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APPLICATIONS OF RENEWAL THEORY IN
ANALYSIS OF THE FREE-REPLACEMENT WARRANTY*

Wal!ace R. Blischke

Lniv'rsit iv o/.Sothrn Caltorna.
Los Angeles, (Oiltlbrnia -L

Ernest M. Scheuzr -- : ,C

California State University. Vorthridge .
Noruiridge, Cali/brnia

ABSTRACT

Under a free-replacement warranty of duration ', the customer is pro-
vided, for an initial cost of (, as many replacement items as needed to provide
serice for a period I,'. payments of C are not made it fixed intervals of'
length It', hut in random c.cles oi" length I = 4 ' + Y( 141. w here y (" 'I i, the
(randot) remaining life-time or1" the item in scr ice 1Wtime units after the he-
ginning .I a cyclc 'The expected number of" parnctnt ti\er th, lile c.cle. I.. of
[he item is given by Aty(L ). the renewal Function for the random "ariable .

We investigate this renewal function analytically and numerically and compare
.he latter wtih known asymptotic results. The distributiin ot ,. and hence the
renewal functiin. depends on the underl.ing failure distrihutin of the items.
Several chiiices otr this distrihution, including the exponential. untlRrm. gam-
mia imd WeiUll, are considered

I. INTRODUCTION

Since a real or potential cost is involved, any item sold with a warranty must necessarily
be priced higher than if it were sold without a warranty. How much more the seller should
charge and how much more the buyer should be willing to pay depends upon the structure of
the warranty and the life distribution of' the item. An analysis of pro rata and free-replacement
warranties from both buyer's and seller's points of view is given by Blischke and Scheuer (61
and 171.

In this paper we shall consider only the free-replacement warranty and shall be concerned
mainly with the seller's (or supplier's, manufacturer's, and so forth) point of view. Of primary
importance from this point of view is the long-run profitability of the item.

An important consideration in analyzing long-run profits for items sold under a free-
replacement warranty is the expected income over the life cycle of the item. This, of course, is
a function of the expected number of replacement items sold over the life cycle. This expected

'This research was supported by the Office of Naval Research under (ontract No NIX)014-75.(-01733, Task NR042-323
(tide 434
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Inibehr. founrd from thle renewal function fb. r the atssociated randomn xariable. is the subject of'
thi, in\ estigation.

III thle AiS it is aSSUIIedL thalt thle buyecr purchases an identical replacemict w&hen the
itelm il service at the end of' the wAarrantY period fails and that the purchase and initiation of'
opcration of' a replacenment are instantaneous. It is also assumed that replacements are

Mau .eied v at th 111e cost arid marketed at thle same rIHcv. I hcse are standard sinilliing
a~s~irl~tii 1 h oleP 1 tush unilistic, in pract'cu mlic. Jt' riot negate the results of' the

s~ eca'e hL. 1;-o!'tot1l1 clOsidei(,ith'fl' .;rc I f~/pic latil ies.

Another Sinipllif'\ili rig ssumptionl mad. the analysis is thait thle lil'e Cs dc CIt thle iten is at
c'onstant. I" [if'e cycle" is also called "c , -ic h6Z" or "assumned life. [:or planning purposes
arid for tax\ purposs this is. Ld.~. <torniril% taken to be at fixedI qlUirllt . IiI realit\, of
Course, equLipme1nt IS PUrchil"Ced at ditlerent tinies and life cv~s Accordingik. the life
Occ Of the itern could quite prec e considered to he at randomn xariable. This. hoses er.
furthier complicates anl already re problem. Vinral lv it is not at all] clear what might be
reasonably realistic distrhutm mnl 11sSUmption--. (We know Of no studies that would suggest at
particular distributional lorm.) SecLondly, this wsould greatly complicate the renewal function.

It is su;gested in ! usLing1 the results of this paper, or any similar results, a parametric
study he done. ali tr ItI , etc. (defined below) to vary over sonic appropriate sets of'

In the ensuing, we shall discuss in more deltil the nature of' the f'ree-replacement war-
ranty and its associated costs/profits, the role of renewal theory in analyzing warranty policies,
and thie specific renewal f'unction encountered in the context just described.

'The form of' a renewal function depends ultimately on the underlying life distribution of'
the rtems in question. Typically inl dealing with renewal f'unctions, closed form expressions are
available only for a few special cases, although lirmiting results are quite genernilly available. We
,;hill! find this to be true (of' the "special" renewal function under consideration here as well.
Analiical results will be given for the exponential distribution and, to illustrate a point, the
uniforml distrihution. Some results of a numnerical investigation of' the special renewal function
f'or gamima and Weibult distributed lifetimes will also be discussed. These depend on at new
analytical result and oil newly calculated tables (details below).

2. THE SPECIAL RENEWAL FUNCTION AND ITS ROLE IN THE
ANALYSIS OF WARRANTY POLICIES

'thei Analysis of Warratity Policies

InI the analysis of' warrant) policies gi\cen by Blischike and Scheuer [61 and [7J the basic
o insideraitions were thle comparison ofot' to 1kthe consumer, and ol' proflt to the supplier. oif
\Xarranled versus unwarranted items. In the piresent paper, we shall limit attention to the point
Ofl S ic' of' the supplier. I rom his point of' view, tile cost comparison leads to the establishment
oif i diflerential pricing structure which will equate expected long-run lirofit inl the two situa-
tiins. IProfIt, of course, is at function of' c~ost and income. In our previous work (BIlischke and
'Schc uer [11 I e den'. d the ex.~pected profit Js'r wiatrant * i '/. I lere we are concerned with tile
h ig -ru 1 profit os er thle I ife cycle of' lie itrem. 'I his can be approximated for relatively long lif'e

clICS by pursuing an il ASik along thle lines of our 197S paper [61. (See especialk Sections
2 irii 2.2.) ( )ur present ohjecti',e is to obtain an exact exp.-'ssiori f'or this quaintity'. A

()I't o this ty pe %ksiuld proside at basis for e alarionI of' thle adequadcy of' file appronximiatiior.
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The Free-Replacement Warranty

I he specific iarrant\ policy under consideration herc is the free-replacement policy.
Under a %arrant.\ of this t.,e the supplier provides replacements for !ailed itenrs free of charge
until a specificd period 0 -,ervice. Il,. is attained I lis income during this period is the price, C,
charged for the initial tcm. Ills e ,?cted cLust is the sum (,f the cost of supplying the initial
item and the expected cost of all replacements required to pro. ide the total warranted service
time, 1'. In the sequel we shall express this expected cost liOllowing Blischke and Scheuer 161.
as i [I + .1/k( It' I I where g is the cost per unit, .V is the random, lifetime of an individual item
and .I l is the associated renewal function evaluated at I. 1In this expression the quantity
I + . lk t) is th- expected total number of items supplied: that is, the initial item plus the
expected number of replacements.)

The Excess Random Variable

For the long-run analysis of the free-replacement warranty policy, it is important to note
that no cost is incurred and no income obtained after W until the item in service at time 14'
fails. The symbol Y is used to denote the random time at which this event takes place. This
can also be expressed as Y = W + y( W), where y( WI, the "excess random variable," is the
(random) residual lifetime of the item in service at time 14. This random variable is key to the
analysis which follows. It is also called tih,, "excess life" or "residual life" (Ross 1131), "remain-
ing life" (Barlow and Proschan [2]), and "forward recurrence time" or "residual life-time" (Cox
[91), and has some ,nusual properties (see, for example. Feller 1101). I
The Role of Renewal Functions

In the foregoing we have seen that the renewal function, M k(.), of the basic lifetime ran-
dom variable, X, plays an important role in determining expected profit on a per-cycle basis. In
particular, expected profit per cycle is P = C - gIl + l ( WI].

We turn now to the analysis of long-run expected protit. In this case we look at repeti-
tions of the warranty cycle. The first such cycle extends from 0 to 4 = W + YI( W), say; the
second from Y1 to Y,: and so forth. Schematically, we ha,

Expected
Cost g[l + ilk ( ) .1'[l t )II ;

Time ----- --

I) 11 ) ,) + | -) . .. I

Income C'

The total expected profit is thus seen to bc / times the uimbe 1of ( expected repetitions of this
process over the life cycle, 1. This quanliy is precisely the renewal function of the random
variable ). evaluated at I.. We call this the special renewal function and denote it Ilf (1, 1. We
can give a closed-form expression for .11) (U) for ' having the exponential distribution and for
L an integer multiple of It, iquation 18. Also, we can find explicitly the densit. and the
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momerts of -y( IV) for X having the uniform distribution- however, the corresponding expres-
sion fom Al) (-) is not readily attainable, nor is a closed-torm expression for M)1 (-), in generli.
However, asyrnptvtic expressions for Ali (,-') are a'.ailable and sonie calculations, summarized
in the portion of Sction 4 showing results, indicate that at suitabl', chosen one of them can give
quite saitisfactory approximations to M) (1L ) over a range of' L x alues.

I n our prc % ,)u.- " ork w.e approximated Al) (L ) by L.1 /E Our present numerical in\. es-
tigatlon, indicate that ihis does not alwA'ays provide an dcfL approximation. By using a ne'A
renewal- theore tic: re,,,l and with the aid of' nc%%.'. d,,,ti ated tables we are able to obtain an
improve.,1. and altogether Luite satisfactory, aKrtwo.miation (see Section 4).

General Rcziewal-l'heoret iv Result,,

We begin with the basic ; cw al process involving a single '.4arranlv cycle. .1, ), y ? I
and L are ats defined previousl,. [Let X,, X, h. e the lifetimes of the indi' dual items w.~ithin
a warranty cvcle. We aissume_ iliat .X1, X,, are nonnegative random variables which are
independent and identei'.l itvibuted with cumulati.e distribution function T~() We write

8,(n 0. E~~~ ' ( V), and (r2 var(Xf. For any cd.. F(-), we

define, F =I - ,n-fold convolution of I+) with itself, with [for Ff0-) = 01

In addition, we denote NOz) number of' replacements required in the interval (0. 11,
41(0) = E (0),. and nz () =MU').

-A well-known, general rene\Nal-theoretic result is that

This provides an immediate expression for 110) in terms of' the convolutions P'"(0,. namely
'~1,) ~ P"'(0). We turn next to the problem of' determining ~ )and I')

Maci~h~ny jaarvtt results regarding rerkeal funtion ahre a'.'. (t'pimr interest

apr~iaeAl, (L f.By this theorem, if, (I0/I I/l F( it s t' ' A further result, which
we will exploit in the sequel, is (Cox 191),

(2) M) M ) I + v ar ( H) I
E( Y) _f'2 m 2

It has been kno'.kn for some time (e.g.. Smith 11411, that

(3) iLAY)) = P11 + A1011 0l

Recently Coleman !81 has found in expiossion for the moments of' -Y( ~I from which the
moments of' ) can be determined, In particular.

(4) var( )) = fl 2 )!'+ if Ai I 1$) 4 ' l k 1 If 4 2A j Af kIi fIk-1)h
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Coleman's result, along with newly calculated tables of Mv( W) and M00du, permit the
implementation of Equation (2). These tables will be described in Section 4.

Distribution of Y

Distribution of the Excess Random Variable

Since V = IH + y(i If . the distribution of ) is simpl a translation of the distribution of
the excess random % ariable. Thus, the fundamental result required is the distribution of- y I)
There are several ways of expressing this result. All, 0if course, relate hack to the basic distri-
bution of \ since we can also \write y ( It ) as y (I) N ,. II

The survival function for -y ( I) is given by Barlow and lroschan [21 as

(5) /.: ,(it = t"{y(lt) ,[ -= / I(I + 1) -,, i- + It - otn10 (t/dn.

An equivalent expression for the corresponding densit. is gi\en by ('ox 191 as

(6) + I. f(I + ) -u + Odu.

Mixture Representation

It is of interest to note that in addition to these classical represenations, the distribution
of the excess random variable can also be expressed as a mixture of distributions (cf. Blischke
[4] and [5]), namely

(7) /"FYu(tf ) = Ply( ff) < /, (I I f') = O PlINk (l It n}

n =)

lere the distribution of N (given in Equation ()) is the mixing distribution and the condi-
tional distributions of -y given N are the components of the mixture. Since the e\ent
IN, ( 4') = iI is equivalent to the event IS,, < If, S, 11}, the conditional distributions
become

(8) I'{Y( w ) ,\,k ( w( ) lt /) = /'(S,, 11, + IIS, < i. S, if

which can be expressed as an integral over the appropriate region of the bivariate distribution of
S,,..s,+I.

One property often encountered in dealing with mixed distributions is that they may be
multimodal. This is indeed the case for the distribution of the excess random variable, a fact
that became quite apparent in some of our computer simulations. Another property of mix-
tures of the type we are dealing with here is that the moments of the mixed distribution can be
expressed as weighted averages of the moments of the components. We have not pursued this
point but it would be of interest in some applications. (For example, one might be interested
in the conditional expected residual lifetime of the item in service at the end of the warranty
period, given that it is the nth replacement.)

An expression equivalent to Equation (7) is

(9) Fw 1(t) - j Ply( W) >, t n Nr( W) n}.
n-fl

I
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In view of the remark preceding Equation (8) and using the definition of y (It), the joint
probabilities in Equation (9) can, for n >, I, be Aritten

Pl-) WI) l+ t X (1) = Pn,. 1  + II S n S,, 

;,..j > t + It N s, < i r)

(10) = 5 { + I - t .s,, < 1I'.,. = ui/ (1) (td
+ [f V ) till.I/I") (=) - I" U " 4 - u)I .1  (u)du

+'- I-4" ( ¢).f\ (u Ida.

The limits of integration in Equation (II) come about as follows. In Equation (10) we require

t + 11'- u < , sou /> t.Also if t + 1- u < 0. i.e. u > I + It. then

(12) Pt + 4 - it , < )tjA,, 1 = u l "10( .N, < ilxt,. I = a}

since we are dealing with nonnegative random ,,triables. Also

(13) P-)( W) > r n N , \(1')= 01 PI \' t + it' > if}

- I- .' t + It}

- -(o Ii).

Using Equations ( 1) and (13) in Equation (9), we obtain

(14) FYw (t = FI U + W) + fF."'( ) 5 .1,)

f t~F'( + ut - i u ) (duj

i (t + W) + MV(W)F,(t) - f M, + -ti

Integrating by parts in Equation (14) and then making a change of variable in the resulting
integral yields

(15) Ply(YI) 0 ,I f- (t + W4) - I\ + II-tt)tn\(ttIda.

which is Barlow and Proschan's formula cited at Equation (5) above.

The density for y( W) is, from Equation (14),

(16) ,ii t) = -d

0{ + It) + I ,\(t + II' - u),l(u)du

which, by a change of variable of integration, is seen to be the same as Cox's formula cited at
Equation (6) above.

To complete the analysis one has to pursue the derivation of the renewal function for ).

One approach is to translate the distribution of /( It') to obtain the distribution of ), determine
the n-fold convolution of this distribution with itself, and hence, by F.quation (I), the distribu-
tion of N, and then determine V = E(.V) directly. E'xact analytical expressions can he found
by this approach only for a few special cases. In other cases the renewal function must be
approximated, either by computer simulation or by using asymptotic results. The latter

approach makes use of' the Elementary Renewal Theorem or, better, of Equation (2).

"-mo him- 6"*
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Another approach to the determination of' the rcnev al function of' I is jia ntumerttc,t
integration. In principle. knowledge of'/ I-) permits calculation~ ,I II of' the m idt

M ).F,,4,() can be obtained f'romn (2) [numnerical differentiation of' Ilk(,) to get otInk
needed here] and then the result 1-10i) = f,,11,0 - W) can be used. Then the sukcss'i~
convolutions, F"!('). can be calculated, from which, finally, M1 I-) can be achie\ed. We hai~c
not attempted to implement this approach and know~ nothing about achievable ak:curac or ijm-
puting time requirements.

Examples

The Exponential Distribution

For the exponential distribution.

(17) */j (Xl ' ~

explicit expressions for all of' the abo\ e arc casi I'. tai tIed. WeC uIS (6) it) oht,t in tilt, Uctsi[%
the excess random variable. T he "renewal density' is Il f1): 1 I. (ti I .Ihus.

(18 (1 I) Xc \( 1,"* I- f A,( " (1

i'Al. > I

wkhich is, of' coiurse, it well-know4n result. Th fe denisit\ of, ) is simlpl\ a translated exttwliltIl'

The n-f'old conv olution oif this is a translatedl gamima distribution. . ith cd f,

In Ariting the renewal f'unction, it \Aill he coti\enient to express L. as an integer 111111611C O i11t
say 1. /it. We then obtain, f'ronm Evtuatiotis I iand ) 19),

(20) PI.() ) c " I " ____- -t It A iiI

Finally, the special renewil f'unction is found to he

(21) ~~~ M/ mtm ) ll)t)II O f)



200 W R BLISClIK AND I M SC(HiAtRtFR

The Uniform Distribution

Although the uniform distribution is admittedly of limited interest as a life distribution. it
is a convenient and nontrivial example to illustrate the mixture formulation. The densitA is

1 0 < x < 1

(22) .f% (W) =
0 otherwise.

It seems sensible to assume that H > It since otherwise replacements are required \A ith prohi-
bility one. I lowever, our analysis could easily be extended to cover the case It > 0 v, ih th.:
formulas presented below.

The c.d.f. of the sum of' independent uniform (0. H) random variables is

0 for x < 0

1 for x > n'(23 F,"') W
(2) F'x)"!~~ - ( -- t " .\.- 2o) 2  

.- I- P( )" .- k)

for A = 0.1.. - I and A 0 x (A + 1),.

Recalling that It < 0. we find directly that

(24) PN'{ ( It) = it = -'"( I - t II)

n 11f "+ 1
n~tt" 1 14 + lJ

Also, from Equation (23) and the flact that M,1 (.) can also be x, ritten as

.\l (x) = / (. .

we find

(25) 1 + vf (x) - H Ix )'I +/O I0./1 I exp1--; .,, x <( + 1(0,.,

A =0, 1.2..

The densit\ of'y( If) can be shown to be

I'

II

(' ' -- 0 < I < It

0 else\,%here.
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It ItOllwxxs ron (tis that the dltrlhort of If + ~'It ) is

< I

< .1 < +

II elsew&here,

xxith mean

and x ariance

1291~2o HTI ' 7
4

The above results can readily be used to express it s at mixture. The mixing distribution
is simply the distribution of Nk, given in Equation (24). The components of the mnixture are
conditional distributions, say /, I- INI W) ti= ot IL) gi\ en .\N H n. These Lire found
10 be

(30) tiIt

In applications the conditional means of' the excess random variable gixen Ak xxould hls be1o
interest. Here we find

n ~+ I n + 2
(31) E (y( R") lVN 1,4') 1) = - __

"The convolutions of'/ I-) are rat her tedious and V. e hax e notd pursued this to get a Closed
expression Cor 11, 1-). One Could, of course. use the [lemecntarv Rene"A al hel Iem V.ith 12X I1
or better. (2) with (281 and (291 to approximate .l,1I 1.) 1 inallx . one Might use 11n apprl aKh

based on the result (BHarlow & Proschan 121

(32) W)~ f ;

in A~ hich denotes Liaplace-Stielties trainsformn. ins erting tol obtaitn 11)1f,

The (Gamma and Weibutl M)itributions

I he gammna and \ Ie ihull diStrIhUtoIns. \. ithi respecti\ c odnsitics,
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(33) I(x) I' o, )13"

0 .'< 0
Lind

0~' A < 0.

are two of' the more Aidelv applied life distributions. tinftunatelh genralr. c'sed-tor
expressions for thle basic renew.al functions. Af,(-) . to say nothing of' [the special re ii , dunk:-
tions, Alf I I. exist for neither. There is, however, a closed-form expression for the hasic
rene%%aI function for the gamnma distribution it' the shape parameter. o .is integ'_er-\',alucd (See,
for example. Barlow Lind Proschan [I.) The renewal density for the gamnmna distribution ii ti

rational shape parameter can he ohtained ats well. See Barlo% and Proschan 121 ) Sries,
expressions for thle renewal funlct ion for the Weihull distribution have been gi -en h% Smith ind
Leadhetter 1151 and b% Lominicki 1121. Finally, thle basic rene\8al function and i her quamnis
ha\ e been evaluated for certain gamnma aind Weibull distributions hr Soland 1101,I for the
Weibull by White [171, for thle lognormal, gamnma, and Weibull by HIuang 1111 and foir the
gammna, inverse Gaussian, lognormal. truncated normal, and Wecibull b\ Baxter, Scheuer.
Blischke and McConalogue 131. We \Aill use arious of' these tabulations' to aid us iii approxi -
mating Af1 ( L I in Section 4.

4. NUMERICAL INVESTIGATION

Structure of the N umerical Studies

BecaiuseC ot ! (11o;iC~lt\ 11COUntered in the analr tical in~,iiwctieaiin of the distribution
il c ecess rindifoii \aiithlc Lind tile C\a[alaionl of tile special rcC\al l'unction. SIiiUlat1ioii

poturaits %cre \-rittcn to pro~ ide an opportunit\ to iii\stigatc the properties of' both of theseo
numerical] ' \ The basic life dlist ributions that can be usedI in thle simnUlationls \ ith these pro-
grais are tilie cxptiiential. ganima. We ibull. unif'orml anid normal. (-I lie Unifornm for cotilpar i-
,onl \ ith analical results. tlhe normal because of its apparent applicabilit~ in irmad * 'ing at set of

data used as' ali example bh\ Blischke and Scheucr 101,i and thle ot her iii rcc bca Use t lie arc tilc
most imptortanit life distributions in the tniiatrith of applicationis.)

I (crc \% e shall concern tuursel\es tinl \ ithl the gamima Lind V etbUill distributions. Soni1c
prel inminrar\ resUis concerning thle special reiie\% al funictitin for thlese %\ill be dIiscLIssedIt JM
I he purpoise of the special renevil prograii %kas to pro% ide a means of' iii estigati ng the approx-
itnation to 11) (/. t/ 1. using tile asynipttotic expression 12) aind Equations 13) aind 14).

The specific results which w ill be reported are foir the fotllo\%ing paramieter conibitiatit ns

Weibull Gianima

2 1.12838 51)1

4 i1.101327 .25(1
5 1 .()8,)12 2m11
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These parameter combinations were initially chosen so tha the tables of Soland 1161 could be
used to provide numerical values for the approximation. (Soland's tables are arranged to
always ha eA = 1.) Subsequently, the new tables of Baxter, Scheuer, Blischke and McConalo-
gue* became available and these were used in the calculations summarized in Tables I and 2.
below All combinations of 1W = 0.5, I() and 1.5 with L = 5, 10, and 15 were used. (This
gave warranty periods less than. eqaal to, and greater than the mean life and life cycles ranging

from 3+ to 30 times the warranty period.) In each simulation 500 repetitions of' the special
renewal process were performed.

TABLE I - Ia/u'sAol. 1 _i /, I/L')).(
and .4 ( L ) lor the Gamma Distribution

par.nletcrs I ,I 1. : 1l1 -
II I//l)A I 1.: _ _ 1I 15 5 1) 1

0. 2 12 7 -77 7, -o 7 436

1/3 , .836 .7 5 ) .794 .805 . 7R7 t) 7 i

4 1/4 .874 -12 83(0 .841) , -l ,33 -4"
g / i .)(2.81) 858 .80 8 81" X59 8)

0 2 1/2 .h .491 5260 .539 4,4 <2 - 41
3 1/3 .(,01 .522 .5 1 .573 511 56 <'1

4 1/4 i .618 .533 58 .5(S .537 8 5,98

1/ 628~. -.. _ 0__ )

I 2 1.2 .444 35(1 .394 .413 3 3 309)Q 414
3 13 .412 /39 .41) .428 .3 o 415 43h
4 1/4 r .47( .377 .424 .440 36 ' o 423 43 Q
5_ i5 .476 .38(0 .428 .443 .,( 42 2 444

TABLE 2- Vahes ol.ffL )IL. I/E()).
and .4 L ) .lr the 1b4ihull Distribution

Parameters . I ii> (/ I. I(/.)
0 Jn /, 3 li/()l /1: 5_ I 1 5 ... I5

((.5 2--1.13 .845 .799 .814 .761 803 .817
3 1.12 .921 .832 .875 .888 .831 8/(, .891
4 1.10 .9S9 .869 .912 .927 1.874 i 916 931

1.09 .981) .882 . 4 .4 32 .
I 12 616 .532 .574 .593 .525 571 .586

3 1312 .653 .568 .612 .625 , .56( .6(16 .62 -

I 4 1.10 .66 .575 .622 .641 .572 .619 .635
- 5 .O1 .670 .581 .(,33 .646 .587 3 2 [ .646

1.5 2 1.13 .469 .372 .421 .4 3 A41 37

3 1.12 .480 .388 .431 .446 383 .432 .448
1.10 .481 .390 .431 .449 .383 .432 .4485 1.o0 .49 .397 .432 .45 -M8 .437 4 45.3

" hc~e hablc, Izi\C 11, (1), %,irl 'N, W) I mid f It. (1l dhe lotr \ t 11,% 1 g iiflitrll . inl % t , lt ~ l ]l lll l i rtirf~h1'd

tii rfihtl. ,it \ c ltill] dt lllJIh IIS. 1tlc Crtciiyl1iMIS 1 ,ir h i c it 1mritlICTc I LICS .111d ()1 i,iIu I 0 1 \kC IIL". It1 lt

c'l\,l tl\ (968 Ihic' (I) 1it I "ti i 11 0 I ll/ti ( t hldo Itdtluc t iL jt C i i l1C JS.cd iCdl Ci'tlihll Mtit

It I!' j
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Results

In each of' the simulations the average number of renewals, say if)(IL) A as calculated
(along with certain additional relevant summary statistics). The basic results for the gamma
distribution are given in Table I and for the Weibull distribution in Table 2. In each case the
values tabulated are l (I.)/L. For comparison purposes, values of I/LI'() are included. as
well as values of the asymptotic approximation ot --. ( + ) L.-- H --7 2 L

In the simulations we also calculated the sample variances of the number of renewals for
the random variable ". From these results one can estimate the standard error of Ait (I. I L.
The results ranged from less than .002 to .009, with all standard errors except those for conbi-
nations of the smallest values of (' and L less than .005. Given that the accurac, of the com-
puter simulations themselves is adequate, one can therefore conclude that we have the second
digit determined to within one unit or so, except for a few cases.

Discussion

It is important to note that the approximation based on the Elementary Renewal Theorem
is sornew hat inaccurate: I/E) I always overestimates If) (LL, with the difference, of
course, decreasing as L increases. (Thus LIE( ) would consistentl, oerestinate .,
which would lead to an overestimate of the expected income over the lile cycle of the item.)

The asymptotic approximation I (L ) gives quite good agreement with 'f) (L I'L. [he
relative discrepancy between these two quantities occasionally runs up to 2,. but is mostl\ "ell
below, I", .\ccordingly, it is apparent that LA (L) will generally provide a satisfactor.% approxi-
mation o %1I1. - certainly so in the absence of an exact mathematical expression for
i 1 ) .I Lr thbles of that quantity.
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COMPARING ALTERNATING; RENEWAL PROCESSES

Ibten 1, chizing
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Shun-C hen Niu
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ABSTRACT

NlICM1i condiionst' are gkten lor siochisiie comparison (11 1%k .tthernatting

re nett d roceses hi'sed on the on nept of u ii lot mi/dti in Ihe eCNU t IS LI~ed
toi c. mpare ci nipi Ti1CMf A nl s~ stern perfo rmn e processes in mid mid ned rehda-

1. INTRODI CTION AND St NINIARY

Comparison of stochastic processes has been a rapidly growing area of research. In this
paper, we will study alternating renewal processes ( ARI) X= A (t). i > 01 where the state
space S = ilO, 1) and the holding times of the process in state I and 0 are independent random
variables having distribution functions 1,and G. Throughout this paper, we assume I- and (i are
absolutely continuous with failure rate functions 00(F and qW( , respectivel\. We shall dcnote
such a process by (X. r W , (/ 0)). Similar notations will be used throughout.

Let X AU?., E T) and W t, / E T) be txwo stochasiic processes. \\ sa\ A is

sr~ulhil/i /anwer than Ydenoted bv VY V iff I:. /1"Y) > K () for all noindecreasing
functionals I for which the expectations exist. It' V and )have the same distribution, thent we

write X = Y . In a recent paper, Sonderman 181 presented a set of sufficient conditions, such
that stochastic comparisoin between two seizri-Markov processes can be made. B\~ speciati/ing
his conditions to the case of' alternating renewal processes, SonderIman (T heoremn S. I of 181)
obtained the following result.

THIEOREM I (Sonderman): Let ( 1' if,). iii') ft - 1, 2, be iwoi lternating~ rencwifl
processes. Assume that time 0 is a renewal point lor both processes and

(b) r1 fo) >, rv0,

207
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(C) 1 1 /(

for all u. 0, then there c~ist m~o ARPsTo andl defined in the sainle prohht\ spicc

11 Such thait V' . I .-1 2, and I' < en' h iii Q

-rhe p)Urpose Of this note is to Shlim that Condition',s h) And (L inll heoi-cni I Liii Nhe
%cakcnetl to

Ib 1(0i I i,(\ I Mliencver u

(c') q1( (u ~ l ceer i (

The proof of' this result and tmo immediate corollaries '.kill he presen ted in Sect io n 2. Sect oil3
contains sonic remarks on the nmain results.

2. PAIM~ISE COMPARISON OF AILERNATING~ RLN[F\NAI PROCESSES

We shall start b\ deserihing a constructin due tio Sondertiian1 181 MlInch r-ep"ridC1 alltc i

alternatin. renek~al process A, 1 0 (), q 0il h ased on a Poiissoin proc:ess. In iirdlei to doi that, thc
billiiwjng technical assutmption onl i (t ) and el it) is needetd.

\SSI MP PI( ION: Ihe alternaiting renewal tirocess (,rI I , (I (I is assumed Toi hc iilm -
mciahl'. i.e., there esists a real number A < 00 such thatl sup I) 1 1 (1 1 A is called thle

itfin~li M HI/c.

AS discussed in Sotidernian 18. pp. 113-1151. this condlition can he relaxed i(i the case
where fadilure rates alre unlil'Oirmlv hounded omer finite intervals. Let A he thle 1-unih1,1iM1l/atio
te if' A, thle construct ion taln he separated i ntoi t\% stelis. irst a Poisson proces s \kit i rate A

generates a sequence (if' potential transition epochs i t. i (I) w1\here t, 0. 1lien a dliscrete
time stochas~ic process is constructed oin t, i > 0:. dectermining whether each potential transti-
lion epoch is a genuine transition and, if' So, thle rie" State of the process. Spectili1Call\ let

S, I, ), it 01 he a seluenIce i1 ifOrderetlpair-s Of' inoteger- %~ a I uct rantoini ari cs. k% here S.
his the AlUe I iir () representing thle state ii) the process mnelae~ alter 1, lk:e i wiac

In It " ni if' the last genuiine tranIsition1 i t , .We distIme al gentILine tia1siiiin iicctLi
at I =(1, I.e.. J,, I) [hle Initial -,tate .S, = (l) Couldl either bet gi ell or ha\ e anl iitial p[ribi-
hilit\ distrihution. I lie Transition priilahi lilies (&f J, 51,. it -!)) are defined asi,

I al',, defineC a neN p~rocess Toit 1 0! h\

I bell it follow I ron I hecoremn 2.1 Oi' Solernianl 181 thu k

W~e %%ill need thlt fiillinig lernm fun, ainidil I Chitn1111 ~. I C111nl1i 5ek' its
I fhcorcmi 3 1 iif 1
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LEMMA I Let = IA,,. n > 01 ) = I,,. , > 01. and Z = ti,,. , > 0i be three
.iscrete time stochastic processes. Suppose that

(a) (\',IZ,, ti 0,. , . ) < ()I , = z,,. 1 , 0 )

and (b) (.A, .X,, .0...., -, , = . )

( ,) = 3 ..... , = , ' , ,, = C,,, 0 >) 0)

whenever . j, .,, 0 i , / - . for all i > 1. Then there exist two stochastic processes
S .1,. , ) 01 and = ),. n > 0 defined on the same Drobability space such that A' = A,

= V, and N < )evervwhere. hence, N < 1.

We are now read' to state and prove the main theorem of this paper.

THEOREM 2: Let (A", r,('), q,()), i= 1, 2. be two uniformizable alternating renewal
processes. Assume that time 0 is a renessal point for both processes and

(a) A\' 0) .2( ),

(b') r,(i) > r(v) whenever it v.

(c') q I(v) < q2() whenever it v

then there exist two new processes V' and X2 defined on the same probability space Q1 such

that A- '. 2 " .2 and A' ( A' everywhere in 11 , hence X' x
2.

PROOF: The proof is a modification of the one used by Sonderman 181 to prove his
Theorem 3.2. Since both processes are Poisson-uniformizable. let x ) 2 sup irM, q12()1.
The basic idea of the proof is to generate potential traisition epoc'is for both processes by the
same Poisson process. Let (1,,. n > 0I be a sequence of evemas generated by a Poisson process
with rate k. In view of Lemma 1, we need only to show that the two discrete time stochastic
processes {S,>. , > 01 and INS,. n > 01 constructed according to (1) and (2) f'rom A1 and A2,
respectively, satisfy the following stochastic order relationships:

(S', I =, 1 . ,,. > 0)
2

( ,2 = .s ...... = S, . :,, / 0)

wheneer .s ,2, 0 i i /.- I for all I I, or equivalently.
(3) ,(.S"  I , . .l ,S.. . I= s, 1 ,,. I > 0)

I,(S,2= I .s2 .s .... S? I , ., . > 0)

whenever s,' < s,, 0 < ( ( i I 'm all.i > I.

Supposc (s,! .s, (. s," I). and let J,1 A' and .1,2 k where
0 < A' I and1) <A /
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(ASE I: Suppose .s, 1 , hence, ,; =

In this case. A'  k and 1, / < , - ,. Then by (I) and condition h').

lcf'' hand side of (3) I 10, )/ I - r, 0, -I 'A = right-hand side of
(3).

(.\AS 2: SUp-,:LI', 0 - nd L

1.h.s. of (3) - q tI,. I )'A - 1 (, tA,),A,' r.h.s. o C 3)

C' \Sl 3: Suppose s, i :

InI this case, A > A-, and t I,. Ihen from (I) and condition (c'), we haie

l.h.s. of (3) (I ' ,A /2(, I ,i = r.h.s. of (3).

The conclusion (tI-hc ihL, rern now follows from Lemma I since

The following corollaries are immediate.

COROLLARN 1: Conditi,,ns (a), (b'), and (W) in Theorem 2 can be replaced by

(i) \I (o) .\-(o).

