions (9) 10 develop regression models for the operating
characteristics. We it the parameters of the regression models 1o the observed characteristies
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of 576 items. The S576-item system is formed by using a full factorial combination of the
parameters in Table 1. Discrete demand distributions are used in the analysis with means rang-
ing from 2 to 16 and variances ranging from 2 to 144. Although the expressions in (9) are
based on a continuous demand distribution, we will show that they can be used to approximate
many of the characteristics of items with discrete distributions, which are more common in
practice. Notice that all the items in Table 1 have a unit holding cost 4 of 1. Since the total
cost function is linear in K, p, and /i, we have used / as a normalizing parameter.

TABLE | — Svstem Parameters

N )
Factor Levels Number
of Levels
Demand distribution Poisson (r?/u = 1) 3

Negative Binomial (o7/u = 3)
Negative Binomial (o%/p = 9)

Mean demand (w ) 2.4,8, 16 4

Replenishment lead time (L) 0,2 4 3
Replenishment setup cost (K) 32, 64 2
Unit penalty cost (p) 4,9, 24,99 4
Unit holding cost (/) 1 1
Policy Optimal policy, 2 |

power approximation policy i
| I ,

The (5.5) policies used in the 576-item system are of two types: those with optimal values
of 5.5 computed with the algorithm of Veinott and Wagner {6] and approximately optimal
values of 5.5 computed by the power approximation algorithm of Ehrhardt [1]. For each item
in the system we use the methods in [6] to compute exact values of the characteristics in (2)
and use these as data for our regression analyses. The approximations we obtain are labelled
with subscript “a" when they are used for all 576 items. Subscripts "a./7' or "u.0" are used 10
label expressions that apply only to power approximation or optimal policies, respectively.

We develop our regression adjusted approximations in the following subsections. In each
subsection, we derive an approximation and assess its accuracy in the 576-item system. The
mieasure of accuracy we use is the absolute value of the percentage difference between the exact
and approximated values for individual items. We note here that the accuracy of the approxi-
mations appears (0 be even greater when the aperating characteristics are aggregated over por-
tions of the 576-item system. That is, there are essentially no systematic errors with respect to
any of the model parameters. For a more detailed discussion of this point. see (21.

An Approximation for Replenishment Cost

We use (3) in (9) to obtain the expression for replenishment cost
R=ukR/ID+ (w+oYu)2).
We manipulate the expression to form a linear regression model

(pll\/R) = .‘1“ + .“] D+ '3[1. + ‘} (”_3/'“.) + e,




*'**"w:—- r—

260 R EHRHARDI

where I o0 4 are constants to be fit and e is the error term. We use least-squares regres-
sion to it the model o the system of 376 inventory policies in Table 1. That is, for each of
these policies we use ) w. and o/u as independent variables, and we use the exactly com-
puted value of w A R us the dependent variable. The result is the following numerical approxi-
mation for R

(1 R o= Au "0+ (u+oiiur2- 51210

which has & cocthicient of determination (raction of variunce explained) of 0.9999 for the quan-
uty AR

When used in the 376-item system. cypression (100 is within 0.1% of actual values of K.
on the average. The expression is accuraie to within 2% for all but 2 items, with 4 maximum
error of 2.8

An Approximation for Holding Cost

We can treat the unit holding cost as a redundant (normalizing) parameter in our maodel.
and so we divide the holdig cost expression in (9) by # vielding
Hih = plSGES . 8) - af G(Sla + 1.8)]
SO p2D)V NG e B) = 2aBxG (xa + 1,8)

) S
+ ol + Daf Gxla + 2.8) {s

We take advantage of our improved estimate of replenishment frequency from (101 und replace
p with

o r= RN =w/ID+ lu +ou))2— 51210
The result is a quantity that we denote as W, given by
(2 W =rISG(Sla.B) — aBG(Sla + 1,8)]

+ [0~ r)/2DV NG (xla. B) ~ 2aBxG (xla + 1,3)

S
+ o + DaB’G(xla + 2.8) Is.

We caleulated values of W in the 576-item system. We compared them with the actual values
of H;h and found a systematic variation with respect to u and %/, This motivates the lincar
regression model

Hih = Ag+ AW + Ay + Ao ) + e,

where 4, ..., 4, are constants to be fit and € is the error term. We use least-squares regres-

sion to fit the model to the system of 576 items. The result is a coeflicient of determination of

(1.9999 for the approximation
(axn H,=h(W — 1512u + 16840/ + .0689).

Expression £13) is within .7% of actual values of H. on the average. when used in the 576-
itemy system. 1t s accurate to within 2% for 96% of the items. and within 4% for 99% of the
ttems. Only one item produces an error in ¢xcess of 6%, This error is 9.2% for the item con-
trolled with optimal values of €5.5), i equal 2, «? cqual 18, p/frequal 4. K/ 5 equal 32, and /.
cqual 0. In genceral, the largest errors occur for high values of variance-to-mean ratio and low
values of other parameters.

1
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An Approximation for Backlog Protection

Backlog protection is defined as the frequency of periods without backiogs. i s, one
minus the backlog frequency. Since it is a critical measure of service. it is of central interest 1o
the inventory systems designer. Unfortunately, when (9) is used 0 construct regression
models for backlog protection, very poor fits result. The highest coetlicient of determination
obtained using this approuch is 0.68.

We revised the regression model 1o reflect a theoretical result. When demand is continu-
ously distributed, an optimal policy vields (p/f1)/ (1 + p/h} for backlog protection. When the
demand distributions are discrete, (p/h)/ (1 + p/h) is a lower bound on P for optimal policies
It was observed in [!1 that the power approximation and optimal policies differed in their back-
log frequency performance. Therefore, we decided 1o fit the two policy rules separatels.

We use the model

O+ p/MP=d,+ 1 {p/h) +e.
which dramatically improves the fit. For optimal policies. the simple expression
(14) P, = (0.0857 + p/in/ (L + p/h)

yields a coefficient of determination ot 0.99999 for (1 + p/h)P. We have the same coeflicient
of determination for power approximation policies with
(15) P, = 10.0695 + p/ )/ (1 + p/h).

a.p
When used in the §76-item system. expressions (14) and (15) are accurate to within 0.7+ on
the average. They are accurate to within 2% for 92% of the items and to within 4% for 98 of
the items.  All nine items with errors in excess of 4% have power approximation policies with
unit penatty cost of 4. The approximations are especially accurate for farge unit penalty costs.

An Approximation for Total Cost
We obtuin an expression for total cost by summing cost components H. B, and R. and
using approximations (9) for Band R
T=H+B+R
=(I+p/h) FH+pll+ Du—S+U-p)D/2] +pk.

We divide by A, replace p with r, as given by (11}, and use approximation (12) for /{ o obtain

(16) T/h=+p/idW +p/h U+ Du— S+ (1~ D/2]+ rKih
As we discovered in obtaining a fit for holding cost. 1 group of related terms should be added
to (16} ta obtain a good hit 1o the system’s data. The lincar regression model we employed is
Tih = g+ 4 W + 4.08p/h) + 4,100 + Dup/ i v ASp/ i)
+ ADp/ by + 4Dp) )+ A-G K/ ) + A (p/ i
o Agp/ i+ UL+ D)+ S 4+ s D 4 D)

oA+ Lo u) b - ps )
+ .'Im[(cr“/ul (p/'/l” +oe.

. ',

N .




—_—

262 R. EHRHARDT

We fit the model to the system of 576 items using stepwise least-squares regression. The
following expression yields a coeflicient of determination of 0.998:

(17) T, = 1.110 hW — 001049 pW + .3364 Kr
— 22344 + 3274 4D + 4476 h oY + 003062 p o /u.

Expression (17) is within 1.9% of actual values of 7, on the average, when used in the 576-
item system. It is accurate 1o within 4% for 89" of the items and to within 8% for 99% of the
items. Only four items produce errors in excess of 10%. These items have g equal 2. o” equal
18, L equal 0, and p/h equal 4 or 9.

Although the approximation appears to be accurate in most cases, it may be inaccurate for
policies that have significantly suboptimal values of s and S. This is because the differences
between (16) and (17) suggest that the economics of optimal policies are intrinsic to the
approximation obtained. The robustness of (17) is discussed explicitly in Section 4.

Approximating Backlog Cost

Attempts at finding a simple. accurate approximation for backlog cost were unsuccessful.
Expression {9) was used to construct a regression model similar to those described above. The
result was a coefficient of determination of 0.44. The relative errors were very large. in some
cases exceeding 100%, making them significant even when compared on an absolute basis with
other cemponents of total cost.

The next attempt was to employ the identity
B=T-H-R

and use (10}, (13), and (17) in place of R, H, and T. This approximation has an average per-
centage error of 18%, with large absolute errors for many of the items.

In order to get a reasonably accurate approximation. it was necessary to form a regression
model that included all the variables appearing in the models for R, H. and T. It was also
necessary to fit this model separately for optimal and power approximation policies and for cach
of the four settings of unit backorder penalty cost. That is, the 576-item system was partitioned
into 8 systems of 72 items, and 8 separate regressions analyses were performed. The resulting
approximation has an average coefficient of determination of 0.998. As the high coeflicient of
determination indicates, the fits are good in terms of absolute errors, although there are relative
errors in excess of 70% for items with large values of p//i. However, the approximation s u
complicated expression involving ten coefficients in each of the 8 subsystems (80 coeflicients in
all, for the 576-item system). Also, since the approximation was fit separately for cach setting
of p/h, there is no explicit functional dependence on this parameter. The reader is referred to
12} for additional details.

Backlog cost has proven to be surprisingly difficult to approximate. We point out that
among the operating characteristics listed in (2), backlog cost is the most sensitive to the tail of
the demand distribution. It appears that an accurate specification of the demand distribution is
required for a reasonably precise calculation of backlog cost.

4. COMPUTATIONAL EXPERIENCE

We iest the quality of approximations (10), (13), (14), (15), and (17) by using them in a
multi-item system with the parameter settings of Table 2. Note that all the numerical parame-
ters have values not found in the 576-item system. Each parameter has one interpolated value
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TABLE 2 — tad-Jrem Svstem with New Parameter Scttings
Factor ‘ Levels Nutibe.
| of T.evels
== _—;%:7;ii777; ":‘, a . - ) - ', T . '—,:AA ; e
Demand distribution Negative Binomial (e - 5 2
Negative Binomial (o7 = 150
b
Mean demand 0.5, 7.0 2
Replenishment lead time ‘ 1.6 } 2
. |
Replenishment setup cost 16. 48 l 2
Unit penalty cost 49,132 I
Unit holding cost | : |
Policy Optimal policy. | 2
[ power approximation policy J

and one extrapolated value. A full factorial combination of the values is used. vielding 63
items. The system is a rather severe test of robustness since only two items have all parame-
ters with values within the ranges used to derive the approximations. There are 10 1items with
one extrapolated parameter. 20 items with two extrapolate:d parameters. 20 with three extrapo-
lations. 10 with four extrapolations. and 2 items with all five parameters extrapolated

We compare actual values of H, P. R, and T for the 64 items with our analy e approxima
tions. Backlog cost B is not considered because of the complexity of our approximation and the
absence of an explicit dependence on unit penalty cost. The average percent deviations from
actual values of H. P, R, and Tare 1.6, 0.2%, 1.4%_ and 2.6%. respectively. The disttibutions
of percent deviations are summarized in Table 3. Our approximations are quite accurate con-
sidering the wide range of parameters spanned by the system.

TABLE 3 — Percentage Deviations of Approximations
ina 64-frem System
(Entries are the number of ijtems with errors in the given range.
with the cumulative percentage of items in the system n
parentheses.)

Range of | Holding Backlog chlcnishmcm Total
Deviation Cost Protection Cost | Cost
(0%.,2) 48 (75w | 64 (100%) | 48 (5% T 30 (47 )
(2%,4'%) 6 (84%) | K (88 S NTIEN
(4%, 6%) 5 (92%) 0 (88 RENT P
(6% &%) 3 (97%) 6 (97%) [ 497
(8% 10%) 2 (100%) 2 (1000 Loy 9ge)
(10, 12%) l 100 |

The holding cost approximation is extremely accurate for all cases with w greater than 0.5
or o¥/u less than 15. All items with deviations greater than 4% have g equal 0.5 and o /u
equal 15. If we consider only the items with fewer than two parameters extrapolated. the aver-
age error is 0.4%,

The backlog protection approximation is excellent, with only one item having a deviation
in excess of 0.7%.

3
3
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Cur gpprosimation for replenishment cost is also robust.  All items with deviations in
v s el B have woequal 0.5, o /u equal 15, and A/ equal 16, Items with fewer than two
Svapolated parameters have an average error of 0.1%.

[ow g and bigh o7/w are also sources of large errors for our total cost approximation. All
Hems woh doviations in excess of 4% have either w equal 0.5 or o¥/u equal 15, or both. ltems
woly rower than two extrapolated parameters have an average deviation of 1.2%.

We o ammented in Section 3 that the approximation for total cost may be inaccurate ftor
e ath signddicantly suboptimal values for s and S. The remark is equally valid for the back-
protection expressions {14) and (15), since they are based on a theoretical result for
coumed policies This issue is of interest to the analyst who may have reason to use an (5.5)
“iher whach s designed to satisty criteria other than simply minimizing total cost. We now
proves 1o dhasirate how the accuracy of the approximations is affected when nonoptimal values
are osed tor s and S

Coenseter the following system of items that are controlled with nonoptimal policies. We

La e pase-case item with o equal S, equal 9. L equal 2, p/# equal 49, and A/ A equal

N The aptimal value of (5,5) for this item is (43.73). We now use this policy on items with

diierens parameter values. The new parameters are obtained by increasing or decreasing each

buse-case parameter value, one at a time, yielding 10 items. The parameter values of the sys-

noac displaved in Table 4. For cach item we compare the actual (exactly computed) and
groreariee salues of AP R and T

VABLLE 4 = Percentage Errors of Approximation for Nonopiimal Policies

T Percentage Errors of Approximations

(v'rhunggé(-l' Holding Backlog Replenishment Total

Viaiue Cost Protection Cost Cost
B e O IR — 6% — 00% 6.0% |
TSI 0 LY B R T 00% —5.0%
oo SR —03% 13.7%
Foe= 22000 - O4% 2.9% 03% —22.2%
S0t - 04 —1.6% .00% 12.6%
3RS0 02%, S.8% L00% —36.2%
' /),'/l = 39 (= 20M%) —-.01% — . S% .00% 3.9%
‘ SO (+20%) 1 - .01 3% 00% —2.2%
; K/l = 38 (- 2} 01 0% 00% 4.0%
“‘ A8 (21 =01 0% L00% —2.2%

Average of . .

I :\b/.s‘()l:rl:‘b;'ullucs D4h 3% Ot 10.8%
—_ e ——— C———— - ——— —— R G |

Observe in Table 4 that the approximations for holding cost and replenishment cost are
very accurate, with average pereentage deviations of 0.04% and 0.01%, respectively. The
approximation for backlog protection is somewhat less accurate, with the largest errors occur-
ring for large values of lead time and mean demand. The total cost approximation does not
perform well in the system. deviating by an average of 10.8%. Thus. we conclude that the
approxamations  for backlog protection and total cost should be used with caution for
significantly nonptimal policies.  An approach to reducing the errors might be gleaned from the
pattern of deviations in Table 4. Notice that when each parameter is larger than in the base

o
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case, the approximation underestimates the total cost, and when the parameter is smaller than
in the base case. the approximation overestimates the total cost. The reverse is true for backlog
protection.

Finally, we consider the issue of how well the approximations perform when the demand
parameters are not accurately specified.  This issue is of interest in applied scttings when the
mean g and variance o of demand are not known but, rather, are estimated using past dita.
We have found that the approximations are rather robust when subjected to perturbations of
this type. That is, the relative errors of the operating characteristic approximations tend to be
smaller than the relative errors in the demand parameters. Furthermore, the errors are nearly
symmetric so that when the operating characteristics of several items are aggregated, the errors
due to high values of demand parameters tend to cance! those due to fow demand parameters.

As an illustration we consider two items controlled by power approximation policies. one
having a mean demand u of 4 and the other having u equal 1o 12. The other parameters of the
items are identical; demand has a negative binomial distribution with o*/u equal to S, the lead
time L is 2., the setup cost K is 48, the unit backorder penalty cost p is 49, and the unit holding
cost his I. We measure the stability of the operating characteristic approximations by substi-
tuting perturbed demand par»meters i’ and ¢’ in place of the correct values ¢ and o, and com-
paring the approximated values with exactly computed values. For cach of the items. we
evaluated the approximations when u7u and o /o’ took the values 0.80. 0.90. 0.95. 1.00.
1.05, 1.10, and 1.20. All combinations of perturbed values were tested. vielding 49 cases for
each item. or a total of 98 cases.

We summuarize the results in Table 5, where average absolute values of relative errors are
listed for several ranges of demand parameter perturbations. Notice that the backlog protection

approximation is not listed in Table 5. This is because the approximation is not a function of

the demand parameters and, therefore. displays no variation when they are cnanged. The
replenishment cost approximation displays the least stability in Table 5, with an average devia-
tion of 6.9% for the 98 items. Errors ranged up to 19.5% for individual cases with extremely
perturbed demand parameters. The holding cost approximation is more robust. vielding an
average deviation of 4.7% and a maximum deviation of 13.7%. The approximation for total
cost, however, has an average error of only 3.9% and a maximum error of 10.0%.

TABLE S — Percentage Errors of Approximation When Demand
Parameters Are Incorrectly Specified

Range for Average Absolute Value of
Demand Parameters Percentage Errors

Number —

frym a'Ya? of Repienishment | Holding | Total

Cases Cost Cost Cost

1.0 1.0 2 0.04% 0.2% 1.3%
195.1.05] | 195.1.05] 42 3.0% 20% | 16w |
[90,1.101 | 1.90,1.10) 70 4.2% 28% | 2.3%
[.80,1.20] [.80.1.20) 98 | 6.9% |4 | 3w q

We note that the data in Table S are measures of the accuracy of the approximations for
individual cases. A measure which is perhaps of greater interest in an applied setting s the
aggregate error over all 98 cases, which is less than 0.5% for ecach of the characteristios. That
is, when the 98 approximated values are averaged and compared with the exact average value,
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the difference is less than 0.5%. This observation can be regarded as evidence that the approxi-
mations are relatively unbiased when the demand parameters are replaced with unbiased statis-
ucs.

5. CONCLUSIONS

We have derived approximations for replenishment cost (10}, holding cost (13), backlog
protection (14), €13}, and total cost (17). The ecxpressions are quite accurate and are much
easier o compute than the cxact expressions (2). Additional simplification of calculations
could result from using a normal distribution function in lieu of the function ¢ in (12). Then
the six evaluations of G in (12) could be replaced by terms involving the standard normal dis-
tribution function, which requires only a simple table look-up. This possibility has not vet been
investigated.

