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The formula for manually computing RRR WRSK items, which is
documented in AFLCR 57-18 (April 19/9), should read:

RRR qty = [BRR x BRC x QPA] + the greater of
[DR x QPA x FH] or
[DDR x QPA x TFH]

where

BRR = expected number of base level repairs (per
hundred flying hours),

BRC = flying hours (in hundreds of hours) occurring
during a base repair cycle,

QPA = number of units on an aircraft,

DR = total demand rate at a base for an item
(demand per 100 flying hours),

FH = flying hours (in hundreds of hours) in the
period of time in which the item's repaiv
facility is being set up,

DDR = expected number of failed items per 100 hours
that cannot be repaired at base level and
will be evacuated to the depot for repair,

TFH = total flying hours (in hundreds of hours) for
the support period.

This change does not affect the observations, findings, and conclusions
of the Report.
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PREFACE

For several years, Rand has investigated the ability of steady-
state models to provide appropriate resource management in dynamic war-
time environments, such as a NATO scenario. Of particular interest to
Project AIR FORCE has been the modeling of inventory systems for air-
craft parts when flying levels undergo large shifts. An effort has been
made to devise means for estimating capability and computing stock-level
requirements for such scenarios. Rand has also undertaken a rigorous
evaluation of the effects on capability and requirements of certain
widely used mathematical assumptions that have become wedded to classi-
cal inventory models, to see whether they are as valid as they are
mathematically convenient.

This report investigates the importance of capturing the effects of
changing levels of activity, presents a simple two-echelon dynamic model
that achieves that purpose, and evaluates the possible misallocation of
spares resulting from steady-state models. The report also examines the
effects of a questionable independence assumption common to manv models
designed for capability assessment and requirements calculations. It
demonstrates that assumptions regarding the independence of the process
describing the number of units in base resupply and the depot repair
process have an insignificant effect on the calculations. The study

-y

also demonstrates that the dynamic changes that would characterize a

NATO wartime environment are important and are not adequately captured

by steady-state models.




Several nonstationary models have been developed under Project AIR
FORCE to deal with dynamic activity changes. The models described in
this report represent one such effort. Readers interested in a dynamic
model--currently under development and test--which is designed to exam-
ine a fairly wide range of combat scenarios are referred to Rand Note

N-1482-AF, Model and Techniques for Recoverable Item Stockage When

Demand and the Repajr FProcesses are Nonstationary, by R. J. Hillestad
and M. J. Carrillo. That Note describes a class of inventory models
(Dyna-METRIC, formerly known as RAMS) that provide the user with the
flexibility to compute support capability and requirements under wartime
scenarios with changing levels of flving activity and fluctuating capa-
bilities for repair.

The present study was pericrmed for the Deputy Chief of Staff for
Logistics and Engineering (AF/LE), Hq USAF, under two projects in the
Project AIR FORCE Resource Management Program: 'Concept Development and
Project Formulation" and "Strategies to Improve Sortie Production in a
Dynamic Wartime Environment." This study should be useful to Air Force
analysts engaged in requirements determination and capability assess-
ments at the Air Force Logistics Command, in AF/LE, and at the major air
commands. More broadly, it should have utility for managers interested
in applying dynamic allocation models to many kinds of inventory and

stock-level problems.

B TT e




-

This report presents a two-echelon inventory model for recoverable
items when the demand process is nonstationary. The study is one pro-
duct of Project AIR FORCE research conducted over the past several years
that has questioned and investigated the ability of time-stationary
(steady-state) models to provide appropriate resourcing in dynamic war-
time environments. The report affirms the advisability of applying
steady-state models only, or mostly, to periods of relatively stable
flying activity--notably, peacetime flying programs. Dynamic models
dppear more promising in periods of dynamic change, such as initial pro-
visioning and the early operational life of a weapon system and, more

important, during wartime. In a NATO scenario, for example, wide swings

in demand rates and repair rates are to be expected as flying levels
fluctuate. In such a scenario, steady-state models are likely to cause
significant misallocation of stock and miscalculation of the performance
' to be expected from the repair and supply systems.

The two-echelon model described here, like any model, is a
mathematical simplification of the real world. In the course of demou-
strating that steady-state models depart too far from realism, it was
deemed advisable to investigate the validity of an assumption that has
long been wedded to the mathematics of inventory systems and strongly
affects requirements calculations: the assumption that depot delay in
the resupply of serviceable parts to a base is independent of the number
of units in base resupply (on order, in transit, or in repair). To

evaluate the importance of this assumption, the outputs of two models
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were compared. One model assumes a dynamic demand process, but assumes

depot delay to be independent of the base resupply process. The other
model assumes the same dynamic demand process but numerically solves the
complex computational problem of evaluating the actual, dynamic, and
conditional distributions. The conclusion was that this independence
assumption has a negligible effect on performance measurement and stock-
age requirements, and that meticulous precision is therefore both
unnecessary and computationally intractable--probably the major
mathematical contribution of this report.

The inference, then, is that in many cases logisticians may freely
proceed with models that embody this assumption because it is mathemati-
cally convenient, even though it is untrue.