(ii) r() or r,(O) is nonincreasing in t.

(iii) q1 (r ) or (12(f) is nonincreasing in t,

i I rl(,) > 1-,)0 and q'(1) < q2(1) for all I > .

PRO()- Suppose u < . If r1(t) is nonincreasing, then tj(u) >I , ) > r.(v). If
I,,) i, nonincreasing, then t,(u) > ri(u) ) r'(). Ilence, in either case, condition (W') of

I heorcm 2 ,, satislied. Condition Ic') can he checked in similar fashion.

(()IMI 01,ARN 2: Let (X. r(). q ()) he a unil'ormi/able alternating renewal process.
then there e\is( t,,o alternating rencxal processes (). .i(A, t//(/)) and (/. r/(t), q/(' )),
\w hcre

1/0) Siup (l ,. q/() = nf q k

r) 0) int , ), / )= sup q (S),

such that I is hounded slochasticall. from below by / and from above by ).

* I --. - .
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PROOF. Clearly the f'unctions rt U), q, (tI. r ( zi nd q)(1t) are non-increasing in 1.
Therefore, the conclusion is a direct consequence of' Corollar\ .. F I.

3. CONINIENUS ANDI AD)DITIONS

MI In Theorem 2. the assumption that time 0I is at renewal poinlt f'or both processes can
be relaxed. It is sufficient to assumne that at time 0, if' both processes .lre in state I. then 2 hals
been in state I longer than A 1 and if' both processes arc inl state 0. then AN has been in state (0
longer thanl V2.

(2) In at loose sense. the processes / and Y in Corollary 2 may be viewed ats the greatest
lowr bound andI least upper bound, respectively, for process X "ithin the class of' alternating
renexxal processes "~hose holding times in both states are l)IR (decreasing faiilure rate).

(3) An alternating renew al process miay be used to tmodel the perl orniance of' a repairable
component in a maintined reliability systemn (see [31 or Chapter 6 of* 121). The suceessix e
operating (or repair) times of' at repairable component are aISSumend to be independent and ident-
icallv distributed random xaribles. .\Ilcomponents operate indlepcndentdy of' one another. Let
VO ) be tlie statte of' a component at time t. w hereII if' the componen1C~t is Up att timeW

V )0t0 othemise,

then A V (A O,' t 01 is an alternating renex\ al process. Theref'ore. Theorem 2 may he used
to compare the performance of' two maitntained reliabilit\ systems con sisting of' ii repairable
coniponents. Specifically, let (h he a coherent structure f'unction (see 121 ) and Xi' = A;'"(1
1- 0) be the performiance process of' the ith componetnt inl /th systems, wAhere iI

n, = 1. 2. Define N'), (A 0X A)....,(1) 1. 2. lix forming (the product of'
probilhilit ' spaces lor individualil componen11ts the fl'0lox inc resulit foll1ox\s (lirectlv f'roml
Iheioremn 2.

PROPO)SITION I: Suppose tha

(i) x~, I(o) v,, o for all i - . ti

.\ItAl component perf'ormance piocesses are unif'ormi/able and] the faMilure rates s~ltisfx\
the conditiotns of' Theorem 2.

T hen there exist two stochastic processes (b)I and (1)- defined onl the satme probability spaice QI

such that b~14d) 1i~) '0 o), d. 1 ( '0 01, a nd d' d) exer\ \% here i n II

(4) It is interesting to point out that ati example (if' Miller 13, eviample iii. P) 3081 sho\%s
that increasing the filure rate of' d0\k ntime1 distributionl of* a coniponelt does tnot nccessaril.
increase ( sto hastical lv) the time to first sx stem filmure or svsten ax ailabti1. Ot ur resiilt ("ec
C orol lar% I ) shows that f'or svstemls whlose repairable conmponents litixe I R uptimei Ind dx i

limec distributions. decreasing' the f'ailure rates ofI' uptime distributions Mid Increasing tlhe failureC
rates oft do\% re distributions dto iniprox the s" stm perf'ormance
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(0) Theorem 2 may be used to establish hounds for performance measures of' maintained
reliability s~stems. For example, one can hound the performance process of' a repairable comn-
Pontent by that o' at component A hose uptime aLnd downtime distributions are exponential (This
is at special case of' Corollary I here or Th'leorem 5. I of' 181) Maintained s~ stems with exponen-
tial uptime and do~mlme distributions has been discussed in Brown 14!. Ross 16 and 71. I lo%-
e~ er. thle bound', obtained in this fashion are usually qluite loose. Fintally, %ke present the to)0-
iowing examiple to illustrate (he ideas involved:

LA 1 ~1'L (isider a itko-conmpoK'nt p -l~ \ lni. Let I (G) be the uptime (dowAn-
time) distribution of component I and A (p. 1, -'*!Q. onstant failurc (repair) rate for component
2. Assume thle S~ steml start., operation "sith inft W omponents ne". Suppose we% are interested
in the expected time until first system i.)oLre, 1K0I . By conditioning on the state of' thle
second coimponent when component 1 for the first time, it is not difficult toi see that

/1 ( T) f d.. 01 t, If P,* d,/ (t 1 V(mliil).( 1) 4 {H) (. 11 (1 TO 1)

%k here D) ('U) is a random ' ari.OhL hli\ ing distribution 0, (exponential distribution wkith paramne-

ter A ) and f) 0~ C- -- ' I -' After somne simplification, we ha~ e

,j ll 4 1 1 1 ( ) J [ F A ( I i ) ) I t ,]
L ,( -'' ' - -- - - 6 /.6*,A.P .

Thlerefore. "C c ~ hou~nds for L ( 10) for a t\o-ciimiponentl parallel s~ steml \Nhose first com-
ponent has the samne performance process ats aho~ e and thle second coimpoinent perf'ormance
process is unif'ormii/ahle w ith failure rate f'unction A it) and repair rate funclion m 0 ), i 0. O
Specifically, let A = sup 10i,)I A in)' 1A ItfL. su p. (01. and y - in' 11A (01, then

11 'U t) 1(IIG
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SHOCK MODELS WITH PHASE TYPE

SURVIVAL AND SHOCK RESISTANCE

%1arcel F. Neuts-

fill-, sill o/ Ihi iiijii

Manish C 13hailucharjee-
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Nesclosu re ihei relis for shock movdels in rel ,1hi I6 is I h, \dc !io se ned
11' the- number of shocks to Citlure And [he timles heisseell [he Aii[,5d1 i 10Ak
has e prvhbai distrihuliuns ot phase t pe. titit so hads lie tulleu toiilii
t'llI-dislrihutiotis ire highi> %ersi e and muok he Used to Moidel TMM v qu.i lid -

tie tea lures of* practical interest. I he are also sue Il-suited fior a go f11thrnic im-
plermerilatIin 'the cvnlputalioi )a aspects it' our resul is are diSCusSed in so me

1. INTRODLCT1ON

Shock models which relate tie life distribution M-() of' a device, subJect ito 1'iluro hx
shocks occurring randomly in time, ha~e received coinsiderahle attention in recent years. It' P',
is the probability that the dfevice survives A >- 0, shocks and A W' is the random number o
shocks in (0,11, the suri-.AI probability., 11 1- /1 ( -I), of' such a de\ ice is gi\ en b\

The most general shock models aire those that correspond to M,) Such that '5\ 01 1 01 is a
general counting process and I >, Po, P, >, T, >, . lrerest in anid published results for
shock models center around proving that, subject to suitable iassumiptions on the point process
NW otI(f shocks, various reliability characteristics of' the shock resistance probabil ities I '1 arC
inherited by the survival probability lit) in continuous time.

The first systemnatic treatment of' such shock models "sas gil en h> [sar. %larshall and]
Proschan 151, when VW(1 is a homogeneous Poissoin process. 5-Iliamneed And t riischan Lon-
sidcred the cases xs hen VIW is a non homnogeneous Poisson process IlI and a n(Inott irmrs

'I his research % as supportled by t he NatonalI Scienct Iit rnOLIMIJ1ii under (,ram v No t N ( ,- "00311 inod hi t11c \i I w-,
O ffice of' Scientific Research uinder Girant Nii \tFtSR-77-323ti

**his research %itas partially suppiirted hi research prii to 441 /( Sit )S - PR-I i he t ottltii s iii telo of liigcllwn

Calcutta
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pure birth process 121. Block and Savits 141 treated thle catse Mi en the Interirri'. imc. bct mce
shocks is NBUF I NMT. I- NBI (NW] I anld I hall 1XI derix d ineetn.hLI ci11 lpei.\e
w eaker, results x% lien \O I is a clustered Poisson priCeS"

In this paper, x e obtaini preSerx anon thcorems f~or the shoick model (I I heni- , is of
phasc-typew and so is, the distribution of' thle interarrix al time betx eeo sho cks. \ (t /IsI, the nt
phase ty-pe renewal process 171. 1 he relex once ot' phase tx' pc distrh bions0 [IS hticncef ( rth thhtrexI
ated as PI I-distribut ions) to thle algorithmic ialvsis ot' thle timec dependent heha\ ior ()I* Stch~s-
tic models has been discussed lix News iii a Series (if' papiers Star1tingt kll th6) \ 'otIpre~henl-
sixe treatnient maN tie IWOod inl Chapter 2 of' 18i. P1 I-distributiOn-, proxide iii alternitixl e poilnt
of' depature in modelling real lit~e distributions vwithout thle classic 1emlorx le%1SS plIit)crtx arld
xkith possible propel uniniodailit\ i IUilodAlit P11-disltibutions1 IMII d theepientl
Hrang Lind hx perexponential distributions as x er\ spcil CISeS, III addition. thle\ haxI eOthe
desirable liroperty of' being closed under hoth i inile eon 01LI IinN. iiitlld 1St Lit1cS eA aleOLire P~l
sessed by none of' the well-knox'. i nonparamnetric claIsses (i' lif'e distrihutIiin1S.

In Section 2. the basic properties of'P I'-distributions. nee~ded ill tile seqjuel ire briefi
rex iewcd. The main theoretical results are discussed in Sectioti 3. AlgorithMLtci inSIdIcl tII s
are presented in Section 4.

2. PlI-DISTRIBUTIONS

A densit\ I&I (in the uionnegaitive integers is (,/ p/loe tipe, if and (ilnl\ itthee it

Ifinite Markox chain xx ith transition lirobabilit niatri x Po(f' order t 4- 1 oiit he Ilmirll

and inlitia priihabilitx xecctor 1/3. /3,. such that ip, is thle densitx of the tinie till tihwiptoin in
the state i + 1. The nmatrix / .S is nonsingular31 and the sl astii nialtli I I
S /3 may he chosen to be irreducible.

I hc (lensit 1p, I is given by p,( = /3, . 1. and p, = 3 SV ' S f' or A > I Ii this patper p.
\% ill he the density of' tile number (4' shocks to failure in aI rehahilitv\ shock Model WeC x il
aIssum-e throughout that /3, . -0. We also clea rlx haxc tat

/P p L3 iSe. fior A 0I

The niean pl4 of- p. I is gixc~ en. jb/3 cSIi.

A probahililx distribution n tliiit I is' p/iJai tipc if' and onl.\ if' there emlSts a finite
Mlarkox proucess \k.ith generator () I tic I m

xith initiail probabhiit, XCuO let ek,_ , SU 0)lt,tI / IuS the ilbiutuii ut lic lineL till
absorption in the State mn + he oini i\ / is tiiitSioguii and the generatlit
I + (I " , , ) I nIlux he bioSeitli 1be h1iredOuhi I iW duibuituuu(io / IS L! is tixe

12?I C I I 1w I~ I -0
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We shall denote I - F(x) by F(x0. The mean AI of /--() is given by A = - C " ,. ]hc pair,,
(aT) and 0,S) tare called repr'setlbations of t(-) and [pj respecti\ely Renev~al processcs i
which the underlying distribution F(.) is of phase type were discussed in [7].

Many derivations related to P)ii-distributions involve the Kronecker product . X 1 -
two matrices 1. and il. This is the matrix made up of the blocks LI,,.}. Provided the rmatri \
products are defined, we have that

(3) (L ® Mi) (K 9 11) = LK ® M/.

This property is repeately used in the sequel.

3. CLOSURE THEOREMS

We first consider the Esarv-Marshall-Proschan (E.M.P.I shock model [3.51 in khi.h
{N I(t) is a Poisson counting process of rate A

TItEOREM I

If the number of shocks to failure has a discrete PIl-density (p.k ) 0} with representai-
tion tP.S), then the time to failure in the E.M.P. model has a continuous PIl-distributin I/i
with representation [8k (S - /I.

PROOF:

Since Pk = 3 S e , for k > 0, we obtain

(Xt01
H = () e (A S ' 

= exp IX IS - 1)tc, for t - 0.

This proves the stated result.

A number of interesting quantities may now be expressed in compulationally convenient
forms. The .- th noncentral moment of //(.) is given by

(4) p.,'= j!\ '3(1 - S) 'e, forj >, I

The density h(t) = H'(0, is given by

(5) h(t) = A exp [A (S - I)t] S0 for r ) 0

and the failure rate r(t) = h(t)H '(t), equals

(( exp (A S) S(6) r(1) = A fo r/ I> 0.
exp (A I -SI'

Theorem I is a particular case of a more general result in which the arri\als of shocks
occur according to a PiH-renewal process [7]. This result is proved next.

I et the interarri\,il time distribution F(.) be of phase type with irreducible representation
(c_,T) of order m. Nlen ".., I = I -(k (, is positive, a geometrically distributed number (,I
shocks occur simultaneously at each shock epoch. As in 171, we introduce the matrices ')(A, I.
A > 0, t > 0, which satisfy the system of differential equations

1A
r 0
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(7) P'(Ot) = P(Ot) T,

P'A,) = P(kt)T + , n,,,i P(k - L~tT r, A > I.

for t > 0. with initial conditions tN(A, 0) 8,A I. for A > 0. The element 1, (A.0) is the condi-
tional probability that the Markov process with generator Q* = T -4- (1 - ,, )":i . is in

the state / at time i and that A shocks haxe occurred in (0. 11, given that it started in the state I
at time 0.

The Markov process Q. may be started according to any initial probability .ector y. With
(I - t,,, . 1, the P11-renewal process is started immediately after a runewal epoch.

With y = -A' 1 aT 1, where XA= -a T 1 v, is the mean time between shocks, we obtain the
stationary version of the P[1-renewal process.

THEOREM 2

If the shocks occur according to a PH -renewal process with underlking representalion
(a. 1) and the process Q* is started according to the probability \ector I and if' the probabilit\
density p&, is of phase type '%ith representation (,,.S) of order i, then the distribution It-) iS
of phase type with the representation

(8) K 93

K 7® T / + T ' ® ( a,, S) S .

of order rin.

PROOF

By the law of total probability, we have

(9) I) = z P(A, i) S'tr

- (y 0 ) P(k,) (_S' I(9 e)

- ( ®__) Z(i) (c 0 e) fo r t > 0.

The matrix Z(t) = L P(k. ® SA, satisfies

Z'(t) = , S '(.l A t® ;S

+ A k P k -v., 7 (
A-t 9I

i) IT® I) + I P(I, ) T" I 1.

= /a IT®/+li 0 - 9,,,. ;I,

and clearly /(0) = I ® I.
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I hs ii-plts ha, /i I - e p (&(), I m f o U1>n subsmitution into (91, the proot is

c(InIplete.

[Vi lrH (r '(I

I. If the nulber 0f shcks to failure i, georueiricall, distributed. i.e.. I', = K, for A > 0.
U< 0 < I. then

1W)) t11(1 i- y . Pi j l ~ r < - xp ll  l ,. I I ( ... __ I U e 1) j .

for t > 0.

2 11 the mn ',/l(k m' C oI'JI failure ()CLIe it mild (nlif it a shock oc Lur
, 

khosc magnitude
exceeds a critical randomi/ed iireshoid ) ,kith disirihution 6 1 11 the magnitLudes 0 1 succes-
sive shocks are independent i jth common dismrihuion ft I. then

f

111) P =J. I-"(. i d(;(xI for A f0

It follows, from I11Ut that

12) 1 it 1 =f } exp il -.- II -- ,, ... :!Fi) fixIj ,_1': j<i(,l

for fIt ,. that it is I mixture ( P1I-dis rihutin,, I1 I is, a discrete distrihutiM 'ith

finite support, then tM.) itself is of phase t p.. C ase I abo e corresponds o (I ) being
degenerate at it

3 In 1/w L(uiidtuive d'tmi', tmodd., [the damlages arc additive. With the saill distrihutions I it
and 6 1,, in the prc,:ding model. we obtain

13) P 1 t" J(ix, tor A >- W

If !he dit ihtion ) !-s of phise tqe 'Aith representation 6,L and A X, are i id
with common (distribution [A.t, tfhen

f-15. = f (i(si <t!' Iil = 1 I,' . + ... 3 .\)

1 exp . Li V V I! + Th,

where .I = , exp I v I.) dit . It is readilk seen that A is a suhsioch,tic matrix of ,pectral

radius less than one. The density pl is inerefore of phase tspe If the shocks occuF icciLt0dIn
to a P11-renewa process, Theorem 2 I be applied to es aluate tI/I). [ie matrix I i,,
obtained bY numerical integration for geieral distributiiins /t). If /-I itself i,, if' phase Itpe

with representation (Pr .R f then

f14) .1 = exp Ux )4r cxp IRA ) R (A

it X 'rI exp l/t) c exp (Rx) i(1 9 R

X i/ ®,)I/. IX X R] X /: R <

[he cigen ,alijes of L nid R all lie in the open left hall-iplanc h ie same then Illds tIrue o r the
Kronecker sum 1. Y I + I , R. so that the nincrse exis,

The no ilnegati,.e rcotangular malri\ I - I/ X / / X R I I/ X R I nat csill he

computed h\ solh ing the mstemi

h, blnck ( idrISS-SCidel itertion
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4. AL,()RITHMIIC ASPECTS

We shall discuss the computation 011 tile function /t). which is gi en h% theorem 2. It
readilk 1'ollos t'rom (I that the mean bl' off t () is gi, en b. , 'p'. where Ai' and /Kl' are the
means of !/), and / (-) respecti\el.\. %heneer the PII-renewal process of arrivals is started at a
renewal epoch. With general initial conditions, the mean h' is given b. A'/u' + AI - Aj'. w here
A - I FI c.

Knowledge of the mean /h' of //(-) is useful in determining the interval o er v hich we
% ish to e ,aluate M). We may. e... %,ish to choose the mean as a convenient unit off time.
This is accomplished by replacing A b hl'K A different rescaling may be chosen if the ele-
ments of h,A are ,er% large or if a different time scale is desirable for the practical problem at
hand.

We now assume that the matrix K has been appropriately resealed. The function flt is
computed by numerical integratrion of the system of linear differential equations

1 S I 'i00' _ lhk, for i > 0,

() X< .

and setting lit') il I iI , for t > 0.

It is convenient to partition the \ector vI00 as [x00').... ,il. x, here the .ectors
W') are r-x ectors. We also set .1 = / ( ,-,. .) '.S. The system (15) may then be rewritten

ats

1(rI .1 -'I- I his s stern may be conveniently solved by a classical integration procedure.

Such Is Runge-Kutta. \, c see that the ,ector I ,, ) TI f does not depend on i and needs
to be ealuated onl. once in each computation of the right-hand sides of (16).

In manx PI I-distributions of practical interest, such as, e.g., finite mixtures of Frlang dis-
tributions, the order m of 1 may be large, but 7' T' and t hax e very fek noncro entries. It is
then advantageous to %krite a special purpose subroutine to exaluate the right-hand side of (16).
1,, so exploiting the sparsit. of' . T and a. it is possible to reduce the computation time
greatl. . The mean hl'. or in generad the scaling factor used in selecting the time unit, may also
be utilized to choose the step si/c h in the numerical integration of the s. stem (16). In similar
problems. %Ae have usuall. made t,,o runs at least, one with 1/5) off the time unit and one with
I/10) of the time unit. If the results at corresponding time points are not suflicientl. close.
further runs with smaller steps are made. The computation times of such runs increase rapidly
and efficient programming is desirable. Other methods with a \ariable step simc and error con-
trol may also be implemented. These classical topics in the numerical integration of' ordinar\
differential equations need not be belabored here. In all cases, the use of the particular struc-
ture of' the matrix A' is fully worth'. (if the additional programming etlort.
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AN EARLY-ACCEPT MODIFICATION TO THE TEST PLANS
OF MILITARY STANDARD 781C
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ABSTRACT

This paper is concerned with the statistical test plans contained in Nliht,tr%
Standard 781C, "Reliability Design Qualification and Production .\cceptancc
rests Exponential Distribution" and the selection and use of these plins
Modilicjtions to the fixed-length test plans of' MIL-STI)-T7 l( are presented
w4hich allow earl.-accept decisions to be made w.ithout sacrificing slalislical %ali-
dity The proposed plans differ from the probability ratio sequential test, in the
Standard in that rejection is permitted only after a fixed number of tailures
have been observed.

I. INTRODUCTION AND SUMMARY

Military Standard 781C, "Reliability Design Qualification and Production Acceptance
Tests: Exponential Distribution" [21 covers the requirements for reliability qualification tests
(pre-production) and reliability acceptance tests (production) for equipment that experiences at
distribution of times-to-failure that is exponential. These requirements include: test condi-
tions, procedures, and various fixed-length and sequential test plans with respective
accept/reject criteria. This paper is concerned only with the statistical test plans and the selec-
tion and use of these plans. The Standard contains both fixed-length test plans (Plans IXC
through XVIIC and XIXC through XXIC) and probability-ratio sequential tests (Plans IC
through VIIIC and XVIIIC). Each fixed-length test plan is characterized by its discrimination
ratio (d), its total test time (T), and its maximum allowable number of' failures to accept (A ).
If a fixed-length test plan is selected, the total test duration is essentially set in advance. The
only way in which one of these plans can terminate early is by rejection. For example, Test
Plan XVIIC terminates with a reject decision at the third failure if this failure occurs before 4.3
units of total test time have transpired. An accept decision can only be made when 4.3 units of
total test time have accrued. Even if the second failure occurs very early, an earl. reject deci-
sion cannot be made; nor can an early-accept decision be made if no failures have occurred,

*This research was supported in part by (onlract N0W014-79-('-07 ' v1 ith the Oflice oif Naal Research
-This research was supported in part by Contract N00014-75-(-0561 %ith the (tlice of Na,al Research.
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sav. bM time 4.0. Inl both of' these situations. an earlh decisn 0 WMI iul Lik sItatistic.al \ ildi III

tailing to guarantee the operating characteristic o)I the selctcd plan N\ioreos er, aI eati 1. rcick
decision b\ the c01nSLimer \%ould probab\ Iolte Coit"11,1tuil tfirCinIeI1I' %%th Ie~ pro'(dueCI
I tNi\e~er, an earls -accept decision b.% the conlsumer1C \%UId not heL ',ujbject to much anl ohicclioi
.SuCh al dcICiSion Might seem) vcen desirable to the C0inSUMer (gus erment I it testing coists "cc
SUbstatiIa or it' schedule deadlines Ac re near. t-his paper presents mod111Ica11t1 iiOn tile I'I\CLd-
length test plans oft N1 I1 -ST)-78 IC \%hich alli\ is ars-acptdcisionIS ti be made \% it In Ut

sacrificing statistical s alidit\ . The proposed plans dfill-er l'oon the proh)Abilit * Tatio sequenCtial
tests in the Standard inl that reject ion is permitted onl aile(- I Ii sed nu mber o ft ii tres, ha e
been obserCed.

2. THE FAR IA-A('CEPT CRITEIRION

The early-accept criterion \%e ssill consider is as folloo)\s. ( onsidet a test plan P) Vi ih
discrimination ratio d, total test time /A1 maXinlUin allo"sable nuLmber otfiue III ACI ep
A (A 3 It., and consumner's risk 13. Consider alternatis e tes pmIs P,. ,P .. . . .. , ss \ii thle
samne discrimination ratio. maxmu oi ble~l IM 171 numiiber ofl fadilures to acept / M . t Ild

totall test timles I k~ "I MIo -hee~' ' I" the 1 p3) t pecnileM 'It a chIl-squLred

distributionl 'kith 2.1 " 2 I9C degree ot feediLI Iit [he pri iluceri)s risks I(I ' lestpln
.P' ((V < / A ) are in decreaising order of' 1 thle test tinlies aIre in increas"ing o (erit ., itld Ihe
consunmer's risks are constant in / (each is /3 I

Jhe carl\ -accept criterion is asfi hs s 1acpt A time I . at ot airehae
occurred 1.p1 to that timle. T-he reject criterion rins1,111 as1 bet c' re ree t i hc I l,1iiure
The early- accept tmotdification alters thie irigi nal test11 1)1,111b at inp h1%l C1T-aI1cpt decisions-
to be mlade at A time points" prior it) the tltstteI.J1IS IIc/ \N a resu l te prdct k ifo
tesl plan .P is altered. .\lSo, esen thiineli each testl In P ' ,l t 1,11 tic r1Ik
J3, and es en though thle alternatus e test planls P.,.. . . . s crc i ( (Ih Iminsiid wi ll icCpt
decisions, thle con1SuiMers risk oi'fithe resutine110 test is, M-t 1Iiamt.1IIe:l it1 /. ind ,'ilc.i his1

signiticantl greater thlan J3 . It is true tHaMt if) an erl\-,1ccept dICOi.M 1,u is LI itad at te /I . t lien
test plan )' . had it been selected prior tol the slt IfI testIing. %%o ( ould C hi ecJhed the' ,) .iivie co-
elusion. BLut, by allowig the test reslt1s tii Cfclcti ls ictateC st1Itc test pan Is useCd, theC pr-
babilits calculations ins oled in determining thle costtI isk 1Ar mi- I(dfitid hb\ thle Condi-
tioinal problabilities sshich mu1Lst euinsequentl\ be incorporated ito them tilhe prToduIcers and
clinSUmer's risks f'or the modified test 1plan1S Ire COi)iuted J, tlloss I ci P,~ (A denot0e thle
probabilit iif' accepting Allhen thle trueC mean time betss ccii faiilures, I M I lIt vNi I A

P, (A PI lrIccept at tithev /

L.et I (./j Iz Pr Iaccept atl ti me 11

TI I It R IA 1: Suppose thle trueC M111I is I A . thenl

base been made earlier). T1hus.

ii 11 dct l " I, m hiii% ti h, rm , \-i ti11 S 1), 11, :-vlnlI C 1I
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Prlexactly itfailures in 10, TJ) = Pr fJ (accep at lime T and

(J - 1) failures in (T, T);.

wherc U represents a union of disjoint events.

(XT,)' exp(-A T,) ' [T,-T)I' " exp(-A( T -I/4 = . (1) •+ ( .
.1. j- /)'

The consumer's risk for the early-accept test plan is PI(l) and the producer's risk is
I - P,(ld).

3. EARLY-ACCEPT TEST PLANS

It has been proposed that the early-accept criterion be used with the existing parameters
of the fixed-length test plans of MIL-STD-78IC. The effect of incorporating the earl.-acccpt
criterion into these fixed-length test plans (without further modification) is shown in Table I
In all plans except Plan XXIC the consumer's risk is increased and the producer's risk is
decreased. (Test Plan XXIC is unchanged since it only accepts when there are no failures.)
The changes are substantial, often the consumer's risk is more than doubled and the producer's
risk halved. By altering the test time and the maximum n. niber of failures to accept, it is pos-
sible to correct for the effect of the early-accept modification and closely match the operating
characteristics (at two points) of the standard fixed-length test plans. The corrections for each
of' the MIL-STD-781C fixed-length test plans are given in Table 2. Accept times f'.r these
early-accept test plans are listed in Table 3.

The corrections were computed by defining functions ., ( 'A ) as the producers risk for
an early-accept test plan with parameters T and k, and /1 ( TA ) as the consumer's risk. As I
increases ./, increases and .10 decreases, and as A increases /,, decreases and /,, increase,.
Because of the integer restriction on A, it is not always possible to design a test plan to achiee
specified values of t, [3 exactly. However, an algorithm which will determine an approximate
solution can be constructed. The algorithm f'rom which Table 2 is derived first fixes A and uses
a quasi-Newton method to determine a value of Twhich will achieve the desired o -xalue. lhe
process is then repeated, varying A in accordance with a bisection search, to determine a -,alue
f'or which 3 is also close to the desired level. Some additional checks to reduce the calculations
are also incorporated. It should be noted that the test plans of Table 2 are designed to haxc ok

and [3 levels close to the nominal values of the standard test plans, not the actual ,aIlus. (See
Tables I1 and C-I in [21).

4. PERFORMANCE OF THE EARIY-ACCEPT TEST PIANS

Table 2 shows that the maximum test times for the early-accept test plans are suhstantiall%
increased from the standard test times. Ilowever, the expected test times for the early-accept
plans are much smaller than the maximum times, and compare quite fat'orabl\ to the (fixed)
test times for the standard plans.* Graphs of expected test duration ersus true 5f1W: for the
early-accept test plans appear in Figures 1-12. For comparison, the ligures also graph the
expected test duration versus true MTi[ for the standard test plans. 1 lie earl\ -accept plans

"t he expected test Iinies for Iarl,-Accept I'lins I( and ( exceed those lor the ourtti iiting stmd.,rifd plmn, h I
ctonsiderale range of the true MI I the reason or l hi's i', Iliai ihe i -ac.ilpitr , 

hthxt theseikCT Mld
con'iuner's risks suhstmialtt closer to the nominal at ',t han di the itndiltd Ilus
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I"ABLE 3 - lAct'p Ihmf' o' /lrh-..captT it'd Pan.

Test Plan 1Act [imnes*

IX( T, 4.2 1-1 6.1 T= 7.9 T, 9.4 T4  11.0
/', 12.4 T, = 13.9 T- = 15.3 7 = 16.6 T9 = 18.0
"1, = 19.3 t11  20.7 T12 = 22.0 11; = 23.3 T4 = 24.5
' 58 Il, = 27.1 /1i= 28.3 T, -29.6 119 = 30.8

S 32. 1 T,2I = 33.3 1- 34.5 1 35.8 7-, = 37.0
F 38 TI1, = 39.4 1 40.6 1,, 41.8 7 ,,= 43.0
I , 44.2 1,,j = 45.4 1., - 46.6 13 47.8 T34 = 49.0

S 50. 1 1;, - 51.3 1 52.5 T18 53.7 Tl = 54.8
l, 5.0 4 = 57 2 7' 58.3 [4 59.5 T44 = 60.7

1I 61.8 f4, = 63.0 14 64.1 74, 65.3 T49 = 66.5
S '.0 l=68.8 ' 2 =69.9 T 3 =71.1 71- = 722

XC 1, = 3.2 71 5.0 T, = 6.6 48.1 J4  9.

f = 10.9 T1 12.2 /-= 13.6 1 s 14.9 / = 16.1
1, = 17.4 /1.1 18.7 TI , = 19.9 1 21.2 1-1, = 22.4
1= 23.6 1-, = 24.8 7-1, = 26.1 /,, = 27.3 TI = 28.4
1, 29.6 T , = 30.8 7-- = 32.0 1 = -1.2 714 = 34.4

2T = 35.6 T, = 36.7 T,-= 37.9 T,= 39. T,, = 40.2
I',,, = 41.4 1 = 42.5 T., = 43.7 1-33 44.8 1.34 41t.
T; = 47 ! T,, = 48.3 T,-= 49.4 , = 50.6 1, = 51.7

XIc F, ';j) 7-1 = 4.8 1 6.3 T 7 X T4 =9.2
/" 105 /- 11.9 T= 13.2 7= 14.4 T= 15.7
11, 170 /j = 18.2 12 = 19.5 1-1., 20.7 T 4 = 21.9

7j- 23.1 TI, = 24.3 T, 25.5 T, = 26.7 T 4 = 27.9
1 29.1 T,, = 30.3 72 = 31.4 T, = 32.6

XIIC 1't, 3.7 T, = 5.6 1= 7.2 T3= 8.8 T4 = 10.3
1 11.7 7, = 13.1 T= 14.4 T6= 15.8 ',= 17.1
71o, 18.4 T11 = 19.7 21.0 73 = 22.3 TI, = 23.5
11 = 24.8 TI, - 26.0

XIIIC F= 2.8 T1 = 4.6 V = 6.1 " = 7.5 14 = 8.9
1 = 103 7,= I I~tt 1, = 12.9 1, = 14.1 / = 1S.4
TI,) 16.6 T11 = 17.9 T = 19.1

XIVC U=2.7 1 =4.4 T, 59 1-7.3 T4 = 8.7
1 10.0 1, 11.3 11 12.0

XVC T= 3.5 , = 5.4 V 7.0 7 8. 14 = 10.0
7- 11.4 T,= 12.8

XVIC , = 2.5 T1 = 4. I T = 5.6 7 = 7.0 74 8.3
XVIIC TO - 2.2 T1  3.8 1' = 5.2

XIXC ;, 2.1 1 = 3.7 1' 5.1 ; = 6.4 74 = 7.7
TF 8.9 Tf, 10.2 F8= 11.4 1 12.6

XXc 1, 1.8 1 - 3.2 1. = 4.5
XXl(" l" I.1

',cc. t't tinic 1i iti failurcs ha\c m'currcd ti) 0m l n Inc
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cainnot he comni end ' used it' an estimate ol thle true NITBF is required. 11' a standard test
pAn) is uISed Under these circ'Umlstanlces, the test continues even ft at sufficienit T1nmber (

1.laires to reject occur prior to tile totail test nne A pritph of this plan I x&ilhiiut earl\ rejc torn)
Also appears nt thle figures It is not surprising that'the earl\-aiccept test plan, eeal hxv
smalle1r espected test durations

tihe esh~el i0 dwtn atols ateV compIJuted P, 1"ollo0 S I C! K 11 Werladoml test dlura-

sheeI, denote, die indicator i,. : i ot thle e'~ent B. i.e., I,, e:quals I if' thle cen tt occturs. 0I.
otitwf\, ise lo computeL1 thle IL: .' Ihe ectdsumlmatton in) ( I) , note that at least /arid at
mlost A tailU res mu1Lst oCctM 11 1 . It !~C2 than / fadilures. occ ur. thle test A ill accept h\
im~e /I ,if nto0re thanil A !jlai. !cern. the te st will ejct1 b\' timei /, 1.) (i\ en that r failures
occur inl [(. F : - , :nJd iu\1-I en , tialte test does not terminate k imei , j thle test

ill rejctI 11 Jl 0A, IC i, Ii In if I ailures occur inl 1, 7. 1. j BY the miemoryless
proipertY of the t,\,, f. i ~trib(,Ioll, thle espeeted test time uinder these conditions is

V ~ ±:1/Ld:

~here I:is; a gatlima denisity\ x ith paratiltes A and A -f I 1. T1hus. b a conditional
' \pectmtio argument/

~ erP ~rI I';do not accptI or re~ect at or hefore timei 1I aind f tailures in 10.1 k.