Despite the good fits obtained in (10}, (13), (14), (I5), and (17), we caution against their
use 1n certain circumstances. The results of Section 4 have demonstrated that the approxima-
tions for backlog protection and total cost become less accurate when used for significantly
nonoptimal policies.  Although the approximations for replenishment cost and holding cost are
quite accurate over the investigated range of parameter settings, we suspect that they might
breuk down when used for very small values of ) = S5 — 5. This is because (3) is based on an
asymptotic expression for the renewal function M{D).
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ABSTRACT

The classical Economic Order Quantity Model requires the parameters of
the model 10 be constant. Some EOQ models allow a single parameter 10
change with time. We consider EOQ systems in which one or more of the cost
or demand parameters will change at some tme in the future. The system we
examine has two distinet advantages over previous models. One obvious ad-
vantage is that @ change in any of the costs is likely 10 affect the demund rate
and we allow for this. The second advantage is that often, the tmes that prices
will rise are fairly well known by announcement or previous expericnce. We
present the optimal ordering policy for these inventory systems with anucipated
changes and a simple method for computing the optimal policy. For cases
where the changes are in the distant future we present & myopic policy that
yields costs which are near-optimal. In cases where the changes will occur in
the refatively ncar future the optimal policy is significantly better than the myo-
pre policy

1. INTRODUCTION

The classical Economic Order Quantity (EOQ) inventory model has several basic assump-
tions that yield the elegant solution of ordering Q* = V2AK// where A. A and / are the tradi-
tional inventory parameters of demand, sctup and holding, respectively. The most basic
assumption is that all of the parameters are constant. Several systems have been examined in
which either the demand rate or the purchase price may vary with time. (sce Goval 14]. Buza-
cott [3), Naddor [9], Resh, Friedman and Barbosa [10], Barbosa and Friedman [1] and Sivaslian
[131.). In all of these papers the parameter changes are continuous with time and furthermore
only one parameter is permiticd (o change. In this paper we consider EOQ models in which
any or all of the parameters may change at some future point in time.

The system we examine has two distinct advantages over the previous models. One obyi-
ous advantage is that a change in any of the costs is likely to affect the demand riate and we
allow for this. The second advantage is that often. the times that prices will rise are fairly well
known by announcement or by previous expericnce. If prices have risen January 1. Aprit 1 and
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July 1. it is very reasonable 1o anticipate a price rise on October 1. Also, price changes are
more likely to jump than to be continuous with time.

In Section 2 of this paper we develop the inventory model and determine the necessary
conditions for a policy to be optimal. In addition, we present a simple method for computing
the optimal policy. Furthermore, a by-product of this method is a myopic policy. The myopic
policy works well when the horizon is large ¢nough and the price or demand change is far
enough in the future. In Section 3. we present computational results for several different sets
of parameters.

2. THE STRUCTURE OF AN OPTIMAL POLICY

Consider a tinite horizon of length 7 that is partitioned into two disjoint time periods; the
closed interval (0.8 called period 1 and the half open interval (S, 7] called period 2. The costs
associated with period 1 are a per unit cost ¢, a holding cost rate /1, tor all items brought into
stock during period 1 and a setup cost Ky > 0 charged against each order placed during the
period. For items brought into stock during period 2 the unit cost, holding cost rate and setup
cost are ¢, iy and K. respectively. Thus, S is a time at which any or all of the inventory costs
may change. Also, the demand rate may change at S. Let A, and A, denote the demand rates
during periods | and 2, respectively. A finite sequence of lot sizes is to be purchased to satisfy
the demand. We assume that the initial inventory is zero. delivery is instantaneous, orders ar¢

placed only when the inventory level is zero and the discount factor is either ignored or
included in the holding cost. The optimal policy for cases with a positive initial inventory is ’
discussed later. Of course, if there are known lead times the results of this paper still hold but ‘
the orders are placed earlier according to the amount of the lead time. '
- . . . . . 1
The total cost, Z(Q), for a single order of quantity Q with corresponding holding cost and
purchase cost is Z(Q) = K, + h, Q% 2x, + ;0. Theorem | limits the structure of the optimal
policy as follows: ]
THEOREM 1: An optimal policy must have the property that
(a) all orders placed and depleted in period | are of the same size i*
and (b) all orders placed and depleted in period 2 are of the same sizc.
|
PROOF: Suppose Q) and Q, are the sizes of two consecutive orders placed and depleted '
in either period and let Q = Q, + Q>.
The total cost of these two orders Z () as a function of Q, is given by :
Z(Q) = 2K, + i [(Q) + (O, + ¢,(Q, + Q)
= 2K, + Q7 +(Q — QDA + .0
We have that the first and second derivatives are
2000 = 20, - 2(Q — Q) 2,
and
7100 = 4/ 2, > 0.
Hence, 7 is strictly convex in Q and is minimized only at (), = y (>. Thus. two consecu-
tive orders placed and depleted during the same period must be the same size. which implics
e
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that all orders placed and depleted in either one of these two periods must be the sume size, |
and the theorem is proved.

Since the orders must be placed and depleted during the same period, Theorem 1 does
not apply to an order that is placed on or before S (period 1) but depleted after S (period 2).
Such an order is called a crossing order. Theorem 1 implies that the structure of the optimal
ordering policy has been reduced to one of two possible forms depending on the inventory level
at time S. If the inventory level is zero at S (Figure la), then the structure of the optimal pol-
icy is to place m > 0 orders of size Q, =\, 8/m during [0.$). place an order of size

Q.. 0< @, S AAT = 8§) at S, and place n 2 0 orders of size 0 = (A:(T ~ §) = O,)/n dur- \
ing period 2. (Note that iff n = 0 then @, does not exist). This case is denoted as the zero &
inventory case (ZIC). If the inventory level is positive at § (Figure 1b), then the structure of l
the optimal policy is to place m 2 0 orders of size @, before S. one order of size Q, that 'y

crosses S and # 2 0 orders of size Q> after S0 This case is denoted s the nonzero inventory
case (NZIC) and the two cases are examined separately.

2.1 Zero Inventory Case

The optimal number of orders to place for the finite horizon inventory model with param-
cters A, /. K, Tis given by Schwarz [12] as the integer # satistving

(0 nln — 1)< AAT2R € uln + 1),
The right hand inequality is i
w4 on — haTY2RK = 0. :
|

The solution for the quadratic inequality is

The left hand inequality vields
n < 1/2+1/4+ hnTY2K.
Since n is a positive integer
n=<~1/2+J1/4+ nnT/2K >

where < x > represents the least integer greater than or equal to x. Define an integer valued
function N(A. A, K, D) of the inventory parameters as

() N KT =< =12+ V14 + INTR >,
(Vis used if the parameters are clearly defined). ]

It follows that for the ZIC the optimal number of orders to be placed during [0.5) is given
by

m*= N, I, K. §)
and the optimal order size is given by
Q= MS/m*
The costs incurred in [S, 7] are given by

PO )= Ry + hAar/2+ Aoty + nlKs + A5 /2 4+ Katacs)
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Inventory
Level 0,
0 0.
S T nme
- —- h - - ——— . —
- - morders ———————m= -1 orders ——
4 Inventony at S zero
Inventory
Level

T time

- - ————— || o | ———— ————— . ——

- M orders — e —— norders c—— -

b. Inventory at S1s positive

Fior ke 1. Optimal Policy Structure-Z1C and NZIC

where ¢ is the length of time it takes to deplete the order placed at Sand 1= (T - S~ 1)/n.
Letting R=7T-S Fli.na) can be expressed as Flon)= K, + NS/ 2+ Kty +
R+ AR = 1)/ 2n + Ay (R — 1)es. The total ZIC costs are thus

(K1) Flon) + m*Ky+ m*h Qi /20, + A Sey .

The partial derivative of (3) with respect to 1. provides a necessary condition for (1) to
minimize the total inventory costs for the zcro inventory case:

(4) 0= II;A)I + Ay - /lgh‘)(R - 1) n - AL

ST SPREDP DP P RPN I 7
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or t = lnlcy— ¢} + IR by + hy).

Notice that if the per unit cost increases then 7 will be positive. If the cost decreases then 1 may
be negative. If this is the case then at time S an order should be placed for as few units as pos-
sible or the order should be delayed until time S + e, ¢ > 0.

Also note that, if 7 is given by (4), then R — tis the time in which the » orders are placed and
is given by

R—1=R~(lcy= )+ ILRY by + Iy)
nlh R — ¢y + ) nhy + h)).

This will be nonpositive if and only if /1R — ¢y + ¢ is nonpositive. Thus, if /R - ¢, +
¢y £ 0, then n must be zero and r = R. This means that if the cost of ordering one unit at
price ¢, and incurring the holding cost /1, for the entire span R is not more than ¢», the incre-
mented purchase price, then obviously one should avoid any purchases at price o> If
R — ¢y + ¢, > 0, then R — ris positive and n 2 1. If R — 1is positive, then # must be the
optimal number of orders for a fimite horizon inventory model of length (R — 1), Let
I=1{1.2, ...} and n*(R ~ 1) represent the optimal number of orders to place in the second
period. Then from Equation (1)

n*(R — ty=minln € I'ntn + 1) 2 (A-hy/2K5) (R - 1)

minfn € Iinln + 1) 2 hy/2K) it R = o+ ¢V (it + hod )
(5) =min{n € Llu + 1) (nhy + hdrn 2 GI2K-) (R — s+ o)),
One could compute »* by sequentially searching the integers. However, there exists a4 more
efficient scheme.
Consider the inequality given inside the braces in (5) expressed as an equality.

(nhy + )2 (n 4+ D= Ay 2R U R~ tes = )))7.

Let
o= 2K U R — (¢ — ¢ ).
Then
(hi + 2y + hs) n + 1) — nz =0
or
w4 20y + onhi 4+ hE 4 2uhihs + hi - iz =0
or
i+ 0P Qhhy + iy + + 2hy= 2V 4 hi = 0.
This is a cubic equation and the thre  c.ns to 2 equation can be found using standard alge-

braic techniques (see, for example. Burinzton [2]). The cubic equation might have a single real
root n, or three real roots ny, ny. nr, ny S 0> < iy Inthe former case. the solution to (5} is
n* = <m>, and in the latter case. the solution to (5) is
<m> if <> < n,
* — e
n < Hy> " <H)> > "s.

Hence, (5) s casily solvable.
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Since the zero inventory case is relatively easy to compute and often performs well as will
be seen in the next section we refer to it as the myopic policy.

2.2 Nonzero Inventory Case

Define 1, = Qy/A,. 1> = Q)/A, and ¢, as the depletion times of the orders placed during
periods 1. 2 and the crossing order respectively. Let m and »n be the number of orders placed
during periods | and 2 respectively. The total cost is given by

(6) Flnm oty )= m(K, + ANE /2 + i) + nlK s+ 1A /2 + GAsrs)
+ K] + /I]{)\](S - Inl]’:/z + {5 — ”"])Aj(l)ll( + I, — S) + (I’I’] + ’(/ - S"/\‘/z}
+ (A\Al(s - "”\) + (‘1/\3("", + i, - S).

Thus. the mathematical programming problem is:

mininuze  Flw om0y, f00,)

7 subject 1o m, <SS

(8) miy ¥ 1, >S5

Y miy v, v =T
mom ot o1, 20

1. M iNtegers.

Notive that due to constraint (9) the problem for a fixed m and u is a two-dimensional |
problem as 1, is determined by the rest of the variables. The problem is still too diflicult to !
approach as a mathematical programming problem because of the strict inequalitics, so we
reduce it o a one-dimensional problem with the following result.

THEOREM 2: Tor fixed m, neither Q) = Q, or ZIC is better than NZIC.

PROOF: The proof first shows that when m orders of size () are followed by & crossing v
order of size ¢, then it must be true that @, = Q). Let R 2 § be the time at which (J, is ‘
depleted and consider R as tixed. For constants m and R the relationship between (), and Q) is

(10) Q, = (S =~ mQJ/AIA + (R = SHAs
The order. holding and purchasing cost 7 for the period 10,R) as a function of () is
2000 = hdmQ7 /20, + (S ~ mO/A AR = S)

F ALY - mOUADT2 MR~ SY2 4+ O + DR+ S + AR S
T'he function is minimized when the first derivative is zero or when
(1) mQyAy - mAs(R — SYA— m(§ - mQ /N = 0,
Notice that the second derivative is {m + m?)/x, > 0 since m > 0. Rearranging (11} viclds
(12) Q)= (8~ mO/ADA + (R - SIX,.
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| This Q, is the unique optimal order quantity and is equal to (J, from (10) hence all orders are
of the same size.

The decision variable Q; must satisfy the constraint mQ/x, < S. If (12) violates this
constraint the solution is on the boundary, i.e., O, = A;S/m which means that all m orders
placed strictly before S are of the same size and the theorem is proved.

We have that
Q, =M S —mip)) +x{miy+ 0, - S)

and from Theorem 2 that Q, = Q; = At,. Hence, it follows that

(13) fa=(/\1’|+('\2“7\1)(‘5‘"""’1))/)\2-
Furthermore, constraint (8) must be satisticd. Recall that using (13) and (8) onc gets
(14) mty + 1, = m + ()‘l’l + ()\2 - Al) (A N”]))/)\Q

= [(I?l + ]))\]f] + ()\3_ )\])5]/)\3

Notice that mr; + 1, > S if and only if (m + Dz, > S Thus, express F(n, m, 1.05.10,) as a
function of only one depletion time by substituting (13} and 1> = (7 — (mry + 1,))/ » into the
expression for Fln. m, 1;, 15, 1,) given by (6). Denote by /(1) the cost for a fixed m and »
when the depletion time is r;. Then, after substitution

. . . omhaed I -
(15 ) =(m+ 1K, + nk;+ INT = Ui+ Dy — Gy — A ST
- 2 2”)\2
WA (S = mn)? I} .
% + (S = me)n lm + Dy — ST+ ll)\ Liom + e — SI°
+oenn(m + D+ e T = (m + Deahiry = eahy = A))S 1

Now f*(11) is given by

/
(16) _/.l([]) = h]k]S— % [AzT— (m+ 1) Aty — 'A>— A])S])\l(lﬂ + 1)
HA

4

X AT . 3

— v lm + Dy = Sl + [+ Dy = Stom = D+ A m + D ey~ oo, :,

2 i

Also, |

(17) L) = m+ DA lhyn — /Ay — IphymGm + 1), l

Now if (17) is negative f(-) is concave and hence the minimum occurs it an extreme point of |
the feasible region. Thus, either the minimum is a zero inventory case or 7= T/(n + m + 1),
If (17) is positive /(-) is convex and either the minimum is at an extreme point and again we

have the zero inventory case or t = T/(n + m + 1) or the minimum occurs by setting the '

derivative equal to zero. This leads to the following: i

THEOREM 3: If for a fixed m and n the optimal case is the nonzero inventory case then
eitwer ty=T/(m+n+1)or

/lg)\gT— (/l}‘}"lh])(xg‘)\])s“"NA}(() (‘)

(18) 1= -
! (m 4+ DXy + nhy) = nmhnxs

e e = S
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Notee that if there are no changes then 1 — /o k where A iy the number of orders that
are of the same size as previously shown by Schwarz [12]0 Also. if only the demund changes
then 1) — 1> Given 1o, the fast task as o find mand n As betore, it 7. is the depletion tme of
cach of the first or orders, then 17 miry - 1, is the fength of time for the last 7 orders and the
optimal number of orders placed during {mr; 4 1,0 7] must satisty Fquaton (1), That s,
wl o)~ min e € Lonlu + 1 2 OGhy 2K 0T - ey 1)

Fe appears that one needs to compute 1, and # tor all values of #2. This would be u for-
mudable tisk However, the number of possible values tor mcan be reduced by the following:

THEOREM 4 For the case where the imventony level s positive at S either m” \NES)
or T NES) = D where VUS) is the oo mal number of orders W place g tinite horizon

NI

n

[0, ST Furthermore, n* > N T

PROOE: Leta=mr. S a0 <7 > 8 — Nu) 2 VS sinee (2)is nondecreus-
ing. Al orders must be placed before S0 Let A be the time of the last arder. Then
VIBY < MES) hence. m* € N(bp) + 10 Thus, cither V(S) or N(S) = T orders are placed.
The restriction on #* follows from Theorem 3 in [5].

We now can ~oihve the NZIC for m = N(S) and for m = N{S) + 1 and take the
minimum cost of the Z1C and the NZIC. The algorithm is as follows:

l. Calculate NS) from (2) and set mr = V(S

2. Calculate N7 = 8) from (2 and sevn =« NO] 8§,
3 Calculate 00 from (4) and compute the cost for the Z1C from (3) i
!
. {1, m+1 R .
4 Forn = N1 - ——— S| 10 N 9) caleulate 77 G trom 0 and the cost J
m
for the NZIC from (15).
S Setm = N(S) + 1.
6. Repeat step 4.
7. Find the minimum costs from steps 3.4.6
The last detail to discuss 1s that of an initial inventony 11 the begmmng imventon . 7 s ,
. . . 1
fess that or equal 1o A4S, obviously the imventory should be depleted and the problem s that of '
4 finite haorizon of length 7 - /A, with a price change at tme S 70 a T the begimning

iventory will not be depleted untit after time 5. obvioushh no purchases should be made until
at least time S0 In this case. the cost of not purchasimg at S and then purchasime when the
inventory s depleted should be compared with the cost of purchastg anits o time S

3. COMPUTATIONAL RESULTS

It is interesting to determine what effect varving the honzon or the time at which the
parameters change would have on tne optimal policy - In particular whether or not the myopie
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zero inventory case is optimal and if not how close to optimal it is. Note that for the case of no
changes the optimal cost as a function of the horizon appears as in Figure 2 (see {51, [12]).
Schwarz [11] has shown that if the horizon is at least 5 EQOQs worth then the optimal finite hor-
izon cost is no more than 1% above the optimal infinite horizon cost. One expects similar
behavior in this model.

Cost

V2XKR™

time

Frovre 2 Opumal cost as a funchon of ne when paramerers remain constant

Table | contains the optimal costs for both the zero inventory case and nonzero inventory
case where all parameters are fixed except for the horizon. The per unit cost was changed by .1
and the holding cost by .025. The demand and setup cost are constant throughout the two
periods. Notice from Table 1 that the optimal policy aliernates back and forth between the
myopic and nonmyopic policies. Also, as the horizon becomes large the overcost when using
the myopic policy tends to decrease. In fact, for any horizon above 25 the overcost is less than
1%. Incidentally, the infinite horizon optimal policy is the zero inventory case. with an average
cost of 50.75.