0(. I m

Prc tA/1%i iuespil A/I 1t 'I e Al/ /tt~tIl;1 II~

'Ind. 0 0 -'lll1 CSti)(ll

JAI(O or )Ii () Ax

.\I tha emain A 1) copt h Ital it i nerlcnb ~i espt d it teill

(i he Incomplete gammina distribt)ionl and eJabated b~standaird computer subroutines, [I
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p~, hdIigwc~i I ht- p[ idut Cr 11(2\ h: I .1" I 1 ' ' K ci '11r 1t .~i\ In ' q k kk i 'ii'fl 1 [i' t 1k nl I ;

Il-- 'IcsiIr.fhle (MICli~ilc (fron I th prodlKte pInt -,M! ct Il t,CtiIIJI1L '. i h IJ\,[1 W,.

:irtMlnt he dnISCiUnled

The a.uthors arc indebted to \Ld RU Ienhcru lt help In cmtr'.i u (ILi1 1IncII (d 111k Lilt1-
lions.
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A TWO-STATE SYSTEM WITH PARTIAL
AVAILABILITY IN THE FAILED STATE

I ,durc,.i. \ HBixi, r"

I", I I c( II III

II N II I III , I I I t h ,. dl l ' H l ll II1 I[ I/ t ,j ' I, LI I *~ I LI I. I ,

'Il1%11k11 1t .1 L I'k Il Il 1 l l c L c 1l l2 1 , 1 r t ' ! ' l , k L 1 , , , .

I. INTRODUCTION

Consider a two-state system, i.e., a machine subject to stochastic failure and repair Ift I,
assumed that the sequences of periods of operation and repair constitute an alternating r.ncv,.!
process, a variety of expressions for predicting the availability of" the ssten, knos nr as akli-
bility measures, may be derived (see, for example, Baxter 12]). These formulae can readd. he
evaluated by means of the cubic splining algorithm of Cl6roux and McC(onalogue 141 (',cc als
McConalogue 151, 16]).

The model assumes that a breakdown will wholly incapacitate the system. hut this need
not be the case, e.g., a large machine dependent on auxiliaries may be able to operate it a
reduced capacity if some of the auxiliaries fail. An example of such a machine is I ciial-lired
boiler in which the fuel is supplied by a number of mills: while the failure of one (r mire ItI
the mills will reduce the effectiveness of ,he boiler, a total breakdoii ,kill not necessari k
occur. In this paper we present a generalization of the two-state systern Ikhich permits partil
availability in the Failed state. It will be shown that we can formulate this generali/ed mnodel in
terms of an embedded alternating renewal process and hence make use of existing theor\ ,id
numerical techniques.

It is first necessary to introduce sonic notation. Let I and G detote the distribution nIM-
lions of the failure and repair times respectively and suppose that these ha" c finitc expi..titi n'
and variances l, ,u2, ro-12 and r2, respectivel. . )efine the indicator ariahlc J, the t .stalt
system

I if the system is operating at
/0( )= 0 otherwise

231
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where A 0(1) if the system enters the dton (up) staic at i CJ\!. !,
volution ot two functions. P nd Q say, each w, ith S.Jupport (,n Ihe r, .!r:.I! I\' I'.

P * Q(M = f P(I - u) (IQ(11)

and the n-fold recursive convolution of P(O) is dcnoted I' ' i
two-state system is defined as.4 (tJ = pMlA(t= I 0) 1. k, rv.; 0

(1) .4(. ) = [(t) + F * i),)

(2) A, ) G (t) - )* )

where

(3) tt1 t M ''*G.. t

denotes the renewal function of the sequence of Lilurc ,(xr. ',T
renewal process if there is a failure (repair) at t = 0 inl \ hcrc I I '
tion POt) such that 0 P(t) < I for all t (see. !for exam le I).,,. IF

2. THE GIFNERALIZE) MODEl,

There are many ways of generalizing the al ertc,! ni rC- , . .
availability in the failed state. We cou!d, for example- assume et , ' ,ir'it .!i ' '

hence generalize the two-state s. stem to an 1-s I I atc scm -\l !rk, - '.
result in a considerably more complex model for a rclat ix% V,, 11C .I

The approach adopted here is to assume that a proportion -y, < I i breWk-
downs exhibit partial av !ilability and that the level. \. is a random \ari!ble. independent f the
failure and repair times. , ith distribution function A!. The \ alue of \ is assumicd to renain
constant during an. gixen period of' replir lhe distribution ,It is conditinnil on \ >
(although we could equall% consid.e a distribution \\hich assigns :i mass ( hl it, y h,

the v.alue ()). 'this model is equivalent to i three-state seLii-MarkC. ,' c i' s,, (ith tr'lit sitim'
matrix

0 y I - Available
I )) 0 Paruiall. axailable

1 ) 0 Wholly unavailable.

We now define the multisate, variable

I it' the system is fully availabl,, a
J (t) = A if the system is only operating at hc,el A (0 < A < 1) at

0 i' the system is wholly unavailable at t.

In particular, {J1 (t), t > 01 denotes the generalized process in which therC is J fa lr-e repair)
at t = 0 if k = 0(I).

A variety of types of availability measure can he defined (or the proccs, I. 1t.
We could, for example, consider the expectation in pirt:cular

(4) EIJI( )} = A1t(t) + -y E( . )

(5) IJ, (t) = 4, (t) + y Li'\) ,(t).
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we can apply the arguments of Baxter 12] to derive expressions for probabilities of the form
p{J(t) > X, V tE T), where T is an index set comprising an arbitrary (finite) series of points
and intervals, for the process 1/(t), t > 0), which we call the augmened proce.s. In particular.
we shall consider {/4(t), t > 0}. the augmented process in which there is a failure with N < A,

(repair) at t = 0 for k = 0(1). It is important to appreciate that the interpretation of the sub-
script A is not the same for functions defined with respect to the two-state system and those
defined with respect to the augmented process. For the former, the values 0 and I are used to
denote a failure and repair at t = 0 respectively, whereas for the latter, these values denote a
failure at i = 0 such that the lexel of partial availability during the succeeding downtime is less
than A,, and a repair at t = 0. respectikelv. If y = 0, the augmented process degenerates to the
two-state system and the interpretations of the two subscripts coincide.

Let H denote the duration of an "uptime" in the augmented process, i.e., the time from a
repair following a downtime with A < A,, to the beginning of the next such downtime, and sup-
pose that this has distribution function P. It is easily seen that

(8) (P() = (I -) a,"F1 1) ' G ,(t

where a = yp { I > A , = f, .I(A,) and where

I ift>0

0 if t < 0.

We can readily derive expressions for the mean and variance of' by means of conditional
expectation:

(9 ) +j-)

(10) var.= (k r !. + + (E ,,) ++ r 2.

I - - a (1 - A I -r

Observe that if a = 1, both mean and variance are infinite. This is to be expected ai 'n this
case the system is always available. Similarly, if = 0, the augmented process reduces to the
alternating renewal model and E(-) = p1 , var (F) = a. "

EXA MPL E

Consider the alternating Poisson process. The Laplace-Stieltijes transforms of Fand G are
given by ./*(s) = /(s + v) and g*(s) = b/I(s +p ) respectively, and hence the Laplace-
Stieltjes transform of D is

'(hf -a ) (s +p)
(.S + 1, (s +p) - 'av

.(l - ) (s ( + (s (s B)

where A,.8 - [-(, -I- 1 ±,, +p)-2 4Vp (I -(+)}].

Thus, on inversion, we see that the density of H is

(t ,) H [Ae It Be H-i (e 41-C ')].
A-B
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tOhscr~e ihat (t ( U iN a -pvciat cas'e ( hc dcnoix (I*i ihe first pa-,sagk: timec to absorptin in) tie
('hiang-I ISU altcrit..ting ienc\.af pro',c:es ohlf in abs.orbing state 131

4. POIN F k\ NILAIIIY

The point a\ailablht .4( p / 1t 1) of' the augmented process is the probabihi\ that
the -.vsrem is a~iilahlc al OF that it IS under repair and that the les ci of' partial a. aifabilit.
OXCeed A ., I follos\k Ing Cx rCevOonS fo(r A4 I) and A4,,( i ) are obtained by' Substituting

and 1i S into theC formul11.ae folr I anOJd LA.0 pirfkirri ng some rearrangement and im\err-
lufg:

AS ."ould be C\spected. , 1, k i 1t 1 1 t If kI) as in this case iL)) > 0il reduces
it) I. i > 01 ,SklniLrl\ If* (t I thle systemi cannot fail and hence A W I and
.1 ,( t G( Il

F xpression (It clearly cor responds k~\ ereas expression ( 12 ) does not correspond
NOI iOb\% I .U1Vto( an intcr-prcta.I( f C!U1i is, however, more evident if we make ueC of'
(2) to rcskniie (12) as

Ie noi ;.ec that ,% c arc Inc i sing *f,,( t thle point a, ailabilit\ of' the tmo -state s~lstem. b\ thle
probabilit ' thai the Nsstcnilfails it i < t and that thle succeeding recpair time, which exhibits
partial a.,If~thilii at a lesel cwceding A .is greater than i- u, for each ut E (0.1).

i Substituting thle fiirnildaC for tifle point availabilities of' thle alternating Poisson process
into (I II and ( 12) we obtain thle f'ollonking expressions f'or the point availabilities of' thle
correspondi ng aiugmented priicess

4 ------ C

Oin applyving the kc\, renewkal theorem to (4), (5), t l1 and (12). we see that(

lin p0 i -O-

i 4 -"

JA I I JA

Lxprcssiiins for iither availability, measures are readify den \ ed but, in general. wve dii not
o~btain form ufae w hicfh. like those f'or .4 f0t, are sim ple modifications of' thle corresponding
expressions f'or the alternating reniewal model.
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AN ANALYSIS OF SINGLE ITEM INVENTORY
SYSTEMS WITH RETURNS*

John A. Muckstadt and Michael II. Isaac

( ort'll { ( ll'lIII

Ithacau. \cIl )olrA

ABSTR.ACT

Inventory systems with returns are systems in , hich there are unit,, IC-
turned in a repairable state, as "ell as demands for units in a sersiceahle st.itc.
where the return and demand processes are independent. \W, begin h\ exa-
mining the control of a single item at a single location it which the stationar
return rate is less than the stationar.\ demand rate This necessit ta, an ,,Ca-
sional procurement of units from an outside source "Ae present a ,sf rol-del
of this system, which we assume is managed unuer a continuous re,.te\ pro-
curement policy, and develop a solution method for linding the polic parame-
ter \,alues. The key to the analysis is the use of a normally distributed random
variable to approximate the steady-state distribution of net ins entor)

Next, we study a single item. two echelon system in which a .arch.tusc
(the upper echelon) supports ,'( \ > I I retailers (the lower echelon) In thi,
case, customers return units in a repairable state .s well is deniand Units in ia
serviceable state at the retailer le'el only. \ke assume the constant~ %steni iC-
turn rate is less than the constant system demand rate so that a procurenient is
required at certain times from an outside supplier. Wre desclop a cost mnodcl ,f
this two echelon system assuming that each location follows a continuous te-
view procurement policy. \,e also present an algorithm for finding the psIR
parameter values at each loca ion that is based on the method used to ,l\e the
single location problem.

I. INTRODUCTION

Many models have been developed during the past 15 years pertaining to \arious aspects
of managing repairable item inventory systems (e.g., [1,14],[101[I 11.1121,1151, and [1611
Most of these models contain the assumption that the failure of a unit simultaneously generates

a demand for a unit of exactly the same type, i.e., the demand process for serviceable units and

the return processes of failed units are perfectly correlated.

In certain instances, however, this assumption of perfect correlation between the demand

and return processes is not valid. For example, this can occur in situations where equipment ts

leased, rented, and/or sold, such as found in the telephone, computer and cop.ing machine
industries. Returns do not necessarily correspond to failures in these cases, but rather to lease
or rental expirations. At the time a unit is returned, it may have to go through at repair o

1 his research was supported in part b the (tflice h Na'. il Research under ( oitrao.t N)ili14 ', ( -I\ 002
I,\ repairahle item is an t(entI which fails, hut which can he repaired and subsequeoth made i\mibl I) satish a ItUtiC
demand or an existing backorder

237
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overhaul process before reissue. There is no reason to assume that the customer will request a
unit of exactly the same type when a lease or rental agreement expires. Similarly, when a cus-
tomer requests a particular type of unit, there is no re',on to assume that the customer will

return one of exactly the same type.

The authors studied a real two echelon inventory repair system managed hb a manufac-
turer of reprographic equipment. This system closely resembles the one described in Section 3.
[or that system we found the demand and return processes to be independent Poisson
processes. That is, we tested and could not reject the hypotheses that the demand and return
random variables had Poisson distributions, and that the return and demand random variables
were independent. The research described in this paper reflects our study of this system's
behavior. Consequently, we assume in the remainder of this paper that the demand and return
processes are independent. We call such inventory systems, in entor. svstems with returns.

Only a few papers have been published on inventory systems with returns. These papers
contain simplifying assumptions which make them of limited practical value. lleyman [(.7]
considers optimal disposal policies for a single item inventory system with returns, but his
assumptions include instantaneous outside procurement (implying no backorders or lost sales)
and no fixed cost of ordering (implying no lot size reordering). lloadley and Hteyman [8] con-
sider a two echelon inventory system with outside procurement, returns, disposals,. and trans-
shipment: but their model is a one period model, and all of ilie mentioned transactions are
assumed to occur instantaneously. Simpson [161 develops the optimal solution for a linite hor-
izon, periodic rc ,iew model. His model allows for correlation between the return and demand
processes. Backlogging is permitted, but both repairs and outside procurements are assumed to
be instantaneous.

For the most part, the methods of analysis in these three papers rely heaNil upon the
assumptions of instantaneous repair and procurement. Their approaches are of little use when
analyzing situations in which repair and procurement times are not zero.

Finally, Schrady [141 solves for repair carcass and procurement lot sizes for a complctel
deterministic system. (iajdalo [2] extends this to a 'continuous review repair polio for an
inventory system with stochastic (compound Poisson) returns and demands. lie uses computer
simulation to test several heuristics for computing the reorder point and lot sizes for both pro-
curing and repairing items. All lead times, including repair times. are assumed constant

Our approach differs substantially from those taken in these previous studies. We begin
in the next section by analyzing a single item, single location inventor\, system with returns.
We develop the stationary distribution of two key random variables that describe the probabilis-
tic behavior of the inventory system. This analysis is used as the basis for a cost model. A
solution method is then presented for finding the values (1 the polic% parameters I he results
of the single echelon case are then extended in Section 3 toi a specific two echelon situation.
which corresponds to the real environment mentioned earlier. In Section 4. we conclude with a
brief summary and some final comments.

2. THE SINGLE ECHEION CASE

The system we study in this section consists of a single t. pe of item managed at i single
location. A schematic representation of the system's operation is gi\ en by I' igure I As
shown, this location is assumed to contain both it repair lacilil for returned unit, and a warc-
house, or storage facility, for serviceable in\,entor\.
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procurement
source

returns at xx inventory demands at

rate_____ rate A

repair facility storage facility

FR( RI 1. A schertiatic representation t" the inkentonr Y ssiel

We assume returns of repairable units occur as a Poisson process with rate y. and
demands for serviceable units occur as a Poisson process with rate A. As we have stated. we
also assume that these two processes are independent. y is assumed to be less than X., so that
an occasional procurement of unit trom an outside source is required Units procured in this
manner arrive in a serviceable state r time units after they are ordered.

The repair facility behaves as a first-come, first-served queueing system with Poisson
arrivals (the Poisson returns). All returned units require repair, and repair times of returned
units are independent. Since y < X, the repair system is always operating as long as repairables
are present. No other assumptions about the queueing repair system (e.g.. s,_rvice time distri-
bution or the number of repair servers) are made.

I"'e output of this queueing repair system is input to the stock of on-hand. serviceable
invento,', as is the arrival of outside procurement orders.

All demands that are not satisfied immediately are assumed to oe backordered.

We define 'net inventory" at a point in time to be the number of on-hand ser\iccable
units in the storage facility minus the number of outstanding backorders. We also deline
'inventory position' at a point in time to be the sum of net inventory, the number of units in
the repair queueing system, and the number of units on order from the outside procurement
source.

Let

I(t) = the inventory position at time t,

N i) = the net inventory at time t,

R (W = the number of units in the repair qucucing system at time t.

PI) = the number of units on order from the outside supplier at time t.

0(0) = the on-hand serviceable inventory at time t,

and B() = the number of outstanding backorders at time t.
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[ hen

At (I) + A'), + Pw,

and

Our final assumpltion concerns tfe. fornm of' the procurement piolic\ \\ e assume oi (ii
continuous rex ie\% (Q.t ) procurement policy is ltilloviied, i.. when the n'mentiw 'r% pw)iti i diops
helo~k r + 1, and order fo~r Q >, 1 units is placed imnmediatel\. Since the repair (jLXLIneI~ s.%s
tern is assumed to be operating continuously, our ob-jectiVe is simply to find x alucs ofd (9, and

)ur analysis begins with the denivation of* the stead\ -state distribution of in~nw x iBposti-
tion. Ihis result is used in the derivation of' an approximation orf1 the stead!. -,t, ic dist ri hat on
of' net inven tory - and is followed b,., a discussion of' the accuracy of the approximation.

2.1 Deri~ ation of tiw Stationarn istribtioni of In~entorN Position

(Changes in the state of' the inx entory position are Lcaused onlx b~ d'1-ntandS aind return.,,
Staic It( i + I ., + 2.. . .) can be entered fromn statte i 4 1 , lien at demand for a ser\ iceable
itemn iCCUrs state /I / i t- 2.t + 3. .I can be entet ud froim State / I ixhe IwoII item Is
returned. In addition, state , ( can also he reached lo-rm statu MrT -I Slin I\ sCrxcible
temn is demanded lan order for (9units is placed ininiediatel \kx len the in xcntworx po sition

drops belowA i t H Ilic time bctxxeen state tranittions is exlponentialli, distributed. since the
return and demand processes are Poisson processes. J he statte transition flox4 diagrami is gix en
in Figure 2. with the tranisitiotn rates ats indicated.

Let u, lim Prob /W I' 4 tI- it. the statiioari, prohbiilitx that ox iior psitioti s

equal to ir + I -t- r I1bis limit exists because the states oft thins svstetii arc the states of ati
irreducible, ergiidic. Markox. chain 1131 ihe steady-state balance vquations correspondi ng it)
this sixstern are

A ( t y A. An

+AA ~~'l~ l:

+AA ~~yi- i,

(AY y u( -yo A ii, A i,,

(A + ) 'k' Ali,
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A

r-ly r+2 y r-.,- r Q r+Q i

I-. i, 2 State transition f1o, di igram lor imcr , position

A generating function approach can be used to solve for the u, Define the generating

function G(z) to be G(z) :'u, Using (M) we find that
,=O

(2) G: h--L ( u

from which we find that the u, are given by

0 i< 0.

(3) u, . Q - 1,

Q (Yd - i)Q.

and the mean and variance of the stationary distribution of inventor% position are given by

(4) Elim /(0)1 = r + I + ,(I) r 1 + - _ + _

and

(5 ) V a r [ lim /I( 0 ] = G 11 ) + G ' ( I ) - [6 - ( 1I) ] I ' - - 1 + ,Y L2 y(5 Vrli (.... ~ ± ~~ 12 (A - y,)2 ,

respectively.

If Q = I, t-igur,- i,, the Irmnsti'bn flow diagram for an t 'If 1 queueing system in which
the "arrival' rate is -Y and the ",,rvic " ratc is . In thw, c .) 11-ducsCC to the geometric distri-
bution, which is the stead\v-statc distribution of' the numner of 'us)niers present in an /I/ I
system.

Note that when -y I. 4), (5). anti 13) reduce to the me,n. 'ariancc, and probability

distribution, respecti\ch. ill' a unil(rml distributed random ,.ariahble, which is a well know n

result (see Reference Si

2.2 An Approximation to the Slalionar. Distribution for Net Iitt~entor%

Next, we develop an approximation to the stationary (listributin of' net in\.entory, which
is the basis for the Lost model used to determine optimal values of Q anid v

-4!
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Recall that r, the procure ent le.ad tIm ., iS LO)SLIJ I hUL,. r, Unit' (In order at time
I . Aill ha\ e arri ed b n time l int,trl ar , m ider Ipacd at.cr time 1 7 \&ill nlt hae
arriked b\ time t. i heretore, we see that

(0) ArI)= I t r) Ri, r / t 1ft ) 7 .).

,A here R 1 7 the number of umS in the repair -,,%stem at time 1 7,

/(t 7.) the output of the repair ,.stcm in the inter\al (0 7.11,

and () .,.t)= the number of demands in the interval (0 - 7.1

R 0 - T is subtracted from l(t -- ) so hat we do not double count the units in the repair
system at time -- - that complete ser-,;. by time t. Therefore. net invent(ry at time 1 con-
sists of units on order, already sriceable, or backordered at time I (all measured in

/(1 - 7)), plus those units completing repair by time t- -, mi'nus demands o\er the interxal
71 - 7./i.

Let us separately examine the indiidual terms of (6). The steady-state distribution of
M11- 7) has already been obtained. The number of demands over the interval 0, - 7./I is
Poisson distributed with mean -Y7 and is independent of the other three random variables on
the right-hand side of lquation (6).

The distributi U, iif R (t - -,) and Z(t - 7A..) are readily available for many queueing sys-
tems, but, they are toot independent of each other or of lit - 7). The joint distribution of
these random variables is difficult to develop analytically. Consequently, an approximation to

the distribution of net inventory will be developed, using (6), rather than developing the exact
distribution.

We initially observed that the steady-state distribution of net inventory for numerous test
cases (obtained via simulation) closely resembled a normal distribution. As a result, the nor-
mal distribution was considered to be a candidate approximation to the steady-state distribution
of net inventory.

Equation (6) is used to determine the mean 1A and to approximate the variance, nr- of

this normal approximation. Letting t o , we have

(7) /A= lNt))= l((t -7))- F(R(t- 7)) + L/Z(t Z ( ))- :(I) t- 7,1))

= r + + + E(R (t - 7)) + Y7 7 ,.
2 X-y

using (5), and noting that the expected output of a queueing system o,er an interval is equal to
the expected input over an interval of the same length. Also, by ignoring covariance terms, we
approximate (T 2 by

(9) (r 2 = Var(N()) - Var(/(Q - 7 )) + Var(R(0 - 7

+ Var(Z(t 7.1)) + Var(I)( - 7.A)

V2 ) I + y -_ + Var(R(t - +)) + Var(/ 0- 7..t)) + X7.

12 IA -

using (5). Note that exact expressions and good approximations for I(R I

Var(R (t - 7)), and Var(/ 0 - 7.)) are available for many queueing systems (e.g.. see [31).
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The accuracy of the normal approximation, whose mean and variance are given by (7)
and (8), was tested using an incomplete factorial experiment. The variable factors were the
number of repair servers, the repair service distribution, the repair system traffic intensity, the
procurement lead time r, the procurement lot size Q, and the ratio y/A. In each test case, the
accuracy of the normal approximation was first measured by finding the area between the nor-
mal curve and the curve representing the continuous version of the distribution of net inven-
tory, which was obtained via simulation.

The conclusion drawn from this experiment was that the major factor affecting the accu-
racy of the normal approximation is the ratio of the return rate to the demand rate. Y/X. In
fact, the normal approximation is quite accurate when -y/A < .6. However, a closer analysis of
the normal curves revealed that the normal approximation was an excellent one in the left-hand
tail of the distribution of net inventory in all the test cases. (We discuss in Section 2.3 why the
left-hand tail of the distribution is all that is needed to determine optimal values for Q and r.)
The difference between left-hand tail percentiles of the experimental distributions and the
corresponding approximating normal distributions were computed. The percentiles never
differed by more than a few percent. Based on this observation we conclude that the steady-
state distribution of net inventory can be accurately approximated by a normal distribution
whose mean and variance are given by (7) and (8), respectively.

2.3 Cost Model and Solution Method

The optimization model we will construct includes a fixed procurement order cost, a hold-
ing cost, and a time-weighted backorder cost. In particular, let

4 = the fixed procurement order cost ($/procurement order),

h = the holding cost (S/unit-year),

and -i" the backorder cost (S/unit-year).

Our objective function, K, is the sum of the expected annual procurement ordering, holding,

and backorder costs. It will be evaluated by taking the sum of

(I) A x (the expected number of orders placed per year),

(2) It x (the expected serviceable on-hand inventory at a random point in time),

and (3) r x (the expected number of outstanding backorders at a random point in time).

Both the expected on-hand inventory and expected backorders at a random point in time will be
calculated using the normal approximation to the distribution of net inventory.

Note that we need not consider holding costs charged against units in repair. Due to the
assumption that no inserted idleness in the queueing repair system is allowed, these holding
costs are independent of the values of the procurement policy parameters.

Let 0 (.) and ,D (.) be the standard normal density and standard normal distribution func-
tions, respectively. Let h(x) be the normal density, which is the continuous approximation to
the steady-state distribution of net inventory, whose mean /A and variance (r2 are given by (7)
and (8), respectively. Thus, the expected number of backorders at any point in time is

(9) - ... . ..

'A'
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w hich can easily be obtained by evaluating

vhi (x A d.

Since

/A on-hand inkentor% L I ( insentor position) + K) backorders)

I (numlber inl repatir) -~ K (number on order.

thle expected on-hand in\entor\ is equal to

1It0) + I + +-'Y (rd~H- 1-- j&I)j J- LiR, ( A -.

Note that the last term, the expected amount on order at any point in timle, is equal to the ratc
att which demands are ultinmatel' met by outside procurement, X -~ y. times thle constant pro-
curement lead time, 7

In what f'ollows, it will be easier to think of' m and (r- as t'unctions of'r and (
Specifically, let

ill) +

and

(12) +
12 -d

w here

(13) + -1- F I(R W) (\ -y-
Ay 2

and

(14) d A + 'Var(RtfW) + (A + -),
(--Y( 12

where we have used the approximlation that Var) / 0. 11 ) y.I his approximation is
exact f'or 11 I Als and 41l G l queueing systemns. Note also that thle constants~ anmd d arec
independent of r and Q9, and that the restriction that Q9 he greater than or equall to one guIaan-
tees that (r' is positive.

I:iiiaillv% the rate atl which demands are miet h\ Outside procurementll, A - -y, divided br 9
the procurement lot size, gises thle expected number of' procurement orders, placed per rear-.

Combining our prev.ious results. swe see that the optimization problemn for finding the
optinmal Q9 and ris

S)minimize k. _ A + (7' 4 hi I l P"' 1

S + Q) 4

w here (is gixen b (13). JThis lbrmla~tion of' the problm came11 as' at r-csul t od 111.nu1Me i kc\
aossumlptions and approxi matins, W~hich w~e noss surmmari/e:
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(a) The demand and return processes are independent Poisson processes.

(b) The return rate is lcess than the demand rate.

(c) A continuous review (Q).r) policy is lollowed.

1d) The procurement lead time in constant.

(e) All demand not immediately satisfied is backordered.

f) The distribution of net inventory is approximated b\ a normal distrihutioi , hse
mean and variance are given by (7) and (8). respectively.

The objective function K is not convex in (), but is convex in r. This is easily pro,.cn h\

noting that the backorder Function T(1. I- P is convex in i. , i=M- Q 2 t.ind
O K

r is not related to (r. Thus, the optimal value of r satisfies - = 0, that is.

(16) I- 7r r + /II1

Thus, for a fixed value of Q, the variance of the normal distribution representing net in\entor\
is fixed. Only the mean, or "location" of the curve, is decided by choosing a \alue of r There-
fore, Equation (16) indicates that once the variance is fixed, the "location" of the normal cur'c

should be chosen so that the cumulative area to the left of the I-axis is -. as illustrated in

Figure 3.

h(x)

shaded area =

1 li, io 3 1 oCatifl) (i the nornm, Lli[\C

In most real situations, the backorder cost 7- is large compared to tIe holding cost h. 1 his

makes the fraction -- small. Recall that this fraction is the area to the left of the i-axls
ir + h1

under the normal curve. The expected number of backorders is calculated using Equation I)).
and the expected on-hand inventory is calculated in Equation (10) also using (9). " hus. as .
stated earlier, accuracy of the normal approximation is required only in the tail of' the ditrihu-

tion, since is usually small.ir + I
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Returning to (16) and rewriting it in terms of r* and Q*, the optimal values of r and Q,
respectively, we have

r* + *+c
2 +

or

(17) " +d.F IIIT 1QL

For a fixed value of Q, the optimal value of r is given by Equation (17).

To find the optimal value of Q, one can rewrite Equation (15) in terms of r and Q. Using
Equation (17) to write the objective function solely as a function of Q. (15) simplifies to

= + h))- + (+ h) "+ d -1 Ir .Jqi +

This can be seen to be a convex function of Q. While the original objective function, K, is not
convex everywhere in both Q and r, upon deriving an optirmality condition (17), K is convex in

1K
both Q and r over the region of interest. Setting - = 0, we find that Q* is the value of Q

that satisfies

(19) - 12(A - y).4
J 212 +

where

= (ir + ti ( + I

If Q* < 1, then set Q*= I.

Note that in realistic situations d > 0 (see Equation (14)), so the left side of (19) should
increase with Q. A search method, such as either the Fibonacci or binary search technique, can
be used to find Q* in this case. Note, also, the similarity to the usual lot size formula. Ignor-
ing some of the constants, (19) is roughly of the form

Q h constant.

Also, observe that (19) is independent of r. Thus, once Q* is found. r* is four I using (17).

3. THE MULTI-ECHELON CASE

In this section we study a two echelon system, which corresponds to the real system
examined by the authors. The upper echelon consists of a warehouse having both repair and
storage facilities that support the N lower echelon retailers. The retailers only have storage
facilities.
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All primary customer demands and returns are assumed to occur olly at the rctailer!.. \\ c

again assume that all customer demands nti innodiaele ',% dti.tfie arc ha rdftcrc,. and that tt-I
demand and reurn processes are mutually independent Poisson ro s,. ',N5 il, !1\uflm,
that lateral resupply is not allowed between retailers.

Let

A, = the customer demand rate at retailer // 1 .......

y, = the customer return rate at retailer / ( = I ... A.

T, = the constant transportation time between the warehouse and a retailer. and

T, = the constant procurement lead time for the warehouse from an outside source.

The assumptions that transportation times are identical between the warehousL and an i,,

the retailers, and that customer demands and returns occur only at the retailers are made I'm
notational simplicity only. It will be apparent that relaxing these assumptions poses no addi-
tional problems.

Recall that repair facilities exist only at the upper echelon. Consequenl . kc asuOe. that
when a customer returns a repairable unit to a retailer it is immediately sent to the w archi)usc
from the retailer and need not go back to that same retailer after it is repaired. We also as-,umc
that the repair process at the warehouse operates as a first-come, lirst-ser\ed queuetng s%,,tcm.

Since transportation times are assumed to be constant. returns of repairable unit. to the

warehouse occur as a Poisson process with rate -I = -,. Therefore. it is equi\alent, and

more convenient, to think of returns occurring only to the warehouse, and as a Poisson process,
with rate yo.

We assume that retailer .j uses an IS, - 1 V. ) continuous rex ic\ ordering pulic. i,.
constant inventory position (net inventory plus on order) of , is maintained. *hIis inple s I .a
retailer / immediately orders one unit from the warehouse eery time a custiomer demand
occurs at the retailer. Since each order placed at a retailer also results in a demand being placed

upon the warehouse, demands on the warehouse occur as a Poisson process vith rate A,

[Note the importance of' the assumption of following an (5, -- 1..S) polic. at retailer
If the retailers followed (Qr) ordering policies, then the time heI con the placing otI ordcl-,

upon the warehouse would not necessarily be exponential, nor would the orders necessarilx he
for individual units. Thus, the demand process at the warehouse would no longer be a sinilic
Poisson process.]

We assume that yo < A, so that an occasional outside procurement is necessar\ I he
warehouse is assumed to follow a (Q.r ) policy, i.e.. when its inventor. position (net mC n-
tory plus on order plus in repair) falls below r, + 1, an order for ), units is placed upon an
outside procurement source.
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Warehouse pn AYMrCI letrilcr 1arC 5JO!LLd to arrie io Otle wA:i Ch0iC Is time Unlit-,~t e
the order is placed I [()\,k \ cr. an -rdci plaicd b.\ a i t  Upon th,2 , ir:ho sc: dloc." tot i es

sarilv arie at the reta!iler I iin~c Unit,, al'ter it is, placed In tddiiion to the transportation
time, thei e mia\ be a delas dueI to the s archoUse beiniv Alt I' I' ic cable stock All dcmnands
made upon the w arehous , t hit cc not mnediatels st ist ed are hae~wlordered.

A\ schematic: r(ist tono this, j,'en isgixen h [igire 4

Retu:rn r

Demand rate-

Lead -m 2
(Qo0 ,) pocy

I Retailer

Demand rate A.

I R:~ Sclwmans pc i it) hIInLIIl! L-hcl(I \SICII

Finally. let the svstcmn cost parameters he as f'oi I ()N

I, = the holdjo, 'osi .it l)(:i. \arciousc S t W 1 !;irl.

I, =the holding cos t uit retatiler.! (S/ Unit- year) (. . A .

/r = the backorder cost at retailer i (Si unit - year) 1. A; I

and A = the fixed warehouse procurement (irder cost (S/order).

Given values of ht, (j =).... 0,j I........iad t1. all assumied to be nonne-
gative, the problem is to determine values for t , and S (/ =I ,.. ..... ) that will mninimi/,e
the expected annual sum of' the retailer holding and backorder costs. ind the warehouse order-
ing and holding costs. Thus, the optimization problem wAe want to solve is
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(20) min I l, I. t ( In-hand Inxentory at Retailer/A

+ I, I Backorders Outstanding at a Random

Point in Time at Retailer /0

+ No Q11 -Y + h,, ' E {On-hand Inventory at the Warehouse)I

subject to Qo > I. r, , 0 and.S, = 0. I ... for, = 1. ... .N.

The expected on-hand inventory at the warehouse can be found using Equation (10): however.
the expected on-hand inventory and backorders at retailer J cannot be determined as easily. We
will subsequently show how these expectations can be calculated.

Note that we have not explicitly stated a value for i, the warehouse backorder cost. and
that this cost is not included in the objective function that is to be minimized. Given the
interactions between the two echelons of our inventory system, the cost of a backorder at the
warehouse is not an explicit one but rather an imputed one, It is measured by the effect of a
backorder at the upper echelon on the expected performance at the lower echelon.

The optimal stock level at retailer . S*, is a function of the procurement resuppl% time.
that is, the expected time from the placement to receipt of an order by a retailer. This procure-
ment resupply time is then the transportation time, T1, plus the expected delay due to the
warehouse being out of serviceable stock. Clearly, costs at the retail echelon can be lowered by
reducing the expected resupply time. This can only be accomplished by decreasing the
expected warehouse backorders at a random point in time, which is achieved by increasing (_,
or ro (or both). This, in turn, raises holding costs at the warehouse. Thus. a tradeoff exists
between holding costs at the upper echelon and holding and backorder costs at the lower
echelon. We will present an iterative algorithm based on this tradeoff which alternates between
finding stock levels for the upper and lower echelons. The basis for this algorithm, presented
in Section 3.1, is founded on the results developed in Section 2.

3.1 Analysis

Suppose the imputed cost of a warehouse backorder is known to be Then we can use
(17) and (19) to find optimal values for r and Qo,. These determine a "performance level" B,
where

B the expected backorders at the warehouse at a random point in time

and where y and ,r2 are the mean and variance, respectively, of the normal approximation to
the stationary distribution of net inventory at the warehouse.

Then the expected resupply time for a retailer is

(21) T= T, + B/X,,.
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since the expected delay time per demand is the expected number of backorders at a random
point in time divided by the demand rate. This is a direct application of Little's Formula
L = A 14'. Then, using Palm's Theorem [I as an approximation, we assume the number of
units in resupply at retailer j to be Poisson distributed with mean A, T.

Note: Palm's Theorem requires the independence of resupply times, making this system
analogous to an M/G/d queue. Resupply times in our system are not independent: consider,
for example, a demand by a retailer which cannot be immediately filled by the warehouse.
Then it is more likely that the next demand placed by a retailer upon the warehouse also
experiences a delay than if the preceding order had been immediately satisfied. This approxi-
mation of the distribution of the number of units in resupply at retailer j (j = ...... N) was
tested for the special case in which the repair facility at the warehouse behaves as an AI/D/oo
queueing system. The exact distribution of R,(), the number of units in resupply at retailer J,
was obtained from comparison with the Poisson approximation. Our analysis indicates that the
Poisson approximation improves as the expected warehouse backorders, or the probability of
delay at the warehouse, decreases. In particular, the Poisson approximation was found to be
good as long as the expected value of net inventory at the warehouse at a random point in time
is greater than zero. (In the test cases in which this condition was met the maximum absolute
difference between R,(t) and its Poisson approximation was less than 5"/,.) This will. of
course, be the case for a reasonably large ratio of backorder to holding costs.

Once we know the value of T and have the form (approximately) of the distribution of
the number of units on order by retailer j, we can solve N independent subproblems to obtain
the optimal value for S. The subproblem at retailer j consists of finding the optimal stock level
S*, assuming a constant procurement resupply time of T, where T is given by (21). This is
accomplished using Lemma I.

LEMMA 1: Suppose the procurement lead time is a constant T and demand is Poisson
distributed with rate X,. Then the optimal value S* for an (S, - 1, S) policy is the largest
integer S, such that

(22) P(S, , X, T) > hi
/ + hi,

where P(x,,U) = (r 1
r= 

Xt

and p(r t) =c r!"

The proof of Lemma I can be found on page 204 of Reference 5.

Let K,(S,T) be the expected annual holding and backorder costs at retailer j when the
inventory position is , and the procurement lead time is a constant T. As can be shown (see
Reference 5)

(23) K, (S,. T) = (i-, + th,) [A, TP(S, - I ,T)

- .S, P (S, xT)] + h, 1s, - , Ti.

For a fixed value of 1 (and therefore of B) we define the minimum total expected costs at the
lower echelon, " (1), as

(24) KUB) = ,

/-I
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where K,(- .) is given by (23), Tis given by (21), and S* satisfies (22).

Note that when B = b, dK"(B) is an estimate of T-,, since it measures the marginal
dB Lh

effect of a warehouse backorder on the expected total lower echelon cost. It is easy to show
that

(25) d =B) _- I [(i+ h, )X,P(S*, XT) - h,,].
CIB Xo -I

Next, let K"(B) represent the minimum expected warehouse ordering and holding cost
given that B, the expected number of warehouse backorders outstanding at a random point in
time, is fixed. In particular, we define

A"(B) = min X 0 o .A + h,, r+-- + B +QO>-I I Qo

subject to B = AO(T- T).

where the constant c is given by Equation (13).

We conclude this section with the statement of two additional lemmas

LEMMA 2: K"(B) is convex decreasing in B.

LEMMA 3: Let T be a constant resupply time. If the optimal sto,.b .els ,
1 .. N) are continuous rather than integer valued, then A 18) is a con,:ate ir .niz tori
tion of B, where B = Xo(T - TI). These lemmas can be proed b. appl ig thc L mn , uic l',
take derivatives. The details can be found in Reference 9.

3.2 Restatement of Problem 20

Problem (20) can be restated based on the interrelationship between the - trehou, , all"
the retailers developed in Section 3.1. As we have demonstrated. the t%o 2chelon, are linkc'd
through the value of B. Then an alternative way of writing problem (20) is

(26) min K'(B) + K4(B)

where B = \ 0 (T- TI).

Figure 5 represents a typical graphing of K1(B) and K"(B) as functions of B. We obsered in
all test cases that, under the conditions of Lemma 3, K"(B) + K1(B) was a convex function of
B. Thus, the minimum cost will occur where

(27) dK'(B) dKU(B)dB dB

The algorithm presented in the next section takes advantage of the fact that problem (20) can
be restated as problem (26) and that the optimal solution must satisfy (27).

L1
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cost

K(B)

>

liiit Kl 5. Minimum upper and lower echelon cost functions Ns. B.

3.3 An Algorithm

The following algorithm can be used to solve problem (26):

STEP 0: Leti = max ().
,=I. .

STEP 1: Given "ro, solve for Qro using Equations (17) and (19, and determine the
corresponding value of B, say b.

STEP 2: Let T= T, + b/x,, find the S* using Equation (22).
dK'(B)

STEP 3: 1UJsing these S*, find - evaluated at B = b, using Equation (25)- let ir. assume
dB

this value, and return to Step I unless the stock levels and costs have converged
sufficiently.

The first few steps of the above algorithm are illustrated in Figure 6. The algorithm
begins by setting "^'O max (i,). This is an upper bound on the optimal value of i., since

/= \

this ,alue implies that a backorder at the warehouse always results in a backorder at the retailer
with the largest backorder cost. Then Q, and r, are found using this upper bound on -.. This
determines a value of B (say B = bh) (and therefore of 7), which is a lower bound on the
optimal value of B (and therefore of 7), These computations yield point (D on the upper
echelon cost curve in Figure 6.

Using this lower bound on the optimal value off 1. e find a lower bound estimate of
.S,(0 = I ...... .), which determines a value K'( 1 ). and point () in Figure 6. Next we set

dA K'( B)
--- , . Since K (B) is concave in B, and since we hac a lower bound estimate

of the optimal B. the new estimate of ir is an upper bound on the optimal value (f i-,,: but it is
smaller than the previous estimate. Using this new estimate of i'.. B will increase to a al.C.
say h,. as a result of resolving for r, and Qo using (17) and (19). These calculations produce

point @ in ligure 6. The procedure continues by letting T = T1+ - and finding & '(h).
A 1

which leads to point (. The algorithm continues in this manner until convergence occurs.
l)iscussion of convergence and other aspects of the algorithm can be found in Reference 9

The algorithm was tested on 50 problems. In general, ihe values of Q*. iij and .s
.. ... , ) were found after only three iterations of the algorithm. This occurred in 49 of

the 50 test cases. The curve K (B) is very flat compared to K"(B), so that convergence tol the



SIN(,jI I JIM INVYNTOR') 'AIIl RI-i tRNS 253

cost ()

K'U (B)

b1  b2

1tt Ri First stcps of the algorithm

correct value of ,ll occurs quickly. As we notcd earlier, A (B) + K"(B) was convex for all of
the 50 test problems. The reason this occurred was because K '(B), although concae, is
almost linear.

4. SUMMARY AND CONCU(,DING COMMENTS

We have developed simple methods for obtaining parameter values for a procurement pol-
icy for certain inventory systems with returns. The key was the use of a normal approximation
to the steady-state distribution of net inventory. This led to the development of cost models
which were easily solved.

In the single location model, we assumed the procurement policy to be a stationar. (Q.r)
policy, This policy is not the optimal one. In Reference 9 it is shown that, for the special cases
of M/M/I and M/G/ queueing repair systems for which the transient distributions ol 1h,
repair system's output are easily developed, one can lower total expected costs by redefining
inventory position and allowing variable reorder points as follows. Inventory position is
redefined to be net inventory plus the number of units on order. The analysis proceeds exactlt
as described in Section 2 (with some of the constants redefined). This results in a reduction in
(r', the variance of net inventory, since the variance of the number of units in repair is no
longer included in cr2. The reorder point, expressed in terms or inventory position, is then a
function of the number of units in repair, rather than a constant. Reductions in total expected
costs can be achieved by using a state dependent reorder point when the ,ariance of the
number of units in repair is very large. A 10/,, reduction in total expected cost was achieved
using the variable reorder point policy in an M/11/I repair system with traflic intensity
p = 499/500. This is an extreme case, however. The average annual cost of using the station-
ary (Q.r) policy was within P, of the average annual cost obtained using the nonstationar. one
in almost all test cases. Since this is the case, and since a stationary (Q.r) p olicy is casy to use.
the stationary (Q.r) policy is an attractive policy to implement.

Next, we showed how the single location solution method can he incorporated into an
iterative algorithm for setting stock levels in the single item, multi-echelon inventory problem
with returns. The algorithm can also be extended to find stock levels in an Al-echelon in'en-
tory system with returns. The onl) requirement would be that an I.S I.. S) procurement pol-
icy must be followed at each of the lower A - I echelon locations.



254 J. A. MUCKSTAI)T AND M. If. ISAAC

REFERENCES

[11 Feeney, G.J. and C.C. Sherbrooke, "The (S - 1, S) Inventory Policy Under Compound
Poisson Demand," Management Science, 12, 391-411 (1966).

[2] Gaidalo, S., "Heuristics for Computing Variable Safety Levels/Economic Order Quantities
for Repairable Items," AMC Inventory Research Office, Institute of Logistics Research,
US. Army Logistics Management Center, Fort Lee, VA (1973).

[3] Gross, I). and C.M. Harris, Fundamentals of Queueing Theory, (John Wiley and Sons, New
York, 1974).

[41 Gross, D., H.D. Kahn and J.D. Marsh, "Queueing Models for Spares Provisioning," Naval
Research Logistics Quarterly, 24, 521-536 (1977).

[51 Hadley, G. and T.M. Whitin, Analysis of Inventory Sy'stems, (Prentice-Hall, New Jersey,
1963).

[61 Heyman, D.P, "Optimal Disposal Policies for a Single-Item Inventory System with
Returns," Naval Research Logistics Quarterly, 24, 385-405 (1977).

[7] Heyman, D.P , "Return Policies for an Inventory System with Positive and Negative
Demands," Naval Research Logistics Quarterly, 25, 581-596 (1978).

[81 i-oadley, B. and D.P. leyman, "A Two-Echelon Inventory Model with Purchases, )isposi-
tion, Shipments, Returns, and Transshipments," Naval Research Logistics Quarterly,
24, 1-19 (1977).

[91 Isaac, M.H., "An Analysis of Inventory Systems with Returns," unpublished Ph.D. disser-
tation, School of Operations Research and Industrial Engineering, Cornell University
(1979).

[101 Miller, B.L., "Dispatching from Depot Repair in a Recoverable Item Inventory System: On
the Optimality of a Heuristic Rule," Management Science, 21, 316-325 (1974).

[11 Muckstadt, J.A., "A Model for a Multi-Item, Multi-Echelon, Multi-Indenture Inventory
System," Management Science, 20, 472-481 (1973).

[12] Porteus, E.L. and Z. Lansdowne, "Optimal Design of a Multi-item, Multi-Location. Multi-
Repair Type Repair and Supply System," Naval Research Logistics Quarterly, 21, 213-

237 (1974).
[131 Ross, S.M., Introduction to Probability Models, (Academic Press, New York, 1972).
[141 Schrady, D.A., "A Deterministic Inventory Model for Repairable Items," Naval Research

Logistics Quarterly, 14, 391-398 (1967).
1151 Sherbrooke, C.C., "METRIC: A Multi-Echelon Technique for Recoverable Item Control,"

Operations Research, /6, 122-141 (1968).
[161 Simpson, V.P., "Optimum Solution Structure for a Repairable Inventory Problem," Opera-

tions Research, 26, 270-281 (1978).



ANALYTIC APPROXIMATIONS FOR (s,S) INVENTORY
POLICY OPERATING CHARACTERISTICS*

Richard Ehrhardt

Curriculum in Operations Research and S'stems .4nalysis
The University of North Carolina at Chapel Htill

Chapel Hil. North (4irohna

ABSTRACT

The operating characteristics of (s.S) inventory systems are often difficult to
compute, making systems analysis a tedious and often expensive undertaking
Approximate expressions for operating characteristics are presented with a .iew
towards simplitied analysis of systems behavior.

The operating characteristics under consideration are the expected values
of: total cost per period, period-end inventory, period-end stockout quantitl.
replenishment cost per period, and backlog frequency. The approximations are
obtained by a tvwo step procedure. First, exact expressions for the operating
characteristics are approximated by simplified functions. Then the approxima-
tions are used to design regression models which are fitted to the operating
chracteristics of a large number of inventory items with div erse parameter set-
tings. Accuracy to w*ithin a few percent of actual values is typical for most of'
the approximations.

I. INTRODUCTION

There are many situations in which an inventory system's designer can use estimates of
operating characteristics of the system. For example, management may desire forecasts of
inventory on hand, or system operating costs. Our goal in this paper is to develop simple
approximations that designers can use to estimate the following operating characteristics of a
periodic-review inventory system: average holding cost per period, average backlog cost per
period, frequency of periods without backlogs, average replenishment cost per period, and aver-
age total cost per period. These characteristics are defined mathematically in Section 2.

We consider a periodic-review, single-item inventory system where backlogging is permit-
ted and there is a fixed lead time between placement and delivery of an order. Demands during
review periods are represented by independent, identically distributed random variables having
mean u and variance ir Rcplenishment costs are composed of a setup cost A and a unit cost
t. There is a fixed lead time L between the placement and delivery of each replenishment
order At the end of each review period, a cost It or p is incurred per unit on hand or back-
logged, respectively. Ihe criterion of optimality is minimization of the expected undiscounted
cost per peritod over an infinite horizon.

(Inder these assumptions it hts been shown that there exists an optimal policy t' the
I s.-, % form (Iglehart 131). That is, a replenishment order is not placed unless the inventor\
position (on-hand plus on-order minus backorders), x, is less than or equal to s, at which time

"l hi' FcN ,, r h "es ar ~ t as t e huun t ra it "oh thet (tMitce il N,,jai Rc,,c rth indi t h I \ . Rm _ .10t h (ttILc

255

4,



256 R HIRtARI)I

an order of size S - x is placed. Computational methods have been developed (\einott and
Wkagner 161) for calculating optimal policies and their operating characteristics. U nfortunatclN,
the computational effort required is prohibitive for practical implementation. Furthermore,
exact computation requires the complete specification of the demand distribution, a lecel of
detailed information that is unlikely to be available in practice.

In this paper we develop approximations for operating characteristics in a two step pro-
cedure. We start with exact analytic expressions for the operating characteristics and approxi-
mate the exact expressions with simplified functions. Then we generalize ihe funtions and li it
their parameters to the observed characteristics of 576 items using least-squares regression.
The resulting approximations are accurate and require for demand information only the ncan
and variance. In Section 2 we derive the simplified functions from cxact expressions for the
operating characteristics, and in Section 3 we present the results of the regression aiallkscs.
Finally, in Sections 4 and 5 we analyze the accuracy of the approximations and dra\ conclu-
sions.

2. ANALYTIC APPROXIMATIONS

Consider the model of Section I and assume that demand follows a probability dcnsit,
6(.) and cumulative distribution 4 (.). Let 6*"(.) and (V*"(-) be the n-fold convolutions of
these functions. We consider the following operating characteristics of fixed, infinite-horiion
(sS) policies:

(I ) tt average holding cost per period,

B average backlog cost per period,

P- backlog protection, i.e., frequency of periods without backlogs.

R- average replenishment cost per period, and

1 average total cost per period.

Let

mn(' I d ,.,,1).

and

.A l() -- .€l * ()

-he functions tn(f) and 1f(.) are renewal functions which govern the f'rCqucncN of replenish-
ments. and, therefore, the evolution of the inventory positions. We have. as in Roberts 141.
the exact relationships

(2) II = h[l + vt(1))j I (s - -. - 6''' "'l()nlt ( dl

+ f"
Bt =p // + (I. +t I )p -Sl + p I + If/(1))] f , i (.1 (it

}xdx
I'= 11 + ' /(1))l I i. I S - ),(.i dh ± q 1, 1,

+ I nll (I ll+l)()

I' I 11 + R.
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where

D_ S -

Notice that a constant term c'i has been omitted from the expression for replenishment ,, ,
since it does not affect the choice of an optimal policy. It is diflicult to obtain any insight,, from
(2) regarding the sensitivity of the operating characteristics to \alues of model pa! m_.tr!
Indeed, it is exceedingly complicated just to calculate values of the characteristics for a ' L.n
set of parameter values. We proceed to simplify the form of expression (2) by introiduuoi!
approximations for the functions in (), A (.), and , ' I).

Replenishment frequency in (2) is given by [1 + .l(D)1 't o apprxinlati. l If I.

use the following result of Smith (51:

M(x) = x//. + (yr/(2t) 1/2 + o(), .v - CO.

This yields the approximate value for replenishment frequency

(3) I + MI(D)I -- p/[D + (A + ,r 21) I .

To obtain approximations for the other characteristics in (21, we fir'a t;ced to !Irnd :. sii
pie expression for the function tm(.). We identify the quantit ., - i') in (2) , i -
position (after ordering), with stationary distribution function I ) gi\en b.

I~ ~ ' + 1) S' - i< AFI ) { .M/()/[l + ,M(il." .5- = <
l.( - y) I - .1 = S. i

The probability density .f() of the inventory position (after ordering) on the intor\ i1 I ,.

/(S - .) = t(I V[I + M(D)1.

We approximate ./(-) by a constant c on the interval TYi). There are Io' r', kf\ 11jh h,
should be a reasonable approximation. Firstly, the result of Smith H sh, ,v jt i: ,
asymptotically constant as i grows large. Secondly. we kno" that i I i, C\a .li ,,,taio I
the special case of an exponential demand distribution.

We find a value for i by normalizing the approximated distrihltli 0n1 Stirting Will h C i C\'

expression, we have

5 f s 1 1)d = .If )/Il + m ))!.

Then we substitute for /I() on the left side Of (5) Ind use on 3i the tight side of ( i

ing

(6) u = (I -- p1/l.

We use (3) and (6) in (2) to get

(7) / 'h [ 1 1 /))//I )o) ),

+ p f, (S - . ),Z\

B pIll/ih + (1. 4 IHp 1, (I ,/) 21

R 4 pi K|/.)1 " ,

R -K.
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The expressions lor IL. I, and P) in (7) still require the specification of the demnand distri-
bution. We obtaiin at fUrther simplification by approximating the demiand distribution "iii a
gammna distribution. As we show% belox", this aipproximalton leads It) expressions Ii r /1. B, and
P that require Imr demnand information only the mean pt and variance 'If ie class oft gammna
distributions prov ides good fits for at wide .ariety of' unimodal or nonincreasing densities on the
positive real line and should be at reasonable approximation in our aipplication. F-or inoentor\
items that hax e significantly non-tarnmi demiand dlistributions. an analyst could produce at lie"~
set of' approximia',ons by making the appropriate so h.t itution in (7) and proceeding in the
manner described belo\.

Let tg I lo /3) be at gamnma densit function %x ih parameters (k and 13, 1 hien x\ e hax e

xf* 1
y G' v /~k 3) (/1L)In 3)l.

\% here

13 = T

We define the notlmon

atnd use (8) in (7) ito yield

(91 /1 j.;? p/i, t./X
1

3) lk/36, 0 + 1. 13))

+ 10II //1 12M /3 - 2o/3xG I.v. I + I1./3)

S
lo+ f )or 3 G (vXa + 2/ 3)

13 1r1'h + If, + I1A S + (I ,AI)/ 21

1) A((S 1.3) + G(I (),){\(l .3) -- 4k3;.r 1,- 1/3

R? A'.

O bsere that the approximations (9) depend on the aitloes Of' S.S the economnic. paramec-
ters. and the mecan and airiance of' demaliild. The I'o nction Gi must be calculated h\ al n ILImricall

procedure. We use at series expansion for (G (Nv lo, 3) w hen \ is less than the minimum of I and
rf/3 . and at continued-fraction expansion otther% ise. [hle procedure is part of' a package of c~oni-
p)Uter programs entitled 'IThe JMSI. I ibrar\" %%hich is marketed h.\ the Internaimonal lthemt-
cal and Statistical libratries. inc., HoUston. ea

D espite the effort required to compute (G, the expressions in (9) atie an enormious"
simplification (ier (2). In Section 5 xxe miention the possibilit\ o)I usitng at normal distribution
(unction in lieu of' the f'unction 6.. Limplo ving the normal distribution \%OUld facWiilitte mauli
compu tatioins of" tilie approximations x e den xe beli )x4

3. 'NNI V RI('Ai1, A NA1.SI S

In this sect iion we use e xpressions I 9) ti dcx elop regression0 models f m t he opevimi g
charac teristics. We fit the parameters of' the regrcssin i models to tlie obserx ed chaiAce sic'S
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of 576 items. The 576-item system is formed by using a full factorial combination of the
parameters in Table 1. Discrete demand distributions are used in the analysis with means rang-
ing from 2 to 16 and variances ranging from 2 to 144. Although the expressions in (9) are
based on a continuous demand distribution, we will show that they can be used to approximate
man), of the characteristics of items with discrete distributions, which are more common in
practice. Notice that all the items in Table I have a unit holding cost h of 1. Since the total
cost function is linear in K, p, and h, we have used h as a normalizing parameter.

TABLE I - ,Sistcm Parameer.s

Factor Levels __ _Number
of Levels

Demand distribution Poisson (172/ 1) 3
Negative Binomial (IT , = 3)
Negative Binomial (Ir2/p. = 9)

Mean demand (A) 2, 4, 8, 16 4

Replenishment lead time (L) 0, 2, 4 3

Replenishment setup cost (K) 32, 64 2

Unit penalty cost (p) 4, 9. 24, 99 4

Unit holding cost (h) I I

Policy Optimal policy, 2
power approximation policy

The (s,S) policies used in the 576-item system are of two types: those with optimal values
of s.S computed with the algorithm of Veinott and Wagner [61 and approximately optimal
values of s.S computed by the power approximation algorithm of Ehrhardt [l]. For each item
in the system we use the methods in [61 to compute exact values of the characteristics in (2)
and use these as data for our regression analyses. The approximations we obtain are labelled
with subscript "a" when they are used for all 576 items. Subscripts "a..rJ' or "ad' are used to
label expressions that apply only to power approximation or optimal policies, respectively.

We develop our regression adjusted approximations in the following subsections. In each
subsection, we derive an approximation and assess its accuracy in the 576-item system. The
measure of accuracy we use is the absolute value of the percentage difference between the exact
and approximated values for individual item,;. We note here that the accuracy of the approxi-
mations appears to be even greater when the operating characteristics are aggregated o~er por-
tions of the 576-item system. That is, there are essentially no systematic errors with respect to
any of the model parameters. For a more detailed discussion of this point, see [21.

An Approximation for Replenishment Cost

We use (3) in (9) to obtain the expression for replenishment cost

R pK/I/) + (p. + r2/p. )/21.

We manipulate the expression to form a linear regression model

(pj/R) l .4R A .'l 1) + .4p. + A IGr 2/p) + (z.
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%here I, a.... I are constants to be lit and c is the error term. We use least-squares regres-
sion to lit the model to the s.,stem of 570 inventory policies in Table 1. That is, for each of
these policies %e use 1), A. and ,r2 ip as independent variables, and we use the exactly corn-
puted ,alue of A. K R as the dependent ,.ariable. The result is the following numerical approxi-
mation for R

(10) R'+ (, A r2 r jA ) 2- .51211.

which has a ci ctlicient I determination (fraction of ,ariance explained) of 0.9999 for the quan-
tiP. MA A. R

When used in the 57 0-item s.stem. cxpression ( 10) is within 0.1'/, of actual values of R.
on the a ,erage. The expression is accur.,c to within 2"' for all but 2 items, w ith a maxinum
error of 2. 5"

An Approximalion for Holding Cost

We can treat the unit holding cost as a redundant (normalizing) parameter in our nlodel.
and so we di. ide the holding cost expression in (9) by /I yielding

11ih - ,1.S(.S 1, ,3) q ((S Ja + 1,3)

I(] t,)/2DJ {.v G(.v1(,2 .3)- 2,t13.vG(.V-tk + 1.43)
S

t ((t + l)(t132G~v1( + 2.9)
We take ad\,antage of our improved estimate of replenishment frequency from (10) and replace

p with

(II ) = /L/ D + fu + ,r 2/u/2 - .5121].

The result is a quantity that we denote as W. given by

(12) -- r1SG(SIt.3) - (43G (Skkt + 1,13)]

+ (l - r)/2D) k-2G(xAj./3) - 2Q3xG(xvo, + 1,3)
'S

+ ((k + l)a/32 G(xI(v + 2,3) 1

We calculated values of' W in the 57 6 -item system. We compared them with the actual \alues
of I/ It and found a systematic variation with respect to /t and (r2/U. This noti\ates the linear
regression model

l/Ih = 4, + ,A 114' + A 2A + A-r3((ri//M) + E

where ,-. . 4 are constants to be fit and e is the error term. We use least-squares regres-
sion to lit the model to the system of 576 items. The result is a coeflicient of determination of'
0.9999 for the approximation

(13) H/, = h) (4- .1512,u + .1684(r 2/,u + .0689).

Expression (13) is within 0.7'/, of" actual values of /1. on the average. when used in the 576-
iten s,,stcm. It is accurate to within 2% for 961/., of the items, and within 4"/, for 9 9 "/. of the
items. ()nly one item produces an error in excess of" 6'N. This error is 9.2'X, for the item con-
trolled w ith optimal values of (0.s.). A equal 2. (r2 equal 18. p/h equal 4. K/Ih equal 32. and I
equal (). In general, the largest errors occur for high ,alues of variance-to-mean ratio and lovw
,alues of other parameters.
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An Approximation for Backlog Protection

Backlog protection is defined as the frequency of periods Aithout backiog,. ii is. ofL:
minus the backlog frequency. Since it is a critical measure of service, it is of ccrmd intcrest to
the inventor\ systems designer. Unfortunately, when (9) is used , construct rcgression
models for backlog protection, ver poor fits result. The highest coefficient of determination
obtained using this approach is 0.68.

We revised ;he regression model to reflect a theoretical result. When demand is coninu-
ously distributed, an optimal polic\ yields (p/h) (I + p/h ) for backlog protection. Wahen (he
demand distributions are discrete, (p/ih I + p/ h ) is a lower bound on P for optimal policies
It was observed in P I that the power approximation and optimal policies differed in their back-
log frequency performance. Therefore, we decided to fit the two policy rules separatel.

We use the model

(+ - p/i) = .- ,, + .1 (p/h) + E.

which dramatically improves the fit. For optimal policies, the simple expression

(14) P,, = (0.0857 + ph/ill + p/h)

yields a coefficient of determination of 0.99999 for (I + p/hiP We have the same coefficient
of determination for power approximation policies with

(I5) , (0.0695 + p/hi/I + p/lh).

When used in the 576-item system, expressions (14) and (15) are accurate to within 0.7 , (,n
the average. They are accurate to within 2'! for 92"i of the items and to within 4"< for 98 "f
the items. All nine items with errors in excess of 4/ have power approximation policies Wth a
unit penalty cost of 4. The approximations are especially accurate for large unit penal\ costs.

An Approximation for Total Cost

We obtain an expression for total cost by summing cost components It. B. and R. and
using approximations (9) for B and R

T =If + B + R

(I + p/h) ti + p[PI. + I)A - N + (I - pI)/21 +p. i

We divide by I, replace p with r, as given by (1 ), and use approximation (12) for // to obtain

(16) Tih = (I + p/h) + //1 (I 4- 1)p - .S + (1 - r)1)/21 + ,K/h.

As we discovered in obtaining a fit for holding cost, a group of related terms should he added
to (16) to obtain a good lit to the s stem's data. The linear regression model we emplo ed is

T/h = .( + A it ( l Ip//I) I + f1 -,+ lI)p/hIi .14 (Sp//)

+ .l.()p/h) + j,(.I-)p/j) 4 f-(ArK/hi) +

+ - -i/)/h) i- -I,[ .- jp!+ ),U] + ' *l + -I1;.h I)

+ .i + .4 ,p 4 I40,hrr /. ) jj_(Up'jj/ )

+ .I ,r2/IA) (p/0t) + E.
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We lit the model to the system of 576 items using stepwise least-squares regression. The
following expression yields a coefficient of determination of 0.998:

(17) 1", = 1.1 0/14'- .001049 pW + .3364 Kr

-.2234 h + .3274 hD + .4476 h r2/Ai + .003062 p r-2/.

Expression (17) is within 1.914. of actual values of T, on the average, when used in the 576-
item system. It is accurate to within 4/o for 89/, of the items and to within 8% for 99/ of the
items. Only four items produce errors in excess of 10/. These items have FL equal 2, (r 2 equal
18, L equal 0, and p/h equal 4 or 9.

Although the approximation appears to be accurate in most cases, it may be inaccurate for
policies that have significantly suboptimal values of s and S. This is because the differences
between (16) and (17) suggest that the economics of optimal policies are intrinsic to the
approximation obtained. The robustness of (17) is discussed explicitly in Section 4.

Approximating Backlog Cost

Attempts at finding a simple, accurate approximation for backlog cost were unsuccessful.
Expression (9) was used to construct a regression model similar to those described above. The
result was a coefficient of determination of 0.44. The relative errors were very large, in some
cases exceeding 100/, making them significant even when compared on an absolute basis with
other components of total cost.

The next attempt was to employ the identity

B= T- H- R

and use (10), (13), and (17) in place of R, H, and T This approximation has an average per-
centage error of 18%, with large absolute errors for many of the items.

In order to get a reasonably accurate approximation, it was necessary to form a rcgrcssItin
model that included all the variables appearing in the models for R, Ht, and T. It %% aso
necessary to fit this model separately for optimal and power approximation policies and for ea,h
of the four settings of unit backorder penalty cost. That is, the 576-item system was partitioned
into 8 systems of 72 items, and 8 separate regressions analyses were performed. The resulting
approximation has an average coefficient of determination of 0.998. As the high coefficient of
determination indicates, the fits are good in terms of absolute errors, although there are relati'e
errors in excess of 70/ for items with large values of p/h. However, the approximation is a
complicated expression involving ten coefficients in each of the 8 subsystems (80 coefficients in
all, for the 576-item system). Also, since the approximation was fit separately for each setting
of p/h, there is no explicit functional dependence on this parameter. The reader is referred to
[21 for additional details.

Backlog cost has proven to be surprisingly difficult to approximate. We point out that
among the operating characteristics listed in (2), backlog cost is the most sensitive to the tail of
the demand distribution. It appears that an accurate specification of the demand distribution is
required for a reasonably precise calculation of backlog cost.

4. COMPUTATIONAL EXPERIENCE

We test the quality of approximations (10), (13), (14), (15), and (17) by using them in a
multi-item system with the parameter settings of Table 2. Note that all the numerical parame-
ters have values not found in the 576-item system. Each parameter has one interpolated value
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I- AB L1 2 4- I 4-lr m S sh'n a/h \u /i IdIid pi r . t ioivs

Iactlit[e es ujlc

Demand distribution Negatic Binomial (r 5 2
Negative Binomial ((r / - 15

Mean demand 0. i(

Replenishment lead time 1. 6 2

Replenishment setup cost 16. 48

Unit penalty cost 49. 132

Unit holding cost I

Policy Optimal policy.
power approximation polio

and one extrapolated value. A full factorial combination of the %alues is used.ielding (4
items. The system is a rather severe test of robustness since onk two items hae 'll paraelic-
ters with values within the ranges used to derive the approximations. [here are 10 itens v, iih
one extrapolated parameter. 20 items with two extrapolatei parameters. 20 with three c\tri(V-

lations, 10 with four extrapolations. and 2 items with all live parameters extrapolated

We compare actual values of tH, P. R, and T for the 64 items wkith our anal, tic appr0\im,,

lions. Backlog cost B is not considered because of the complexity of our approximati)n and tt,1
absence of an explicit dependence on unit penalty cost. The a~erage percent de\iation,, fior
actual values of //. P, R. and Tare 1.6,, 0.2/,,. 1.4"!. and 2.6%. respecti\elb. The distribut'iin
of percent deviations are summarized in Table 3. Our approximations are quite accurate ()n-
sidering the wide range of parameters spanned by the system.

TABLE 3 - Pertcnta,,' Deiiation.s o/I ppromatiof
in a 64-1tem .Si.stet

(Entries are the number of items with errors in the gisen range.
with the cumulative percentage of items in the s,,stem in
parentheses.)

Range of' Holding Backlog Replenishment7 ltal
l)eviation Cost I Protection _-Cost ( 'ost
[0",,,2',;,) 49 (7511,0 64 (1()(,/,, 48 ,75S 0 . 4) 1

[21,4$/,) 6 (84"! ' (8/.) 22 1
[4",,,61 ) 5 (92''!) 0 (Xx-' , t (91 1
1611/o,81) 3 (97 / 6 (97') 4 ( T,,
[ 8 "/ .1 0o ' , , 2 1I 0 0 "/ .,) 2 ( 1 0 0 '' .; ) I ( 9 8 ' l

__0_/_12"/_ __L_ l jj 11))(',,)

The holding cost approximation is extremely accurate for all cases \%ith pt greater than 0.5
or rr2/ less than 15. All items with deviations greater than 4' .' ha'e M. equal 0.5 and t,/I
equal 15. If we consider only the items \kith fewer than two parameters extrapolated, the a\c r-
age error is 0.4%.

The backlog protection approximation is excellent, \kith only one item hasing a desiation
in excess of 0.7',.
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(I r appr(oxiniation for replenishment cost is also robust. All items with deviations in
, (,i 4" hac u equal 0.5, ,riA equal 15. and K/h equal 1. Items with fewer than two

",,wolatcd prmictcr, ha\ an a\erage error of 0.1/.