TABLE | — Inventory Costs as a Function of Horizon Length
forAC= .1 2%)and Ah = .025 (2%)

A=35 K, =K, =30, by =125 h-=1275 ¢, =5, -=51,5§=20
T Z1c NZIC ZIC/NZIC-1
L Average Cost Average Cost
21 53.66 50.02 7.28%
22 52.58 50.09 4.97
23 51.74 50.02 3.44
24 51.09 50.00 218
25 50.63 50.14 98 |
26 50.32 50.17 30 !
27 50.15 50.12 06 i
28 50.11 50.40 | - &
29 50.17 50.30 : -
30 50.34 50.23 22 f
31 50.60 50.19 82
32 s0.10 30.41 - [
33 50.23 50.33 -
|34 50.34 50,29 0 !
[ 35 ] 50.26 50.25 02 |
36 50.25 s0.42 | — |
37 50.28 50.36 i — ;
38 50,36 50.32 | 08 |
39 50,30 50,30 ‘ - l
| 40 50.30 S04 \ - |
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Table 2 contains similar information but for a larger price increase. Let AC = | and
Ah = .25 while all other parameters are as above. Again, when the horizon is 25 or larger the
myopic policy is never worse than 1% above optimal. However, in this case the myopic policy
is optimal tor all horizons larger than 35.

TABLE 2 — Inventory Costs as a Function of Horizon Length
JorAC = 1 (20%) and Ah = .25 (20")

N=5. K= K.=50.h,= 1.25. ho=15.C,= 5. Ca= 6, S= 20
T 21¢ NZIC ZIC/NZIC-1
Average Cost Average Cost
21 53.71 50.02 7.38%:
22 52.75 50.09 5.31
23 52.01 50.02 3.98
24 51.48 50.00 2.96
25 51.12 50.63 97
26 50.93 50.90 .06
27 50.87 $1.23 -
28 50.94 51.38 -
29 5112 51.61 -
30 51.41 51.90 —
31 51.79 51.99 -
32 52.24 52.11 .25
33 51.89 52.44 -
34 52.12 52.50 -
35 52.41 52.58 -
36 52.34 52.89 -
37 52.50 52.93 —
38 52.69 52.99 -
39 52.74 53.06 —
40 52.85 53.30 -

In the examples presented in Table 3 the horizon is fixed and .:¢ time of price change
varies. The remaining parameters are identical to those of Table 1. The Table zlso contains
which case is optimal in the long run. Notice how in the infinite horizon model as in the finite
horizon model the cases alternate as S changes. Also, as S approaches 7 the myopic policy wor-
S¢nNs.

In the next example presented in Table 4, S varies, and we use the larger cost increase as
in Table 2. This time, the infinite horizon models always are optimized by the myopic policy.
Again, as Sapproaches T the myopic policy begins to worsen.

The last set of examples given in Table § indicates that as the number of orders (using
cither policy) increases then the difference between the myopic and optimal policies lessens.
The data used 1o generate Table S is identical to the data for Table 1 ¢xcept that the holding
cost is reduced from 25% of the purchase cost to §% of the purchase cost. Notice that this gen-
crates fewer orders which in turn increases the overcost.

W
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TABLE 3 — Imvenrory Costs as a Function of the Time of Price
Changes for AC = .1 (2%) and Ah = 025 (2%)

A=35 K= Ks=350, hy=125 hy=1275 ¢,=5 ;= 51, T=30
(and T = oo for last column)
s | zic NZIC ZIC/NZIC-1 F=e
Optimal Case

6 | 5071 50.60 } 5 g .22% NZIC

71 5054 50.60 - ZIC

8 | 50.54 50.50 3.3 .06 ZIC

9 | 50.50 50.50 - NZIC

10 | 50.54 50.50 ; 3.4 .08 NZIC

11 50.43 50.50 - ZIC

12 | 5045 50.41 } 44 04 Zic |
13 | 50.38 50.41 ) - NZIC g
14 | 5040 50.38 } 43 .04 NZIC :
15| 50.33 50.38 - 71C

16 | 50.38 50.3:2 ] 53 12 Z1C

17 | 50.28 5032 | 7 - NZIC

18 50.28 50.27 } 59 02 NZIC

19 | 50.64 50.27 ’ 74 Z1C

20 | 50.34 50.23 } 6.2 22 | Z1C

21 50.19 50.23 ) - | NZIC

22 | s0.17 50.16 6.1 0 ‘ NZIC

23 | 50.15 50.14 } 02 ! e

24 | 50.28 50.14 } 7.1 28 Z1C

25 ) 50.54 50.14 80 ! NZIC

The notations should be read as follow:

*The optimal policy for § =6and 5 = Tis m = 2n= S

ta
-1
3
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TABLE 4 — Inventory Costs as a Function of the Price Changes
tor AC =1 (20%) and Ah = .25 (20%)

A=5 K, =RKR.=50_h =125 /=15 ¢,=5 ¢,=6. T =30 (and T = o0}’

S Z1C NZIC ZIC/NZIC-1 7= o0 :

6 $35.00 55.16 - 71C ’

7 54.59 55,16 , - | 71C

8 54.50 55.16 - Z1C

9 S4.13 54.71 - 71C j

10 5393 54.20 - 7iC i

1 53.60 54.00 - ‘ Z1C :

12 53,30 54.22 — \ Z1C

13 301 : 53.22 - 1 ALS 1

14 5291 ‘ 53.26 - ‘ Z1C | -
15 52.84 529] - 71C i '
16 32.41 5291 - 71¢ ‘

17 52.11 5293 - i 71C ‘ |
18 52.48 52.38 - 71C

19 51.87 5189 - Z1C %
20 51.41 51.56 - 71C L
21 | S111 S1s6 - are ¥
; 2 50,95 ; 50.94 - 71¢ {
| 23 50.80 50.94 - 71¢ '
24 50.80 30.78 04% ‘ 71C ﬁ
25 50.95 50.63 64 i 71C i

1 [ e L SIS S i

TABLE 5 — Inventory Costs as a Function of Horizon Length :
JorAC= 1 2%) and Ah = 005 (2%) ]

A=S K, =K,=50, h,= .25 h,= 255 (, =5 (=51 §=20] 1
T zc NAC T e
Average Cost } Average Cost ; 1
= s e e e "i‘.#:'"’ < - R
21 40 50 3632 ! 11 SO 1
22 39 88 ! 36 40 v 47 : /
SRR 3928 f TR R.1% 1
vy 38 79 3623 ‘ 701 ‘
Po2s | 3836 , 36 20 , 393 Py
26 3799 3618 ! 499 ‘ ‘
DS 37 67 36.18 112 \
28 3740 3619 314 '
D A7 t6 3621 Y62
i 3 3607 36.25 1 98
Y 36.80 36.50 99 |
32 36.66 36.39 74 1
33 36 56 36.36 33 ¥
34 36.47 36 34 37
35 36 42 36.33 24
16 1618 36.32 14
37 36.36 36.33 07
38 36.36 36.358 02
39 36.37 3637 < 0l
40 36 40 36.48 -
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In summury, if the honzon i faree. compared with the tme of poce change Cae suspet
that lurge 15 S FOQs) then the myopic policy appedrs Ur be very worthe
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SYSTEMS DEFENSE GAMES:
COLONEL BLOTTO, COMMAND AND CONTROL*
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ABSTRACT

The classical "Colone! Bloto” games of force alfociiion are gencralized to
include situations i which there are complemeniarities smone he targets homg
detended  The complementaritios are represented by micans o 4 ssstem
“characteristic function” and o valuation techiigue trom the theory of coapera
tve games i oseen to o indieate the opnmual allocations ot delense and attack
torces  Cost orrade-offs between svstems detense and allerative mcasures
such s the hardeming ob targets  are discussed and o simple cxample o

anahvzed v order to mdwcade the potentod of this approach

1. COLONEL BLOTTO GAMES

The first example of what has come 1o be called 4 "Colonel Blotto game" was apparently
given by Borel [3]. He discussed the case of a defender attempting to protect several locations
against an aggressor. A typical objective of the aggressor was to maximize the expected number
of locations captured.

Games involving this type of objective were subsequently studied by Tukey 111] and oth-
ers (for example, Gross [7), Blackett (2], Dresher [4], Beale and Heselden 1D As defined by
Beale and Heselden, a (Colonel) Blono game is a zero-sum game involving (wo opposing
players, | and I, and » independent battleticlds 1 has 4 units of force 1o distribute among the
battlefields. and Il has B units. Each player must distribute his forces without hnowimg his
opponent’s distribution. If [ sends v, units and 11 sends i, units 1o the Ath battleficld. there s
a payofl P (x, .v,) 1o I as a result of the ensuing battle. the payotf for the game as a whale s
the sum of the payoffs at the individual battlefields.

In this paper we consider a gencralization of the classical Blotto game  This generalization
gives regard to the important class of military problems wherein there exist complementanies
among the points being defended. In such cases, the final status of the competitors as not
determined merely by totalling individual target values, but depends on the relative value of

TThis research was supported i part by oconteact with the TS Oflice of Naval Rescanch
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capturing (or neutralizing) various configurations of targets. Our generalization includes the
classical Biotto games, as well as, for example, games in which the aggressor’s objective is to
maximize the probability of capturing a majority of the trgets.

By considering complementaritics among targets, we are in a position to study the defense
of networks. For the purposes of increased reliability and security, redundancy is often inten-
tionally incorporated into telephone and electrical power grids, carly warning networks. and
command and control systems. It is natural 1o ask how well protected such systems are from «
disabling attack. Furthermore, it is of interest to consider cost trade-offs between built-in
redundancy and extrinsic defense. In order to pursue these issues, we first introduce some ter-
minology from cooperative game theory.

2. SYSTEMS PERFORMANCE AND THE CHARACTERISTIC FUNCTION

An s-person game in coalitional form is described by a characierisue function v) defined
tor all subsets of the set N of "players.” When one is considering networks (or battletields. or
strategically timportant facilities), v(S) may be interpreted as the value remaining in the system
it only the set of nodes Sis held. The characteristic function captures in a general setung the
many types of complementarity which can exist among the various combinations ol pomnts in
the network.  (In traditional cooperative game theory it is frequently assumed that the churae-
teristic function is superadditive; that is. it S and 7 are disjoint then v(S) + (/) <
viS U 7). However, in the context of strategic systems this assumption may not be reason-
able. It one is protecting a network of doomsday devices, for example, the characteristic func-
tion might assign a value of 1 to every nonempty set.)

There are many different "solutions” which have been suggested by game theorists for
games i coahtional form. They reflect various aspects of the cooperative dealings amaong
plavers with different goals. We note 1in particular the value solutions, which can be given an
interpretation i terms of the military probiem of allocating forces 1o a system of 7 nodes In
order o give this interpretation in detail we must reformulate the original a-person game as a
W O-Person NONCOOPCrative game.

3. THE NONCOOPERATIVE GAME

We recast the given game as if it were a zero-sum game played between two opponents. o
defender and an attacker. The # players in the onginal game are regarded as nodes tor indiv-
dual targets) in a strategic network that the defender is trying 1o protect and the attacker s (ny-
ing to destroy

Let A4 and B be the respective amounts of strategic resources Qroops, for example. or
antibalhistic and ballistic missiles) held by the defender and the attacker. The defender man
choose any nonnegative allocation v = (v, ..., x,) of resources, subject to the constriant that
T v = 4 Simularly. the attucker may choose any allocation v = (v, .. 1) for which
v = B Let f(av) be the function (yet to be specified) which indicates the outcome of the
battle at point ;. A natural interpretation which we take at this tme s that 7. (x v ) is the pro-
babihity that the defender retains point 4.

Assume that the goal of the defender is to maximize the (expected) effectiveness of the
surviving configuration of targets. 1 the miterests of the attacker are directly opposed 1o those
of the defender, then we have at hand a two-person zero-sum game. The probability that the
targets in the set S survive, while alt others are destroyed, i
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[T /G ITO= £,
o N 4

Therefore, the expected effectiveness of the surviving collection is

YT At [T O = £ aonlves):
s;

M EC S

this is the defender’s payoff.

. It we suspend the interpretation of the functions /1, as probabilities, we tind that this com-
pettive game is indeed a direct generalization of the traditional Colonel Blotio game.  Assume
that the underlying characteristic function is additive, so that v(S§) = 3 ov0AD forall § A

A S

Then

Dixy) =Y filxow) vk .
Ao
By identitying P, (x..v) with fi(x,.p) - vt{k})  for example, by taking P, = 7, and
vi{k}) = 1 for all & € N), we can represent any desired classical Blotto game.

4. BATTLE MODELS

A listing of the various battle models which have been considered 1s bevond the scope of
this paper. Morcover, a critical evaluation of the relative validity of these models does not
appear 10 be available. Even Napoleon's dictum that God is on the side of the strongest baut-
talion does not appear 1o be borne out when the force sizes of victors and losers i major bal-
ties are compared (for example, see Dupuy, page 89 tol).

For the purposes of this paper we have chosen to consider a moderately general class of
models in which the attacker and defender have homogenous resources. Hence. force mix
problems have been set aside. Sull, while it may be reascaable o assume that the probabihity
that a target ¢ is captured or destroyed is simply a function f (x .v) of the resources expended
in attack and defense by the two sides, the actual form of this functon depends on empirical
tactors such as target type, physical vulnerability, troop morale. and the hike

We specifically consider outcome functions of the form

o
flev) = ,,T.l;‘, R
yx" (] - oy
where we set £{0,0) = y. The parameter y may be interpreted as an mdwcator ol the natural
defensibility of the target: if x = v then f(xy) =y The homogeneity of the tunchon £ allows
us o concern outsclves with the rato A = /v of defending to attacking forces, rather than
with the specific amounts v and v+ The parameter m reflects the importance of the relative
difference 1n size between the attacking and defending forees

In the Iimit, as m becomes large. the outcome functon becomes the crudest torm o
“supertor torces” model the side which commits a greater force will win with certainty - 1f the
resources of the defender and the attacker are of comparable size. i this imting case the
force-allocation game may fail to have a solution in pure strategies. (For an investigation of the
degree of dispanity of initial force sizes suflicient to guarantee the existence of optimal pure
strategies. sce Young. [13]).

i
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On the other hand, if m is not too large, the outcome function is relatively insensitive to
small changes in opposing allocations. We consider this case in the next section.

5. VALUE SOLUTIONS

Let v(-) be a characteristic function on N, and let p = (p,. ... . p,) be a veclor of proba-
bilities (that is, each 0 < p, < 1). Then the (p,, .... p-value of v is the n-vecior
B= @B, ....8,) delined forall i € Nby

B.= Y (IIr I G-plvSU D= viSL
[ AR A NN

Sen

Consdder the toree-allocation game based on v, in which the initial resources of the oppos-
ing sides are 4 and B, respectively.  Assume that the outcome function at the Ath target s
defined by fi(av) = y x"/ly, x"+ (1 — y v Then if both sides have optimal pure stra-

tegies, these strategies must be force allocations proportional to the (f,, ..., /) (4,8)-value
of the underlying game. Furthermore, for all sufficiendy small values of m, allocations propor-
tional to the (f, ..., 1} (4.8)-value are indeed optimal.

Further details concerning these results are presented elsewhere (Shubik and Weber {9])
6. THE COSTS OF SYSTEMS DEFENSE

“"What price freedom? s an important duestion. but one which political philosophers,
ceonomists. and Department of Defense budgel proposers often find difficull 10 make precise
A model which links the value and cost of defense is presented here. (A different model s
presented in Section 7.0 where we take the cost of defense as given but consider the possibiliny
ot trade-otls between direct defense and the phvsical reinforcement of individual targets)

AL an abstract level, there are tour major items in the deseription ol a defensive system
the muabitury or societal “worth” of defense. the tvpe, gquantity, and structure of defensive torees.,
the cost of these torees; and the "hardness” (defensive strength) of individual targets

I he model of Section 3 avords the problem ol companng value and cost by representing
value within the charactensiic function and taking as given the avalable attack and detense
torces  Thus, constramis on mulitary resources enter only as boundary conditions on a foree
assignment problem. rather than as a result of takimg resource costs mmto account i the pavotl
structure

We can modity the games of Section 3 1o anclude costs in the following manner The
detender and attacker first select foree levels A and A< ncurning costs of o Ch ) and oA
Fhey then cach assien torees. and the payolts are given

*) Po- Sy Ay and

Po=wiS) - (th,

where VES) s the worth Gn monetary umits) to the detender of the configuration S of surviving
targets, and w8 ) is the worth (o the attacker of destroying or captuning the targets m S This
15 @ two-stage nonconstant-sum game. which might be studied in terms of cither equilibrium o
minimax theories.
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The fact that the above game formulates well as a two-stage process calls attention 1o the
fact that the two stages are separate in both time and bureaucratic control. The problem for a
defense department in dealing with the government as a whole is (o select A, incurring the
budgetary expense ¢ {k,). The problem of the commander, having been presented with forces
k,. is to allocate these forces wisely.

From the viewpoint of analysis, the models of Section 3 seem worth pursuing at the level
of command and control. However, it appears that the first stage of the model suggested by (%)
concerns a very different aspect of decision making, and involves deep issues in the area of
defense budgeting (some of these issues have been discussed by Hitch and McKean [8))

7. THE HARDENING OF TARGETS

In order to illustrate some of the preceding considerations, we analyze a simple example.
Assume that a defender secks to protect three sites, at each of which several antiballistic mis-
siles are siloed. If the attacker destroys any two (or all three) of the targets, the overall defen-
sive system will collapse. The first site houses more missiles than the second. which in turn
houses more than the third: although any two surviving sites will vield an adequate system, the
survival of all three provides even greater security. We model this situation with a characteris-
tic tunction v, which satisfies v(123) = 4, v(12) = 3, v = 2. v23) = | and v(S) = 0 f
st <1

Assume that the attacker and defender possess comparable amounts of strategic resources.
say, 4 = B = 1. Let the outcome of conflict at site A be represented by the tunction /(v b =
Y.xily x4 AL =y ™, for some moderately small value of m (that is. assume that equal
torces engaged at site A will vield a result favorable to the detender with probability v . and
further assume that small differences in resource assignments fead to only elatively smuall
changes 1n this probability). The parameter y, indicates the "hardness” of the target ar site A
(that s, s natural strength against attack). Tt follows, as was indicated in Scecnon S0 that the
optimad altocation ol strategic forces by cach side will be proportonal to the fy (3 _y I-value of
the game v Hence! this allocation will be proportional to the vector

B=1y +3y. 2ywy. 3y, by, 2yiypldy bty y vy )
In parocular, oF we mitadly have y = ¥y = vy = 1720 the opumal allocation tor cach side s

(379 3/9_2/9)

Now . assume that additional capital s avadlable 1o the detender, and may be used 1o hat
den any of the targets. Spectticatly, assume that an nvestment of 3¢, units of capital at sie A
will vield an ancrease of (1 ¥y DA an the hardness of target A that s, 9y, a9 = (1 3y )
A natural question s how best toanvest the addinonal capital

Let the detender’s atlocation of torces be v = o v while the atticket s deployment
iso= ooy Then the value of the outcome of the competitive game. to the detender, s

DUy = 30,0008 200004 £ 21011

where cach /. s evaluated at (a0 The optimal strategres are v - 4° 2 g Fheretore.
the rate of gan from investment i the hardening of target A s

oD an a1, ay.

;’ ‘\..\“): ; (‘o“n' . (\-.“) .

o, ap, dy, e,

=3,/ 1 y. ).
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The best investment is in the target (or targets) for which this expression is maximized. But
the expression varies with the parameters y,.y». and y:. Hence, if we begin with all y, equal,
it is best to initially invest in work at the site for which 8, is maximal: this changes 8 as well as
y.. after which we can determine the best target for turther investment. Beginning with
yi=7v:= y:= 1/2, we obtain the results indicated in the figures. (As the available capital
increases without limit, the value of D(x*1v*) approaches 4. and the three sites attract nearly
equal proportions of the capital.)

This example illust ates several, but by no means all, of the types of computations which
appear 1o be feasible ar i relevant to the study of tradeoffs in defense. in the hardening of tar-
gets, and in built-in sys.em redundancy.
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ABSTRACT

{Uis shown that there is an optimat strategy tor o class of stochastic seheduld
ing problems which is nonpreemptinve The results which vicld this conctusion
are generahzations of previogs ones due 1o Glazebrook and Gitins These new
results also lead 1o an evaluation ol the performuance ol nonprecmpiine st
tegios 1 large class of problems ol practical mierest

1. INTRODUCTION

A job shop consists of one machine and a set J = {1, 2. ... . A} of jobs 10 be processed
on it. In general the processing time P, for job i is a positive integer-valued random varable
with known honest distribution, processing times for different jobs being independent. It job
is completed at time £, (flow time) its cost s €, {}). There is a precedence refation R on the
set J such that if (i, /) € R then the machine must complete job / before 1t can begin process-
ing job J.

For simplicity. the major part of the material will be devoted to problems in discrete nme
During each time interval [+ + D7 € /7 U {0, just one of the untinished jobs 15 processed
by the machine. A feasible strategy 7 is any rule for deciding how to choose the jobs n / lor
processing which is consistent with R Under strategy o job 1 is completed at the random nme
F ). The objective 1s 1o find those strategies 7 in some given subset of the set of feastble
strategies which minimize the total expected cost

A
TC () = [:" Y (‘,lF,('n')]}.
(R

The economic criteria which have been most widely studied in this context are the
discounted costs criterion. that is

(N CE)= —K(d'  I0< KD}, < a< ) e

(see [1]. [21. 13]. [4], [6), and [9]). and the criterion involving lincar costs, that 1§
(2) CF)= KWF, {0 < K, i ed

(see {21, (31, [6]. and {10]).
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The problem of finding optimal feasible permutations of J for the above economic criteria
has essentially been solved in the sense that algorithms have been given which can be shown o
generate all the optimal permutations. For details of this work see [4], [6] and [10). Much
work, however, remains 1o be done on the efficiency of these algorithms.

The problem of tinding strategies which are optimal in the set of all feasible strategies for
economic criteria {1) and (2) is much more difficult. Glazebrook (2] gave a characterization of
the optimal strategies for the case when R has a digraph representation which is an out-tree.
Results in a similar vein, though obtained in a rather different way, were reported by Meilijson
and Weiss [3]. The problem with general R seems very complex.

Not surprisinglyv, then, concentration has latterly focused on the problem of giving a char-
acterization of those problems which have an optimal strategy (in the set of all feasible stra-
tegies) given by a fixed permutation of J For contributions in the vein, see Glazebrook [3]
and Glazebrook and Gittins [4]. All the results known in this area 1o date require that in some
sense the future prospects of the jobs improve indefinitely as they are processed. For example.
Glazebrook and Gittins prove that when the function

. I
(3) Eta’ 'IP2x+1)

is nondecreasing in x tor each i € J (this happens if P has a nondecreasing hazard rate) there
is an optimal strategy for economic criterion {1} given by a tixed permutation of J. However,
in many contexts, for example research planning (see Nash {7]). 1t is rather more realistic 1o ‘
expect that the future prospects »f jobs, after an initial (perhaps lengthy) period of improve-
ment, will begin to deteriorate. It is with this in mind that in Section 2 we demonstrate that
the above result of Glazebrook and Gittins may be generalized in a way which does not put
monotonicity requirements on the function in (3). Some extensions of this result are discussed
in Section 3. In Section 4 we demonstrate how the results of Section 2 may be utilized to give
an andication of how well an optimal permutation performs relative 1o an optimal strategy in a
wide range of problems of practical interest We conclude in Secuon § with a simple example
involving tive jobs.

2. THE MAIN RESULT

We shall consider the problem of finding opumal strategies Gn the set of all feasible stra-
tegies) Tor the pair (/. R) when the cconomiuc eniterion (1) applies. We shall demonstrate that
there evists an optimal strategy which is deterninistic. stationary, Markov and nonpreemptive
DSMNP). that 1s which s given by a fixed permutation specifving in which order the jobs are
to be done. when the following condittans hold

CONDITION T mt, x0 > mb, 0O v € Z° 1 € )

CONDITION 2 tim m G, x) exists and s strictly greater than m G, 0) ¢ € S the fune-

tnon m i, ) being defined as follows:

PP 241 > 0= m x)= Ela’ 1P 2 v+ 10

>
pP 2+ D=0=>m( xi=1
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Conditions | and 2 are more general than those given by Glazebrook and Gittins (4]
Condition 1 states (loosely) that a task is always brought nearer completion by being processed
for an arbitrary length of time. As will be demonstrated in Section 4, the results of this section
have implications beyond problems in which conditions | and 2 arc satistied.

Before proceeding to the proof of our main result, note first that it is a consequence of an
important result in the theory of Markov Decision Processes (see, for example. Ross [8]) that
there exists an optimal strategy for our problem which is deterministic, stationary and Murkov
and so we may restrict our analysis to such strategies.

We require some terminology and notation. By the state of an incomplete job we mean
the amount of processing it has received. 1f job 7 has been completed its state is denoted -
We denote by Clx, xa ... x) = Clv) the total expected cost incurred by all the jobs in a
system identical to the one under study except that job jis in general state x initially instead of
necessarily being in state 0. j € J. the ussumption being that an optimal strategy is adopted
C{x) is similarly defined, the assumption now being that an optimal DSMNP strategy s
adopted. ! denotes the subset of jobs in J which have no predecessors according to R i,

I=1iii€Jand (4. i) € R forany j € J}.

Both C(x) and E‘(.{) may be characterized as the solutions to appropnately formulated
dynamic programming optimality equations:

Cix)= mi? lap(P,=x, + LIP, > x){— K() + Clx,. ... X | % x . o )]
+ap(P, > x, + LIP,> x)Clx,. ..., x,_ . x, + 1, x.. ....x0
and
Cix)= mir/1 [ KGmU, x) +mG x)Clxy, ... x 0o, . o o

The following lemma is the key 10 establishing our main result.

LEMMA I:
A -

Clx) 2 H m G, x)m G, 0} '[C)
=1
for all states ¥ € (/°U {0D* such that

M iel=>y 20

Gy 1 €d1=> x, =0

Gi) m(i, x) < 1,i¢€J

PROOF: The proof is by means of an induction on K. ‘the lemma clearly holds when

K =1 since Clx))=—- K{l)m({l, x)) and C(0)= — K (Dm(1. 0. We assume that the
lemma holds for an arbitrary problem with A = r — | and demonstrate its validity when A =

Hence, we consider a problem with r jobs where the position at time 0 is that no u\h\ have
been completed and job i has been processed for v, units of ume where mitn v - 0 oy
x, > 0=> j € | Let Sbe an optimal strategy {or this problem
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Suppaose that at time 0, S chooses to process job 1 (€ /), then
4 Clx)=ap(P;= x; + 1P, > x){= KD+ Cle, x5 ... x,)}
+ap(P,> x, + 1P, > x)Clxy + 1, x5, ..., x,)
= ap(P = x;+ P, > x){m, x)) ' |- K(ym(, x))
+m(l, x)C(xy, x2 ..., x))
+ap(Py > x, + 1P, > xIm(1, x; + D{m(l, x)p} !
[Cy+ 1, X0 o xdmU, xH{mQ, x + D))
Now by our inductive hypothesis
- K(Um(l, x) +m, x)Cls, x5 ..., X,)

= - KWMm(, x)+mO x) | [ImG x)HmG O Cospo0. ... 0
(5) I mG ) mG OY' = Km0 + m(1, 00C(s, 0, ..., 0}
=1
(6) > [[[ m i, x){m . m]“l C ().
l=|

(3} following from Condition | and (6) from the fact that the expression in the square brackets
in (5) is the expected total cost incurred by the DSMNP strategy which first processes job 1
{e 1) 1o completion and which after that first completion. processes according 1o an optimal
permutation for the jobs J — {1].
We also have that
(7) ap(Py=x;+ 1P, > x){m, x)}!
+ap(Py>x + 1P, >x)m(, x;+ D{m, x)} ‘=1

and so. from (4). (6) and (7). in order to establish that

(8) Clx) = | TI mG x)mC, 0)}*'] C().
=1

it is sufficient to demonstrate that we must either have

(9) p(Py> x, + 1P, >x)=0

or that

[ mG x)imG o) FCo.

=

COa+1, xp oo x)dm(L xHm(, x, + D' >

That is, that

(10 Coq+lxy ... x) 2m, x, +Dim(1, 0 "\ [Imt, x){m 0))"] C0).

=2

To summarize. in order to establish the desired inequality (8} for state (v, xy ... . )
it is sufficicnt to establish the corresponding inequality for state (xy + 1. xs, ..., x.) this latter

i)
t
|
b
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state being the result at time ¢ = | of applying optimal strategy S to the process at time 1 = 0.
given that no job completion occurs before time + = 1. Should a job completion occur (which
will be job 1) before 7+ = | with probability 1 then inequality (8) is satistied.

We define N*as follows:

N*=inf {N. with probability one the application of optimal strategy S during (0, N)
Nes?
results in at least one job completion, the initial state being §}A

We further define x (N}, 0 < N < N?* 1o be the state resulting at time 7 = N from the
application of optimal strategy S to the process from time ¢ = 0 when the initial state is x.
given that no job completion occurs during [0. N). For example, if N* 2| then
x(D= 0 +1, x5 .., x).

By repetition of the argument in the paragraph following (10) it is clear that in order o
establish (8) it is sufficient to demonstrate that we must have either (i) or i),

(i) N* < oo,
In this case, it is not difficult to show we must have

plP, > x,(N* = 1) + 1P, > x,(N* = D} =0

where j is the job chosen by S for processing during [N* — 1. N*) assuming that no job has
been completed prior to N* — 1. Hence, referring back 1o (9), in the case N* < oo, (8) is
established and the induction goes through.

(ii) N*= o0 and

(an ClxM) = [TT mt. x,(M)imG, 01| T©

=

for some N € Z* U {0}.

Hence, we now assume that N* = oo (that is, that we cannot be certain of a job comple-
tion under Sin any particular finite time interval) and consider two cases.

CASE 1: x(N) has a single positive component (x;(N), say) for all N € Z* U {o}.
When this is so we have that

(12) C({): - K([)m([. XI) + m(l, XI)C(X|. ey X M. Xppge oo .\',)
=—KWUmU x))+m x)CQO, .... % ...0
(13) = m(, x){m, 0)'C(0)

II mt. x){mG 0)) Y0,
=1

as required, (12) and (13) following since x, = 0, j & |.

CASE 2: 5(N) has at least two positive components for all N > N. say. When this is
the case it follows from Conditions | and 2 that
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(14 lim [~ K(Dm (i, x(N)]

> lim l— K@mG, 0 | TT mt. x(N){m¢j. 01} ‘ll 1<ig<r

N\ 0 1=

and from the inductive hypothesis that
(1) \Iim inf [m G, x (NDClx (N), ..., % ... x, (N}
Z \l'im (mdi, 0) [H mG, x, (N {m¢, 0 'l(‘((), AU R ) ) B A 3
. =1
It tollows trom (14) and (15) that
(le) C'A im inf = A GmG v (V)
\74.
+ mU, ,(NDClxi((N), ..., ... x. (M

> lim [ mG. x (N {m (. ) 'll— K(iymi, 0)

—c
=1

Fomt OCWO, m}l

2 lim
ASRLIEY

[T m. x AN DimG, o) ‘](’((})l )
/|

Let N € Z* ande > 0 be such that for N =N

amn — Kmb, x,(N)) + mU x (N)OClx(N), ...« ... x (N}
2C—e€, i€l

and

{18y m, x,AN +s){mU x ¥} "2 0+e) ' se2" 0|0}, i€l

We shall now demonstrate that for N > N

(19) Clx(N)) > [mrin, C’—-e] (1 +e)

and, hence, that

(20) lim inf ([Clx(m] 2 mi? C.
—00 - e
Having established (20) it will then follow from (16) that

\Hm inf 1CIx e > \\ip\

[T mt x N Hima ml " ("(0)’
|

from which follows the existence of an & € Z° U {0} for which (11) holds. This established.,

the induction will go tnrough and the lemma follows.

We now proceed to demonstrate (19). We consider a problem where at 1 = 0 no job s
complete and that tne state of the process is x(N), N 2 N. Suppose that optimal strategy S
indicates that at time r = 0 (= r,) task j, should be processed until time = (> r,) or until
J1 is completed, whichever occurs sooner. At time = 7,, if j, has not been completed,
optima! strategy S indicates that job j, (# j)) shouid be processed until time 1= 1, (> 1)) or

B WY N
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until j, is completed, whichever occurs sooner, and so on. Under the assumption that no job is ‘
completed before time ¢ = 1, ., S indicates that job j, (# j, ) should be processed until time | :
r=1, {>_t,.) or until j, is completed, whichever occurs sooner, 1 < n < %. {t is clear that
for N 2 N
bl r
Clx(Ml= Y a" "TI ptP. > x, (N + 1, DIP, > x,(N)}
n=0 =]
7l

x aplP, = x (N +1, | + s)lP,“ > x, (N +1, DI= K4
i

+ Cley (N 41, ), o X (N 41, D
which, by (18}, is
> (+e) Y

n=(

[ImG x(N+4,.)

=1

™ x,(N))}"lplP, > x(N 41, )P > x(AN)|la"

Ty ln-1

x ¥ aplP, =x;, (N+1,,+s)P >x (N+1,,)]

s=1

{m(,. x, (N + Lo
x = KGImG,. x, (N +1,.1)

+mGy x, (N + 14, DCGIN + 1,0, = N+, D

whicnn, by (17), is

21 2 (I +e) (mj/n - e] z [1 mti x (¥ +, l)]
* n-0 =
(m G, x (N pIP. > x(N +1, )P, > x,(N)}] |
= ly 4
xa" S aplP, = x, (N + 1, +s)P, > x (N+1 )]
=1
m Gy, (N + 6, D1
= (1 +e) [mi/n - e’.
since the infinite sum in (21) can be shown to be one (the proof is based on (7)), We have |
thus established (19) and hence the induction goes through and the lemma follows.
THEOREM 1: There is a DSMNP strategy which is optimal.

PROOF: We may take x, = 0, i € J, in Lemma | in which case we obtain that
o) = Co.

Theorem 1 follows immediately.
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3. EXTENSIONS AND COMMENTS

(3.1) Weak Conditions

Theorem 1 continues to hold when the strict inequalities in Conditions 1 and 2 are
replaced by weak ones as follows:

CONDITION 1" m(i, x) 2 m(i, 0}, x € Z*, i € J.

CONDITION 2: lim m (i, x) exists, i € J

| —00

The proof combines the results in Section 2 with a truncation argument of a kind which will be
used in Section 4,

(3.2) Linear Costs

It is frequently the case (see. tor example, Glazebrook [3]) that results for problems with
linear costs may be deduced from equivalent resuits for problems with discounted costs by
means of arguments which involve allowing the discount rate to tend to one. Suppose we con-
sider the probiem outlined in Section 1 with costs given by (2). It may be deduced from the
results in the previous section (together with paragraph (3.1)) that under the conditions:

CONDITION 1" nli, x) < n(i, 0), x € Z*, i € J,
CONDITION 2" lim n(i, x) exists, i € J, where

pP2x+1)>0= nli, x)= EP,—xIP, 2 x +1)
p(P =

there exists an optimal strategy which is DSMNP. This is a generalization of a result due 10
Glazebrook and Gittins [4).

x+1D>0=>p x)=20

(3.3) Continuous Time Analogues

For simplicity our discussion is restricted to discrete time problems. Continuous time
analogues of the main results may be obtained by means of delicate limiting arguments. consid-
ering optimal strategies for appropriately chosen sequences of discrete time problems, allowing
the discrete time quantum to tend to zero.

(3.4) Algorithm Selection

Once we have established that a problem has an optimal strategy which is DSMNP, ihe
question arises of which permutation (or permutations) d-termines this optimal strategy. An
algorithm which generates the appropriate permutation for discounted costs (1) may be found
in Glazebrook and Gittins [4]. an algorithm for the linear costs case (2) is to be found in Sid-

ney [10].

T suanry-crdy
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4. THE EVALUATION OF NONPREEMPTIVE STRATEGIES

Conditions 1(1', ') and 2(2’, 2"), though they take us much further than the monotoni-
city requirements of previous work, do limit the range of direct application of the material in
Section 2. The main limitation is in the insistence that jobs should always be at least as promis-
ing (i.e.. always have at least as low an expected remaining cost) as they are initially. However,
it turns out that the results of Section 2, though limited in this way in their direct application,
help us in the important task of evaluating how well an optimal DSMNP strategy performs rela-
tive 10 an optimal strategy in a large class of problems of practical interest.

As was implied in the introduction, even if a stochastic job cannot be assumed always (o
be at least as promising as it is initially then in many practical contexts such an assumption can
at least be valid for some initial ghase of the job’s development. For some examples of this,
see Nash [7] whose interest is in modeling research projects and Singh and Billinton {11} who
commend the lognormal distribution as a good model for repair times. Such considerations
motivate the following definitions:

DEFINITION 1: Job i is said to be initially improving for the discounted costs problem if
mGi, 1) 2 m(i, 0) and if lim m{i, x) exists.

vy —oo

DEFINITION 2: Job i is said to be initially improving for the linear costs problem if
nGi, 1) < n(i. 0) and if lim 7 (i, x) exists.

(4.1) Discounted costs

Throughout this subsection we shall assume that all jobs in J are initially improving for
the discounted costs problem. We shall also assume economic criterion (1).