I (\ p and high ri.a arc also sources of large errors for our total cost approximation. All
it'm- v,-.ti d'\ iatkmI in excess of' 4 have either A equal 0.5 or cr2/)i equal 15, or both. Items
.,.. cr lmn t I ctraptlated parameters have an average deviation of 1.2/.

I.mcred in ',ection 3 that the approximation for total cost may be inaccurate for
!th ti ,nllicantly stihoptimal \alues for -s and S. The remark is equally valid for the back-

p: .ection expressions 114) and (15), since they are based on a theoretical result for
; >, ici [his issue IN of interest to the analyst who may have reason to use an (s.S)

.'.01' iN designed to satisf'y criteria other than simply minimizing total cost. We now
c: ,, !o ae how the accuracY of the approximations is affected when nonoptimal values

*o S-. br nd "'.

,r'A.r the ;,1k,,ing sster of items that are controlled with nonoptimal policies. We
11.'. -,:ase item% with (r7 ji equal 5, A equal 9, L equal 2, p/h equal 49, and K/h equal

I thc (;tinal \alue of (.,0,) for this item is (43,73). We now use this polucv on items with
t :.i.' parameter ,,lues. The new parameters are obtained by increasing or decreasing each

i-,,,c .ae parameter value, one at a time, yielding 10 items. The parameter values of the sys-
1n ,_ displayed in Table 4. For each item we compare the actual (exactly computed) and
: i' ion a,u (f t. P, R. and T.

i %BI 1 4 --- PIt'ntage Errors o/..fplroxinatiiiifolr Nonoplimal Policies

Percentage Errors of Approximations

Changed I Iolding Backlog Replenishment Total
\,Iue _Cost Protection Cost Cost

,r' - iV( ) . )p --. 6/ -. 00% 6.01

h +2,) I'0,., 17 .00/. --5.0V

.11". -1.37 .03 13.7).
I . 7:2 ', .1)4',, 2.0% .03/ -22.2 1

5',,) 041,. - 1.6% .00% 12.6%
- 5'0') .0211 5. 5 1/o .00% -36,2/

1, I 3'l (--20 1) .017 -. 5 % .007. 3.9,.
S 59 (+20 .) --.01 ,, .37 .00% -2.27.

K/I h = 38 (- 211",.) .0%' .0/ .007. 4.0"/o
S ( +21",) -. OlP% 0.Y .00%) -2.271

1 Average of t .0 4"/, 1.37 .0117, 10.8%
Absolute Values

()hser\ e in Table 4 that the approximations for holding cost ind replenishment cost are
er', accurate, with average percentage deviations of 0.04 o and 0.011%, respectively. The

approximation for backlog protection is somewhat less accurate, with the largest errors occur-
ring for large values of lead time and mean demand. The total cost approximation does not
perform well in the system, deviating by an average of 10.8/.. Thus, we conclude that the
approximations for backlog protection and total cost should be used with caution for
signilicantl. nonptimal policies. An approach to reducing the errors might be gleaned from the
pattern of deviations in Tahle 4. Notice that when each parameter is larger than in the base
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case, the approximation underestimates the total cost, and when the parameter is smaller than
in the base case, the approximation overestimates the total cost. The reverse is true for backlog
protection.

Finally, we consider the issue of how well the approximations perform when the demand
parameters are not accurately specified. This issue is of interest in applied settings when the
mean u and variance a-2 of demand are not known but, rather, are estimated using past data.
We have found that the approximations are rather robust when subjected to perturbations of
this type. That is, the relative errors of the operating characteristic approximations tend to he
smaller than the relative errors in the demand parameters. Furthermore, the errors are nearl\
symmetric so that when the operating characteristics of several items are aggregated, the errors
due to high values of demand parameters tend to cancel those due to low demand parameters.

As an illustration we consider two items controlled by power approximation policies, one
having a mean demand ju of 4 and the other having u equal to 12. The other parameters of the
items are identical; demand has a negative binomial distribution with yr2//, equal to 5. the lead
time L is 2, the setup cost K is 48, the unit backorder penalty cost p is 49, and the unit holding
cost h is I. We measure the stability of the operating characteristic approximations by substi-
tuting perturbed demand par ,meters u' and (r' in place of the correct values A and (r, and com-
paring the approximated values with exactly computed values. For each of the items, we
evaluated the approximations when ,'/4 and (r'21or 2 took the values 0.80. 0.90. 0.95. 1.00.
1.05, 1.10, and 1.20. All combinations of perturbed values were tested, yielding 49 cases for
each item, or a total of 98 cases.

We summarize the results in Table 5, where average absolute values of relative errors are
listed for several ranges of demand parameter perturbations. Notice that the backlog protection
approximation is not listed in Table 5. This is because the approximation is not a function of
the demand parameters and, therefore, displays no variation when they are changed. The
replenishment cost approximation displays the least stability in Table 5, with an average de.ia-
tion of 6.9% for the 98 items, Errors ranged up to 19.5% for individual cases with extremely
perturbed demand parameters. The holding cost approximation is more robust, yielding an
average deviation of 4.7% and a maximum deviation of 13.7%. The approximation for total
cost, however, has an average error of only 3.9% and a maximum error of 100y.

TABLE 5 - Percentagfe Errors of.Approxitnation When Demand
Parameters Are Ic'orrectv Specified

Range for Average Absolute Value of
Demand Parameters Percentage Errors

Number--

JA '/ /A(T
2/(T 2  of Replenishment Holding Total

Cases Cost Cost Cost

1.0 1.0 2 0.04W 0 2, "3!'
1.95,1.05] 1.95,1.051 42 3.01 2.01,%. 1.61/,,
[,90,1.101 1.90,1.101 70 4.2, 2.8/ 2.31
1.80,1.201 1.80,1.201 98 6.9 / 4.71. 3.91,,

We note that the data in Table 5 are measures of the accurac, of the approximations for
individual cases. A measure which is perhaps of greater interest in an applied setting is the
aggregate error over all 98 cases, which is less than 0.5"/, for each of the characteristics. 1 hat
is, when the 98 approximated values are averaged and compared with the exact a\erage \aluc.

L~.______
- ~k - .
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the difference is less than 0.5,i. This observation can be regarded as evidence that the approxi-
mations are relatiely unbiased when the demand parameters are replaced with unbiased statis-
tics.

5. ('(NC'IA I.nons

W !ia e deried approximations for replenishment cost (10), holding cost (13), backlog
protection (14), (IS), and total cost (17). The expressions are quite accurate and are much
easier to compute than the exact expressions (2). Addiuional simplitication of' calculations
could result from using a normal distribution function in lieu of the function G. in (12). Then
the six evaluations of G in (12) could be replaced by terms invol ing the standard normal dis-
tribution function, which requires only a simple table look-up. This possibility has not yet been
in, estigated.

Despite the good fits obtained in (10), (13), (14), (15), and (17), we caution against their
use in certain circumstances. The results of Section 4 have demonstrated that the approxima-
tions for backlog protection and total cost become less accurate when used for significantly
nonoptimal policies. Although the approximations for replenishment cost and holding cost are
quite accurate over the investigated range of parameter settings, we suspect that they might
break down when used for ,er small values of I) = S - .s. This is because (3) is based on an
as mptotic expression for the renewal function Ml (0).
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ABSTRACT

The classical Economic Order Quantity Model requires the parameters of
the model to be constant. Some LOQ models allow a single parameter to
change with time. We consider -O systems in which one or more of the ,ost
or demand parameters will change at some time in the future. I he s.stcn we
examine has two distinct advantages ov5er previous models. One obvious ad-
vantage is that a change in any of the costs is likely to affect the demand rate
and we allow for this. The second advantage is that often, the ttmes that prices
will rise are fairly well known by announcement or previous e (perienv.c \,c
present the optimal ordering policy for these inventory systems with anttcipatcd
changes and a simple method for computing the optimal policy I-or cases
where the changes are in the distant future we present a nyopic policy h.1
yields costs which arc near-optimal. In cases where the changes will occur in
the relatively near future the optimal policy is significantly better than the ms-
pC policy

I. INTRODU(TION

The classical Economic Order Quantity (EOQ) inventory model has several hasic assump-
tions that yield the elegant solution of ordering Q* = 2A K/h where k. K and I are the trath-
tional inventory parameters of demand, setup and holding, respectively. The most hasic
assumption is that all of the parameters are constant. Several systems have been examined in
which either the demand rate or the purchase price may vary with time. (see (ioyal 141, BU,,a-
cott 131, Naddor 191, Resh, Friedman and Barbosa 1101. Barbosa and Fricdman III and Sisa/liati
1131.). In all of these papers the parameter changes are continuous with time and furthermore
only one parameter is permitted to change. In this paper we consider IL()Q lodls in whiCh
any or all of the parameters may change at some future point in time.

The system we examine has two distinct advantages over the nrevious mtdel., One (,h i-
ous advantage is that a change in any of the costs is likely to affect the demand rate and we
allow for this. The second advantage is that often, the times that prices will rise are fairl% wcll
known by announcement or by previous experience. If prices have risen January I. April I and

267
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July I, it is Very reasonable to anticipate a price rise on October 1. Also, price changes are
more likely to jump than to be continuous with time.

In Section 2 of this paper we develop the in',entory model and determine the necessary
conditions for a policy to be optimal. In addition, we present a simple method for computing
the optimal policy. Furthermore, a by-product of this method is a myopic policy. The myopic
policy works well when the horizon is large enough and the price or demand change is far
enough in the future. In Section 3. we present computational results for several different sets
of parameters.

2. T11E STR1,7UnRF OF AN OPTIMAL POI.ICY

Consider a finite horizon of length / that is partitioned into two disjoint time periods: the
closed inter~al 10,SI called period I and the half open interval (S. T I called period 2. The costs
associated %kith period I are a per unit cost t 1, a holding cost rate hl, for all items brought into
stock during period I and a setup cost K, > 0 charged against each order placed (luring the
period. [or items brought into stock during period 2 the unit cost, holding cost rate and setup
cost are t , h and A' , respectively. Thus, S is a time at which any or all of the inventory costs
may change. Also, the demand rate may change at S. Let A1 and A, denote the demand rates
during periods I and 2, respectively. A finite sequence of lot sizes is to be purchased to satisly
the demand. We assume that the initial inventory is zero, delivery is instantaneous, orders are
placed only when the inventory level is zero and the discount factor is either ignored or
included in the holding cost. The optimal policy for cases with a positive initial inventory is
discussed later. Of course, if there are known lead times the results of this paper still hold but
the orders are placed earlier according to the amount of the lead time.

The total cost, Z(Q), for a single order of quantity Q with corresponding holding cost and
purchase cost is Z(Q) = K, + /1, Q2/2X, + c,Q. Theorem I limits the structure of the optimal
policy as follows:

THEOREM 1: An optimal policy must have the property that

(a) all orders placed and depleted in period I are of the same size

and (b) all orders placed and depleted in period 2 are of the same size.

PROOF: Suppose Q, and Q2 are the sizes of two consecutivc orders placed and depleted
in either period and let Q = QI + Q..

The total cost of these two orders Z(Qj) as a function of Qi is given by

Z(Ql) = 2K, + h,(Q 1)2 + (Q2 ) 21/2A, + c,(Q, + Q2)
= 2K, + h,[Q2 + (Q - QI) 21/2x, + (,Q.

We have that the lirst and second derivatives are

Z'(Ql) = /h,[2Q - 2(Q - Q1 )]/2A,

and

(Qa) = 4h,/2x, > 0.

Hence, Z is strictly convex in Q, and is minimized only at Q, Q.. 'hus. two conSCCu-2
tive orders placed and depleted during the same period must be the same si/c, which implies
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that all orders placed and depleted in either one of these two periods must be the same size,
and the theorem is proved.

Since the orders must be placed and depleted during the same period, Theorem I does
not apply to an order that is placed on or before S (period I) but depleted after S (period 2).
Such an order is called a crossing order. Theorem I implies that the structure of the optimal
ordering policy has been reduced to one of two possible forms depending on the inventory lexel
at time S. If the inventory level is zero at S (Figure Ia), then the structure of the optimal pol-
icy is to place in > 0 orders of size Q1 A 1 S/m during [O.S), place an order of size
Q, 0 < Q, < k( T - S) at S, and place n > 0 orders of size _2 = (AA/"- I) - Q,,)/n dur-
ing period 2. (Note that if n = 0 then Q2 does not exist). This case is denoted as the zero
inventory case (ZIC). If the inventory level is positive at S (Figure Ib), then the structure of
the optimal policy is to place in > 0 orders of size Q1 before S. one order of size Q, that
crosses S and nt > 0 orders of size Q, after S. This case is denoted as the nonzero inventon
case (NZIC) and the two cases are examined separately.

2.1 Zero Insenlor Case

The optimal number of orders to place for the finite horizon inventory model %kith param-
eters A, I, A, /is given by Schwarz (121 as the integer it satisfying

(I ) i < I h iT/2k n +i I).

The right hand inequality is

i2 + it - hA 72/2K > 0.

The solution for the quadratic inequality is

n > -/2 + 1/4+ hkT 2/2.

The left hand inequality yields

n < 1/2 + [1/4 + hA T2/2 A.

Since n is a positive integer

,, = < - 1/2 + 1/4+hXT 2/2K >

where < x > represents the least integer greater than or equal to D. l)efine an integer ,alued
function .(A. It. . 7) of the inventory parameters as

V2) A(A. h, A'. T) = < - 1/2 + 1-/4 /IAT12A >.

(N is used if the parameters are clearly defined).

It follows that for the ZIC the optimal number of orders to be placed during I0A) is gi.en

by

rn' = (A1 , hI, '1 . S)

and the optimal order size is given by

Q = A S/n

The costs incurred in IS, F1 are given by

I (. nl A'1 4 It A f 2/2 + A 4 ,(A'? + hAt.H/2 + A.,t:,
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Fi(, 1 I ( )plimal Policy Structure-Zl( and N/I(

where t is the length of time it takes to deplete the order placed at S and t' = (1"- S /1.
Letting R = F- S. I(t, n) can be expressed as It, it) K +i1 A t /2 + A li -+

nK, + h/,A(R )/2n + O2(R - IN . The total Zl(' costs are thus

(3) 0I(, n) + in*KI + inh*/iQ?/2A + AI S.

The partial derivative of (3) with respect to t. provides a necessary condition for (0,InI t(o
minimize the total inventory costs for the zero inventory case:

(4) 0 = hA.r + A;,i - h, .,(R - /n - A(
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or = (nt - ) + hR )/(nhI + h1).

Notice that if the per unit cost increases then I will be positive. If the cost decreases then I maN
be negative. If this is the case then at time S an order should be placed for as few units as pos-
sible or the order should be delayed until time S + E, E > 0.

Also note that, if t is given by (4), then R - I is the time in which the a orders are placed and

is given by

R - t = R - (n(c - co) + ,R )/(nhI + Ih,)

n(hIR - c) + cI)/(nhI + Ie).

This will be nonpositive if and only if hR - c, + c is nonpositive. Thus, if I 1R - t, +
c < 0, then a must be zero and r = R. This means that if the cost of ordering one unit at
price c1 and incurring the holding cost hI for the entire span R is not more than ( , the incre-
mented purchase price, then obviously one should avoid any purchases at price t . If
hR - c, + cI > 0, then R - t is positive and ,i > 1. If R - ( is positive, then a must be the
optimal number of orders for a finite horizon inentory model of length (R - t). Let
I = I. 2, and i* (R - ) represent the optimal number of orders to place in the second
period. Then from Equation (1)

ti*(R - ) min{h E 1:n , + I) >_ (A,h 2i2k,) (R - t0 2

= min{k E I:n(n + I I > (A2h, 2/2k 2 ) (n(h 1 R -- )0hj + htn/

(5) = minkn E /:(n + I) (n/hi + i&'ln (A> h/2K') (hR -, + ( )21.

One could compute nt* by sequentially searching the integers. Ilowexer, there exists a more
efficient scheme.

Consider the inequality given inside the braces in (5) expressed as an equality.

+ /1)
2 (n + )/1 (A=/,ht2K ) (h R Ic,- ).

Let

z (A/h/2A,) (hjR - )) 2.

Then

(h 2I1+ 2 n/zh/h + 21 (n + I) - it: = 0

or

orh/ + 2n2, + nh- + n2/ih 4- 21/h 1/, + h2 - n: = 0

or
h + i,2(2htlh,+ h, ' -, + 2hh - : ) ± /, 0 .

This is a cubic equation and the thr- .,s to. equation can be found using standard alge-
braic techniques (see, for example, Burington 121). The cubic equation might have a single real
root ai  or three real roots na, n, nt, it , -, ii. In the former case, the solution to (5) is
n* = < ai>. and in the latter case, the solution to (5) is

n <n> if <a11> < /I.
n* I f<t>>t,

Iience, (5) is easily solvable.
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Since the zero inventory case is relatively easy to compute and often performs well as " ill

be seen in the next section we refer to it as the myopic policy.

2.2 Nonzero Inventori Case

Define t, = QI/AI, t, = Q, 1 A2 and t, as the depletion times of the orders placed during

periods 1. 2 and the crossing order respectively. Let tit and n be the number of orders placed

during periods I and 2 respectively. The total cost is given by

(6) "(n. .ti, t , , t1, n(KI + h1) 1 2/2 + c(xIt,) + n (A', + h2At2/2 + )

+ K I + hl, 1(S -5 11112/2 + (.- ,tt,)XI,0l1 + 1,, - S) + (fil, + t,, -

+ ( IM(S - ttt 1 ) + qX(nIX,(fI + ;,, - S).

Thus, the mathematical programming problem is:

minim ize :"( tn. fl, t. t,,)

(7) subject to titi <S

(8) Mo1 + 1, >S

19) Dmt + t, + tit, = T

if, >11 l , 1 0

n. m integers.

Notice that due to constraint (9) the problem for a fixed in and n is a two-dimensional
problem as t, is determined by the rest of the variables. The problem is still too difficult to
approach as a mathematical programming problem because of the strict inequalities, so "c
reduce it to a one-dimensional problem with the following result.

TI lt()REM 2: Ior fixed in, n either Q, = Q, or ZIC is better than N/lC

PROOF: The proof first shows that when ti orders of size Q, are followed bs a crossing
iordcr of size (,, then it must be true that Q, = Q1. Let R > S be the time at % hich Q, is
depleted and consider R as fixed. For constants tit and R the relationship between Q, and Q, is

(10f) ( , ( - tnQ 1/AI)x1 + (R - S),.

I he order, holding and purchasing cost / for the period 10, R ) as a function of Q, is

/(Q) h1IJmQI/2x + (S - tnQj/X,)A(R - S)

+ AI(.S - mnQ 1 A)/2 +&,(R -- .(1/21 ( n + i)K, + IX I." + A., (R )).

I he function is minimized when the lirst deri% ative is zero or when

(II) mnQlAI- mA,(R - .)/,k - tt(S - niQ ,))= 0.

Notice that the second derivative is (m + nm2)/A > 0 since ti > 0. Rearranging (II Iiclds

(12) Q= (.'- tQI/A)A I + (R - .S')A.



OPTIMAL ORDERING IN EOQ SYSTEMS 273

This Q, is the unique optimal order quantity and is equal to Q, from (10) hence all orders are
of the same size.

The decision variable Q, must satisfy the constraint mQ 1 A I < S. If (12) \iolates this
constraint the solution is on the boundary, i.e., Q = AIS/m which means that all ti orders
placed strictly before S are of the same size and the theorem is proved.

We have that

Q, = A1 (S - titI) + \ 2(MtI + t, - S)

and from Theorem 2 that Q, = Q, = \It,. tHence, it follows that

(13) t, = (Alt, + (A, - kl) (S - mtI))/A 2.

Furthermore, constraint (8) must be satisfied. Recall that using (13) and (8) one gets

(14) mti + t, = mt i + (Altl + (X 2 - X1) (.S - tl))l2

= [(n + )Ait, + (A, - Xi)SI/A,.

Notice that mt, + t, > S if and only if (ti + Il t > S. Thus, express /I(. , t.t>,. I as a
function of only one depletion time by substituting (13) and t, = ( T - (m, + t,))/0 into the
expression for F(n. t, 1 t2 t,,) given by (6). Denote by fl) the cost for a fixed ti and i,
when the depletion time is tl. Then, after substitution K

mhlIXit /,'(15) .1(t) = (in + I)KI + nK, + 2 + h [\ TA - On + l)XIt, - (X, - A)5;]

hl~(S-ro[)2l- [(to + I)A tl - 5]2 2nX,

+ ,AX(S - M1 11 2+ 2 + hI(S - ntl)X [(m + )t1- SI + 2+ [(O + I t S

+ cIXIt(n + 1) + c 2,kT- (m + I)c2xtl - c2(A2 - XA).S.

Now/"(tl) is given by

.f,(tl) = /IS - h [A2 T- (t + I) tX - ',- A 2 )S]A,(m + ) I -

h, A?
- hlIX, [(m~ + 1)It - S~fm + kin[( + H/[ t I On ,S(- I ) + X On + I)(€ (C

A2

Also,

(17) f"t) = ("1 + 1)2\ 1[h2 /n - hl]/A2 - biAnI(hi + I).

Now if (17) is negative .r(-) is concave and hence the minimum occurs at an extreme point of
the feasible region. Thus, either the minimum is a zero inventory case or t = T/(1 + + In .
If (17) is positive ./(-) is convex and either the minimum is at an extreme point and again we
have the zero inventory case or t = T/(if + m ±- 1) or the minimum occurs b. setting the
derivative equal to zero. This leads to the following:

THEOREM 3: If for a fixed to and i the optimal case is the nonzero inventory case then
eiter t= T/(rn + n + I) or

h2 2 T - (/1, + nl)(A - X )S + nif\ I i
(18) += ( I + l)A (h, + /) -nihI,
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Notice that if there are nl chan es thell I I 1 A here A is the numbel (l order, that
are of the SaMc Nh1. ais prc\iousk dSlliil b ' % Sch~kar/ 1121 Also. it )iil the demand changes
then 1, - .. (i\jen i , the last task is to find in and it. As bcforc, if i, is the (d,.Te lin [tile (il
each ol the first m orders, then 1 mi I , is the length of time for the last t orders and the
optimal number of' orders placed during Imi; 4 t, 1*1 must satis I [qLUattMi (Ii). Iht is.

I In , , / ) - miin t I:un -( r + I) (A,h,/ 2A,) ( I - till, I/,)

It .Ipp-.'I" thai (,Inc t/cCds !() c(llnIpUtC and it 1'(11 Il \ lU e of M. I his WuId he a lfr-
Ildihle t,ik F I\ 1C\ r. tlcIniblr 01' p >sshIlc \,llc> i0 caill C reuCeI'td b\ tle f(oI,\ing:

III! )RI 4: F-or the case wherc thic li\,entor\ lc\ l is positi\e it S either i" %(.S
r '- 15 -I I ,here A(S) is the n umal tutitber of orders to plawc in I finite htrioti

[in si 1-urth (lenr 11/' i 1i .sJ.

PROOI : Let a tit,. < a < T (I > .5 .\ hi) \ (.51. since (2) is nondec.reas-
irig. All orders Must be placed before S. Let h be the titie of tile last order. lhen
\Ih 1 ( V(IS). hence, in' ) + I . Thus, either A (SI or A(S I order,, are placed.
The restriction on n* f'ollo\8s from Theoreni 3 in 151.

We nowk can -,oIw t he N/IC for in = VN(S ) and for ot = .\(SI I and take the
mininiun cost of ' th( /I and the NZI(. The algorithm is as f'ollmis:

I. ('alculite .V(S) froni (2) and set ii Al (Si

2. Calculate N iT - 5) froin (2) and set it . if .\i

3 Calculate C (ni) from (4) and cotipute tie cost for the /1( f rli 3

4. Tor n = A1 F-- i l 1 .i .J to calculat I' lii. Mi riCm IS and elll o(,,t
I M I

for the N/IC from (15).

5 Set il= .5(; A I 1.

0. Repeat step 4.

7. -ind the riniunim costs from steps 3.4.1,

The last detail to discuss is that of an ilitial in\coin I I t , ll tinlwIL ItII\ ntt - / IN
less that or equal to AS. obhoush the itlcentr\ should be deleted tild 1lt,- lctll Ibis 1t1,
a finite horiion of length T - I A ith a price thallngc i hue / , 11 eltl.' bc'ttuIInll
in entor\ \,ill not he depleted until al'tr tim1e .%. oh+i(Lisl% 11(1 pit.l biCS ,,hil hC inl kdt. Liii1I
il least time .5. In this case, the cost of not pUrchasinL it S ,id lici pt (.tnL ,hei ilie
imelitor\ is Cplelted slittIld be compared \%ith the cost of purc11hainlg itsll', i 1ie 1

.3. (OMPI ATIONAI.l RESI ITS

It is interesting to deterniinc \hal eftCLt arltog th[le hirl/oin or ilte time it \0i0i the
piariieters change \%itUlI hi1%C oin tile oplitlial p,,lic\ In palllcitlir .ItCIbli ( lo t0 tile tin)tIpic

: I - L _ . . .. . . .. .+" . . . . .. . .. . - - + ' . . . . .
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zero inventory case is optimal and if not how close to optimal it is. Note that for the case of no
changes the optimal cost as a function of the horizon appears as in Figure 2 (see [51, [121).
Schwarz (111 has shown that if the horizon is at least 5 EOQs worth then the optimal finite hor-
izon cost is no more than 1% above the optimal infinite horizon cost. One expects similar
behavior in this model.

Cost

time

1:1;l R1 2 OplimWd c)I j ul unt on of w l hc pAri m iL'ies icni l Cm tl!nt

Table I contains the optimal costs for both the zero in\entor\ case and nonzero in~entoO
case where all parameters are fixed except for the horizon. The per unit cost was changed b .1
and the holding cost by .025. The demand and setup cost are constant throughout the two
periods. Notice from Table I that the optimal policy alternates back and forth between the
myopic and nonmyopic policies. Also, as the horizon becomes large the overcost when using
the myopic policy tends to decrease. In fact, for any horizon above 25 the overcost is less than
I,. Incidentally, the infinite horizon optimal policy is the zero inventor% case, with an average

cost of 50.75.
TABLE I - Inventory Costs as a Function of'Horizon Length

fir A C =. 1 (2%) and A h = .025 (2%,)

'. K , = 0. h, = 1.25. h., 1.27 7 , 1 , = S.1,y = 2 0

T I ZI(' NZIC ZI(/NZI('-IAverage Cost Average Cost

21 53.66 50.02 7.28./
22 52.58 50.09 4.97
23 51.74 50.02 3.44
24 51.09 50.00 2.18
25 50.63 50.14 A)8
26 50.32 50.17 .3o
27 50.15 50.12 .06
28 50.1 1 50.40 -

29 50.17 5030
30 50.34 50.23 .
31 50.60 5(1.19 .82
32 50.l10 5(1.41 -

33 50.23 50.33 -

34 50,3J 50.29 . .10
35 50.26 50.25 (12
36 51,25 51 42
37 5W28 S(O.3-
38 50,36 SO.32 .18
39 50.3 50.30 -

40 .503(1 5044
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Table 2 contains similar information but for a larger price increase. Let AC = I and
Ai = .25 while all other parameters are as above. Again, when the horizon is 25 or larger the
myopic policy is never worse than 1% above optimal. However, in this case the myopic policy
is optimal for all horizons larger than 35.

TABLE 2 - Inventorv Costs as a kunction o 'Horizon Lengc'th
fo1r A C = 1 (20%) and Ali = .25 (20")

X = 5. K, = K, = 50, ti= 1.25, h, = 1. 5, C, 5, , = 6. S = 20

T ZIC NZIC ZIC/NZIC-I
Average Cost Average Cost

21 53.71 50.02 7.38%
22 52.75 50.09 5.31
23 52.01 50.02 3.98
24 51.48 50.00 2.96
25 51.12 50.63 .97
26 50.93 50.90 .06
27 50.87 51.23 -

28 50.94 51.38 -
29 51.12 51.61 -
30 51.41 51.90 -

31 51.79 51.99 -

32 52.24 52.11 .25
33 51.89 52.44 -

34 52.12 52.50 -

35 52.41 52.58 -

36 52.34 52.89 -

37 52.50 52.93 -

38 52.69 52.99 -
39 52.74 53.06 -

40 52.85 53.30 _

In the examples presented in Table 3 the horizon is fixed and , time of price change
varies. The remaining parameters are identical to those of Table 1. The Table also contains
which case is optimal in the long run. Notice how in the infinite horizon model as in the finite
horizon model the cases alternate as S changes. Also, as S approaches T the myopic policy " or-
sens.

In .he next example presented in Table 4, S varies, and we use the larger cost increase as
in Table 2. This time, the infinite horizon models always are optimized by the myopic policy.
\gain. as S approaches Tthe myopic policy begins to worsen.

The last set of examples given in Table 5 indicates that as the number of orders (using
either policy) increases then the difference between the myopic and optimal policies lessens.
The data used to generate Table 5 is identical to the data for Table I except that the holding
cost is reduced from 25/ of the purchase cost to 5"/,, of the purchase cost. Notice that this gen-
crates fewer orders which in turn increases the overcost.
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TABLE 3 - Inventory (osts as a Function of the Time o/ Price
Changes.or AC" = 1 (2%) and Ali = .025 (2' )

5, K, = K,= 50. h,= 1.25, h,= 1.275, c, = 5, t 5.1, T= 301
(and T for last column)

ZIC NZIC ZIC/NZIC- I T = oo

S Optimal Case

6 50.71 50.60 2,5* .22% NZIC
7 50.54 50.60 2*- ZIC

8 50.54 50.50 3.5 .06 ZIC
9 50.50 50.50 - NZIC

10 50.54 50.50 3,4 .08 NZIC
11 50.43 50.50 - ZIC
12 50.45 50.41 4.4 .04 ZIC"
13 50.38 50.41 - NZIC
14 50.40 50.38 43 .04 NZIC
15 50.33 50.38 - ZIC
16 50.38 50.32 5,3 .12 ZIC
17 50.28 50.32 - NZIC
18 50.28 50.27 5,2 .02 NZIC
19 50.64 50.27 .74 ZIC
20 50.34 50.23 .22 ZIC6,2
21 50.19 50.23 - NZIC
22 50.17 50.16 6,1 .02 NIC
23 50.15 50.14 .02 /K(
24 50.28 50.14 7,1 .28 ZIC
25 50.54 50.14 .80 NZIC

The notations should be read as follow':
*The optimal policy for S 6 and S = 7 is n = 2 n = 5
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TABLE 4 - Inventory Costs as a Function of the Price Changes
for AC= 1 (20%) and Ah = .25 (20%)

x i. K, = K, 50. h, 1.25. = =.5. 5, 6 . T= 30 (and T 
S ztIC NZIC zIC/NzC-I -=-

i5S.0055I -- Z "
7 5 4.5 S5 1 -- SI
8 54.50)5.0 -Z(

9 54.13 54.71 - /IW
10 53 93 54.20 - /I('
1I 53.60 54.0) - ZI(
12 53.40 54.22 - /I(
13 53.11 54.22 -
14 52.9) 53,26 - tIC
15 52.84 52.91 IK'
16 52.41 52.91 ZI("
17 52.11 52.93 - I(
18 52.48 52.38 - Ic
19 51.87 51,89 - tI("
20 1 51.41 51.56 Si "
21 I 51.11 S 56 - 1
22 5095 5094 - /I
23 50.80 5 94 - /1(
24 50.80 50.78.04". Z
25 50.95 50,.63 6t'4i-

TABLE 5 - Inventory Costs as a Function ol/ Horizon Length
]or A C . 1 (2%) and Ah = .005 (2'%)

A 5. K, = K, = 50. h,= .25. h, = .255. 5 .= 1. 2o

/I(' I NZIC //I-I
Average Cost I Average (oy

21 40 30 32 1 .
22 3 q85 36 40 9 4"

23 3N( 28 6{ '1 8 18
24 3879 36 2i"
25 3836 36 2 545
26 37 99 36.18 499
27 37 67 3618 4 12
28 37 41) 3619 3 34
29 3 I f 36 21 2 2
3(1) 36 97 36.25 I 98
31 36.80) 36 50 99
32 36.66 36.39 74
33 36 56 36.36 54
34 36.47 36 34 37
35 36 42 36.33 24
36 36 38 36.32 14
37 36 36 36 33 07
38 36.36 36.35 02
39 36 37 36 37 < III
40 36 40 36.48 -
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SYSTEMS DEFENSE GAMES:
COLONEL BLOTTO, COMMAND AND CONTROL-

Martin Shubik

Yale Urn Lersinv
Vell Ila ven, ( iilflC mti~~

Robert James Weber

North western Unw ersit I

Evan~ston.t Il/ifio

Include situationi, InI which their: ir) pkiilirenir I! Ics ifliiiii Ilie tmi~ilt 4~r

deterided tile ciirpnw rrcw ities ire relre'.crrlei hr rrreiiN III .I
eiraicerisiek tiurerrinI ild A JILi11ilil (rthIlIqILiC trioll 11ie lilenl It r-ile

nine gwiNne IN Neerr i to tcl Ic inaII:iiii 1)111l'It nteleiCe1 11111 iiii1k

tree'.I ( oll IrideI 01 I-It he inn %stlms dceer. iii ditiriiiiti IiiC.ISnII.

1. COLONEL BLOTTO GAMES

The first example ot' what has come to be called at "Colonel Blotto game" was apparentl.
given by Borel [31. lie discussed the case otf' a def'ender attempting to protect se~ eral liocatifl%,
against an aggressor. A typical objective of* the aggressor was to maxtii/e the expected number
of' locations captured.

(lames involving this type of' objective were subsequently studted b% -1 uke1 Intl ndIith1
ers (f'or example, Gross 171, Blackett 121, D~resher [41, Beale and lieselden II I ) Vs dihned hI.
Beale and F leselden. a (Colonel) Rhino iatncI', is a /ro-sumn game in'.ol tog tv( iioppising

play' ers. I and 11. and it independent battlefields% I has . units of' f'orce to distribute amiong thfc
battlefields, and 11 has B units. Ilach player must dtstribute hts forces without kno. ing his
opponent's distribution. If' I sends ll units and 11 sends i, units to the Ath hattlefteld. there is,
a payoff . Ito I as a result oif' the ensuing battle. the payoff f~or the gamne as, .I %%holc is,
the sum of' the payoffs at the individual battlefields.

In this paper we consider at generalization of' the classical Blotto game 1 his generalilain in
gives regard to the important class of* military problemis wherein there exist comiplceninaics
among the points being def'ended. In such cases, the final status of' the coimpetitor,, is tiot
determined merely by totalling individual target values, but depends (in the relatt'.e '.aluc (d

'1ttin reneirli %,iS.Nippirteit in part hr n oinirin i m lih e t I I iti1 cit \.nn.it Hn i

281
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capturing (or neutralizing) various configurations of targets. Our generali/atiot includes the
classical Blotto games, as well as, for example, games in which the aggressor's o(hjectie is to
maximize the probability of capturing a majority of the targets.