We define

22 (,=sup ltymG, x) 2 mt, 00,0 x <t} i €U
1€ 7°

We further define the random variable P}’ to be the processing time P, truncated at
T, + 1. Corresponding to P*is the function m* (i, .). The following lemma is casy to establish.

LEMMA 2:
) m* (. XX 2 m*G. 0. x € 7% i€ f

(i) lim m*(i, x) exists, i € J.
X ~—00

Hence, the truncaied processing time P?satisfies Conditions 1’ and 2’ of paragraph (3.1).
Now, the main idea of this section is as follows: suppose that for each job i € J, T, is large
(which in many practical problems it will be); then the total expected cost incurred by an
optimal strategy will be close to the total expected cos! incurred by an optimal strategy for the
equivalent problem with the processing time {P,, P,, ..., Py reriaced by the truncated pro-
cessing times {P?, P3. .... P%]. However. from Theorem | and Lemma 2 this latier problem
has an optimal strategy which is DSMNP. These considerations iead us to expect an optimal
DSMNP strategy to perform well relative to an optimal strategy. Theorem 2 aims to Quantify
these ideas.
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THEOREM 2:

_ A
{[CO - COHCO' < [[T m*G. O {mG 0 [~ 1.

=1

PROOF: Let an optimal DSMNP strategy for the problem with processing times
{P. P,, .... Py} replaced by truncated times {P}, P}, ..., P}} be given by the permutation
la(1). a(2), ..., a(K)}. By Theorem | and Lemma 2 this strategy is optimal for that prob-
lem in the class of all feasible strategies. Let C*(0) be the expected total cost incurred by the
application of this strategy to the problem with the truncated processing times and tet C(0) be
the expected total cost incurred by the application of this same permutation to the original
problem with nontruncated processing times. It is clear that

0> C© = CO) > CWO > C*).
Hence,

{CO - COHCOI ' < {C*0) ~ COHEWO)!

LY i '
=Y - Kla I m* @), 0)'—Hm(a(j).0)}
=1 =1 =1

: . -1
i- Kla () TI m@ (). O)l
=1 =1

IS S & !
Il m* @), 0) = [] m@ ), 0)} I1 m ). 0)]

= =1 =1

=1

X
=TI m*G, O){m (i 0)}"'] -1,
as required.

(4.2) Linear costs

Throughout this subsection we shall assume that all jobs in J are initially improving for
the linear costs problem. Costs C(0) and C(0) are as in (4.1) except that now they refer to
economic criterion (2).

We define as before

(23) S=supirinG x)<nG 0),0<x<1)
ezt

and thus obtain function #*(i, .) as in {4.1). This function is found to satisfy Conditions 1"
and 2" and so we have Theorem 3.
THEOREM 3:
(E‘(AQ) - C(Q)HC(Q)F' < max {nti, 00— n*G OVn*G, )}

i<

PROOF: The proof is similar to Theorem 2.

We deduce from Theorems 2 and 3 that when dealing with collections of initially improv-
ing jobs whose associated values of 7, and S, are large we lose little by restricting our attention
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to DSMNP strategies. Note too. that in any given problem it may be that we can truncate at times con-
siderably larger than 7, + 1 or S, + | and still have functions m* (i, ) or n* (i, ) sausfying the
appropriate conditions. When this is the case it may be possible 10 improve the bounds given in
Theorems 2 and 3.

Note further that Theorems 2 and 3 also hold in continuous tme. The modifications
required are that in the definitions of 7, and S, in (22) and (23} respectisely the suprema
should be taken over R, the nonnegative real numbers, and that to obtain 27 in both cases.
truncations are taken at 7, and S, respectively. We also need 1o modity Definitions | and 2 in
the obvious way.

S. EXAMPLE

For simplicity, we consider an example in continuous time with linear costs as in (2).
There are five jobs and so J = {1,2,3,4,5} with predence relation R = {(1,2), (1,5), (2.3).
(5.3)}. It is not difficult to see that there are ten feasible DSMNP strategies for J. The distri-
bution of P, is summarized by its hazard rate A,(.) which is assumed 10 have the form

A, 0L x< Ty,
(24) M) =1{ny, T, €£x< T, + T, i=1,23.405.
Ao Ty, + Ty € x,
The important details for the five jobs are summarized in i1ble 1. It is easy to show, by appli-

cation of the algorithm due to Sidney [10] that the optima! permutation is (4,1,5.2.3) with
associated expected cost (' (0) = 31.089.

TABLE |
Job () | KW [ Ay | Ao [ A | T | 7o | 0G0, O)
1 1 1| 3 [2 i I | 0.758
2 2 U | 3 [15 1 | 2 [ 0817
3 3 2 S | 25] 2 | 4 | 0495
4 4 2 |43 2 | 1 | 0495
5 3 12 [ 3 13 | 0975

It is also not difficuit to demonstrate that. with processing time distributions given accord-
ing to (24} that

(25) Ay, 2 Ay, and Ay 2 A7
where
AN "= M —exp=a, T+ ) Mexpl- a7 expC Ay T A T
x 11 expl- AT — A T !
are suflicient to ensure that
nti, V)< nli. M, v € R,

and the existence of

Iim nli x).
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Jobs 1. 2. 3 and 4 all satisfy (25) but job S does not. Indeed.
n(s, x)=1>n(5 0), x > 6.

However. job 3 is initially improving in the sense thal the (right-hand)} derivative of n (5, &} at
x = 0 is negative, and so the theory of Section 4 applies. In fact, the value S¢ can be shown to
be 5.975 and the continuous-time version of Theorem 3 applied to this case yields

{CO)— COHCO} ! < [n(5, 0) — n*(5, OHA*(5. 0))'=130x 107"
whergcupon we obtain, that

31.085 < C(0) < 31.089.

Evidently, then, very little is lost in this case by restricting attention to permutations of J.
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ABSTRACT

AN algonthm s presented 1o gam postopumabity. data cbout the tanuly of
nonhimear pure miteger programnung problems in which the obective tunchiion
and constramis reman the same eaeept for changes i the neht-hand side of
the constrants 10 s possible o solve such fanulies of problems ssimultancousis
1o give o global opomaem for cach problem o the fanny oowah addaonal proh-
lems solved mounder 2 CPU seconds  This represents oo smuall traction ot the
e necessary oosolve cach peablem imdiaduaally

I. INTRODUCTION

Recently efforts have been made to extend the idecas of postoptimal analysis and
parametric analysis which are widely used in linear programming to 0-1 integer programming
and general integer programming. A review of these efforts is given by Geoffrion and Nauss
[4]. They cite work on the 0-1 problem by G. Roodmun [13}, and an extension of that work by
Piper and Zoltners [11]. Roodman [12] and Marsten and Morin [8] have looked at the same
topic using branch and bound. Thesec and other authors are cited in [4]. Bailev and Gillett [1]
have recently used cutting planes in parametric integer programming. The present paper differs
from these efforts in considering postoptimal right-hand side analysis for a different problem:
the pure integer nonlinear programming problem with separable objective function and con-
straints. Our purpose is to modify an algorithm which has been previously described [3] so that
it simultaneously finds optimal solutions for a family of problems of the type described above
which differ only in the right-hand side vector of the constraints. (This family is analagous to
Geoffrion and Nauss® family P, in their discussion of postoptimality analysis for the lincar
integer case).

2. APPLICATIONS

One of the most general formulations to which this algorithm applies is the separable non-
linear knapsack problem. It has numerous application areas in allocation of resources, cutling
stock problems and capital budgeting [7]. [9]. [10]. [5]. [6]. In addition it has applications for
solving subproblems in many integer programming algorithms [14], [2]. [15]. The importance
of the work in this report which gives postoptimality data for this problem can be argued in a
way analagous to the case for linear programming. Additional information about the value of

01
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changes in resources, is usually worth a minor amount of additional computation. Often right-
hand side values represent estimates, and information about the effect of right-hand side
changes on the optimal solution represents a crude determination of the effect of estimating a
variable by its expected value.

3. THE PROBLEM AND METHOD
Let us first characterize the problems we solve, and second, briefly review the elements of
the algorithm to be moditied. After these sections, the algorithm is extended to solve the fam-

ily of problems which differ only in the right-hand side vector.

Let us use the following notation to formulate the problem (P).

(N Maximize - = Y /,(x,) subject to
=1
) Yhx)<b,i=12 ....mandx € [, forj=1 .. n
=1

Additional restrictions on the functions are

(b f,:1,— R, j=1, ..., n and they satisfy a sufficient condition for dynamic pro-
gramming.
2) h,:l,— R, j=1...., nandi=1, ..., mand are nondecreasing in x..

(3) the region described by the constraints is nonempty, contains at least one integer
point, and is bounded.

Our previous algorithm [3] is a top-down enumerative method for solving this problem in

which the constraints are used to eliminate infeasible partial solutions and their completions. In ‘
this paper we require the additional restriction described above in condition (2), although the
paper cited in [3] treats a more general nonseparable form of the constraints. Let us describe J
the solution process for the pure integer nonlinear separable programming problem given in (1)
and (2). ,
Step 1: Find upper bounds on x,, j = 1. ..., nand z, over the constraints in set (2), q
E

Step 2: Solve the following dynamic programming problem:
3 Maximize Z=73 /)
=1
n
Subject to Y /x) <z
r=1

This single dynamic programming problem can be used to identify lattice points on the hyper-
surface

2 Silx) =z, 1
=1

and on every hypersurface

-
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(4) Z thx)=12: 0< <z,

Step 30 We use the dynamic programming solution table 1o generate both a sequence of
decreasing values of - which correspond to hypersurface levels containing integer
puints and also 10 generate all lattice points on that particular hyvpersurface. For
details of the method, see [3].

Step 4. The constraints (2) of the original problem are used to check tor feasibility. The
argument is simply, it we look at all hypersurfuces 41 in decreasing order of -,

then the first feasible point with respect to the constraints (4) will be optimal.

Actually the feasibility of the solutions is checked at the partial solution stage. For a

given z, say 7. we generate the components of the lattice point in the order x5, x3 0 ... X7
After x) is generated, the vector corresponding to the remaining resource levels. that is.
b'=b—-a,x;

is checked for any negative components. If none are found, this partial solution is stll 4 candi-
date for a feasible solution. Otherwise it is eliminated before any other components x? .
X% s ..., x} are generated from the dynamic programming tables, since the final solution is

infeasible no matter what the remaining components are. Hence, solutions are eliminated from
consideration as quickly as possible.

4. ADDITIONAL CALCULATIONS TO DETERMINE OPTIMAL SOLUTIONS FOR
CERTAIN MEMBERS OF THE P, FAMILY

Let us assume that we want to find optimal solutions to the following problem £,

"

Maximize =3 L)
=1

Subject to Thx)<b+0ri=1, ... m
=1

x, €l forj=1 ..., n
Ozﬁ()<9|<<9/=]

rnz0i=1 ....m

Then Step 4 must be changed to_include additional tests for feasibility for each of the
right-hand side vectors, by = b, by=5b+0, 7. ba=b +8yr, by=5b +86, ..., h( =bh+r
Note that if 0 < 8, < #, ... < 1, the following relationship between the right-hand side values

exists—
bl < hll= bt()+91r1 < b11= b,(;+03f, <...< b//= b/ + r,

fori=1,.... m

Let us assume that we are testing the feasibility of a partial solution with constraint i, Then if
feasibility is tested for b,, b, |, ... . b\, by, if any constraint is violaied whose ah constraint
has right-hand side value b, then for the problems whose right-hand side values are &, |,
b, 2. .... b, the current partial solution will also be infeasible. This is the order of calcula-
tion that has been implemented in a computer program. It is also possible to describe an algo-
rithm for solving a set of problems whose right-hand side vectors are not related as those are in
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the P, family which decrease in every component. For two problems with arbitrary, and
differing right-hand side vectors b, and b, then there may be no method of ordering the b vec-
tors so that tor every row £ b, < b, Hence, a less efficient algorithm could be implemented
in which every b, must be checked. even if an indication of infeasibility is given for a previous
b ;.;. The reason is obvious: for arbitrary components no ordering can guarantee that
b, < b,;. for every constraint, hence. the Ah constraint may not be violated if its right hand
side is b, ;.

A flow chart of the order of the calculations for implementation of the simultancous solu-
tion of a family of problems differing in the right-hand side is given below. We assume that we
have generated an upper bound -, on the objective function in some way, and that we are con-
sidering a partial solution for some hypersurface with functional value z, < z,. The assump-
tion is clearly that tor all hypersurfaces with intermediate functional values either

(a) they contain no integer points (we do not explicitly consider these), or
(b) they contain no feasible integer points.

At euach stage in generating a new component of an integer point from the dynamic program-
ming tables a test for feasibility is made with the new x* and components in the parual solution
already obtained. Hence, the flow chart of this part of the algorithm assures that the sequence
of functional hypersurface values with integer points has been identified and put in strictly des-
cending order: z, > z; > ... > z > .... The right-hand side vectors under consideration can
be written as

by=b+6,7. and0 <0, <H,<8,<#,=1

The program considers the night-hand side vectors in the order l_J,. [;, T 5,. by, SO that any
partial integer solution which is infeasible for 4, is also infeasible for all previous right hand-
side vectors. The logic is given in the following diagram (Figure 1),

A careful analysis of the program logic will show that many problems of the family P, can
be solved using the solution table from a single dynamic programming problem. We would
expect a considerable saving over the time for solving each problem in the family separately for
this reason. In addition, the fathoming or discarding of integer points at the partial solution
stage can be done for several problems at a time.

5. . DMPUTATIONAL DATA

Seven different basic families P, have been solved on the CDC CYBER 70, Mode! 72, a
moderate speed computer. The results are given in Table 1. m is the number of constraints, n
is the number of variables, & is a bound on x,. Problems are created with randomly generated
coefficients. The functions of f,(x,) are cubic polynomials, so a problem with 12 variables
might have as many as 36 terms in the objective function. Constraints of the form

”
Yax <b.i=1 ...m

=1

are used with the restriction that @, 2 0, b > 0. For ecach member of the P, family. the new
right-hand side vector is crealed by subtracting 5 from each component of b. A time of .00
indicates that the current optimal solution also solves the next problem in the family which has
a smaller value in each component of b. Note that other schemes of obtaining members of P,
can be easily implemented.
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TABLE |
- Time (CPU Seconds)
m | n | k| Base Problem (b)) - e i R
{seconds) b, b by b. |
31272 26.43 00 ] ss|r ] se
101012 13.27 00 ] 00 138 | .44
401012 30.36 00 .00 1 .00 1.6
4 1152 36.26 00 ] 00 00| .00 s
41152 84.49 1.33 1 .00 | 387 | 1.09 '
40152 32.98 001 00 00] .00 .
4 1152 25.70 00| .00 .00 .66

In each case. although individual problems are between 10-80 CPU seconds. after the
base problems are solved, other problems in the same family are solved in under 2 seconds
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ABSTRACT

The location-allocation problem for existing facilities uniformly distributed
over rectangular regions is treated for the case where the rectilinear norm is
used. The new facilities are 10 be located such that the expected total weighted
distance is minimized. Properties of the problem are discussed. A branch and
bound algorithm is developed for the exact solution of the problem. Computa-
tionat resuits are given for different sized problems.

1. INTRODUCTION

All previous studies of the location-allocation (L—A) problem have used the assumption
that the location of customers of existing facilities were deterministic points. The multifacility
focation problem involves the location of one or more new facilities relative to several existing
facilities in order to minimize the sum of the weighted distances among the facilities. Previous
work [1,2,16] with this problem has shown that in the urban setting. potential location of custo-
mers or existing facilities may be more accurately represented as random points uniformly dis-
tributed over rectangular regions. Since the L— 4 problem is a generalized version of the mul-
tifacility location problem, the principal of using rectangular regions to represent existing facili-
ties instead of aggregate points would be appropriate in modeling the L— .4 problem.

A common approach to handling the location problem with rectangular regions is to
represent each region by its centroid and to solve the resulting problem as a deterministic
model. Although this method is computationally easier, it has been shown (3] that the
solutions’s proximity to optimality is metric dependent. Location problems with Euclidean dis-
tance metric are relatively insensitive to a relaxation of the probabilistic assumptions. In other
words, using the centroid approach for probabilistic location problems with Euclidean distance
melric yields a near optimal solution. However, the tradeoffs in considering the deterministic
(centroid) version of the rectilinear metric location problem are greater [1). Consequently, in
considering probabilistic location formulations using the rectilinear metric it is necessary (o
develop solution techniques other than the deterministic ones.
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Often the solution techniques for the L- 4 problem involve the use of a facility location
algorithm to generate and evaluate allocation schemes. Cooper [6] and Kuenne and Soland (9] '
both indicate that finding the optimal allocation scheme is the most critical task in solving the
L— 1 problem. Thus, determination of the optimal allocation scheme is only as reliable as the
facility location techniques employed.

The purpose of this research effort is to develop and test an exact solution technique for
the L— 4 problem among rectangular regions with a rectilinear metric.

2. FORMULATIONS

The general location-allocation model among rectangular regions is formulated as follows. b
(P) minimize 21 Zl fRf o lX, = Rl BR)AR i
A=1= . b
"
subjectto: Y,z =1 for all /
/=l z,=0,1 foralliand, :
where: n = number of new facilities
m = number of existing facilities
X, = (x;. );), coordinate location of new facility j
R, = existing rectangular region i
#(R,) = bivariate probability density function over R,
W = interaction between region i and the new facility it will be allocated to
Z = 1. if existing facility i is allocated 10 new fucility j
0. otherwise
b = the type of norm used. When p = 1, 2, and o, the metric becomes

rectilinear, Euclidean, and Chebyshev distances respectively.

The particular problem to be emphasized in this paper is the location-allocation problem 1
among rectangular regions with bivariate uniform distributions.

This may be expressed as, ’

where:  (a,. b) = general coordinate location in region R,
A, area of region R,

, e L & ;W
(P') minimize El E,I 1 fa, fh/ LY, — R,',ﬂ da,db, |
j
subject to: Y, z;, =1 i=1 ....m |
=tz =0.1 foralliand,

[

and n, m, w,, X,. R, and z, are as defined in (P).

Note that -~ in (P’) is just the bivariate uniform density function over R,.

In Problems (P) and (P') | the decision variables are the z,’'s-reflecting the allocation
aspects of the problem and the X, s-reflecting the location aspects of the problem.
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The new facilities have an infinite capacity to serve the existing facilities. Thus. cach
existing facility will be allocated 1o and subsequently interact with only the closest new facility.

It is assumed throughout that the w,'s may represent either deterministic values or
expected values of random variables. Also, the regions must be rectangular, but they may be
overlapping.

3. RELATED WORK

There has been no previous work on the L—A problem among regions. However,
research on the deterministic version of the problem has revealed the complexities and compu-
tational burden involved in the solution of the L— A problem.

In light of the difficulties associated with exact solution of the L. —4 problem. heuristic
algorithms are often employed. Cooper [5,6,7] developed various heuristic algorithms. Many
of his initial algorithms used the assumption that all existing facilities were equally weighted; he
used these results to develop heuristic for the case when the facilities are not equally weighted.
Leamer [10] assumed customers were uniformly distributed over a plane and attempted to allo-
cate them to the new facilities by dividing the plane into hexagonal areas.

Since the heuristics can not guarantee a specific proximity to optimality, exact algorithms
have been developed with an attempt to alleviate the computational burden of the L—+4 prob-
lem. Most algorithms have concentrated on the Euclidean metric. Bellman [4] was able to
solve very small L—A problems by transforming them into dynamic programming problems
using quasilinearization as the transformation device. Kuenne and Soland [9] used a branch
and bound algorithm to optimally solve the L— .4 problem with Euclidean. great circle. and rec-
tilinear distance metrics. Ostresh [12] worked on the Kuenne and Soland algorithm in an
attempt to improve the bounding procedure. He did so for the case n = 2 using convexity
results of Wendell and Hurter [15). Love and Morris [11] considered the L— 4 problem with
rectilinear norm. Their exact algorithm features a reduction scheme where only possibly
optimal sites for new facilities are considered. Recently, Sherali and Shetty [14] used a cutting
plane algorithm to solve the L— 4 problem with rectilinear norm.

Although these exact methods can guarantec optimality, there are limitations 1o the size
of problem that can be solved in terms of computational time. Ostresh [12] reported solving
problems of sizes m = 23. n = 2 and m = 11, n = 4 in respective CPU times of 23.26 sec and
10.28 sec on IBM 360/65. Kuenne and Soland's [9] largest reported problem was m = 15, n =
4 with CPU times for random weights and unit weights, respectively. of 82.7 sec and 54.2 sec
on an IBM 360/91. Sherali and Shetty [14] solved a problem of size m = 35, n = 2 in 23.46
seconds on a CDC 6600. Finally, Love and Morris [11] reported solving a problem of size m
= 35, n = 2 in one hour and 31 minutes of CPU time on a Univac 1110, Thus, computational
burden seems to be a serious problem for exact solution methods.

4. A BRANCH AND BOUND APPROACH

The branch and bound approach developed by Kuenne and Soland [9] offers an optimal
solution to the L— A problem in reasonable computational time. Although Kuenne and Soland
developed a solution for the deterministic problem, some of their results may be generalized
and adapted to the form of the L— . problem considered here. Some of the generalized results
are discussed below.
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The L — 4 branch and bound algorithm is based on partitioning the set of all possible solu-
tions to the location-allocation problem on the basis of the allocations of the existing facilities
to the new facilities.

Any subset of solutions, denoted S, can be partitioned into at most # disjoint sets by con-
sidering the total number of ways a previously unallocated existing facility can enter the alloca-
tion scheme. Suppose that in § the allocated existing facilities have been assigned 10 A new
facilities where & < n#. An unallocated existing facility is chosen. If A = n. then S can be par-

titioned or separated into # subsets Sy S, ... S, where S, is characterized by the assignment
of the existing facility to new facility j. On the other hand, if & < n. then $ may be partitioned
into A + 1 subsets where S,, j=1,2, ..., k is as described above. The subset S;., is

characterized by the assignment of the existing facility to ¢ (A + 1)th new facility. This
(A + 1Dth new facility would have only one existing facility allocated to it.

After a node or subset .4 has been partitioned, a Jower bound is computed for each parti-
tion or succeeding node /j to help in fathoming the generated nodes. This bound is a lower
bound on the objective function value that would be produced by any allocation scheme con-
taining the allocations that have been made at this node j. The lower bound is a sum of two
values. The first value is the cost of optimally locating the new facilities among the existing
tacilities that have been allocated: this is just a multifacility location problem. The second value
is a lower bound on the cost of locating n new facilities among the unassigned existing facilities.

When the mth level is reached a complete allocation scheme has been developed, as each
of the m existing facilities has been allocated to one of the n new facilities.

4.1 The Branching Rule

The branching rule is the criterion used 1o choose the unallocated existing facility at cach
level whose assignment will be considered as the basis for making the partition. Any rule may !
be used. For example, an unallocated existing facility could be chosen at random or the ith
existing facility could be chosen as the branching facility at the ith level. However, an approach
based 01 the properties of the problem may be more useful.

weighted expected distance from an existing facility to a new facility will be considered as a
branching rule as a generalization of the results of Kuenne and Soland [9]. Considering only
the minimum distunce or maximum distance between an existing facility and all new facilities
would disregard the size and variations of the expected distances between the existing facility
and the new facilities.

!
For this problem where the sum of weighted expected distances is to be minimized. the ]f

t

%

|

|

[

The weighted expected distance between region i and new facility /is

h a
W, ‘ ‘s
(M + fh,, f (x, = a| + |y, — b, da,db,

where all parameters are defined as in (P) and (P).

This is equivalent to the following expression:

u b
W '

. 'Y N
2) —— ) Ay, - alda, + —— "y, - b ldh,
a. - a, f"‘, P b~ b, f |' ‘




LOCATION-ALLOCATION PROBL 1M 313

Each expression in the sum may be computed independently.  Hence, because of this
separability there is an expected distance with respect to the y-coordinate and another with
respect o the y-coordinate.

It may be shown that the expected distance from (x, 1) 1o region 1 defined by

la,,. a,}x 1b, . b, ). where x@la, . a,) and v€(b, . b)), is equivalent 1o the rectilinear dis-
a, tua, b ot b

tance from (v, 3) to the midpoint of these intervals | — -, —==——1. Another case is

2 2

presented in Theorem L

These expected distances are used in both applying the branching rule and evaluating the
objective function.

4.2 Upper and Lower Bounds

4.2.1 Bounds on the Objective Function

The objective function value associated with an arbitrary allocation scheme may serve as
an upper bound. This upper bound may be improved by using a modification of Cooper’s alter-
nate location and allocation heuristic [6].

Consider the arbitrary allocation where existing fucility 7 is allocated to new facility j where

i {mod n), if j is not divisible by n

/= 1. otherwise.

By this definition existing facility n would be allocated to new facility n, but existing facility
n + 1 would be allocated to new facility 1.

The location problem for this allocation is solved and the objective function value com-
puted. This is an upper bound on the optimal solution value. The upper bound is tested for
improvement by reallocating each existing facility to the new facility whose weighted expected
distance from the former facility is a minimum. After the reallocations are made, the location
praoblems are again solved and a4 new objective function value computed. If the new objective
funclion value is cqual to the old objective function value, iterations cease. Otherwise. the
reallociations start again.  This heuristic may be iterated until no improvement is made or until a
convergencee criterion is met. The best objective function value from this heuristic becomes the
upper bound on the optimal objective function value. The minimum cxpected cost of serving a
region is established in the next theorem.

THEOREM 11 The minimum expected cost. 7,. of serving region 7 from a point within /,
. “l . e ~
is = la,, = a, + b, — b)) where region iis defined as [a,. a, 1 x (b, . b 1

PROOF: The expected cost of serving region / from {x, ) a point within i is
(a,, — X + (u,’ -\ (h, ~ ) + th, — )

() ) = O .
iy = 2Wa, — ) 2b, )

When the partial derivatives of (3) are set 1o 0, the solution is
a, t a, b,‘+b,‘
2 2

¢ b i T
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which yields a minimum. Thus,

SO = —da,—a, +b,—b)=1T.

1
1

The lower bound to the objective function may then be found by:

4}

(4) lb. =Y T,
=1

4.2.2 A Lower Bound for Each Node

Computing a lower bound is a two part process. The first part is solving ihe location
problem for the allocated existing facilities and computing the corresponding new facility. The
second part involves underestimating the expected cost of locating the » new facilities among
the unallocated existing facilities.

In order to develop the second expression, consider two unallocated regions R, and R,

Suppose that both are 1o be served by the same new facility X = (x, v). The expected cost of

serving these two regions is:
(3) SO =wEllx —al+ 1y = b0l + woElx — as] + [y = 65

where (¢, b)) are random variables representing the points located in region /. This expression
can be considered the sum of the expected costs of serving the regions along the x-coordinate
and the expected cost of serving the regions along the y-coordinate. These expressions are
independent and each one-dimensional case may be considered separately.

Notice that when the x-coordinate is considered. then the expected cost is
(6) Sx) 2 minlwws) (Ellx — ay1] + Ellx — aslD.

Let @ and «, assume any values where a; < a> and consider the relative position of x. By the
triangle inequality,
(7 Ix —a) + v = ar] 2 la; — asl.

Since ¢, and a> are random variables. then

(8) Ellx — a1 + Elix — a5}l = Ella, — a,l).
Substituting (8) into (6). a lower bound is produced:
9) Sy 2 minlw,. wy) Ellay — asll.

Thus, (9) is an appropriate lower bound, where £lla; — «sl) represents the expected dis-
tance between regions | and 2 along the x-coordinate.

ll|‘ “.‘,
(1o Ella, - u)ll = f ' f “u ~ vl dudv.
ll)l - (l(\‘

The integral in (10) may be evaluated for three cases. For case in reading, let ¢ represent
dy,. b represent «y .. ¢ represent ¢, . and d represent as, (the second interval a5 is underlined).
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CASEL u<e<d< b

[ I l
H) C d b

@+ b~ ) — (a + b’ = )+ % Wi - )
(at) Ellay — asll = -

2(b — a)ld = ¢)

CASENl. a < ¢ < b < d

as
l I
a C b d
N e’
a;

(b—c)tar+ ¢ - (u+b)(b+r)]+—§-(b"—t“‘)+ (d— b bp—adld—c)

RN IVENG|

(12) [5”(1]—(12“:

CASEIlLa < b < ¢ < d

A R :

a b c d i
— m— —c—
ay u> !
|
. (P~ b —~a)—Ad— )b = a?)

(13 E —arll = ) x
) flay = a2l 2b — a)ld — ) !

From (13) it can be shown that if the two regions R, and R, have nonoverlapping inter- !

1

d+c—b—ua

vals, then the expected distance between the two is just 5

Thus, for any two rectangular regions R, and R, . the expression
(14) min{w,. w(Ela, — a,] + |b — b,1D

can be computed as an underestimate of the expected cost of serving these two regions with the
same new facility (see l6]).

Thus, Equation (14) is the building block for forming lower bounds. If there are p unal-
located existing facilities, then there are 1/2p(p — 1} different realizations of Equation (14)
Assume that all the expressions are placed in ascending order and et ¢, be the ith term in this
progression. Compute 7, for j =1, ..., P, where 7, is defined as in (4), and arrange these
expressions in ascending order. Let 7, be the ith term in this progression.
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To underestimate the expected cost of allocating n new facilities among p existing facili-
ties. the various combinations of allocations should be studied. For example. if p < ». then
new facility should be assigned 10 each of the p existing facilities. An underestimate of this
cost would be the sum of all p of the r, terms. This would follow since r represents a
minimum expected cost for serving a region from a point in the region.

Another example is the case where p = # + 4. In this case, there are five possible combi-
nations: four new facilitics are wllocated two existing facilities, all others are allocated one: one
new facility is aliocated three existing facilities, two are allocated two, and the others are allo-
cated one: one new facility is allocated four existing facilities, one is allocated two, and all oth-
ers are allocated one: two new facilities are alfocated three existing facilities apiece, and all oth-
ers are allocated one: and finally one new facifity is allocated five existing facilities, and all oth-
ers are allocated one.

Table | displays all Jower bounds for these combinations for different values of p ~ n.

TABLE | — Lower Bounds for Locating n New Facilitics Among
p Rectangular Regions

Vilue of

Lower Bound
p—n)

0 or less r
!

i

!
n-1

TR,
=1

w2 no |l
2 minly, + ¢, + 2, r. /2, + ¢y + ¢3) + Z r,l
=1 11
n 3 n 2
3 min{g, + g+ g3 + Z e Y2+ g3+ g0+ Y r,
I:l I’I
l n-1
3 (g, + ...+ g + Z r
. 1=
no 4 n 3
4 min{g, + ... ¢4+ Z Foogy v g 1 20gs+ gy + <) + z IR
=1 o
1 TN /N
g, + 3 lgat ...+ g)+ X o Vg + .+ g0 + Z r.
-1 1=
1 n !
z(q|+...+qm)42r,
=
0 s n_ 4
S mindg, + ...+ ¢ + 2 by et gn+ Yge+ g+ g + Z .
1= A

n 3

n_ 3
q,+q3+—!‘- (q‘1+...+qx)+z gy Y 2ga 4 Lo+ e + z ’.
s oo

=1

n 2
G VA )+ T V2 g+ g + % (gt o+ g
[

w1
L +Zr,,.%(([v+...+q[<)+lzll',
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It is obvious that as p - n becomes larger than five, the number of combinations o be
considered also becomes large. Thus, a general lower bound will be used tor values of p w
greater than five.

THEOREM 2: A general lower bound on locating # new fucilities among p rectangular
IV*H

regions is 1/2 Z ¢, where g, is as defined above. The proof follows closely that in [6.9].
T

This general lower bound is well-suited for the cases when p — nis large. These cases
will be levels 1, 2. ..., m = S of the tree. At these levels, the possibility of fathoming nodes
Is not as great as at the other levels. This is because only a few existing facilities have been
allocated, and the partial objective function value used in computing the lower bound will be far
trom the optimum. A tight lower bound would then involve considering ali possible combina-
tions of the unallocated facilities. To hasten the tree search. the general lower bound is used to
quickly compute the lower bound and move to the next level.

On the other hand. in the last # + 5 levels of the tree. enough facilitics have been allo-
cated to identify unprofitable allocation schemes. Here the tighter lower bounds given in Table
1 should be used to fathom as many nodes as possible.

5. THE LOCATION-ALLOCATION BRANCH AND BOUND ALGORITHM (1LABB)

In this section the complete branch and bound algorithm for the location-allocation prob-
lem is given.

The input parameters are

N = number of new facilitics

M = number of existing regions

x1(/) and x2(1) = left and right endpoints, respectively. of region [(R (/1) along x-unis
v and v2(1) = lower and upper endpoints. respectively. along 1-axis.

wil) = jnteraction cost for region /. .

The parameters for computing bounds on the optimum value of the objective function O
are: ‘

= upper bound on optimum

- = lower bound on optimum

I'Y = current least upper bound on optimum

I = objective function value to be compared with [\

€ = stopping criterion for alternate heuristic te > 0). »

The parameters for computing the branching facility are:

I = current fevel

J = index of branching facility chosen at fevel 1

1 = set of indices of unallocated facilitios at level [

AED ()Y = vector of average expected distances from region /o all other regions
AN = vector of average distance of region /1o the new facilities that have been

currently located.
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The parameters for creating and fathoming new nodes are:

= number of new nodes to be created at current level

= counter for nodes created

= node number of the last node created at previous level

= the new facility the branching facility at level £ was allocated to according to the
node that was partitioned at level L.

= number of new facilities at previous tevel

= current location of new fuacility J/

= Jower bound at node [/

= the ith smallest value of min{w (), wA N EIRGY — RG] forall j < &

= the ith smallest value of 25w (I [x20) — N1 + 3 2() — v 1.

Initialize the input parameters. (Compute upper and lower bounds on optimum.)

Arbitrarily allocate region [ to new facility / — N [LEJJ

Solve the single facility location problem for all new facility YN (/). j=1. ... »n
among the regions allocated to new facility /.

Evaluate £ the objective function value of the L—.1 problem. for the results of Step
b
I

If FV = 1> e, then replace FY with /7 Otherwise, go 1o 7.

For /=1, ..., M computc min{wt/) - £[[NX () — RO} let & be that faciliny
with the minimum cxpected value. Reallocate region [ to new facility A, Go to 3.
Letz = KX

Y,
Compute = = 23 w200 = LD + 0200 — v T,

I
If - = = stop. Goto 31
or level 1)
Il
Por /=1, ... M. compute 4EDWD = Y EIR() = RGO

A

levy, - max DY, My =002 M -

Let NODID = 1. Assign region j; to new facility 1. Sobve the location problem tor
YWy Lot NG =1 Let/Pth = L

CAdvance 1o next leveld
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STEP 14, LetL =L + 1
tCompute Branching Facility)
STEP 13, Compute 41X (/) = -\l—l //ir FURGH = XX U for feld,

STEP l6. Lety, = m}ax XD andlet W, = 1, - j;.

(Create New Nodes)

STEP 17. Let AL = min(l. V). Let ND = NODL

STEP 18. Create AL new nodes ND + 1. ..., ND + KL by allocation region 4 10 new faal-
iy L., KL respectively. Let NODE = ND + KL

(Compute Lower Bounds on Nodes)

STEP 19, For node /= ND + 1. ... ND + KNL. solve the location problem for the partial :
allocation scheme: region j; allocated to new fucility / — ND. o allocated to 1P, {
A=L—1.0L -2 ....1 Denote the objective function value LB/,

STEP 20. Compute the vectors Q (/) and R (/) using regions J. JelJ, . ¥

YR i

STEP 2L, WM~ L —N>5 0t Qv=12 Y Q) If M- L~ N <3 compute the ;“

11 ,
lower bound for the value M — [ — Nas given in Tuble 1. Denote this value Qv 1

STEP 22, Let LBU) = LB+ QOx. [ = ND+ 1. ..., ND+ & I LBU) 2 = fathom node 1

l
{

STEP 23, Among the unfathomed nodes in 22, choose /™ as the value of [/ such that i
LBUI*) = m/in LB([). If all nodes arc fathomed. go to 27. {

STEP 24, Let IP(L) = 1["— ND. |

STEP 25, If L < M. set NL and YX(j) j =1, ..., NL equal to the values found for /* in :

Step 19 and go 1o 14.

STEP 26. if L = M, compare LB(/*) 10 Z. If LB([*) < Z then z = LB{/*). Fathom the
newly created nodes at level M.

(Backtracking Procedure) i

STEP 27. Let L =L -~ 1. If L =1 swop. Goto3l.

STEP 28. Consider all nodes [ at level L that are unfathomed and have not been partitioned
such that their allocation scheme includes j; ; allocated to /P — 1), 1If there is a :

node / such that LB(/) < Z, go to 29. Otherwise, go to 27,

STEP 29. Choose [* such that LB(/*) = mlin LB(1) where f are the active nodes identified in

27. Let LL denote the new facility j; was allocated to at * IP([) = L. Let NL
and XYY () become the appropriate values found in Step 19 for /1*.

v

w
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STEP 30. Go o Step 14

STEP 31. The optimal alocation scheme iy the one associated with 2. the optimal objective
function value.

6. VERIFICATION OF THE ALGORITHM

LABB, was coded in Forran IV, The code was verified using an example problem
presented in Figure 1 where the w,’s are 2.1.2.2.1. respectively, for the five regions.