By considering complementarities among targets, we are in a position to study the defelse
of networks. For the purposes of increased reliability and security. redundancy is often inten-
tionally incorporated into telephone and electrical power grids, early warning networks, and
command and control systems. It is natural to ask how well protected such systems arc from a
disabling attack. Furthermore, it is of interest to consider cost trade-offs between built-in
redundancy and extrinsic defense. In order to pursue these issues, we lirst introduce some ter-

minology from cooperative game theory.

2. SYSTEMS PERFORMANCE AND THE CHARACTERISTIC FUNCTION

An n-person game in coalitional form is described by a charactwri.sti lumnoi ,I. defined
for all subsets of the set N of "players." When one is considering networks (or battleLfields. or

strategically important facilities), v(AS i may be interpreted as the value remaining in the sytm

if only the set of nodes S is held. The characteristic function captures in a general setting tle

many types of complementarity which can exist among the various cornbinations ofl points in)
the network. (In traditional cooperative game theory it is frequently assumed that the chaiac-
teristic function is superadditive: that is, if S and 1 are disjoint then v(S + ( I
%(S U T). Ilowever, in the context of strategic systens this assumption niay :iot be reason-
able. If one is protecting a network of doomsday devices, for example, tlie characteristic 1unc-
tion might assign a value of I to every nonempt se'.I

There are many ditl'erent "solutions" which have been suggested by game theorists lo
ganes iii coalitional I'irm. They reflect various aspects of the cooperative dealings anioig

players with diflerconl goials. We note in particular the value solutions. w hich can he gi en an
Interpretation In terms of the military problemi of allocating forces to a systen of It nolCs II
order to gi\,e this interpretation in detail we iiiust relornulate the iiriginal n-person game as a
w4o- pcrson noiniciooperative gamFe.

3. THE NONCOOPERATIVE GAME

We recast the gien game as if it were a /cfo-sum game pla cd betw c.' t"oi opponei i.. a
defender and an attacker The it players in the original game are regarded as nodes (or indidii-
dual targets) in ia stralegic network that the defender is trying to protect and tile attacker is Ii\-

Ing to destroiy

Let .I and H be the respective amrounts (if strategic resources (Itroops, for example, or
antiballislic and ballistic missiles) held b the defender and the attacker The defender nas
choose any nonnegatise allocation \ - ( x...... ,,) of resources, subject to the coinstraint that
Y" = . Similarly, the attacker mar choose any allocation I - (I ..... . i lor %%hilih
I i = B let I (, .*) be the function (yet to be specified) which indicates the outcom1c ujf th
battle at point A . natural interpretalion which we take at this time is that I (.X .. ) is the Ilr-
habilitv th,t the defender retains point I.

Assume that tle goal of the delender is to maximi/e the (expected) eflecti eness of ti le

suriving conliguration of targets If ile interests of the alacker are directly opposed to those
of the defender, then we have at hand a two-person /ero-sum game. The prohahiliI t hat the

targets in the se .S survive, while all others are destrored. is
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Therefore, the expected effectiveness of the surviving collection is

fIH JI; (A,.1tJ) H ( I - /.1i~f v (S)
S, " SIVS

,

this is the defender's payoff.

If we suspend the interpretation of the functions j/' as probabilities, we find that this con-
petitive game is indeed a direct generalization of the traditional Colonel Blotto game. Assume
that the underlying characteristic function is additive, so that v(S)= , (IA ) for all S V

Then

DI.\i) = x . v(\/.,A ) v((k1I

By identifying PA (x,.v-A) with f (xA y, .v({k)) ( for example, by taking P = 1, and
v(jA}, = I for all A E N), we can represent any desired classical Blotlo game.

4. BATTLE MODELS

A listing ofr the various battle models which have been considered is hey od te dcope (1
this paper. Moreover, a critical evaluation of the relative alidit ' these m tdels oe not
appear to be available. Even Napoleon's dictum that God is on the side of the strongest b atl-
talion does not appear to be borne out when the force sizes of victors and loser, in najor hot-
ties are compared (for example, see Dupuy, page 89 161).

For the purposes of this paper we have chosen to consider a moderatel general class of
models in which the attacker and defender have homogenous resources. Ilence. force fmix
problems have been set aside. Still, while it may be reaoitable to assume that the probabilit\
that a target / is captured or destroyed is simply a Junction I,(., V ) of the resources expended
in attack and defense by the two sides, the actual form of this function depends on enplirical
factors such as target type, physical vulnerability, troop morale, and the like

We specifically consider outcome functions of the form
YX

Vj. " = + (1 -- ....

where we set 01(1,0) = y. The parameter y mnai be interpreted is al in dator of tihe initral
delensibility of the target, if = . then I (.%.j y = lhe honiogeneil\ of the lunct-In I allow,
us to concern ourselves with the ratio A = %/J oVi delending to attacking forccs. rather than
with the specific amount,, and I lhe parameter 'n reflects the inlortance of tihe lellate
difference in si/c between the attacking and defending forces

In the limit, as ,in becomes large, lie outcome function beconi s the crudestI i o1 (d
superior forces" model the side which commits a greater force will win with certainlt It tihe

resources of the defender and the attacker are of comparable si/c. in this limiting .ic the
force-allocation game may fail to have a solution in pure strategies (F or an inestigatton of tihe
degree of disparit. of initial f(orce siues sufficient ti) guarantee the existence of* oplpnial pure
strategies. scc Young. 1131).

° •' 4'
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On the other hand, it' in is not too large, the outcome function is relatively insensitive to
small changes in opposing allocations. We consider this case in the next section.

5. VALUE SOLUTIONS

Let v(-) be a characteristic function on N, and let p (... pj, be a vector ot' proba-
bilities (that is. each 0 < p, < H . Then the (pl,. p,,)-valuc of* v is the n-vector
13 = (13 1, 13,,) delined lor all i E N by

13 (Ii - PA) Iv(S U 0) - v(s)i.

(ons~der the f'orce-allocation game based on v, in which the initial resources ot' the oppos-
ing sides, are .4 and B, respectively. Assume that the outcome f'unction at the kth target is
defined by /, (~vt= + x"(yx I - -yA )j ). Then if' both sides have optimal pure stra-
tegies, these strategies must he f'orce allocations proportional to the ( ,..) /-,,)u
of' the underlying game. Furthermore, f'or all sufficientl. small values of' m, allocations prolpor-
tional to the . /,I(A. B) -value are indeed optimal.

F~urther details concerning these results are presented elsewhere fShubik and Weber I'4! t

6. TifF COSTS OF SVSTEM1S DEFENSE

"Whait price f'reedom ?' is an important question, hut (one which political philosophers,.
eci)flfliss and JDeparfnien oJf Defense budget propose'rs ien finud difficult t0 Make ~rC'ie
A\ mlodel x\ hich links the %aloe and cost of' def'ense is presented here. ( A different miodel is
pt esentedk inl Section 7. \?.here \,.c take the cost of' defense as gixven hut consider the possihilit

0 raide-otls hetxxecn direct def'ense and the phy.sical reinflorcemlet of" inividual targets)

AI an abihsract level,. there are tour nmor items in the description ol' a delensix e s~ stem
the militar% iir societal ' xxirth" Of detlense. the 1.%pe. quanti% . and st ro I~re Of defenlsix e forces.

thle cost of these f orces, and the "hardness" h(lenCISIx strength l m if dual targets

I Ie ModlLel ii? SC010iii 3 aoidIs thle problemill ofComparing x dilue and cost h\ ie'preseiting
,JILue xxl~f thinle cltaiaticrisiL luti1ction and taking as gixenl the IxJilahle atta~k and deicense

I~rLC I hkis. inisiraiinis On niiliar\ FCLresoucs enter ()il. as houodkar\ conditions onl a for~c
,issigtiliii problemi. raihcr than .is ai result of iaking resource ciists into account inl the pa,i11t

Wecanl niodi% thfe game%, oif Section -; tii include costs in thle folloxxing manner [ he
delende(Ir .Ild .itt.Cker first SeIlc l orce cx clx A, and A ,. incurring costs of (A, and~ , AA
[ hex then cath assign foirces. and the pa~ olls arc given bh%

P/,, - x,(.% ) I A. and

where v t .S ) is the worth (in nnetar units) t0 toite defenlder of the configurationt. of sotI I\ Ing

targets, and w IS ) is thle %&ort h to flie at ticker ofl destro~ 'ing or calpturing filie targets iti S I his
is a two-stage noriconstant-sui ganie. wxhichi might he studied in terms, of' eit her equilibriumn ot
minimax theiries.
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The fact that the above game formulates well as a two-stage process calls attention to the
fact that the two stages are separate in both time and bureaucratic control. The problem for it
defense department inl dealing with the government ats a whole is to select A, incurring the
budgetary expense c,(k,). The problem of the commander, having been presented With forces
k,, is to allocate these forces wisely,

From the viewpoint of' analysis, the models of' Section 3 seem worth pursuing at the level
of' command and control. However, it appears that the first stage of' the model suggested hb ' U*
concerns a very different aspect of' decision making, and involves deep issues in the area of,
defense budgeting (some of' these issues have been discussed by Hitch and McKean 181)

7. THE HARDENING OF TARGETS

In order to illustrate some of' the preceding consideratiions, we anal~ *ye a simple example.
Assume that at defender seeks to protect three sites, at each of " hich several antiballistic mis-
siles are siloed. If' the attacker destroys any' two (or all three) oif the targets, the oxerall defenl-
sive system will collapse. The first site houses more missiles than the second, which inl turn
houses more than the third; although any two surviving sites will vield an adequate Sslcste, the
surviNsal of all three proivides even greater security. We model this situation Withi a characteris-
tic function v, which satisfies 0f123) 4-, v(12) = 3; 0f13) = 2; '023) = I ; and \siS) (Iit

Is <

Assume that the attacker and defender possess comparable amiounts of- straitegic resources,.
sa , A1 = B = I. Let the outcome of' conflict at site A be representedI bx' the f Unction /, ( \. tI
-y, x/ )y N" + ( I - y )j""), for somec moderately small value iif in (that IS . 11Sume11 thai1 eqUIii
forces, engaged at site A will ' ield a result fad orable to the defender W~ili f prohabhilttl -. id
further assume that small differences in resource assignmentIIs leald to oill el,it i el stitlill
changes in this probability). 'rhe parameter -y, indicates the "hardness" of1 ill tirgct it tIe A
( that is. its natural strength against attadck). It [0illi is s 'Ad" ndic~ied Inl SeL [I 11 111,t thet
pli al allocat ion iof strategic foirces bk each side As ill be proportioti.to the -y ti le (4

the gamec I Hence. this arllocatiotn wvill be propotioinal to the sctiir

ji (2y , 4 3-y, 2-y -y ;3y, . 2y y 2 I

Inl particular. it %&e itilk hiase y y, -y , 1,2. h tir ptinil Alluotiuti tot cewLt stfe j.
I4t3/9. 219)

No% . asSum11 that ddkiltonal capitail is ais,ilcl to the dclctitder. itnd niai\ be Used t ) ht
dfelt ans of (the targets Stiecificilk, ISUI asum hat anl in1%Stmeni of -1, 10it I ,ipitd it slit A
%ill icld in increase oif I I y, )A(, in the hardness of target A. that is. iy. ij, N ii I
A na~tural question is him, best to in\sest the additiotnalciia

let( the defender's allocation otf forces be k k x . b ile the Jitce KC ifelo O I)iM M1t
is i t .v .i .1 [en thre salue of the outcolme of tlie coimpetitise gaite to ithe dfefetie .I,

\.1 t )i 3 tI + 2/ 1 , + i / I- 2 11/ / *1

\&here eaich I.is e aluaitcd atm~ i,0 I he optw ma) srategies are % ~ i I Iter et o

the rite tif gain fronm investnment in the hardeting of tairget A is

hl/ *.t . = ;) P st ~
(-'Ip,

I I ,)



286 %1 SIRIB~IK AND) R. J V'dIER

The best investmnt is in the target (or targets) t'or which this expression is maxiiied. But
the expression varies with the parameters VIy ,y. and y i. Hence, if' we hegin with all -y, equal,
it is best to initially invest in work at the site f'or which 13, is maximal: this changes f3 ats well as

Vafter which we can determine the best target t'or t~urther investment. Beginning with

), , = y ,= 112, we obtain the results indicated in the figures. (As the available capital
increases without limit, the value of' x* v approaches 4. arid the three sites attract nearl%
equal proportions of* the capital.)

This example illust sites several, but by no ineans all, of* the types of' computations which
appear to be feasible ar irelevant to the study of' tradeoffs in defense, in the hardening of" tar-
gets, and in built-in s%,etu redlundancy.

333
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ON NONPREEMPTIVE STRATEGIES IN
STOCHASTIC SCHEDULING

K_ [. (jtazbrook

Unitversi, 'of .VcHcasilt' upon Tt-ne
Newc(astle upin Trt'. Englaund

.XITs'RACr

It is sholwn thatr there is ani optinia? strategp tor .1 (tis , I 0 soc I1, NL-)cdt
ing proie ins~ wh ii i 0 no pieeni pi1 C I Its: res~ults w.h id i l th i omduslmi

are gener~iiiiiiiins ol pressmus one, due to (i /ehruuo. and (iItiiit., I 11cQ lie,

results iksi leadt to .to C%,kiu~it1Ifnl itihe perl'riartiIite II ril ie tt It'sc ~
iee in i Liruc :ia,' III pfohbctin, ii priettil IitItciC,t

I. INTRODUCTION

A job shop consists of one machine and it set J 11. 2 . K 1of jobs to he processed
on it. In general the processing time P, for job si is a positive integer-vsalued random \ariahku
with known honest distribution, processing times for different Jobs being independent It jobh
is completed at time F, (flow time) its cost is(I~ There is at precedence retation R on the
set J1 such that if' 0, J) E R then the machine must complete job ibefore it can begin proicess-
ing job .

For simplicit . the major part of the material Is itt he ci ted tol prohcems in discrete: 1111
D~uring each time interx al III, 1 4- 11). C /' Ii M. just one oft[the u nfi nished ii hs is, nioL cssed
h the machine. A feasible strategY 7r is anN rule for deciding hiAt li. ( hoose the jobs~ iii / hor
proicessing wshich is consistent wiith R .' nder stratecg\ 7r joh is comipleted at the rinss iO) liniv

/,(t . The objective is to find those strategies 7-T in sonme gi\en subhSCt Of (Ihe Wt lit teasihiv

strategies which minini/e the total expected cost

The economic criteria which have been most widly studied in this conte\t ate th1k
discounted costs criterion, that is

(It (I',) - A to, Jo< Ati1)), to _< a < t. 1 ( J

(see 111, [2). 13), 141, 161, and 191). and the criterion involv Ing linear Costs, thalt is,

(2) C,(F) -K 0) F. (0 < Ki1 W J

(see (21, 131, [61. and 1101).

28X9
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The problem of finding optimal feasible permutations of J for the above economic criteria
has essentially been solved in the sense that algorithms have been given which can be shown to

generate all the optimal permutations. For details of this work see 141, [61 ind 110]. Much
work, however, remains to be done on the efficiency of these algorithms.

The problem of tinding strategies which are optimal in the set of all feasible strategies for
economic criteria (I) and (2) is much more difficult. Glazebrook 121 gave a characterization of'
the optimal strategies for the case when R has a digraph representation which is an out-tree.
Results in a similar vein, though obtained in a rather different way, were reported by Meilijson
and Weiss [5]. The problem with general R seems very complex.

Not surprisingly, then, concentration has latterly focused on the problem of giving a char-
acteritation of those problems which have an optimal strategy (in the set of all feasible stra-
tegies) given by a fixed permutation of J. For contributions in the vein, see Glazebrook [31
and (ilazebrook and Gittins [4]. All the results known in this area to date require that in some
sen.,c the future prospects of the jobs improve indefinitely as they are processed. 1-oi example.
Glazebrook and Gittins prove that when the function

(3) f-(a I'\IP >, x + I)
is nondecreasing in v for each i E J (this happens if P has a nondecreasing hazard rate) there

is an optimal strategy for economic criterion (1) given by a fixed permutation of J. Ilowever,

in many contexts, for example research planning (see Nash 171), it is rather more realistic to
expect that the future prospects ')f jobs, after an initial (perhaps lengthy) period of' improe-
ment, will begin to deteriorate. It is with this in mind that in Section 2 we demonstrate that
the aboe result of Glazebrook and Gittins may be generalized in a way which does not put
monotonicity requirements on the function in (0). Some extensions of this result are discussed
in Section 3. In Section 4 we demonstrate ho. the results of Section 2 may be utilized to give

an indicanion of how well an optimal permutation performs relative to an optimal strategy in a
,,ide range of problems of practical interest We conclude in Section 5 w, ith a simple example
in (ol~jng li~e jobs.

2. TilE MAIN RESII.1

We shall consider the problem of finding iiptimal strategies (in the set of all feasible stra-
tegics) for the pair (.J. R ) "hen the economic criterion (I) applies. We shall demonstrate that
there exists an optimal strategy which is deterministic. slationar\. Markov and nonpreenptiwe
I)SM NP). that is which is given h\ a lixed permutation specifying in A hich order the ohs arc

to be done, ,hen the follo%ing cinditions hold

CONDITION I m (. x) > m(1, 0), .\ /', i C JE

('( )N1)r ION 2: lir in (i. x) exists and is strictly greater than n (1. 0). 1C I the func-

tion m (..) being defined as follows:

p(P) 11 + I) > 0 ,ii~i..\ = fl'( P. m \ + 1)

p(P > x + I= 0= ' n(i. )= I
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Conditions I and 2 are more general than those given by Glazebrook and Gittins 141.
Condition I states (loosely) that a task is always brought nearer completion by being processed
for an arbitrary length of time. As will be demonstrated in Section 4, the results of this section
have implications beyond problems in which conditions I and 2 are satislied.

Before proceeding to the proof of our main result, note first that it is a consequence of an
important result in the theory of Marko\ Decision Processes (see, for example. Ross I81) that
there exists an optimal strategy for our problem which is deterministic, stationar, and Markox
and so we may restrict our analysis to such strategies.

We require some terminology and notation. B% the state of' an incomplete ob w,, mean
the amount of processing it has received. If job i has been completed its state is denoted -
We denote by C (-v. -. ...... \ ('(-v I. the total expected cost incurred b all the jobs in a
system identical to the one under study except that job / is in general state .\ initial instead of
necessarily being in state 0. J E .1, the assumption being that an optimal strateg\ is adoptcd
('(-% ) is similarly defined, the assumption now being that an optimal I)SMNP sirateg, 1,
adopted. I denotes the subset of jobs in J which haxe no predecessors according to R. i.e..

/= {i-, i E Jand (Q. i) q R for any. E J).

Both C(x) and C"(x) may be characterized as the solutions to appropriately formulated
dynamic programming optimality equations:

C(x)= min lap(P, = x, + I P, > x,)(- K(i) + C(.v X. , . - . X&
,,'I

+ap(P, > x, + lIP, > x,)C(x . . . . . . X, 1. + 1, X.. . . . . . X-,H.

and

("(x) = min [- K i)m(i, x,) + mnli, x)Cx -v v -

The following lemma is the key to establishing our main result.

LEMMA I:

for all states .\ E 1!' U 011 1A such that

(J) i E / = .\,1 0

(ili) I q I X, = 0

(iii) m (i, x,) < 1, i E J.

PROOF: The proof is by means of an induction on K. " he lernma clearly holds when
K = I since C(xl)= - K(I)rn( I.) and ('(0)= - All(Intl. 0). We assume that tlic
lemma holds for an arbitrary problem with A' = r - I and demonstrate its %alidil when A = i

ttence, we consider a problem with r jobs where the position at time 0) is that no joh, h,x
been completed and job i has been processed for v, units of time w here m I.,
x, > 0 - i E 1. Let S be an optimal strategy for this problem
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Suppose that at time 0, Schooses to process job I (E /), then

4*) (x) = ap(PI - x, + lIPI > xl){- K(I) + ('(*,, x,..... x,)

+ ap(PI > x, +-4 IPI > xl)C(x1 + 1. x, ..... v,)

- ap(PI - v + lIPI > x)Im(l, x I)1- K(I)m(i. x1 )
+ re(l. xl)C(* ,, ... x,))

+ ap(PI > x, + IJP > x1)m(l, x, + )(tn(l. xI)I 1

IC(x1 + 1. x . x,)m(i. x4I)m(l. x1 +I)] .

Now by our inductive hypothesis

- K(l)m(l. xi) + m(l. xl)C(* , x,, x,)

) - K(l)m(l, x 1) + M(l. x) {nmGi x'){m(i" 0)}-'j " ' i. 0. 0)

I~ Gn' yX) IM G 0))j - K (I m(1. 0) + mn(l1, 0)C(~ 0...,

(6) M { H X,) (m G. 0)1 (0).

(5) following from Condition I and (6) from the fact that the expression in the square brackets
in 15) is the expected total cost incurred by the DSMNP strategy which first processes job I
( /I) to completion and which after that first completion, processes according to an optimal
permutation for the jobs J - I .

We also have that

(7) ap(P1
= x + I IP1 > x)m (m(I. x 1))

+ ap(P > x, + IP> x1)m(i, x, + )(in(I.x)) I

and so. from (4). (6) and (7). in order to establish that

(8) Cx 1W 7 ,- m 0, X,) Im 0, 0) 1 j 0)

it is sufficient to demonstrate that we must either have

(9) P(P 1 
> x + lIP 1 > x)= 0

or that

COX 1 , X2 .  XdM(l, XI)( , X + 1)) I' R{UMOi .,<)I " I, 0)) 1(0)

That is, that

(10) C(xI+l. x 2. .  x) >1m(1-x,+l){(I, O)1 { m(i ' x){m(i}' 0) 1(0)

To summarize, in order to establish the desired inequality (8) for state i 1 x *... Y,
it is suflici,.ni to establish the corresponding inequality for state (x - I ....... 0 this latter

L,,at4
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state being the result at time i = I of applying optimal strategy .S to the process at time i = 0.
given that no job completion occurs before time t = I. Should a job completion occur (which
will be job I I before t = I with probability I then inequality (8) is satislied.

We define N* as follows:

N*= inf (N, with probability one the application of optimal strategy S during (0, 'N"

results in at least one job completion, the initial state being x).

We further define x(N), 0 < N < N*, to be the state resulting at time t = N from the
application of optimal strategy S to the process from time t = 0 when the initial state is x.
given that no job completion occurs during [0. N). For example, if N* > I then
.V(I) = (xI + , x .......

By repetition of the argument in the paragraph following (10) it is clear that in order to
establish (8) it is sufficient to demonstrate that we must have either (i) or Iii).

(i) N <oo.

In this case, it is not difficult to show we must have

p(P, > x,(N*- 1) + lIP, > x,(N*- 1)= 0

where J is the job chosen by S for processing during [M - 1..'*) assuming that no job has
been completed prior to N* - I. Hence, referring back to (9), in the case X% < (. (8) is
established and the induction goes through.

(ii) N*= oo and
ItI Clx(N)} > [rJmG, x,(N)){mGi, 0}-'1C(O),=

for some N E Z' U (01.

Hence, we now assume that N* = (that is, that we cannot be certain of a job comple-
tion under S in any particular finite time interval) and consider two cases.

CASE 1: x(N) has a single positive component (x,(N), say) for all N E Z' U 101.

When this is so we have that

(12) C(x)=- K(I)m(I, x1) + m(I, x,)C(x .  . 1, * , x, ,...... ,)

= - K()m(I. x1) + m(I, xl)C(O.. .... 0)
(13) > 1 , XJ( I M ll (1 0)}1- I e (0)

M G. .0(m , 0) jC (0),

as required, (12) and (13) following since x, = 0, i 1.

CASE 2: x(N) has at least two positive components for all N >, N , say. When this is
the case it follows from Conditions I and 2 that

• . ." ll~ ., . ' . L' - , ;.... _ .__.,, .,'.
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(14) 1n i- K(i)m(i, x,(N))]

and from the inductive hypothesis that

15 rlim inf [m(i, x,(N))Clx1 (N). , (N)}]

>, li (m(i, 0) in (j. x,(N))m(j, O)1] C(O, *. 0)), '
¢ I.

It follows from (14) and (15) that

(16) (CA Jim infl- A (i)m(, (V)

+ mi, x,(N))Cx(N). x,(N)]

> lim n(j. x,(N)))nj, 0)) 1- K(i)m(i. 0)

+ 1 (i. 0) . .(O . 0)

mU>,1)1U 0)1 1(0)1 i E I

Let N E Z' andE > 0 be such that for N >N

(17) - K()inG, x,(N)) + m(i. x,(N))CxI(N) ..... .....

SC' -E, i E I,

and

(18) ,(i , (N + s))lm(i, x, (N))) (1 + E) . s E Z' U 101, i E I,

We shall now demonstrate that for N > N

(19) ( ix(N)1 m C- 1 (1 +4,

and, hence, that

(20) lim inf [Clx(N))J > min C'.

Ilaving established (20) it will then follow from (16) that

from which follows the existence of an N E / U 101 for which (I I ) holds. lhis established,
the induction will go through and the lemm| follows.

We now proceed to demonstrate (19). We consider a problem where at t no job is
complete and that tne state of the process is x(N), N > N. Suppose that optimal strategy S
indicates that at time t- 0 (= t,) task JI should be processed until time t= (> t ) or until
.j, is completed, whichever occurs sooner. At time t = tl, if J, has not been completed,
optimal strategy S indicates that job J. (;' l) shou; be processed until time tI - t (> tt) or
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until j2 is completed, whichever occurs sooner, and so on. Under the assumption that no job is
completed before time t I I-,1, S indicates that job j,, (; j,, -) should be processed until time
t = I, (>_I,-,.) or until j, is completed, whichever occurs sooner, I < n < -0. It is clear that
for N > N