V' N
10 |
1 X1
@l4 -
g L |
5
6
4 2
2 ol13
X,
2 4 6 8 10 ’

Fiat ke 1 A graph of an example problem

Both manual computation and the code produced the optimal allocation scheme to be:
serves regions | and 4 and Y serves regions 2, 3 and S. The two new facilities X'} and V> were
located at (2.5.9) and (9.5.1.5), respectively. The optimal objective function value was 18.5.

The same problem with a centroid approximation produced a different allocation scheme:
X, serves regions 3 and S and Y, serves regions 1, 2 and 4. The new facilities were located at
the points (4,8.5) and (9.5,1.5), the centroids of regions 4 and 3. respectively. These locations
used in the objective function involving the rectangular regions produced a value of 37, a 100
percent increase over the value for the optimal locations.

The impact of the sensitivity of the rectilinear distance metric to the centroid approach on
the location-allocidtion problem is serious; it has produced a nonoptimal allocation scheme and
inferior locations for the new facilitics.  As in the multifacility location problem. the centroid
approach does not even offer a good approximation to the solution of the location-allocation
model.

e g S e - e
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7. COMPUTATIONAL RESULTS

The computational results given in this section represent experience with the branch and
bound algorithm (LABB) for rectangular regions using a rectilinear distance metric. The prob-
lems were randomly generated from uniform distributions. All w{/)'s were generated from a
uniform [0.10]} distribution. The x1(/)'s. x2(/)°s, v1{/)’s and 3 2(/)’s were cach gencrated
from a uniform {0.100] distribution. All problems were run on an IBM 370/158) compuier.
The results are summarized in Table 2.

TABLE 2 — Computational Results for Location-Allocation

Problems where n = 2, 3. and 4
—
No. of Average AI\: crugre M, A crugr:j Av crugﬂ
m 0.0 CPU Time 0.0 aximum No. of Optimal
Problems (seconds) Nodes Active Node |
Created Nodes
n=2
5 2 585 11 ] 10
6 3 1.01 273 2.7 197
7 4 1.00 25.75 33 20
9 3 1.99 94 .33 4.67 79 !
11 3 5.37 240.3 8 [i9 f
15 2 8.55 330 1 209 |
20 2 11.33 332 18 L
25 2 19.08 349 23 69
30 1 3302 517 28 39
35 | S1.18 541 33 69
n=3 o
6 3 1.2 30 33 32
7 3 1.54 26 $.33 [
9 3 3.76 232 10.33 59
11 2 4.51 272 14 2015
15 2 7.28 4125 23 | &R
20 3 11.2 411 357 6.3
25 2 15.44 — 45 72
30 2 26.37 564 S5 7
35 | 37.23 543 65 351
n=4 T
7 3 2.73 129.33 7.3 R7.33
9 3 3.01 223 1.3 R
1) 2 4.8 316 23 RH ’
15 2 6.73 416 36 54 |
20 4 11.77 SR6 48 74 |
25 | 13.26 BE 66 94 l

Not surprisingly. the required computational time reflects the average number ol nodes
created which, in turn. is a function of the size of the problem and the number of active nades
For the problems worked. no computational ime was over one minute.
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In cach of the cases of o for - 2. the optimal allocation was examined w0 determine
what pereentage of optimum was achieved by the lower bound at cach level In cases where m
was large, the general lower bound was used at the first m - 6 lesels. The lower bound
improved rapidly from level 1o fevel; a typical improvement was ten pereent of optimunt, Usu-
allv, at the mr — 6th level. the tower bound was within 85-90 percent of optimum. Thus. the
switch 10 the combinatorial lower bounds for the last five levels represented less improvement
from level to level, but convergence oceurred rapidly.

The computational results in Table 2 indicate that the LABB algorithm obtains an optimal
solution for the L= 4 problem with rectangular regions in very reasonable time.

8. SUMDMARY

In this paper the location-allocation problem for existing facilities umformly distributed
over rectangular regions was considered.  Previous works dealing with 10 - systems were dis-
cussed, and the properties of the problem were developed. These properties indicated that
developing the optimal allocation scheme was the most important step in optimally solving the
{1 problem.

Computationat results indicated that the exact algorithm (LABB) could obtain the optimal
sotution for karge problems in a reasonable time.

The branch and bound method (LABB) may be applied to location-allocation problems
with probability distributions on existing fucilitics other than uniform.  Since the branch and
bound methods generate optimal allecation schemes no matter what type of objective function
is used. the onhy difference would be the way the location problems are solved at cach node.
Solution technigues using other probability distributions are developed by Aly 11}, Katz and
Cooper 8] and Wesolowsky [17]. Tt would be expected that the computational times to sohve
these related problems would be similar 1o the times for the uniform distribution with adjust-
ments made on the basis of the speed ot the individual sofution technigue.

AL 1 problem may have constraints on the allocation scheme. on the locations of the
new facilities. or on both. In these cases, the constraints can be used as an additionai test at
cach node as a basis tor fathoming the node.
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AN ITERATIVE ALGORITHM FOR THE
MULTIFACILITY MINIMAX LOCATION PROBLEM
WITH EUCLIDEAN DISTANCES

Christakis Charalambous

Department of Electrical Engineering
Concordia University
Montreal, Quebec, Canada

ABSTRACT

An 1terative solution method is presented for solving the muhifacility loca-
tion problem with Euclidean distances under the minimax criterion. The itera-
tive procedure is based on the transformation of the multifacility minimax
problem into a sequence of squared Euclidean minisum problems which have
analytical solutions. Computational experience with the new method is also
presented.

1. PROBLEM FORMULATION

To formulate the problem, let us suppose that m existing facilities are lccated at known

points (ay, &), (ay, by), ..., (a,, b,) and n new facilities are to be located at points
(x1. ¥y, (x3 y9), ..., (x,. »,). The cost

. ‘ 3 N2 =12 ....n
(1a) Ji{xi y,v)=w,;,[(x,—a/) +(~Vl_b/)]‘ =12 ....m

is incurred due to travel between new facility / and existing facility / for all i and J{w, is a non-
negative weight) and the cost

i=12 ....n—-1
k=1+1 ....n

is incurred due to travel between new facilities / and & for ali / < k (v, is a nonnegative
weight).

(1b) i (X[. 7B Xk.)’;\) = V,A[(X[ - Xk)z + (y[ - y/\):ll/zv

From (la) and (1b) we can see that the maximum cost incurred due to movement
between facilities is:

(2) Fix, y) =

3
>

ax f, ) g O v xe w0l
(

VAV
/A A
AF =

i
!
-

|
I
1<

~

n
where

x=1xn xo0 oo x0 vy =1 Ll

The multifacility Euclidean minimax facility location problem is to find (x, ») which
minimizes F(x. +). The new facilities might be helicopter bases, transmitting stations where it
is desired to minimize tlie necessary signal, detection stations or civil defense sirens. An
interesting book in this area is that given in reference [8].
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One main characteristic of the objective function Fix, 1) is that it has discontinuous par-
tial derivatives at points where two or more of the functions 7, (x,, 3,0, gu{x;, v, X 3,) are
cequal to Fx, v). Various algorithms have been proposed for sowving the general minimax
problem. some of the most relevant of which are due to Charalambous and Conn (2],
Charalambous [1], Dem’yanov and Malozemov [4], Madsen [11], and Dutia and Vidyasagar
[6]. More specialized algorithms for the minimax location problems were published by
Chatelon, Hearn and Lowe (3]. Drezner and Wesolowsky (S]. Eilzinga. Hearn and Ruandolph
{71, and Love et al. {10].

In this paper we present a simple algorithm to minimize F(x, 1} The original problem is
transformed into a sequence of unconstrained squared Euclidean minisum problems which have
analytical solutions. The resulting method is efficient and easy to implement on a computer.
Numerical results are presented which illustrate the usefulness of the new method to the mul-
tifacility location problem.

2. THEORETICAL RESULTS

LEMMA I: The functions /,{x.3,) and g4 (x;. 3, o) as defined in (1a) and (1b)
respectively, are convex functions.

PROOF: See [9].
LEMMA 2. The function F{x, ) is continuous and convex.

PROOF: This follows from the fact that each /,(x,. ») and g, (x. 3, ., 3) are con-
tinuous and convex functions (see for example [4]).

Let p,(x,. 3,) and ¢4 (x;, v, x;. »,) be the following 2n-dimensional column vectors:

0 i M 0 “
0 (x, = x) | — ()
(n) 2 X, —a, | — ()
0
(34) . (3b) (x, — x) | ~— (k)
. 0
0
/’,;(-‘]- A"l) = . q/l\ (XI' RYTIA VIS ."/\) =
0 0
0 =) | =+
(n) Y= b | —n+i)
0
O — ) L — n + &)
0
L 0 L J

———— -
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All the elements ol p, are cqual 1o zero except the fith and the {(n + /1th. and all the elements
of ¢, are cqual to sero except the fth, Ath, (n + th and the (n + A)th. Also note the
2o v hand g, Ly, v v ) are the gradient vectors of the following functions

% [(x, - u) + G, = b))

and

Iy, - a0+ G, ~3,)7)

to | —

with respect to ) respectively,

THEOREM | (Necossary and suflicient conditions for optimality): The necessary and
sufticient conditions tor the point (x* 3*) 1o be a minimum point for the function F(x. ) are
that  there  exist  nomnegarive multiphiers A0 =1, 2, ... .on,  j=1.2 ... m),
whitl =12 ..n -1 A=1+1 ....n) such that

2 " ”1: (
)\‘h—— 9, (X7, 4
!z; z , a l)g) I// R
(da) + "z’i t “ b————*ﬁ—v/i gu Xy ah X =0
d * o x [/SAR\ VIR Y P VAP A
f1k gl g X0 )
(4b) ZZA”+):ZM=
[N AVES| J=) h=1+1
- i=12 ....n
~ * . - ¥ ¥ : - . -~
(4¢) ASCFO, %) = foxn D) =0, i=1.2 ....m
. I=12 ....n-1
(4d) i CFx* ™) — g xt vk xE v =0 k=141 ... n

PROOF: The proof foliows directly from the Kuhn-Tucker conditions for optimality for
this problem or from the Corollary of Theorem 3.2 of Dem’yanov and Malozemov [4]. Note
that A} =uj =0 for the functions /f,(x,, v,) and g{x. 4. X, 1) which are less than
Fix* v*) at (x* v*). ie.. for those functions which are nor active at the solution (X7, v*),
The A}, and u i are called minimax multipliers. Also not that since f, (x] 3]} = g (x7 270 37
¥y = Flx* v*) from (4¢) and (4d)) for corresponding A, &= 0 and w i, # 0, the denomina-
tors for all terms in the summations in (4a) can be replaced by 1.

The possibility that some f,(x* vH or g (X7 vf xfovi) = 0 can occur. In this case
replacing the offending term ty & > 0 will not change the optimality conditions since the asso-
ciated Lagrange multiptier will be zero for nontrivial problems.

Consider now the following problem (Euclidean-distance minisum location problem).

For given nonnegative values of A, = A, and py, = pu

mi?imize dix, 3, A w)
i)
where
- _ ) . N N
(5) dix, v A @) DD I R (A R A R
~1 4
A I b Al
IIU\ V,i [(.\‘/ - Xi ): + (_\‘/ - ¥ )l
I~} k=1+]

A, and uy are going 1o be called estimates for the minimax multipliers.

[
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Let (
-, i=12 ....n |
(6a) W, =A,w; (20 -1 2 -
B o =12 ....n—-1
fob) Vie = Vi (2 0) A=14+1,....n
THEOREM 2: For given nonnegative values of A\, = )_\,, and uy = myu the function :
G v, AL u) s convex. '
PROOF: See [12]. L
L}

THEOREM 3: If A, =A% Gi=1.2 ... omj=012 ....m. ux=ph U=1. 2.

on— 1, hk=1{(+1. ..., n). the minimax multipliers corresponding to a minimum point !
{(x* 17), then (x* ) is a global minimum point of @ (x, », A% u™*).

PROOF: The gradient vector of @ (x, v, A* u*) at the point (x* *) is:

7 n "

)
5 n | s !L
‘e - . - Lk L % 4 —
Z 2)\3“:/ 7, (8 7Y+ 2 Z whvigs (N8 v koxt =0 i
i

=1 =1 =1 A=1+]

from Theorem 1.
Since d(x, ¥, A% u*) is a convex function the results follows.
Therefore, if we knew A * and u * we could obtain (x* 1*) in one step by minimizing

®(x. ). A% u*). Since we do not know these optimum multipliers in advance we need 1o esti-
mate them. Let (X, ¥) be a minimum point of ®(x. v, A, &) for given values of A and u.

Lol o

Define |

- - =12 ....n
(7a) A =N R s -12 . m :

— = - . I=12 ....n—1 3
(7b) Bk =mu&k (X, ¥ X Vs k=1+1. ....n .
where

noom _ o n-l n _ o _
(8) § = A,/_/;, (.\‘,. _}’,) + z 2 ‘LL/A‘L’”\ (.\'/, RYTR Y A\'/\).
=1 =] 1=1 k=i+]

Note that b
(9a) ALZ0EL =0 *
and

nom _ n-| 7 _
(9b) A+ wh=1 :

i=1 =1 i=1 A=i+1
Also at the point (X. ) the gradient vector of ®(x. v. A, &) must be zero. This gives us ..

n m _ w”z L
(9¢) I ——— & B

1=l gl ./,,(?(, V)

n 1 ] VI L B
+ “h — _“‘_ — qu X, V.o 6. ) =0 )
I=1 A=1+1 e X0 Vo X W)

3

.
.
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which when compared with (4a, 4b) of Theorem | suggests A * 5. Wi are approximations to AL

Mk
THEOREM 4: At a minimum point (X. ¥) of d(x, », A, ) the following inequality
holds:
F(X¥) € Fixr v € F(R )
where
nooom _ n--1
f}(:{. “-)=2 Ar i ‘)+2 2 #IA g/;\(\/ _—‘,._';‘..V/‘)
=1 =1 =1 A=/+!

and X *and [ * are as they were defined in (7a) and (7b) respectively.

PROOF: The right hand side inequality is obvious. Also
Fix, v) 2 F(x* v*) = min F(x, v)

()
nooomo_ . n | i _ i
= min AFOGC )+ Y Y mRF(G )
) =1 =1 I=1 h=ix1

n-|

nom o _ n
2 mlr)\l 2 )\f,_f;,(x,. _\‘,) + Z 2 Mﬁ\g[;\(.\'/. AV VR ¥ )l
Y= =1 =1 k=1+1

=Y Y AL R )+ Ehe (X, ¥ X B). (from (9¢)
1

3. THE ALGORITHM
The above theoretical results suggest the following algorithm:

5 STEP 1: Setr =1
AT=1 i=1,2. ..., 0 i=12 ... m.
[ mill=1 =12 ....n=1 k=1I+1...n

STEP 2: Find the minimum point (x'"', 3'") of ®(x, . A", 1", (See later for details).

STEP 3: At the point (x'"’, y'') calculate f,, and g, and update A, and p, as follows: Set

nom n_1l n

(r) (r) e tr} A YAl Lt YA
2 Z AL )+ Z z T8 " VR VR A PN
=1 =1 I=1 h=i+1

11)/‘( L)

x0T ]

AL — L : i=12 ....n j=12....m
i S(Il

{r} ir}) L) A )
T ok Rin (.\'/ v X )
Tk

try

(=12, ...}, k=1+), ... n
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STEP 4: Calculate :

nooom
f‘l(.‘.(r)‘ y(rl) = Z z A‘(,l. ll.’;l('\.‘(rl. 'l‘,“‘)
=1 =1

n- | 1"
- 1) i -
+ 2 2 i l!llk(-\/”- .\'/m- -\Am- W
I=1 h=i+1

STEP 5 Stopping criterion: Iff (£ (x"", vV — F" v"IN/F' 0 < € stop: Otherwise
set r — r + | and go back to Step 2. (e is a prescribed tolerance).

3.1 Finding the Optimum Solution of the Quadratic Function

For given nonnegative values of )T‘, and g, we want to find the minimizing point (x. v
for d(x v, A, w). Let

(10a.b)
r m 1 [ m _ 7
W],(l, ‘.l/b,
i=1 =1
tH _ lidl -
W d, 2,8,
B 1=1 _ 1=1
a = b=
W, d w,, b
Ll | ' J L =1 ' ' .J
(n
r _ _
B —Vi —Vi, ,
—Vi3 B —Vau
t
{ = J
!
|
L --\"'In _Vln Bn J
m 14 =
(12) B,=Y w,+2 v, i=12...n
-1 i1
, 1
Then the optimum solution can be obtained by solving the two systems of equations {see.
for example. [8]).
(13a,b) A¥=a and Ay = b .

Since for given nonnegative values of A, and uy the function d(x, v, A, u) is convex. it fol-
lows that its Hessian matrix 4 is positive semi-definite.  Also using the fact that 4 is symmetric
we can write
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(14) 4=LL' '
where L is an n X n lower triangular matrix.
This is called the Cholesky decomposition of 4 and requires about n’/6 multiplications.
By using (14) tor each right hand side of (13), solve the following system 1o obtain x and .
Lp=a Ly=¢
L'sx=p L'y=gq
This requires about 2(n* + #) multiplications.
_ !
Note that if 8, = 0, then the ith row of A, the ith column of 4, @, and b, are all equal to f-

zero, and can be removed in solving for X and 3. In this case we have infinite solutions for the o
location (x,, y,) of the ith facility. '

4. NUMERICAL EXAMPLES

We give a number of numerical examples to illustrate the usefulness of this approach to i
solving multifacility location minimax problems. For all the examples considered € = 1073, Z
Computations were carried out at C ncordia University on CDC 64000 computer using single
precision arithmetic. A user-oriented computer program written in Fortran 1V implementing
the above algorithm is available from ihe author.

EXAMPLLE 1 Love, Wesolowsky and Kraemer [10], considered the problem where

1.8
n=2 m=>5and (a. b)) = (39.12, 28.11). (ay, by) = (39.50, 28.28). (a3, by) = (37.88, K
29.87), (ay. by) = (38.59, 27.03). (as. bs) = (38.38,30.28), vi; = 1. and ;
1444
W=)=141 11 4

The results obtained by using the present approach are summarized below:

Results for Example |

Number of lterations
l 2 6 10 30 40

Fix. ¥) | 6.5237 | 59768 | 59138 | S.8738 | 5.8554 | 5.85496
Fi(x, ¥) | 43311 | 50112 | 55857 | 5.7367 | 5.8526 | 5.85439

Values of (A,,), (uy), (f,). (&) and (x, V) after 40 iterations:

0. 0.00047 0.49982 0.49965 0.

V=)= lo.oooo3 0. 0. 0. 0.0003): #12 =0

~ [09476 5.1031 585466 5.85496 1.8355
(X 31 =14 58541 1.1831 11011 2.1709 458541 &= 0.9052

| X; = 38.2356, x,=1387500 v, = 284502, v,= 29.1950.

It can be seen that only functions f|; and /4 define the minimax function at the solution
point and A,, — 0, for all (i, j) except Az and Ay, Also py> = 0. In other words the A, and
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wy corresponding to functions f, and gy that are not active at the minimax solution tend to
zero, as it should be expected. Let

Lo=1{t DI, ¥) <099 FIX ¥). A, <107
L= {0 K)g (R F) <099 FE ¥ py < 107

where (¥ ¥) is the minimum point obtained at the end of the 40th iteration. If
(x. ¥) = (x* »*), then the elements of /, and /, will correspond to functions which are not
active at (x* v and A =0, (i j) € [, ufi =0, k) € 1,. Also,if (x. ¥) is in the neigh-
borhood of (x* y*), then most likely the elements of /, and /, will correspond 1o functions
which are not active at the solution.

By excluding from the problem the functions corresponding to the elements belonging in
I, and [,. using the values of A, and u, obtained at the end of the 40th iteration for the
remaining functions, the present algorithm reached the exacr solution to the problem in o
additional iterations. The final results obtained are summarized befow. The method required
0.68 sec CPU time to reach the final results shown. From now on this additional part of the
algorithm will be called Phase 2. and the original part of the algorithm where all functions are
considered (algorithm in Section 3) will be called Phase I

Final Results for Example 1: F(x* y*) = F(x* y*) = 585481 . A} = 0. except ATz =
At =05 uth=0.
S 0.948] 5.1055 5.8548] 5.8548] 1.8357
(% 0™ =14 58541 1.1831 1.1011  2.1709 4.58541

A’(z‘.\", _l'*) = 09057

xt=38.235 vi= 2845
_‘,;= 38.75 _"?z 29195 Exact solution.

Since /3 and f), are the onlv functions defining the minimax solution and both of them
depend onlv on (x,, ») (i.e., they are independent of the value of (x,. ¥3)). The value of
(x3, »¥) is not unique, but the value of (x}, y{) is unique. In fact, (x3 +3) is any point in the
set

S - ﬁ 51
- /
=1

where
S ={(x, v wy,llx —a)?+ (= 6P Flaxx v j=1.2 ...,
S = {(x, W vppllx = xP2+ (= yPA2 L Fx "))

The boundary of the set S,?' is a circle with center (a,, b)) and radius F(x* y*)/w,,. for
j=1,2 ....5 and center {(x}, v} and radius F{x* ¥*)/v|; for j = 6. For this particular
example the solution set $'2 for (x}. v} is given by the intersection of the sets S{°' and S,
This is illustrated in Figure 1. Since the value of (x3. v3) is not unique and our interest is on
the minimax facility location problem it would be appropriate to choose the position of the
second new facility such that the function

N

S v = max Ly, G vah gl s ¥T T
Fylxsy, 3y) max {2, (2 02, glxy vae at oDl

is minimized in the set $'2'. The optimum solution to this problem occurs at the point ;. and
coincides with the minimum point obtained by using the present algorithm. In this case /> and
/< define the minimax solution.
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Fiot Ri 1. Hlustration of solution set for cxample 1. 1
[‘
The Revised Algorithm l ;
: . . I
In summary the revised algorithm operates in two phases: |
(i)  Use Phase | (algorithm in Section 3) with e = 10 * to ge1 to the neighborhood of
the solution and to identify the functions that are inactive at the solution. 1

(ii) Continue the algorithm by using Phase 2 where the inactive functions are
excluded from any further consideration.

EXAMPLE 2. Inthiscase n = 3, m = §,
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The results obtained by using Phase | of the algorithm are summarized below. It can be
seen that only functions /3, and /i< define the minimax function at the solution point. and
A — O, torall (i j) except Ax» and Az, Also

Results for Example 2 using Phase 1 of the Algorithm

] Number of lterations 1
‘ ] 10 20 30 40 59

Fix, v) { 13.0004 | 12.1901 | 12,1319 | 12.1242 | 12.1225 | 12.1219
F(x. v) | 09.0075 | 11.7768 | 12.0475 | 12.0996 | 12.1143 | 12.1206

Values of (A,), (wy), (f,), (g) and (x. T) after 59 iterations:

0.0002 0. 0. 0. 0
\'—_()\,/): 0. 0. 0. 0. 0. ,,(1,)2=;.L|3=;.L~‘=0.
0. 0.2855 0. 0. 0.7136
10.9488 6.5178 9.4821 0. 0.
/(. yhr=10 0. 2.5873 7.0682 07.0682), g,»= 0, g; = 109495
0. 12.1216 5.2442 0. 121219] ¢, = 4.6361
;= 092850, x,= 7.57143, x; = 3.71311

-]
|
n
2
=]
O
o
il
it

3.71429, T, = 6.28460.

Starting {,om the results obtained at the end of the 59 iterations of Phase | and using
Phase 2. the algorithm reached the exact solution to the problem in nvo additional iterations.
The tinal results obtained are summarized below. The method required 0.85 sec CPU time 10
reach the finat results shown.

Final Results for Example 2: F(x* 3*) = F(x* v*) = 121218305, A} = 0., except
A= 028571 A% =071429, u}, =0, V(. k).

10.949 6.5177 9.4821 0. 0.
(o, " ) =10 0. 2.5873 7.06818 07.06818
0. 121218 5.2450 0. 121218

gl =0, gplx* v*) = 10953, gylx* v*) = 4.6357

B oo
e boa L W
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xT=0.92850 = 1.57091
x¥= 757143 3= 3.71429} Exact solution.
xP=371429 1= 6.28571

Since f3 and fis are the only functions defining the minimax solution and both of them
depend only on (x;. v3) the values of {x¥, »}) and (x3, »3) are not unique, but the value of
(x3. ¥} is unique. In fact (x}, v1) in any point in the set

S o ﬁ s
=1

and (x3, v1) is any point in the set

4
S(Zl — S(Zr
Q ,
where
(15 SUO= 1 Dw, = @)+ (= )PP Flar i),

i=12j=12...3
Se” ={lx Wvile =7+ G =5 < Fe 9 i =1 L

The solution sets are illustrated in Figure 2.
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As in Example 1, it would be appropriate to choose the position of the first and the
second new facilities such that the function
Fiale, v vl = max WK B AV DRI ARG 1) gl sy vl

1€:%2

is minimized, subject to the conditions (x,, v;) € $'"" and (x,. 4,) € $'*'. Since v;> = 0 func-
tion g)> can be excluded in defining function F; ;. The optimum solution to this problem is
such that (xf. »}P) is unique and is that obtained by using the present algorithm (Point €, in
Figure 2), and (x%, v} in any point in the set §'*.

Again it would be appropriate 1o choose the position of the second new facility such that
the function
Filxy va) = max {f>, (o v, g (o, vao X ), gaalva, vy xl [51)
A
is minimized. The optimum solution to this problem occurs at point (', in Figure 2 and is that
obtained by the present algorithm.

5. CONCLUSIONS

An algorithm for the minimax facility location problem using Euclidean distances was pro-
posed. Although no proof of convergence of the algorithm is available, for all examples con-
sidered, the algorithm converged to a minimax solution. Since there is no line search in the
algorithm it follows that one iteration is the same as one function evaluation.
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COUNTEREXAMPLES TO OPTIMAL PERMUTATION
SCHEDULES FOR CERTAIN FLOW SHOP PROBLEMS

S. S. Panwalkar, M. L. Smith

Department of Indusirial Engineering
Texas Tech University
Lubbock, Texas

C. R. Woollam

Department of Management
The University of Tennessece
Knoxville, Tennessee

ABSTRACT

It is well known that a minimal makespan permutation sequence exists for
the » x 2 flow shop problem and for the » x m flow shop problem with no in-
process waiting when processing times for both types of problems are positive.
It is shown in this paper that when the assumption of positive processing times

is relaxed 1o include nonnegative processing times. optimality of permutation 4!
schedules cannot be guaranteed. i
4
1. INTRODUCTION
Consider the n job-m machine flow shop sequencing problem in which processing times L
are nonnegative. In the following we will show that a permutation schedule may not be optimal .
for the classical flow shop problem involving three machines and for the n X m flow shop prob- 4
lem with the no in-process waiting constraint. We will use the 4 x 3 problem data shown in |
Table 1 and the nonpermutation schedule P defined in Table 2. Note that job 2 does not
require processing on machine B. H
TABLE 1 — Processing TABLE 2 — Nonpermutation '
Time Matrix Schedule P
Job Machine Machine | Job Order
A|B|C A 1,2,3.4
1 1 [6]3 B 1.3.4
, 2 2 (0] 4 C 2,134
; 3 4 1 3
t 4 2 |3 1
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2. THREE MACHINE FLOW SHOP PROBLEM

In [8], Johnson proved the cpumality of a permutation schedule for the # > 2 problem
under the assumption of positive processing times. He then extended the results o the o~ 3
problem and proved that an optintal permutation schedule exists. A number of rescurchers [3.
9. 1-p.9. 2-p. 136, 4-p.84. 5-p.343. 6-p.201] have since relaxed the assumption of positive pro-
cessing times o nonnegative ones. It s casy to verify that for the problem in luble 1. an
optimal permutation schedule hos a makespan of 16 units while the nonpermutation schedule /2
defined above has a mukespan e qual to 14 units.

3. FLOW SHOP PROBLEM WITH NO IN-PROCESS WAITING

W now consider the n % m flow shop sequencing problem with no in-process warrmg
allowed [10. 11E In [T, Wismer considers nonnegative processing times.  However, he
allowed only permutation schedules. In 2], Baker recognized the fact that w nonpermutstion
schedule may be optimal when processing umes are nonncgative. Guonta [7]. on the other
hand. nos proved (Theorem 1) that even when the processing times are nonnegative only per-
mutation schedules are teastble. The example in Tuble 1 is a4 counterexample 0 Gupta's
theor-m. For the no waitting problem, the best permutation sequence has a makespan of 17 as
opposed to sequence P which has a makespan ot 15 It may be noted that in both cases shove.
the minimum problem size needed to obtain 4 betier nonpermutation schedule s 3 x 3,
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A NOTE ON
A MAXIMIN DISPOSAL POLICY UNDER NWUE PRICING*

Manish C. Bhattacharjee

Indian Instinae of Management
Calcuna, India

ABSTRACT

For the classical disposal mode! for selfing an asset with unkno -~ a price dis-
tribution which is NWUE {new worse than used in expectation) with i gnen
finite mean price. this note derives a policy which s maximin. The gain in us-
ing the maximin policy refative to the option of selling right away is convex de-
creasing in the continuation cost to mean price ratio. The relevant results of
Derman. Lieberman and Ross also follow as 4 consequence of our analysis.
Our theorem provides a practical justification of their main result on the cutofl
bid for the disposal model subject to NWUE pricing

1. INTRODUCTION

Consider an indivisible asset for which offers come in sequentially, with a continuation
cost ¢ > O for ecach day the bid is not accepted. When the successive offers are independent
identically distributed with a distribution £, this classic disposal model has been reconsidered by
Derman, Lieberman and Ross {3} in an adaptive setting and when Fis NWUE (new worse than
used in expectation). While a complete solution is given in the adaptive case. their main result
in the other case provides a lower bound on the optimal cutoff bid which, except for implying a
corresponding lower bound on the optimal return (viz. Theorem | and Proposition 2 in [3]), is
of limited practical value if Fis NWUE but unknown.

The purpose of this note is to show that when the pricit NWUE with a given mean
price but is otherwise unknown, there is a maximin disposal policy determined by the lower
bound for the cutoff bid given in {3]. As a by-product of our analysis. the Derman-
Lieberman-Ross results on the cutoff’ bid also follow directly without invoking the ordering
relationship among distributions defined through integrals of increasing convex functions as
considered in (3].

2. MAXIMIN POLICY UNDER NWUE PRICING

Let £ =1 - F For the classic disposal model 121, 13), with # known. recall there is an

optimal policy maximizing expected return —whick accepts offer it and only of v 2 v L and
has return {x, + ), where the optimal cutoff bid x; is given by

“This research was supported by the Center for Management Development Studies at the Tndian Institute of Manage
ment, Caleutta, India under research project 441/CMDS-APRYP-|
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inf {: o> [fm vy dF — c]/ f(z)]

inf{z:c¢ 2 E.(X - 2)*},

.n X

X 2 0 being distributed as F. Let x,, denote the optimal cutoff bid for an exponential price
distribution with the same mean as that of F, this distribution being henceforth abbreviated as

‘exp’. Then

(2.2 Xeop=—m log (¢/m), where m = fom F(y) dy > ¢
Let

2.3) Lp(x)=FE max{(X,x — ¢) — x.

Note L t¢ + x) = E(X — x)" — ¢ thus (2.1), when Fis continuous, implies L; (¢ + x;} = 0.
Also, L; (x) decreases in x; this follows by noting ¢ + L; (¢ + x) = f‘ FGo) dv.

Let 7 denote any policy (including randomized ones with past memory) and R (7w ,F) its
return. For any x, let 7 (x) be the (stationary nonrandomized) policy which sells as soon as a
bid of amount x or more is received. For any x such that F(x) < 1, the return R(x,F) of the
policy 7 {x) is:

(2.4) R(x.F)= T EXIX 2 x) — (n = D¢} F* 1 (x) Fx)
n=1
¢ Fix)
= E (XX 2 _——
EAXIX 20 = 750
= x + [Ef(X — x)* = ¢F())/ Flx)
=x + ¢+ [Lpte + x)/F(O)I.
!
Now suppose the pricing distribution F with mean m < o has the NWUE property [1] H
defined by 1
J Foray = mFo
ie..inf, .o Ef(X — x|X 2 x) = EX. Then we have the following:
THEOREM: Suppose the price distribution F is NWUE and the continuation cost
¢ < m=EX <o, If we only know the mean m (and not F), then the policy which sells as

soon as the offered price is x,, or more is maximin.

To prove the theorem, we will use the following generalization of a result (lemma 6.4, p.
112) in [11. a direct application of which yields Proposition 2 and Theorem 1} of {31

LEMMA: If Fis NWUE with mean m < o0 and ¢ (y) is nondecreasing on {0,00), then
J oo romrazf s0re man

If F1s NBUE (new better than used in expectation), the inequality is reversed.
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def o
PROOF: Let Y be a random variable distributed as TF(x) = m ' L) F(y) dvand let Z

be exponential with mean m. Now Fis NWUE implies the inequality f‘. F(_v) dy 2 me ' "
(viz., [1], p. 187), i.e., Z is stochastically smaller than Y. Hence,

J oW Ew ay=m [ 600 TF@ay)
=mES(N 2mES(Z)= [ 6Gie "ay.
The NBUE case (E(X — x|X 2 x) £ E.X) follows by reversing all inequalities.
PROOF of Theorem: For any x 2 0, choose ¢, in the lemma, as the indicator of [x,o}
to conclude
Q.5) c+Lic+x)= [T FQ ar > [T e mdy= o+ Logle +x),

when Fis NWUE. Thus, Lp(c + x) 2 Lep(c +x). This with (2.1) implies that x; 2 x,,.
as in Derman, Lieberman and Ross [3]. Hence, when Fis NWUE, by (2.4) we have

(2.6) Rlxep F) 2 € + Xenp

since Lp(c + xop) 2 Legp(c + xeyp) = 0, where the inequality is due to the NWUE hypothesis
and the last equality holds by continuity of the exponential distribution. Also, for any £,

2.7 sup, R(r ,F)= ¢ + xr= R(xz,F),

since the policy 7 (xr) has the maximal return for a given price distribution F. Hence, using
(2.5), (2.6) and (2.7), and inf; denoting infimum over all NWUE distributions F with a given
mean m, we have

¢ + Xexp € infr R(xeyp, F) < sup, infr R (x,F)
< sup, infgx R (@ ,F)
< infg sup, R, F)
< sup, R (@@, exp)
= R (Xoxp €XP) = € + Xyyp.
Thus, R (xesp. €xp) = sup, inf R@ F) and the policy 7 (x.,) is maximin, i.e., it maximizes
the reward from the worst possible NWUE law with given mean.
REMARKS:

1. Note, (2.5) together with (2.1) implies Proposition 2 of [3], by arguments paralleling
those leading to (2.6). Likewise, the main result (Theorem 1) of [3] for NWUE pricing is con-
tained in the proof of our Theorem.

2. The maximin policy behaves as if the price distribution, with known mean m, is
exponential. Its relative gain compared to selling right away is
m~' R(xep.exp) — 1= —(1 —a) ~ log,a > 0,
where a = ¢/m, the continuation cost to mean price ratio; 0 < a < 1. The relative gain

increases as a decreases.

3. Suppose the price distribution F is arbitrary but strictly increasing and let ¢ 1 be the
?

median price. Then we will show:
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(28) Xg > (El - 2(')..

Take ¢ < %51' If (2.8) does not hold. then v, < (€ — 2¢) and using (2.4) and (2.7), we

have
N, ZRQe+ X F) 220+ x — CHFQe+ x5,/ FQe+ x50 > ¢+ .

a contradiction. When the price distribution is NWUE. 4 bound stronger than (2.8) actually
holds. To see this, note that if Fis NWUE with mean m, then using (2.4) we get

2.9 Rx.F)=x+E (X = x|Y 2 x) - {FQX)/Fx)
Zx+m— c{Fx)Fo)
for all x such that F(x) < . Accordingly,
cHy=RUGPZ2RECFH) 2E +m-q

where the first inequality is due to (2.7) and the next one follows from (2.9). Hence.
Xp2z2m+ &) - 2¢ > £ — 2¢ and (2.8) holds afortiori. Since x; is nonnegative and ¢ > b

implies ¢ > b*. the resﬁlting inequality x, = (m + &, — 2¢)" is a sharpening of (2.8).

A
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Note added in proof. Bengt Klefsjé, in a private communication. has recently pointed out to the
author that our results (main theorem and remarks) remain valid for the broader class of
HNWUE (harmonic new worse than used in expectation) price distributions. The classes
HNWUE (HNBUE) which are less well known, were introduced by Rolski [3] and further stu-
died by Klefsjo [4]. are strictly bigger than NWUE (NBUE). A life distribution # with mean m
is said to be HNWUE (HNBUE) if
1 RGO A = me
(2.10) f‘ FOvydy Z, me
The reason for the name HNWUE (HNBUE) derives from the fact that (2.10) is equivalent [4]
10
1
| A . .
;ﬁJmu~yu>ynwy > m=1I,\

It can be easily seen that the Lemma remains true under HNWUE (HNBUE) hypothesis and
hence our results carry over to HNWUE price distributions.
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