C~x(N)} =) at" I rl pIP, > x, (N + t,, 1)IP, > x,(N))
gn~ -.n

x Y a'pIP,,, (N + t,, + s)iP,, > x,,(N + I,; )H- K(j,,)

~~~~+ C~x1(N + t,, ) .. ,,, .... xIAN + t,. 8)1

which, by (18), is 
+)

>(1+E)' i II re M(i, x, (N + t,,)

Ira(i, x,(N)))- jpiP, > x,(N + t,,-,)IP, > x,(N)11a"

x , a'p{P,,= x,(N + t,,-, + siP,, > x,,(N + t,,_)}

tm Q,,, x, (N + I))}-

x [-K (j,)m (j,,. x,(N + t,,1))

+ m(j,,, x,(N + t-))C~x1(N + t,, I) ... *,,..... \,(N + t, 1)1, '

which, by (17). is

(21) ~ ( + E (m - EJ III x~ (N + I,

(m, x(N)))'p1P, > x, (N + t,-1)IP, > x,(N)}J

x a'"  , a'pJP,, = x,,(N + r,,- I + slIP, > x,,,(N + t,1 I)I
,;=1

{mQj,, x, (N + t,, ))}-'j

=(I + E) fmin C' -c

since the infinite sum in (21) can be shown to be one (the proof is based on (7)). We ha~c
thus established (19) and hence the induction goes through and the lemma follows.

THEOREM I: There is a DSMNP strategy which is optimal.

PROOF: We may take x, - 0, i E J. in Lemma I in which case we obtain that
00O) > 0(0).

Theorem I follows immediately.

......................................
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3. EXTENSIONS AND COMMENTS

(3.1) Weak Conditions

Theorem I continues to hold when the strict inequalities in Conditions I and 2 are
replaced by weak ones as follows:

CONDITION 1': rn(i, x) > r(i, 0), x E Z*. i E J

CONDITION 2': lir n i,. x) exists, i E J

The proof combines the results in Section 2 with a truncation argument of a kind which will be
used in Section 4.

(3.2) Linear Costs

It is frequently the case (see. for example, Glazebrook 13)) that results for problems with
linear costs may be deduced from equivalent results for problems with discounted costs by
means of arguments which involve allowing the discount rate to tend to one. Suppose we con-
sider the problem outlined in Section 1 with costs given by (2). It may be deduced from the L

results in the previous section (together with paragraph (3.1)) that under the conditions:

CONDITION I": n(i. x) < n(i, 0), x E Z'. i E J'

CONDITION 2": lir n(i, x) exists, i E J, where

p(P, x + I) > 0=" n(i, x)= E(P, - xIP, > x + I)

p(P, x + I) > 0, n(i, x) 0

there exists an optimal strategy which is DSMNP. This is a generalization of a result due to
Glazebrook and Gittins [4].

(3.3) Continuous Time Analogues

For simplicity our discussion is restricted to discrete time problems. Continuous time
analogues of the main results may be obtained by means of delicate limiting arguments, consid-
ering optimal strategies for appropriately chosen sequences of discrete time problems, allowing
the discrete time quantum to tend to zero.

(3.4) Algorithm Selection

Once we have established that a problem has an optimal strategy which is DSMNP, the
question arises of which permutation (or permutations) d 'termines this optimal strategy. An
algorithm which generates the appropriate permutation for discounted costs (1) may be found
in Glazebrook and Gittins [41. an algorithm for the linear costs case (2) is to be found in Sid-
ney 1101.
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4. THE EVALUATION OF NONPREEMPTIVE STRATEGIES

Conditions I( ', !") and 2(2', 2"), though they take us much further than the monotoni-
city requirements of previous work, do limit the range of direct application of the material in
Section 2. The main limitation is in the insistence that jobs should always be at least as promis-
ing (i.e., always have at least as low an expected remaining cost) as they are initially. However,
ii turns out that the results of Section 2, though limited in this way in their direct application.
help us in the important task of e'aluating how well an optimal DSMNP strategy performs rela-
tive to an optimal strategy in a large class of problems of practical interest.

As was implied in the introduction, even if a stochastic job cannot be assumed always to
be at least as promising as it is initially then in many practical contexts such an assumption can
at least be valid for some initial phas. of the job's development. For some examples of this,
see Nash 171 whose interest is in modeling research projects and Singh and Billinton 1111 who
commend the lognormal distribution as a good model for repair times. Such considerations H
motivate the following definitions:

DEFINITION 1: Job i is said to be initially improving for the discounted costs problem if'
m(i, I) > m(i, 0) and if lim m(i, x) exvists.

DEFINITION 2: Job i is said to be initially improving fir the linear costs problem if
n(i, 1) < n(i. 0) and if lim n(i, x) exists.

(4.1) Discounted costs

Throughout this subsection we shall assume that all jobs in J are initially improving for
the discounted costs problem. We shall also assume economic criterion (1).

We define

(22) 1,= sup t; m(i, x) > m(i, 0),0 < x < t}, iE J.

We further define the random variable P7 to be the processing time P, truncated at
T, + I. Corresponding to P, is the function *(i .) The following lemma is easy to establish.

LEMMA 2:
(i) m*(,, x > m*(i, 0). x E Z, E .1.

(ii) lim m(i, x) exists, i E J.

Hence, the truncaied processing time P; satisfies Conditions I' and 2' of paragraph (3.1).
Now, the main idea of this section is as follows: suppose that for each job i E J, T, is large
(which in many practical problems it will be); then the total expected cost incurred by an
optimal strategy will be close to the total expected cost incurred by an optimal strategy for the
equivalent problem with the processing time (PI, P2 . .... PA} re,,',aced by the truncated pro-
cessing times IPr, P2 ..... P*.J. However, from Theorem I and Lemma 2 this latter problem
has an optimal strategy which ;,s DSMNP. These considerations lead us to expect an optimal
DSMNP strategy to perform well relative to an optimal strategy. Theorem 2 aims to quantify
these ideas.

• .
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THEOREM 2:

IC(o) - c(0)c(o ' (C 0)I m*(i, O)(M(i, 0)1 - I

PROOF: Let an optimal DSMNP strategy for the problem with processing times
{P 1. P, PA) replaced by truncated times {P*, P. PI) be given by the permutation
la (1). a (2) . a (K)). By Theorem I and Lemma 2 this strategy is optimal for that prob-
lem in the class of all feasible strategies. Let C*(O) be the expected total cost incurred by the
application of this strategy to the problem with the truncated processing times and let C(0) be
the expected total cost incurred by the application of this same permutation to the original
problem with nontruncated processing times. It is clear that

0 > C (0) > C(0) > C(O) > C*(0).

Hence,

(C(O) - (O)Ic(o)l' ((o) - e(0) (0)-

A It
l M/*(a j)

KA ( 0 a Q) 0)jj )

= m*(a (i), ) ] (a G), M (a-0), 0)

as required.

(4.2) Linear costs

Throughout this subsection we shall assume that all jobs in J are initially improving for
the linear costs problem. Costs C(0) and C (0) are as in (4.1) except that now they refer to
economic criterion (2).

We define as before

(23) S,= sup it; n(i, x) < n(i,0), 0<x< t)
IEZ*

and thus obtain function n*(i. .) as in 41). This function is found to satisfy Conditions I"
and 2" and so we have Theorem 3.

THEOREM 3:

(0-0) - C(O)I(C(0) 1-' max Un(i, 0) - n*(i, 0)){n(i, O)[-',

PROOF: The proof is similar to Theorem 2.

We deduce from Theorems 2 and 3 that when dealing with collections of initially improv-
ing jobs whose associated values of T, and S, are large we lose little by restricting our attention
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to DSMNP strategies. Note too, that in any given problem it may be that %~c can truncate at times con-
siderably larger than T, + I or S, + I and still hive functions tn*0 ..) or n(t*, .) satisf Ing the
appropriate conditions. When this is the case it may be possible to improse the hounds gi en in
Theorems 2 and 3.

Note further that Theorems 2 and 3 also hold in continuous time. Ihe modifications
required are that in the definitions of T, and S, in (22) and (23) rcspectisel. the suprema
should be taken over R', the nonnegati~e real numbers, and that to obtain / in both cases.
truncations are taken at T1 and S, respectiel.. We also need to modify Definitions I and 2 in
the obvious way.

5. EXAMPLE k
For simplicity, we consider an example in continuous time with linear costs as in (2).

There are five jobs and so J = 11,2,3,4,5) with predence relation R = 1(1,2), (1,5), (2.3).
(5,3)). It is not difficult to see that there are ten feasible DSMNP strategies for J. The distri-
bution of P, is summarized by its hazard rate A,(.) which is assumed to have the form

,k , 0 < x < TI,

(24) X) X2,, TI, < x < TI, + T2,. i= 1.2.3,4.5.

A 3 ,, Th + T 2, < X,

The important details for the five jobs are summarized in i7able 1. It is easy to show, by appli-
cation of the algorithm due to Sidney [10] that the optima', permutation is (4,1,5.2,3) %kith
associated expected cost e?(0) = 31.089.

TABLE 1

Job (i) Kli) A1, A2 ,., TI, T, n(i. 0)
I 1 1 3 2 1 1 0.758

2 2 1 3 1.5 1 2 0.817

3 3 2 5 2.5 2 4 0.495
4 4 2 4 3 2 1 0.495

5 5 1 2 1 3 3 0.975

It is also not difficult to demonstrate that. %ith processing time distributions given accord-
ing to (24) that

(25) k,, > , and A,, >, x,,

where

(Ar*) -(A,,) '(I - exp(-A l , 1,1 + (A.,) )IeXp - AllI ) expl a I A I. )I

x I exp( ,T,, - A7,1,))

are sufficient to ensure that

it, .x I ,,t. 0), x E R>

and the existence of

lim n t .0A.
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Jobs 1, 2, 3 and 4 all satisfy (25) but job 5 does not. Indeed.

n(5, x)= I > n(5, 0), x > 6.

However, job 5 is initially improving in the sense that the (right-hand) derivative of n (5, x ) at
x = 0 is negative, and so the theory of Section 4 applies. In fact, the value Ss can be shown to
be 5.975 and the continuous-time version of Theorem 3 applied to this case yields

[C(0) - C(0)}C(0)}-' n tn(5, 0)- n(5, 0))1n*(5, 0)}- = 1.30 x 10 4

whereupon we obtain, that

31.085 < (0) < 31.089.

Evidently, then, very little is lost in this case by restricting attention to permutations of J.
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1. INTRODUCTION

Recently efforts have been made to extend the ideas of' postoptirnal anal~ s~ and
parametric analysis which are widely used in linear programming to 0-1 integer programming
and general integer programming. A review of' these efforts is given by Geoffrion and Nauss
[4]. They cite work on the 0-I1 problem by G. Roodman [ 13 1, and an extension of' that work bv
Piper and Zoltners [Ill]. Roodman [ 12] and Marsten and Morin [8] have looked at the same
topic using branch and bound. These and other authors are cited in 141. Bailey and (iillett (I I
have recently used cutting planes in parametric integer programming. The present paper duffers
f'rom these efforts in considering postoptimal right-hand side analysis f'or at different problem:
the pure integer nonlinear programming problem with separable objective f'unction and con-
straints. Our purpose is to modif'y an algorithmi which has been previously described 131 so that
it simultaneously finds optimal solutions f'or a f'amily. of' problems of' the type described aboveC
which differ only in the right-hand side vector of' the constraints. (This l'amily is analagous to
cGeoffrion and Nauss' family P,, in their discussion of' postopt inmali V. analysis for t he linear
integer case).

2. APPLICATIONS

One of the most general formulations to which this algorithm applies is the separable nonl-
linear knapsack problem. It has numerous application areas in allocation of' resources, cutting
stock problems and capital budgeting [71, 191, [10]. 151. 161. In addition it has applications b'r
solving subproblems in many integer programming algorithms 11l41, [21. 1151. The importance
of the work in this report which gives postoptimality data f'or this problem can be argued in a
way analagous to the case f'or linear programming. Additional information about the value (of'

30 1
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changes in resources, is usually worth a minor amount of additional computation. Often right-
hand side values represent estimates, and information about the effect of right-hand side
changes on the optimal solution represents a crude determination of the effect of estimating a
variable by its expected value.

3. THE PROBLEM AND METHOD

Let us tirst characterize the problems we solve, and second, briefly review the elements of
the algorithm to be modified. After these sections, the algorithm is extended to solve the fam-
ily of problems which differ only in the right-hand side vector.

Let us use the following notation to formulate the problem (P).

(1) Maximize = ,L(x,) subject to

(2) h,,(x,) < b,. i = 1,2. m. and x, E 1, for j = I. n.

Additional restrictions on the functions are

(1) / RP, j 1. n, and they satisfy a sufficient condition Ioi dynamic pro-
gramming.

(2) h,, : /, - Rp. j = 1. n, and i = 1,. n and are nondecreasing in V_

(3) the region described by the constraints is nonempty, contains at least one integer
point, and is bounded.

Our previous algorithm [3] is a top-down enumerative method for solving this problem in
which the constraints are used to eliminate infeasible partial solutions and their completions. In
this paper we require the additional restriction described above in condition (2), although the
paper cited in [3] treats a more general nonseparable form of the constraints. Let us describe
the solution process for the pure integer nonlinear separable programming problem given in (I)
and (2).

Step I: Find upper bounds on x,, . = 1. n and -' over the constraints in set (2),

Step 2: Solve the following dynamic programming problem:

(3) Maximize Z = (

Subject to .l (x,) < Z,.

This single dynamic programming problem can be used to identify lattice points on the hyper-
surface

Sf, (.,)

and on ever) hypersurface
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(4) ltv) ,0 < = Z ,

Step 3: We use the dynamic programming solution table to generate hotil a scquemce ot
decreasing values of : which correspond to hypersurface le ,els containing integer
points and also to generate all lattice points on that particular hspersurtace For
details of the method, see 03.

Step 4: The constraints (2) of the original problem are used to check for feasibility. The
argument is simply, if we look at all hypersurfaces '4 in decreasing order of s.
then the first feasible point with respect to the constraints 1-4) il] be optimal.

Actually the feasibility of the solutions is checked at the partial solution stage. For a
given :, say .-k, we generate the components of the lattice point in the order v,. .0; ...... x.
After -vx is generated, the vector corresponding to the remaining resource levels. thai is.

b' - x

is checked for any negative components. If none are found, this partial solution is still a Candi-
date for a feasible solution. Otherwise it is eliminated before any other components
x ., ..... x* are generated from the dynamic programming tables, since the final solution is
infeasible no matter what the remaining components are. Hence, solutions are eliminated from
consideration as quickly as possible.

4. ADDITIONAL CALCULATIONS TO DETERMINE OPTIMAL SOLUTIONS FOR
CERTAIN MEMBERS OF THE P, FAMILY

Let us assume that we want to find optimal solutions to the following problem P,,

Maximize Z = .(X

Subject to h,(x,) < b, +19r, i= 1.. .m

x, E 1 forJ= 1. n.

0 (), < NJ < ... <  =

r,>)O.i=l ..... m.

Then Step 4 must be changed to include additional tests for feasibility for each of the
right-hand side vectors, b, bl= b + r ,- b,= b + 9,, b 3  b + ... hl= h + r.
Note that if 0 < 91 < 92 .. < I, the following relationship between the right-hand side values

exists-
b, < b,i b, () + 6? 1 < b,2 b,,, +O.2 r, < ... < b,l b, + r

for 1=1...

Let us assume that we are testing the feasibility of a partial solution with constraint i. Then if
feasibility is tested for b,1, b, ..... bl, b1 , if any constraint is violated whose Ah constraint
has right-hand side value b,,, then for the problems whose right-hand side values are h, ,1
b,h 2 .... b,1, the current partial solution will also be infeasible. This is the order of calcula-
tion that has been implemented in a computer program. It is also possible to describe an algo-
rithm for solving a set of problems whose right-hand side vectors are not related as those are in
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the P, family which decrease in every component. For two problems with arbitrary, and
differing right-hand side vectors b, and b2. then there may be no method of ordering the b vec-
tors so that for every row t, b,I < b,. flence. a less eflicient algorithm could be implemented
in which every b,r must be checked, even if an indication of infeasibility is given for a previous
b ,.. The reason is obvious: for arbitrary components no ordering can guarantee that
b ; < b, r or every constraint, hence, the Ath constraint may not be violated if its right hand
side is b,

A flow chart of the order of the calculations for implementation of the simultaneous solu-
tion of a family of problems differing in the right-hand side is given below. We assume that %%e
have generated an upper bound z,, on the objective function in some way, and that swe are con-
sidering a partial solution for some hypersurface with functional value :- < :,. The assump-
tion is clearly that for all hypersurfaces with intermediate functional values either

(a) they contain no integer points (we do not explicitly consider these), or

(b) they contain no fbeasible integer points

At each stage in generating a new component of an integer point from the dynamic program-
ming tables a test for feasibility is made with the new x and components in the partial solution
already obtained. Hence, the flow chart of this part of the algorithm assures that the sequence
of functional hypersurface values with integer points has been identified and put in strictly des-
cending order: > :I > ... > -A > ... The right-hand side vectors under consideration can
be written as

bp= b + 7J, and0 < 0( < 1, < 0p < 0- 1.

The program considers the right-hand side vectors in the order bl, b 1 ..... b. h. so that any
partial integer solution which is infeasible for b,f is also infeasible for all previous right hand-
side vectors. The logic is given in the following diagram (Figure I).

A careful analysis of the program logic will show that many problems of the family P,, can
be solved using the solution table from a single dynamic programming problem. We would
expect a considerable saving over the time for solving each problem in the family separately for
this reason. In addition, the fathoming or discarding of integer poinis at the partial solution
stage can be done for several problems at a time.

5. • )MPUTATIONAL DATA

Seven different basic families P,, have been solved on the CDC CYBER 70, Model 72, a
moderate speed computer. The results are given in Table I. m is the number of constraints, n
is the number of variables, K is a bound on x,. Problems are created with randomly generated
coefficients. The functions of /'(x,) are cubic polynomials, so a problem with 12 "ariables
might have as many as 36 terms in the objective function. Constraints of the form

a,,.x, < b,, i= I . in

are used with the restriction that a, > 0, b, > 0. For each member of the P , family. the new
right-hand side vector is created by subtracting 5 from each component of K. A time of .00
indicates that the current optimal solution also solves the next problem in the family which has
a smaller value in each component of b. Note that other schemes of obtaining members of I',
can be easily implemented.
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TABLE I

Time (CPI; Secondt
i it A Base Problem (1') -. . - I

(seconds) b 3  h, h.

3 12 2 26.43 .00 .55 1.12 -56
4 10 2 13.27 .00 .00 1.38 .44
4 10 2 30.36 .00 .00 .00 1.64
4 15 2 36.26 .00 .00 .00 .O0
4 Is 2 84.49 1.33 .00 3.87 1.09
4 15 2 32.98 .00 .00 .00 .00
4 15 2 25.70 .00 .00 .00 .66

In each case, although individual problems are between 10-80 CPU seconds, after the
base problems are solved, other problems in the same family are solved in under 2 seconds
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ABSTRACT

The location-allocation problem for existing facilities uniformly distributed
over rectangular regions is treated for the case where the rectilinear norm is
used. The new facilities are to be located such that the expected total weighted
distance is minimized. Properties of the problem are discussed. A branch and
bound algorithm is developed for the exact solution of the problem. Computa-
tional results are given for different sized problems.

I. INTRODUCTION

All previous studies of the location-allocation (L-A) problem have used the assumption
that the location of customers of existing facilities were deterministic points. The multifacility
location problem involves the location of one or more new facilities relative to several existing
facilities in order to minimize the sum of the weighted distances among the facilities. Previous
work 11,2,161 with this problem has shown that in the urban setting, potential location of custo-
mers or existing facilities may be more accurately represented as random points uniformly dis-
tributed over rectangular regions. Since the L-A problem is a generalized version of the mul-
tifacility location problem, the principal of using rectangular regions to represent existing facili-
ties instead of aggregate points would be appropriate in modeling the L-A problem.

A common approach to handling the location problem with rectangular regions is to
represent each region by its centroid and to solve the resulting problem as a deterministic
model. Although this method is computationally easier, it has been shown [31 that the
solutions's proximity to optimality is metric dependent. Location problems with Euclidean dis-
tance metric are relatively insensitive to a relaxation of the probabilistic assumptions. In other
words, using the centroid approach for probabilistic location problems with Euclidean distance
metric yields a near optimal solution. However, the tradeoffs in considering the deterministic
(centroid) version of the rectilinear metric location problem are greater [1]. Consequently, in
considering probabilistic location formulations using the rectilinear metric it is necessary to
develop solution techniques other than the deterministic ones.
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Often the solution techniques for the L- .4 problem involve the use of a facility location
algorithm to generate and evaluate allocation schemes. Cooper [6] and Kuenne and Soland 191
both indicate that finding the optimal allocation scheme is the most critical task in solving the
L-A problem. Thus, determination of the optimal allocation scheme is only as reliable as the
facility location techniques employed.

The purpose of this research effort is to develop and test an exact solution technique for
the L-.4 problem among rectangular regions with a rectilinear metric.

2. FORMULATIONS

The general location-allocation model among rectangular regions is formulated as follows.
(P) minimize £ £ ff :,,,,;',- R, 0(R,)dR,

i=1 R,

subject to: z, - I for all i

) =1 0. 1 for all iand.j

where: n = number of new facilities
m = number of existing facilities
IV, = (x,. j,), coordinate location of new facility j
R, = existing rectangular region i
Y(R,) = bivariate probability density function over R,
wv, = interaction between region i and the new facility it will be allocated to
z11 = 1 1, if existing facility i is allocated to new facility j{0, otherwise
1,  = the type of norm used. When p = 1, 2, and oo, the metric becomes

rectilinear, Euclidean, and Chebyshev distances respectively.

The particular problem to be emphasized in this paper is the location-allocation problem
among rectangular regions with bivariate uniform distributions.

This may be expressed as,

(P') minimize , R, dadb,

subject to:. z,-= 1I ... m
z, 0 for all i andj

where: (a,. b,) = general coordinate location in region R,
A, = area of region R,

and n, mn, w,, X,. R, and ;, are as defined in (P).

Note that I in (P') is just the bivariate uniform density function over R,.

In Problems (P) and (P') , the decision variables are the z,,'s-reflecting the allocation
aspects of the problem and the V,'s-reflecting the location aspects of the problem.
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The new facilities have an infinite capacity to serve the existing facilities. Thus, each
existing facility will be allocated to and subsequently interact with only the closest new facility.

It is assumed throughout that the vv,'s may represent either deterministic values or
expected values of random variables. Also, the regions must be rectangular, but they may be
overlapping.

3. RELATED WORK

There has been no previous work on the L-A problem among regions. llowe'er,
research on the deterministic version of the problem has revealed the complexities and compu-
tational burden involved in the solution of the L-A problem.

In light of the difficulties associated with exact solution of the L-.4 problem. heuristic
algorithms are often employed. Cooper 15,6,71 developed various heuristic algorithms. Many
of his initial algorithms used the assumption that all existing facilities were equally weighted, he
used these results to develop heuristic for the case when the facilities are not equally weighted.
Learner [101 assumed customers were uniformly distributed over a plane and attempted to allo-
cate them to the new facilities by dividing the plane into hexagonal areas.

Since the heuristics can not guarantee a specific proximity to optimality, exact algorithms
have been developed with an attempt to alleviate the computational burden of the L-.4 prob-
lem. Most algorithms have concentrated on the Euclidean metric. Bellman [4] was able to
solve very small L-A problems by transforming them into dynamic programming problems
using quasilinearization as the transformation device. Kuenne and Soland [9] used a branch
and bound algorithm to optimally solve the L-A problem with Euclidean, great circle, and rec-
tilinear distance metrics. Ostresh [121 worked on the Kuenne and Soland algorithm in an
attempt to improve the bounding procedure. lie did so for the case n = 2 using convexity
results of Wendell and Hurter [151. Love and Morris [ IlI considered the L-A problem with
rectilinear norm. Their exact algorithm features a reduction scheme where only possibly
optimal sites for new facilities are considered. Recently, Sherali and Shettv [141 used a cutting
plane algorithm to solve the L-.4 problem with rectilinear norm.

Although these exact methods can guarantee optimality, there are limitations to the size
of problem that can be solved in terms of computational time. Ostresh 1121 reported solving
problems of sizes m = 23. n = 2 and m = I1, n = 4 in respective CPI times of 23.26 sec and
10.28 sec on IBM 360/65. Kuenne and Soland's 191 largest reported problem was m = 15, n -
4 with CPU times for random weights and unit weights, respectively, of 82.7 sec and 54.2 sec
on an IBM 360/91. Sherali and Shetty 1141 solved a problem of size in = 35, n = 2 in 23.46
seconds on a CDC 6600. Finally, Love and Morris I IlI reported solving a problem of size ti
= 35, n = 2 in one hour and 31 minutes of ('PU time on a Univac I 110. Thus, computational
burden seems to be a serious problem for exact solution methods.

4. A BRANCH AND BOUND APPROACH

The branch and bound approach developed by Kuenne and Soland 191 offers an optimal
solution to the L-A p'oblem in reasonable computational time. Although Kuenne and Soland
developed a solution for the deterministic problem, some of' their results may be gencralied
and adapted to the form of the L- .4 problem considered here. Some of the generalized results
are discussed below.
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The L-.4 branch and bound algorithm is based on partitioning the set of all possible solu-
tions to the location-allocation problem on the basis of the allocations of the existing facilities
to the new facilities.

Any subset of solutions, denoted S, can be partitioned into at most n disjoint sets by con-
sidering the total number of ways a previously unallocated existing facility can enter the alloca-
tion scheme. Suppose that in S the allocated existing facilities have been assigned to A new
facilities where A < n. An unallocated existing facility is chosen. If A = n, then S can be par-
titioned or separated into n subsets SI. S ...... ,, where S, is characterized by the assignment
of the existing facility to new facility J. On the other hand, if A < t. then S may be partitioned
into K + I subsets where S , J = 1, 2 .... k is as described above. The subset .SAI is
characterized by the assignment of the existing facility to a (A + I )th new facility. This
(A + I)th new facility would have only one existing facility allocated to it.

After a node or subset .A has been partitioned, a lower bound is computed for each parti-
tion or succeeding node J to help in fathoming the generated nodes. This bound is a lower
bound on the objective function value that would be produced by any allocation scheme con-
taining the allocations that have been made at this node J. The lower bound is a sum of two
values. The first value is the cost of optimally locating the new facilities among the existing
facilities that have been allocated- this is just a multifacility location problem. The second value
is a lower bound on the cost of locating n new facilities among the unassigned existing facilities.

When the mth level is reached a complete allocation scheme has been developed, as each
of the m existing facilities has been allocated to one of the n new, facilities.

4.1 The Branching Rule

The branching rule is the criterion used to choose the unallocated existing facility at each
level whose assignment will be considered as the basis for making the partition. Any rule may
be used. For example, an unallocated existing facility could be chosen at random or the ith
existing facility could be chosen as the branching facility at the ith level. However, an approach
based o,) the properties of the problem may be more useful.

For this problem where the sum of weighted expected distances is to be minimized, the
weighted expected distance from an existing facility to a new facility will be considered as a
branching rule as a generalization of the results of Kuenne and Soland (91. Considering only
the minimum distance or maximum distance between an existing facility and all new facilities
would disregard the size and variations of the expected distances between the existing facility
and the new facilities.

The weighted expected distance between region i and new facility / is

(1 ) v-- , - uI + ,

where all parameters are defined as in (P) and (P').

This is equivalent to the following expression:

1 Vj

(2), - ., I ,, -h,t Jh L, jc
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Fach expression in the sum may be computed independentl. Ilence, because of this
separability there is an expected distance with respect to the .\-coordinate and another with
respect to the i-coordinate.

It may be shown that the expected distance from ).. i ) to region I delined hk
[a, , aj .\ lb,,. h, ,, where . u (a,. a,) and tq(h,, h,,), is equivalent to the rectilinear dis-

, + , h,+ h,

lance from l.v. r ) to the midpoint of these intervals ..\nother case is

presented in Theorem 1.

These expected distances are used in both applying the branching rule and ealuating tie
objective function.

4.2 Upper and Lower Bounds

4.2.1 Bounds on the Objective Function

The objective function value associated with an arbitrary allocation scheme ma\ serve as
an upper bound. This upper bound may be improved by using a modification of' Cooper's alter-
nate location and allocation heuristic [6].

Consider the arbitrary allocation where existing facility i is allocated to new facilii i Mhere

i (mod it), if/ is not divisible by i
ii. otherwise.

B\ this delinition existing facility a would be allocated to new facility t, but existing facility
a + I would be allocated to new facility 1.

The location problem for this allocation is solved and the objective function value corn-
puted. This is an upper bound on the optimal solution value. The upper bound is tested for
improvement by reallocating each existing facility to the new facility whose weighted expected
distance from the former facility is a minimum. After the reallocations are made, the location
problems are again solved and a new objective function value computed. If the new objective
function value is equal to the old objective function value, iterations cease. Otherwise, the
reallocations start again. This heuristic may be iterated until no improvement is made or until a
convergence criterion is met. The best objective function value from this heuristic becomes the
upper bound on the optimal objective function value. The minimum expected cost of serving a
region is established in the next theorem.

TI IFOREM I: The minimum expected cost, 7,, of serving region i from a point within i,

is -4- (a,_ - aU + h,, - h,,) where region i is delined as la, a,, i I v Eh,,. hI.

PROOF: The expected cost of serving region i from l(..i ) a point within i is

( (a,, - ., + (a - \.)2 (h, V .)2 + (h, t 12

I .r = 2(a,, - a,) + 2(h,,- h,,

When the partial derivatives of (3) are set to 0, the solution is

a,% a , a ,, h,, + b,

2 2
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which yields a minimum. Thus,

.(x*. v*) = -- (a,, - a,1 + b, - b, ) =

The lower bound to the objective function may then be found by:

(4) l.b. = j.,T,.
i=1 .

4.2.2 A Lower Bound for Each Node

Computing a lower bound is a two part process. The first part is solving he location
problem for the allocated existing facilities and computing the corresponding new facilit). Jlhe
second part involves underestimating the expected cost of locating the t1 new facilities among
the unallocated existing facilities.

In order to develop the second expression, consider two unallocated regions R, and R2.
Suppose that both are to be served by the same new facility X = (-, jv). The expected cost of'
serving these two regions is:

(5) .(X) = l/:ll. - all + .V - hil] + wl2E[Ix - , + .v - b2l]

where (a,, b,) are random variables representing the points located in region i. This expression
can be considered the sum of the expected costs of serving the regions along the x-coordinate
and the expected cost of serving the regions along the v-coordinate. These expressions are
independent and each one-dimensional case may be considered sep ,rately.

Notice that when the x-coordinate is considered, then the expected cost is

(6) f(x) > min{wlw) (E[lx - all] + Ellx - a11).

Let a, and a2 assume any values where a, < a2 and consider the relative position of x. By the
triangle inequality,

(7) I - aI + x - a, I > Ia - a, 1.

Since a, and a, are random variables, then

(8) /1k. - (Ill + Ellx - au2l > Elal - aWl].

Substituting (8) into (6). a lower bound is produced:

(9) f(/ k) > min w. m2 ) LAla I- a,1.

Thus, (9) is an appropriate lower bound, where :lla, - (1,1 represents the expected dis-
tance between regions I and 2 along the x-coordinate.

HIt0) Eila1 - ,, 2I1 J, f *t,- vJ dudv.

The integral in (10) may be evaluated for three cases. For case in reading, let a represent
al, h represent al., represent a,. and d represent a., (the second interval a, is underlined).
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CASE]. a < t < d < b

a c d b

al

(u. + b 2)(d -- )- (a + b) W2  2) - (d
(1) /Ala, - al1= 2(h- (d- 3

CASE II. a< c < b < d

a,

I I I I
a c b d

al

(b-c)Oka2+ (2) - (u + b } ( h + c l + -- - ( hl - (-3) + ( d - h ) (b - O (d -  )

(12) I[al-a1a2 1= 2(b-u)(d-c)

CASE Ill. a < b < < d

a b c d

a, a

(13) E[ul- , (,12 2 )(b - a) - d - c)(b 2 - a 2)
2(h - a)(d - c)

From (13) it can be shown that if the two regions R, and R, have nonoxerlapping inter-

vals, then the expected distance between the two is just d + a2

Thus, for any two rectangular regions R, and R,, the expression

(14) min{w. }(l, [Ia,- a,I + Ih, - h,I)

can be computed as an underestimate of the expected cost of serving these two regions with the
same new facility (see 161).

Thus, Equation (14) is the building block for forming lower bounds. If there atre 1' unal-
located existing facilities, then there are I/ 2p (p - I ) different reali/ations of [quation (14).
Assume that all the expressions are placed in ascending order and let q, be the ith term in this
progression. Compute T for I = 1 . P. where T, is defined as in (4). and arrange these
expressions in ascending order. Let r, be the ith term in this progression.

.J A

.,.
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To underestimate the expected cost of' allocating n new facilities among p existing facili-
ties, the ,arious combinations of allocations should be studied. For example, if p < n, then a
new facility should be assigned to each of the p existing facilities. An underestimate of this
cost would be the sum of all p of the r, terms. This would follow since r, represents a
minimum expected cost for serving a region from a point in the region.

Another example is the case where p = n + 4. In this case, there are five possible combi-
nations: four nev facilities are allocated two existing facilities, all others are allocated one: one
new facility is allocated three existing facilities, two are allocated two, and the others are allo-
cated one: one new facility is allocated four existing facilities, one is allocated two, and all oth-
ers are allocated one: two new facilities are allocated three existing facilities apiece, and all oth-
ers are allocated one, and finally one new facility is allocated five existing facilities, and all oth-
ers are allocated one.

Table I displays all lower bounds for these combinations for different values of p - 1.

TABLE I - Lower Bounds.1br Locating n New F ilities .hniong
p Rtulninllur Regions

Value of Lower Bound
(p - a)

0 or less 11,

1 4q + r

,a- 2 a

2 min q + 2 + 1 r, 2 2(qI + q2 + (3) + r,

3ni 1 3 q2 + 1(2+c/ 4

I + +-q +

4 mji+ . =+ 124 (/. I 4

33-I
I

q,+ (qr 2 ; + + 4)+ 11qq + + I"

I-I

5 rmin q, + ... +  r, qI + q + Iq + 1 2 ( 4- r,,q+

q I +- q+ +q)+ I+1 2 (q 2 +(,

q I +  114(q2 +  ." +  q I) +  11 ,,I 2(q, + ... + q,) 4 ((/ + 4 1/,

-4 l+ 2 . l ) 4 r

+ + +
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It is obvious that as p -n becomes larger than five, the number or comhinations to he
considered also becomes large. Thus, a general Iose bound will be used for ,alucs of p 11
greater than fie.

TiIEOREM 2: A general lower bound on locating n ne, facilities among p rectangular

regions is 1,/2 cq, w~here q. is as delined aboe. The proof follows closely that in [6.,

This general lowser bound is Nell-suited for the cases when r- n is large. These case,
will be levels I. 2. m . - 5 of the tree. At these levels, the possibilit\ of fathoming nodes
is not as great as at the other levels. This is because only a IewN existing facilities has e been
allocated, and the partial objective function value used in computing the lower bound \,ill be far
from the optimum. A tight lower bound would then in.olve considering all possible combina-
tions of the unallocated facilities. To hasten the tree search, the general lower bound is used to
quickly compute the lower bound and move to the next leel.

On the other hand, in the last ni + 5 levels of the tree. enough facilitie. hase been allo-
cated to identify unprofitable allocation schemes. Here the tighter lowser bounds gien in Table
I should be used to fathom as many nodes as possible.

5. THE ILOCATION-ALLOCATION BRAN('t AND BOL NI) ALG+ORITHM I..,(LABX )

In this section the complete branch and bound algorithm for the location-allocation prob-
lem is given.

The input parameters are

.N = number of new facilities
.1/ = number of existing regions

x 1(1) and x2(/) = left and right endpoints, respectively. of region II (I)) along x-ax,
1(/1) and J 2(/) = lower and upper endpoints, respectis ely, along -axis.

wit ) = interaction cost for region /.

The parametcrs for computing bounds on the Optinlul \alue of tile objecti sc funtCii.n
are:

- = upper bound on optimum
- lower bound on optimum
IX current least upper bound on optimum
F objective function value to be compared sillhI \
E stopping criterion for alternate heuristic (G > 0).

The parameters for computing the branching facilit. are:

/. = current level
I = index of branching facilit\ chosen at le\el 1.
I, = set of' indices of unallocated facilities at level /
11:1) D ) = ,ector of average expected distances from region I to all othcr region',
1/) vector of average distance of region I to the nes licilities ihlil h, e beeii

currenil. located.

Loui
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The parameters for creating and fathoming nes, nodes are:

K/. = number of new nodes to be created at current level
\01)1. = counter for nodes created

P =node number of the last node created at previous level
I') = the nevk fcility the branching facility at level L was allocated to according to the

node that w as partitioned at level I.
A\1. = number of ne\4 facilities at prev ious :e\ el
\A (.1) = current location of nes, facility J
\7B I=) lover bound at node I
QIt = the ith smallest value of mainlw(J), w(k}l IRi ) - R(A )I I for all / < k
R ) = the ith smallest value of .25w(./)lx2(j) - .I(/) + j2(j) ll(./)].

STEP 0. Initialize the input parameters. (Compute upper and lower bounds on optimum.)

STtP 1. Let I= .

S1FP 2. Arbitrarily allocate region I to nev% facility - V [Iy lJ

STIP 3. Solse the single facilit. location problem for all new facility .r(/1 .= 1.....
among the regions allocated to new facility J.

STI 4. lvaluate I. the objective function \alue of the L-. problem, for the results of Step

STEP 5. If ["V - > c then replace [A with /. Otherw, ise, go to 7.

STI1: 6 . For 1 . 11, compute riniwI/) - [XX /)- R(/11]} let A be that flacilit

with the minimun expected value. Reallocate region / to ne, facility A. Go to 3

SI l p 7. Let - " .

SI P X. ('omipute -  .25 k_. l/ -v2(/) -. Il) v2</)- MI+ /].
/ I

S1l 1)) If t stop. (io to 31,

Illitialiic ftr le ,el IH

5,111 P q lit I.

S11 1) It I r I 1.. Lcompute .)1M) L I MI/ - R(A ).

S 1I-I) 12 le !1]l X II') I . ~ :I . 2 . . l 1

SI I 11 13. 1 Qt \01)/. 1. Assign region /i to neA facilit I. Sol e the hocation problem for

"M'tl let W/+ = 1. let //IH I.

I ,\t,. c . to next l xcIC
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STEP 14. Let L L L +.

I(Compute Branching Facilit.
I x'

STEP 15. Compute I1\1/ .\1. V [RI I X.1lli for ll.lIII
STEP lb. Let /I = max I.\(M) and let II = IJ-,

(Create New Nodes)

STEP 17. Let KI = min)/.. V. Let M) VUDI).

STEP M8 Create Kl. new nodes \1) + 1 ... AD + by allocation region /I to ne\k factil-
it\ 1 ..... A/. respecti\ely. Let .\ODI= V. ) + AL.

(Compute Lowser Bounds on Nodes)

STEP 19. For node I AD ± I ). D Kl.. sol~e the location problem for the partial
allocation scheme: region .j allocated to nek facilit% I - .\): h, allocated to IP(, A .
A L L - L. 1. - 2 ..... I. Denote the objecti%e function \alue LIM) ).

STEP 20. Compute the vectors Q () and R (I) using regions J, J 11 .
tI I ",

STEP 21. If l - L - .V > 5, let Qx 1/2 (I). If M! - 1, - .V 5. compute the
I t

lower bound for the value Ml -- 1, - .V as given in Table 1. )enote this value Qx.
STEP 22. Let LBI) ) LBI)) + Qx. I = N) + 1...... M) 4- A. If ,BMI) > '. fathom node

I.

STEP 23. Among the unfathomed nodes in 22, choose /* as the value of / such that
LB I*) = min LBII) If all nodes are fathomed, go to 27.

STEP 24. Let IP)L)= /,- A). I
STEP 25. If I. < .L set ,VL and XX(i) = I...... L equal to the values found for I* in

Step 19 and go to 14.

STEP 26. If L = , compare LB(I*) to , If .B(*) < - then - = L(I*). Fathom the
newly created nodes at level M.

(Backtracking Procedure)

STEP 27. Let L = L - 1. If L = 1, stop. Go to 31.

STEP 28. Consider all nodes I at level L that are unfathomed and have not been partitioned
such that their allocation scheme includes J, i allocated to IPI,1 - I). If there is at
node /such that LB(1) < :, go to 29. Otherwise, go to 27.

STEP 29. Choose 1* such that LB() = min LB (I) where f are the active nodes identified in
27. Let I. denote the new facility j/ was allocated to at i*. II)(I, ) = 11. Let A/.
and XX(j) become the appropriate values found in Step 19 for P.
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STEP 30. (;o to Step 14

STI'P 31. The optimal allocation scheme i,, ti.e one associated %kith :, the optimal objective
function .alue.

6. VERIFICATION OF TIl- A.ORi'IIM

LABB, was coded in Fortran IV. The code ,as verified using an example problem
presented in Figure I where the w,'s are 2.1.2.2,1. respecti\el., for the ti~e regions.

10
Xl

8 [ i

6 F

2 X2 0 J

2 4 6 8 10

hot ki I \ graph of an cxaipll e problem

Both manual computation and the code produced the optimal allocation scheme to be: X'
ser\,es regions I and 4 and X, serves regions 2, 3 and 5. The two new facilities X, and X\ were
located at (2.5,9) and (9.5,1.5), respectively. The optimal obiecti%e function value was 18.5.

The same problem with a centroid approximation produced a different allocation scheme:
, serves regions 3 and 5 and X, serves regions 1, 2 and 4. The new facilities were located at

the points (4,8.5) and (9.5,1.5). the centroids of regions 4 and 3. respectively. These locations
used in the objective function involving the rectangular regions produced a value of 37, a 100
percent increase over the value for the optimal locations.

The impact of the sensitivity of the rectilinear distance metric to the centroid approach on
the location-allocation problem is serious, it has produced a nonoptimal allocation scheme and
inferior locations for the new facilities. As in the multifacility location problem, the centroid
approach does not even offer a good approximation to the solution of the location-allocation
model.
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7. COMPITATIONAIL RESULTS

The computational results given in this section represent experience %ith the branch and
bound algorithm (LABB) for rectangular regions using a rectilinear distance metric. The prob-
lems were randomly generated from uniform distributions. All w(/)'s were generated from a

uniform 0,101 distribution. The xl(I)'s. x2(I)'s, (I) 's and 2() 's %ere each generated
fromi a uniform {0,1001 distribution. All problems were run on an IBM 370/158J computer.
The results are summarited in Table 2.

TABLE 2 - (omputaional Rcstdts. fr Lot ation-Allocation
Prohhens whll' I = 2, 3. and 4

No.eoage Average Aierage \verage
No. of No. of Maximum No. of Optiml

Problems (seconds) Nodes Active Node
Created Nodes

n = 2

5 2 .585 II 1 1)
6 3 1.01 27.3 2.7 19.7
7 4 1.00 25.75 3.5 20
9 3 1.99 94.33 4.67 79

11 3 5.37 240.3 8 1 19
15 2 8.55 330 II 219
20 2 1 1.33 332 18 39
25 2 '9.08 349 23 69
30 1 33.02 517 28 59
35 I 51.15 541 33 69

n = 3

6 3 1.2 50 3.3 32
7 3 1.54 86 5.33 68
9 3 3.76 232 10.33 59
I I 2 4.51 272 14 211.5
15 2 7.28 412.5 23 188
20 3 11.2 411 35.7 62.3
25 2 15.44 - 45 72
30 2 26.37 564 17
35 I 37.23 543 65
=4

7 3 2.73 129.33 7.3 87.33
9 3 3.01 223 11.3 118
I1 2 4.8 316 23 38
15 2 6.73 416 36 54
20 4 11.77 586 48 74
25 I 13.26 4>' 66 94

Not surprisingly, the required computational time reflects the i\crag r numbC (f MIde,
created which, in turn, is a function of the si/e of the problem and the numher of adclic re iod

For the problems worked, no compulalional lime was pS r oInC minutC
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In each of, thle cases of, 1,0 li 2, thle opitimial allocation wats exarmned toi deternime
\Nlhat pV erentge of' opt)imumlll as achieA ed h\ the lo%%er hound atl echW le Ci. Ini cases \%here ,ii

w as large, thle genera lowerU hound \%is used atl the first mi 6 leA els. 'the lower hound
impro- ed rapidly fromn lex el to lex el: a I~ 'pical imiprox enlent wais tell pertcent oll optinmuml. Isu-
all%, at the tit 6th lex ci. the lo\Ner hound \kas within 85-9(0 percent of' optinluni. I hus. (titc
sx~ itch to thle combinatorial lo\%er hounds for thle last tix e lexels represented less iniprox enlent
1mmon level to lex c. but convergence occurred rapidly.

Ihle computational results ill Fable 2 indicate that the LABII algorithm obtainls anl optimal
Solution b'r thle L.-~ I prohlem with rectangular regions inl verx' reasonable time.

8. St NI\IARN

Ini this paper the locaition-allocation problem for existing l'Zicilities unilbOrilx distributed
ox er rectangular regions wNas Conlsidered. PreviousN works dealing \kithl 1. 1 sxstetils \%erc is-
Cussed, and the properties of' thle problem were developed. These properties inldicatedC that
de\ eloping the optimlal allocation scenle wais thle imost important step inl optinall\ sokxing tile
/ I problem.

ComputaLI~tiona results indicted that thle exact algorithlm (LAIB) Could obtin theC opt1imal
s(i toI fr large pri bleis tin a reasi lia le timec

IThe branch and bound method L A B) miay be applied to location-allocation proiblemls
x%%ithl prohabilit\ distributiotns oin ex\isting~ ficilities ocher than unif'orm. Since thle branch and
bound nmethlods generate oiptimal allocation schemnes no nlatter whatl t~ pe ol' (ibletix e I ulctiofl
is used, tile oni1\ difference would he the %kay thie location proibleis are soixed at each node.
Solution teCIliliLLIleS using other proibahility distributions are developed b\ Alv 1ll. Kati and
C ooper 181 and WAesolow&sk\ 11I71. It Would be expected that tile c01inLputatioinal times to 5( ike

hese related problemis would be simiilar to thle timies I'r the Unliforml distribution x\ ihadut
ments, made on the basis of' the speed o1' theC individua Solution technique.

A I- I problem max hiaxe coinstraintts onl the alliocatioin Scheme. on thie location", ofI thle
niex% lacoilies. or onl both, Ini these caIses, theC COnSra iiltS can he uNed aS an additional test at
~CJll1 node as a basis i'ir Litlloming tile node.
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AN ITERATIVE ALGORITHM FOR THE
MULTIFACILITY MINIMAX LOCATION PROBLEM

WITH EUCLIDEAN DISTANCES

Christakis Charalambous

Department of Electrical Engineering
Concordia Universion

Montreal, Quebec, Canada

ABSTRACT

An iterative solution method is presented for solving the multifacilit', loca-
tion problem with Euclidean distances under the minimax criterion. The itera-
tive procedure is based on the transformation of the multifacility minimax
problem into a sequence of squared Euclidean minisum problems which have
analytical solutions. Computational experience with the new method is also
presented.

1. PROBLEM FORMULATION

To formulate the problem, let us suppose that m existing facilities are Iccated at known
points (at. bl), (a2, b2) ..... (am, b,,) and n new facilities are to be located at points
(x1 . Yv), (x 2, Y2) .....,(x. y,,). The cost
(la) J;1(x,. y) = w, [(x, - a,) 2 + (y, - bj) 2]!'2, , ,

. = 1. 2. . n
is incurred due to travel between new facility i and existing facility j for all i and j (w is a non-
negative weight) and the cost

1= 1, 2,. tt 1(Ib) g(XI. xA .) ) VI (t [(XI _ x ) 2 + (YIyA 2y)./b) k I+ . n

is incurred due to travel between new facilities I and k for all I < k (vIA is a nonnegative
weight).

From (la) and (lb) we can see that the maximum cost incurred due to movement
between facilities is:

(2) F(x. Y) max (/ .(,,. .,).,, (XI, vl, X. j

,I M

where
x = I.x,. x, .... V,; y= fi~." .t:. .Y, .

The multifacility Euclidean minimax facility location problem is to find (x., ) which
minimizes I (x. . ). The new facilities might be helicopter bases, transmitting stations where it
is desired to minimize Oie necessary signal, detection stations or civil defense sirens. An
interesting book in this area is that given in reference [8].

325
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One main characteristic of the objective function F(x. v) is that it has discontinuous par-
tial derivatives at points where two or more of the functions 1,(x v, I,, ) ,-, .\-A. v,) are
equal to / (x. v). Various algorithms have been proposed for soving the general minimax
problem, some of the most relevant of which are due to Charalambous and Conn 121,
Charalambous [I11, Dem'yanov and Malozemov (41, Madsen [I 11, and Dutra and Vidvasagar
[61. More specialized algorithms for the minimax location problems were published by
Chatelon, [learn and Lowe (31, Drezner and Wesolowsky (51, Elzinga, Ilearn and Randolph
[71, and Love et al. [101.

In this paper we present a simple algorithm to minimize / (.x. i ). lhe original problem is
transformed into a sequence of unconstrained squared Euclidean minisum problems which have
analylical solutions. The resulting method is elicient and eas, to implement on a computer.
Numerical results are presented which illustrate the usefulness of the new method to the mul-
tifacility location problem.

2. THEORETICAL. RESULTS

LEMMA 1: The functions .£ I ;,v,) and g ,,x vj. . - as defined in (la) and (I hI
respectively, are convex functions.

PROOF: See [91.

LEMMA 2: The function F(x, Y) is continuous and convex.

PROOF: This follows from the fact that each /,(x,. i,) and g, (,. y/ VA, - A are con-
tinuous and convex functions (see for example [41).

Let 1p,(x, .v,) and qA (x, Y A, Y) be the following 2n-dimensional column vectors:

0 0

0 I-\, - .\ 1 ) - (/ )
(n) x, - a, - i)

0

(3 a) (3b) (xA - V/) ( )
0

0
p,,Ix,. y, q,,, (X/. Y. -, , ) =

0 0

0 {),1/ .
1
A,) - In + /)

In) v, - - (n + i)
0

(yA -Y) n + A)
J L o
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All the elements of p, are equal to ?ero except the ith and the (a + t)th, and all the element,,
of i, are equal to iero except the Ah. Ath. (n + /)th and the tn + A )th Also note the
p ( . and l, (Al. 1 A. i ) are the gradient vectors of the following functions

I ( , , + ( j, - b ,) 2

and

-,!th respect to I. ) rcspectiely.

IHE()RIEM I (Necessar% and sufficient conditions for optimality): The necessar, and
sufficient conditions for the point (.%*, i *) to be a minimum point for the function I- (.v. t are
that there cxisi nonne'uln't multipliers x I,(1 = 1, 2,. , 1 . 2,... no
,u(I I . I, A I + I. ) such that

t.

(4a) + .. (/VI, J -A*, . AZ)0

(4 b) +~~±

1. 2,.
(40) v*lx.VI ~.i)) 0, 1. 2. ti

(4 d ) 7(,f (x *. v ) g , (x -. . - . Y * ) ) = 0 1 2 + .

PROOF: The proof follows directly from the Kuhn-Tucker conditions for optimality for
this problem or from the Corollary of Theorem 3.2 of Dem'yanov and Malozemov [41. Note
that ,, = A = 0 for the functions v;,)(, y, and Ai A ( . l x A ) which are less than
H(* y*) at (x*. v*), i.e.. for those functions which are not alitM at the solution (.N. *)
The A and Iu A are called minimax multipliers. Also not that since .(.,*. 1* ) = g'A (.l j7. 4\ -

Y*) =~x* Y*) f'rom (4c0 and (4d)) for corresponding X * ; 0 and /A ~ 0, the denomina1-
tors for all terms in the summations in (4a) can be replaced by I.

The possibility that some *f, (x, -*.) or vk i*.. v*. .*) = 0 can occur. In this case
replacing the offending term Ly 8 > 0 will not change the oplimality conditions since the asso-
ciated Lagrange multiplier will be zero for nontrivial problems.

Consider now the following problem (Euclidean-distance minisun location problem).

For given nonnegative values ofh u = A,, and Flk = F.

minimize F(x, y. A. A.)

where

(5) A. -) = I a
-I ,-I

+ I / , .x:, + (. 1

Ak, and Al, are going to be called estimates for the minimax multipliers. I,
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Let

(ba) ii ,, = 1,,,(> 0) j= 1, 2. it
(6a)/ = 1. 2. i

_=1,2 . n,- I
(6b) IA - 0) A - / + I .n.

THEOREM 2: For given nonnegative values of A,, = k, and 1Ak //,-A the function
S(.),,. . A. .) is convex.

PROOF: See 112).

THEOREM 3: If X,,A., (i =1. 2. n, I 1. 2. m), ., =a I /= 1, 2.
it -- 1. = t + 1. n ., the minimax multipliers corresponding to a minimum point

(.\. . then (.v*. y*) is a global minimum point of .(x. Y, x*. * .

PROOF: -he gradient vector ofqF (., y. A, * *) at the point (.v*.) is:

it- 2 1.. j,, (ova. .7 _y o + iA'z V['q/,('\'-* y,' " .0, I ) = 0 i

from Theorem 1.

Since h(x, v, X *. *) is a convex function the results follows.

Therefore, if we knew A * and /A *, we could obtain (x,*. v*) in one step by minimizing
b (x.v. X. /, *). Since we do not know these optimum multipliers in advance we need to esti-
mate them. Let (.. ) be a minimum point of ()x. y, A. P-) for given values of A and I..
Define

2i=1. . it
(7 a) y,/s

j = 1.+2. i
/ 1, 2 . ... - I

(7b ) / Af - , g/ A (x5 , , . ,i j, sk = I + I. . .

where
,, ,fl -1,-- I i

(8) S = AI(7 ) + Y1 ikgA(/ I A). A

Note that

and

(9b) I =l
/-II A /- I

Also at the point (U. T,) the gradient vector of Fh(x, y. A, A) must be zero. This gives us

(90) Y A

+ JA IA vA q1 1 j, (xi rl. i,-A~ 0



MULTIFACILITY MINIMAX LOCATION 329

which when compared with (4 a, 4b) of Theorem I suggests A ,, 7J. are approximations to Ak ,
9 /A

THEOREM 4: At a minimum point (i. i) of 1)(x, v, k, /-A) the following inequality

holds:

F( .. Y< F(x*, t-*) < F(, .)

where

F, U. T1 Cx, v + ~ g~j~ ~ A A
1=l 1=1 I=1 A=I+ I

and A * and , * are as they were defined in (7 a) and (7b) respectively.

PROOF: The right hand side inequality is obvious. Also

F(x. .) > F(v*, y*) = min F(x, v)

= min -(x y) + F(.,)
( I , IlI = 1 / A I /- 1

(since X * and P- satisfy (9b))
min X ,.(, ) + , : (NJ, * 1(\ NAI V

(from the definition of F(x, .0)

1=1 '. + I l A I-I /' ,,;4 ( ,. y xA ,. ) (from (9 ))

= F(., .i).

3. THE ALGORITHM

The above theoretical results suggest the following algorithm:

STEP 1: Set r I

, 1'= 1. 1= I, 2. .j= 1, 2. in.

p. = 1. I= 1, 2. n- I k=lI +. n.

STEP 2: Find the minimum point (x'', .v'') of1(x, .v. A''. A(')). (See later for details).

STEP 3: At the point (X'), jI') calculate .I, and gjA and update A,, and 1.IA as follows: Set
,I .In \. I

-l Cx=I II I=x I

A '')f (X
1
lr), 1,(r))

I " " " = , 2, n, 1, 2. in
(irl 

.... 
" 

.

" '

A (,)X,4 } }li ) X I I .I )

r + 1A 
"  1=, 2,. (- I) = 1+ 1. n.

t lr
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STEP 4: Calculate

+,A~ (x1
1', ~ AA ) ).

,F W r). i /=1 ir)/ I I ., .

STEP5: Stopping criterion: f (/-( . "' .' ' < stop:0themise
set r - r + I and go back to Step 2. (c is a prescribed tolerance).

3.1 Finding the Optimum Solution of the Quadratic Function

For given nonnegative values of A,, and j-A we want to find the minimizing point (.v. Y)
for 'PF(-v. j. A. ). Let

(10a.b)

, F, ',a, ,=£ ,b,:

w ,,a, '',b,
JL = Li

_V12 -¢,' n

(12) i £ + v , = 1, .. ,

Then the optimum solution can be obtained by solving the two systems of equations (see.
for example, 181).

( 13a~b) 4x = ii and ..I b.

Since for given nonnegative values of A, and t the function 4)(.v. v. A. U) is convex it t'()l-
lows that its Hlessian matrix .4 is positive semi-definite. Also using the fact that 4 is syvmmetric
we can write



t4.

MULIIFACILITY MINIMAX LOCATION 331

(14) 4 LL'

where L is an n x n lower triangular matrix.

This is called the Cholesky decomposition of A and requires about n3/6 multiplications.
By using (14) for each right hand side of (13), solve the following system to obtain x and.

Lp = Lq =b

L- 7= p L' = q.

This requires about 2(n2 + a) multiplications.

Note that if/, = 0, then the ith row of A, the ith column of .4, 5, and , are all equal to
zero, and can be removed in solving for i' and T. In this case we have infinite solutions for the
location (x,, j,) of the .th facility.

4. NUMERICAL EXAMPLES

We give a number of numerical examples to illustrate the usefulness of this approach to
solving multifacility location minimax problems. For all the examples considered E = 10'4.
Computations were carried out at C neordia University on CDC 64000 computer using single
precision arithmetic. A user-oriented computer program written in Fortran IV implementing
the above algorithm is available from the author.

EXAMPLE 1: Love, Wesolowsky and Kraemer [101, considered the problem where
n = 2, m = 5 and (a,. b 1) = (39.12, 28.11), (a, b 2) = (39.50, 28.28), (a-. b3 )= (37.88,
29.87), (U4, b4 ) (38.59, 27.03), (as. b) = (38.38, 30.28), v12 = 1, and1 4 4 4 +1

W= 4w,)= 1 1 I "

The results obtained by using the present approach are summarized below:

Results for Example I

Number of Iterations

1 2 6 10 30 40
F(.5, i) 6.5237 5.9768 5.9138 5.8738 5.8554 5.85496
[ 05 i)  4.3311 5.0112 5.5857 5.7367 5.8526 5.85439

Values of (A,,), (AI), (/,), (guk) and (x, i) after 40 iterations:

10. 0.00047 0.49982 0.49965 0.

= (x,) 0.00003 0. 0 . . 0.000304 96-0 = 0.

f0.9476 5.1031 5.85466 5.85496 1.8355 1

(i,(5 . ii = 14,58541 1.1831 1.1011 2.1709 4.58541]' 8'2 0.9052

= 38.2356, x2 = 38.7500 i1 = 28.4502, Y, = 29.1950.

It can be seen that only functions 13 and .114 define the minimax function at the solution
point and ,,, I1, for all (0. j) except h I and X14. Also t1 = 0. In other words the A, and
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A14 corresponding to functions J', and g;k that are not active at the minimax solution tend to
zero, as it should be expected. Let

/A Q (i..J)I.,(. ) < 0.99 F 3(.). ,X, < 10 2)

/ = (t k)Igl (.i. T) < 0.99 f( , .T), gj, < 10 21

where (x. Y) is the minimum point obtained at the end of the 40th iteration. If
(.X-.. ) = (xv*. y*), then the elements of 1, and /, will correspond to functions which are not
active at W\. y ) and A, 0, (i. j) E IA 1 = 0, (1. k) E I,. Also, if (x. Y) is in the neigh-
borhood of (x. v.*), then most likely the elements of /, and I,, will correspond to functions
which are not active at the solution.

By excluding from the problem the functions corresponding to the elements belonging in
/A and 1 , , using the values of A, and P-/, obtained at the end of the 40th iteration for the
remaining functions, the present algorithm reached the exvact solution to the problem in tw,
additional iterations. The final results obtained are summarized below. The method required
0.68 sec CPU time to reach the final results shown. From now on this additional part of the
algorithm will be called Phase 2, and the original part of the algorithm where all functions are
considered (algorithm in Section 3) will be called Phase I:

Final Results for Example 1: F(x*, y*) = F x*, y*) = 5.85481, A, 0. except A r
A 1 = 0.5, g *1 = 0.

[0.9481 5.1055 -;.85481 5.85481 1.8357 1
(;,(x*, y*))= 14.58541 1.1831 1.1011 2.1709 4.58541

g x, j.,*) = 0.9057

xT = 38.235 v 28.45

-k*= 38.75 . 29.195J Exact solution.

Since 113 and .1/14 are the on/y functions defining the minimax solution and both of them
depend on/y on (x1 , j 1) (i.e., they are independent of the value of (x2, j2)). The value of

), .- is not unique, but the value of (xt, v) is unique. In fact, (x , V2) is any point in the
set

6
V) = rn S,''

f=1

where

S,() = (x..)Iw2,I(x - a,) 2 + (y - b,)2]'12  f-(x*. j*)) . = 1. 2..
S 12 (x, y)Iv 2 1(x- x*)2 + (y - .*)I 2 < F(.v*, .*)}.

The boundary of the set S, 2 is a circle with center (a, b,) and radius F(.*. y1/w,, for
1 = I. 2. 5 and center (xt. y) and radius F(x*, .v*)/v2 for . = 6. For this particular

example the solution set Si for (x*. j-) is given by the intersection of the sets ,'2' and (, 2,
This is illustrated in Figure I. Since the value of (.4*. y!) is not unique and our interest is on
the minimax facility location problem it would be appropriate to choose the position of the
second new facility such that the function

F2 (A>, J-2)= max 1.2, (x2. v2). (2(x., J.. , v{t)}

is minimized in the set S12 The optimum solution to this problem occurs at the point C'. and
coincides with the minimum point obtained by using the present algorithm. In this case I2, and

.12; define the minimax solution.
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31

((2

:9

28

F-i(, R1 1. Illustration of'solution set for xample 1

The Revised Algorithm

In summary the revised algorithm operates in two phases:

(i) Use Phase I (algorithm in Section 3) with E =10 ' to get to the neighborhood of'
the solution and to identify the functions that are inactive at the solution.

60i Continue the algorithm by using Phase 2 where the inactive functions are
excluded from any further consideration.

EXAMPLE 2: In this case n =3, in =5.
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-- 4t j 2 5 71 8= 01 0 1 3 0ht0 8 4 6 2 05202

12!: 0, V13 2. v2 = 1

The results obtained by using Phase I of the algorithm are summarized below. It can be
seen that only functions /'3 and ./'3f define the minimax function at the solution point, and
A -0. for all i. J) except X, and A 3. Also

0aab, 1 <, I< k < 3.

Results for Example 2 using Phase I of the Algorithm

Number of Iterations

1 10 20 30 40 59
/.- -.T i 13.0004 12.1901 12.1319 12.1242 12.1225 12.1219

t (X.. 09.0075 11.7768 12.0475 12.0996 12.1143 12.1206

Values of tA,)u , (.t,), (gA) and (. .) after 59 iterations:

•(,, 0.0.0. 7 . 2 07.13 0-=9
100002 0. 0. 0. 0. 1 = 0
0. 0.2855 0. 0. 0.71361

110.9488 6.5178 9.4821 0. 0. 1

10. 12.1216 5.2442 0. 12.12191 g, 4.6361

= 0.92850, = 7.57143, x3 = 3.71311

= 1.57092. i, 3.71429, ..3 = 6.28460.

Starting !. om the results obtained at the end of the 59 iterations of Phase I and using
Phase 2. the algorithm reached the exact solution to the problem in two additional iterations.
The final results obtained are summarized below. The method required 0.85 sec CPU time to
reach the final results shown.

Final Results for Example 2: F(x*..v*) = F/ (x*, j*)= 12.1218305, A , = 0., except
, 028571,A;= 0.71429. * = 0, V(/, k).

10.949 6.5177 9.4821 0. 0.
((.* *y*)) 0. 0. 2.5873 7.06818 07.06818

0. 12.1218 5.2450 0. 12.1218

g,(-*.y*)= 02 (, g y*) = 10.953. g23(. * , y*) = 4.6357
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xt' 0.92850 Y 1= .57091"
7.57143 v = 3.714291 Exact solution.

.T" 3.71429 YT- 6.28571

Since .f13 and f. are the only functions defining the minimax solution and both of them
depend only on (x3, Jv3) the values of (xt, yT) and (v!, f2) are not unique, but the value of
(xl. y*) is unique. In fact (x.*, v-) in any point in the set

/=l 
I

and (x, v J is any point in the set
S (21= SJ(21

where

(15) S, I { (x, )",,(x - (, + (t- b,) 2]11 I FP.O.

i=1, 2, j= I. 2. 5

S 'O = ((x, y)Iv,3(x - .'V )2  + (, -y_ <I1  , F(x*, v , i 1, 2.

The solution sets are illustrated in Figure 2.

t- it

x Optir-um io,'ati, Ln

/

/ " ith n ew fac il it v.

/

.l n o x

C 5

tI

Ft(,I r 2. Illustration of* solution sets for example 2.
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As in Example I, it would be appropriate to choose the position of the first and the
second new facilities such that the function

/"L 2(x , Y1. . Y') = max {i,( ,. 9,, g1.. 1.A:1 .- y .. I2 (. j i. A\.

1 ~2I /

is minimized, subject to the conditions (x,, v,,) E S'' and (x,. v,) E S' 2'. Since v = 0 func-
tion g12 can be excluded in defining function F1.2. The optimum solution to this problem is
such that (x. .v,*) is unique and is that obtained by using the present algorithm (Point C', in
Figure 2), and (x*, v*) in any point in the set S(2).

Again it would be appropriate to choose the position of the second new facility such that
the function

Fx,. Y2 ) = max (I2, (x 2, j 2). 921 (-2. 12. - . 3 (-. ' -\. 4) Y1

is minimized. The optimum solution to this problem occurs at point C, in Figure 2 and is that

obtained by the present algorithm.

5. CONCLUSIONS

An algorithm for the minimax facility location problem using Euclidean distances was pro-
posed. Although no proof of convergence of the algorithm is available, for all examples con-
sidered, the algorithm converged to a minimax solution, Since there is no line search in the
algorithm it follows that one iteration is the same as one function evaluation.
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X BSTR ACT

It is well known that a minimal makespan permutation sequence exists for
the n x 3 flow shop problem and for the n x ,n flow shop problem with no in-
process waiting when processing times for both types of problems are positive.
It is shown in this paper that when the assumption of positive processing times
is relaxed to include nonnegative processing times. optimality of permutation
schedules cannot be guaranteed.

I. INTRODUCTION

Consider the n job-m machine flow shop sequencing problem in which processing times
are nonnegative. In the following we will show that a permutation schedule may not be optimal
for the classical flow shop problem involving three machines and for the n x m flow shop prob-
lem with the no in-process waiting constraint. We will use the 4 x 3 problem data shown in
Table I and the nonpermutation schedule P defined in Table 2. Note that job 2 does not
require processing on machine B.

TABLE I - Processing TABLE 2 - Nonpermutation
Time Matrix Schedule P

Job Machine Machine Job Order
A B C A 1,2,3,4

1 1 6 3 B 1,3,4
2 2 0 4 C 2,1,3,4
3 4 1 3
4 2 3 1

339
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2. THREE M'ACHINE FL.O" SHOP PROBLE.M

In 181, Johnson prox ed the eptimaliiv of' a permutal~tion schedlule fo(r the n o 2 pro lem
under the assumption of' p)oSitie processing ties. Ilec then extended the results to the ii 3
problem and proved that an optiru'al permutation schedule exists. A number ol' researchers 13.
9 1 -p.0, 2-p.!136, 4-p.84, 5-p.343, 6-1p.20 II have since relaxed the assumption of' Iositix c pro-
cessing timies to nonnegatixe: ones. It is eas\ to xenifx' that hior the problem in I aile 1. iln
optimal p~ermutation schedule has a niakespan of 10 units A~hilc the nonpermut~it in s~ hdule P
dlefined above has a niakespan e4ual to 14 units.

3. FLOW SHOP PROBL.EM WITH NO IN-PROCESS WAuimIN

WenoN consier the nI < in 11ow shop) Sequenci ng problem xmih no in-process \%,inrg
allowed I110. 111. In Hiii, Wismler considers non nega!ive processing times. Ilo\Acer, lie

allowed only peri Utilloll Schedules. Inl 121, Baker re,'ogmi/ed thle fact thadt Ll101 a no rIl lId 114 [1

sche-dule mraY be optimal when processing times are ririnregative. (]iu it.I 171, o)n the oither
hand, i,-5 tirmcd ( theorem 1H that even whnthe: pMe, ile" ate Ilonnelgmtve only Ipet-
mutation schedules are feasible. The exoample in T1able I is a eou ritercxamtIe io (UI uts
theor. ni. For the no \4aiting piroblemi, the be,,, permlutationl skjequece has a m1AeSpan" (It I - as'
oppo1sed to Sequence /%%xxicli has a niakespan of' I. It mac he no ted thait inl hoth %Ii ses 1ti N
the mini mumn problem si/e needed to) obtain ria better nontiernl Lit ionl SCheIIrIU 1 i ,
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A NOTE ON
A MAXIMIN DISPOSAL POLICY UNDER NWLJE PRICING*

Manish C. Bhlattuharjee

Intdian hitiiow of Vanc,,nent

Calcutta Ii

For the classical disposal model for selling an asset with unkno 'I price dis-
tribution Ahich is N$AVF Ine%4 -orse than u.,ed in expectation) vuth a gisen
finite mean price, this note derives a policv Ahich is moximin the gain In us-
ing the maximin policy relati\e to the option of selling right as~av is conmex dc-
creasing in the continuation cost to mean price ratio The relevant results (if'
tDerman. Lieberman and Ross also folloA as a consequence iof i)ur analss.
Our theorem provides a practical justification of' their main result on the cutf
bid I-or the disposal model subject to NWJI: pricing

I. INTRODUCTION

Consider an indivisible asset for which offers come in sequentially, with a continuation
cost c > 0 for each day the bid is not accepted. When the successite offers are independent
identically distributed with a distribution F, this classic disposal model has been reconsidered by
Derman, Lieberman and Ross [31 in an adaptive setting and when I-is NWUL (newA worse than
used in expectation). While a complete solution is given in the adaptive case, their main result
in the other case provides a lower bound on the optimal cutoff bid which, except for implying a
corresponding lower bound on the optimal return (vtz. Theorem I and Proposition 2 in [3]), is
of limited practical value if Fis NWLUE but unknown.

The purpose of this note is to show that when the pricit NWIJE with a given mean
price but is otherwise unknown, there is at maximin disposal policy determined by thle lower
bound for the cutoff bid given in131. As itby-prdc f u nlss h emn
Lieberman-Ross results on the cutoff bid also follow directly without invoking the oirdering
relationship among distributions defined through integrals of' increasing coinvex functions as
considered in [31.

2. NIAXIMIN POIAC UNDER NWt'IE PRICING

Let I1 I - 1. For the classic disposal model 121, 131, with / knowkn, recall there ts an
oiptimal policy maximizing expected return -which accepts oiffcr .\ if' and rinl\ it' and
has return Vit, + i ), where the optimal cutoff hid .x/ is giv en b%

'I hiN research was supporitd h- tfte t enter for Management tDesclopment Studies it1 the tndiin I nstlutL -I Iit,

ment. Calcutta. tndia under research project 441/(MS-APRt'-t

341
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G.I) xf= inf z Z t W .y dF - c /

= inf{ c >, Ef(X- z)r,

X > 0 being distributed as F. Let x,,p denote the optimal cutoff bid for an exponential price
distribution with the same mean as that of F, this distribution being henceforth abbreviated as
'exp'. Then

(2.2) x,,P = -m log (c/m), where m F(Y) dy > c.

Let

(2.3) Lf(x) = E max (X.x - c) - x.

Note L (c + .) = E(X - x)+ - c" thus (2.1), when Fis continuous, implies Ll (G + .,) = 0.

Also, L, (.) decreases in v; this follows by noting c + L, ( + .).= F(y) di.

Let r denote any policy (including randomized ones with past memory) and R (TF) its
return. For any x, let 7T (x) be the (stationary nonrandomized) policy which sells as soon as a
bid of amount xor more is received. For any xsuch that F(x) < 1, the return R(xF) of the
policy r (x) is:

(2.4) R (xF)= E {E(XIX >, x) - (n - 1)cI F"- W(x) F(x)

c F(x)
E, E(X IX > X) cF

I- F(x)

= x + [Ef(X - W - cF(x)]/F(x)

= x + c + [Lp(c + x)/F(x)].

Now suppose the pricing distribution F with mean m < , has the NWUE property [1]
defined by

f F(y) dy > m

i.e., inf, () EF(X - xI X > x) = EfAX. Then we have the following:

THEOREM: Suppose the price distribution F is NWUE and the continuation cost
c < m - E.X < oo. If we only know the mean in (and not F), then the policy which sells as
soon as the offered price is xc,, or more is maximin.

To prove the theorem, we will use the following generalization of a result (lemma 6.4. p.
112) in II, a direct application of which yields Proposition 2 and Theorem I of 131.

LEMMA: If I"is NWUE with mean n < o and Q5 (y) is nondecreasing on 10,,), then

f (.) F"( ) (A > (h (.v) ) " dv.

If F is NBU (new better than used in expectation), the inequality is reversed.
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dcf

PROOF: Let Y be a random variable distributed as TF(x) = m f F('v) dv and let Z

be exponential with mean m. Now F is NWUE implies the inequality f F(.v) dv >, me
(viz., [I], p. 187), i.e., Z is stochastically smaller than Y. Hence,

fo- 0 (y) F(y) dy = m f ) (v) TF(dV)

= m E4(Y) > m E4(Z)=-f, 0(y)e dv.

The NBUE case (EF(X - xIX >, x) < EF X) follows by reversing all inequalities.

PROOF of Theorem: For any x >, 0, choose 4), in the lemma, as the indicator of 'x,-)
to conclude

(2.5) c + LF(C + x) f F(y) dy >f e " dv = c + Lp (c + X),

when F is NWUE. Thus, LF(C + x) > Lep(c + x). This with (2.1) implies that x, > x.,,
as in Derman, Lieberman and Ross [3]. Hence, when Fis NWUE, by (2.4) we have

(2.6) R (XexpF) > C + Xexp,

since LF(c + xexp) >) Lexp(C + Xexp) = 0, where the inequality is due to the NWUE hypothesis
and the last equality holds by continuity of the exponential distribution. Also, for any F,

(2.7) sup,, R (r,F) = C + xF - R (x-,F).

since the policy rT (XF) has the maximal return for a given price distribution F Hence, using
(2.5), (2.6) and (2.7), and infF denoting infimum over all NWUE distributions F with a given
mean m, we have

C + Xexp infF R (Xexp,F) < supx infF R (x,F)

< sup, infF R ( r ,F)

K< infF sup, R (7r ,F)

< sup, R (7r,exp)

= R (Xex, exp) = c + xe P.

Thus, R (xexp, exp) sup., infF R (7r ,F) and the policy 7r (xx,) is maximin, i.e., it maximizes
the reward from the worst possible NWUE law with given mean.

REMARKS:

1. Note, (2.5) together with (2.1) implies Proposition 2 of [31, by arguments paralleling
those leading to (2.6). Likewise, the main result (Theorem 1) of [31 for NWUE pricing is con-
tained in the proof of our Theorem.

2. The maximin policy behaves as if the price distribution, with known mean m, is
exponential. Its relative gain compared to selling right away is

m- 1 R(xep, exp) - I -- (I -a)- log a > 0.

where a - c/m, the continuation cost to mean price ratio; 0 < a < I. The relative gain
increases as a decreases.

3. Suppose the price distribution F is arbitrary but strictly increasing and let be the

median price. Then we will show:
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(2.8) x. > (4 1 - 2()
2 .

Take c < . If (2.8) does not hold, then .\/ < (Q 2( ) and using (24) and (2.7), "e
2

have
S+x R R(2 ( +.tl x/ 2 c +,\ t t"(2, + \)/(2t + _ d > +..

a contradiction. When the price distribution i,, NWUE,. a bound stronger than (2.8) actually

holds. To see this, note that if Fis NWUE with mean m, then using (24) we get

(2.9) R(xF) =x + EI (N - xl ' I )- _ I[(.)/(x)}

> . + m "/i (.v)}

for all x such that F(x) < I. Accordingly,

c + x = R(x. F) >_ R(6 ) 1 + m -

where the first inequality is due to (2.7) and the next one follows from (2.9). Hence.
.\ > ti + i - 2c > - 2c and (2.8) holds afortiori. Since x1 is nonnegative and a > h

implies a' > b+ , the resulting inequality x/ > (m + E - 2c) is a sharpening of (2.8).
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,Vote added ti proo/f Bengt Klefsj6, in a private communication, has recently pointed out to the
author that our results (main theorem and remarks) remain valid for the broader class of
IINWUE (harmonic new worse than used in expectation) price distributions. The classes
tINWUJE (IINBUE) which are less well known, were introduced by Rolski 15] and further stu-
died by Klefsj6 141, are strictly bigger than NWUE (NBULE). A life distribution F with mean m
is said to be IINWUE (IINBUE) if

(2.10) (it .( me .....

The reason for the name IINWUE (IlNBUE) derives from the fact that (2.10) is equivalent 14]
to

f {,,(X -. j-,IX >y) I4 >' d= M /.t.1,

It can be easily seen that the Lemma remains true under IINWUJE (IINBUE) hypothesis and
hence our results carry over to IINWUE price distributions.
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