This study presents some simplified illustrations of its two-
echelon method for evaluating Air Force supply system performance when
the demand process for recoverable items is nonstationary, such as
occurs during wartime and initial provisioning. The examples illustrate
some of the pitfalls of using a stationary representation of a ncnsta-
tionary demand process in these situations to determine stockage
requirements and to estimate expected system performance.

Two expressions are developed for the time-dependent probability
distribution of the number of units in resupply at each location in a
two-echelon resupply system. The resupply system is assumed to operate
as follows. A nonstationary process generates item failures at the

lower echelon locations, called "bases."

The failed items are repaired
either at the base or at the upper echelon, called a "depot." After

issuing a unit to replace a failed item, the base inventory is replen-
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ished by base maintenance whenever the failed item is repaired there,
and by the depot otherwise. The organization repairing the item alwavs
exchanges a serviceable part tor a broken one on a one-for-one basis.
That is, the system follows a continuous review (S-1, S) inventory pol-
icy, which the Air VForce currently uses for recoverable items.

The study first develops an approximation to the probability dis-
tribution for the number of units in resupply at each location under the
assumptior that the demand process for a recoverable 1tem is a nonsta-
tienary Poisson process at each base. This spproximation is shown to be
compiitationally tractible. XNext, the study derives an exiact representa-
tion for this distribution when the demand process is assumed to be a
discrete time process related to the number of sorties flown during a
particiiar time period. Fecause of computational difiiculties, this
distribution is shown to be of littice value as an analvsis ool on a
iarge-scate bisis: however, it provides a benchmark against «hiich the
approximating distribution can be tested. In all cases we examined, the
approximation proved to be highly zccarste, apparently equal to the one
used in the METRIC model [1] for the same distvibution when the denand

process 1s assumed to be stationary.
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1. INTRODUCTION

Most probabilistic inventory models, including those that the Air
Force currently uses, assume that the underlying demand process is sta-
tionary. Over time, however, the Air Force environment is not station-
ary. Flying activity for each type of aircraft increases rapidly when
the aircraft is introduced into the active force and decreases as it is
phased out of service. Correspondingly, demand rates for spare parts
increase and then decrease. Nonetheless, stationary models are used to
determine requirements for each item at each location throughout the
aircraft's lifetime. Periodically, the values of daily demand rates,
unit costs, shipping and repair times, procurement lead times, and the
like, are adjusted to reflect current values, and new stock levels are
calculated. These models are valuable during periods of relatively
stable flying activity, such as those typical of peacetime. Whenever
flying activity changes dramatically, however, the models can inaccu-
rately estimate both stockage requirements and supply system perfor-
mance. For example, when flying activity surges at the beginning of a
war, these models provide little information concerning the logistics
system's ability to support the increased flying activity. At certain
points in time, stationary models either overstate or understate the
capability to support a projected sortie rate.

This report describes a computationally tractable method that can
be used to analyze the time-dependent behavior of a two-echelon inven-

tory system for recoverable items (items amenable tc repair when they

fail). The system consists of a set of n locations, called bases, at
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which flying occurs, and a centralized repair and inventory control
point, called a depot. We assume the system operates in the following
fashion. Each primary demand originates at one of the n bases. Upon
failure of an item at a base, it is either repaired at that base or is
sent to the depot for repair. If the failed item is repaired at the
base, it is immediately entered into the base's maintenance system.

Once the item has been repaired, it is sent to the base's supply organi-
zation and becomes available for issue. If the failed item is sent to
the depot, the base immediately orders a replacement from the depot.

The depot then immediately sends a replacement unit to the base, pro-

vided a serviceable spare unit is available; if it is not, the depot
dispatches one to the base as soon as it becomes available. Thus, re-

supply of a base's supply organization comes from the base's maintenance

organization when a failed item is repaired at a base and from the depot
when the failed item is repaired there. (The possible flow of items in
the system is displayed in Fig. 1.) In either case the organization perform-

ing the repair exchanges a serviceable item for a broken one as soon as pos-

| |

BASE 1 SUPPLY ® e s et 0 s 0000000 e o BAGE [ SUPPLY

! :

BASE 1 BASE n
MAINTENANCE MAINTENANCE

Fig. 1 —Possible item flow in the maintenance and supply system




sible. That is, the system follows an (S-1, S) continuous review pol-

icy, which is justified since most recoverable items are expensive and
have low demand rates.

In subsequent sections we will derive, under different sets of
assumptions, the time-dependent probability distribution of the number
of units of a particular item in resupply at each location. The number
of units in resupply at a base is the sum of those in base maintenance
and those on order from the depot; the sum of those in depot resupply is
the number of units in depot repair plus those en route to the depot
from the bases. Once this distribution is known, time-dependent perfor-
mance measures can be routinely calculated, such as ready rate, fill
rate, Not Mission Capable--Supply (NMCS) rate, and the expected number
of outstanding backorders at a point in time, t. It is also possible to
find the minimum stock level({l] required at a location at time t to
achieve a specified level of performance. Section II presents a simpli-
fied example of how this can be done.

Section II also demonstrates the effect of changing maintenance and
transportation times, and illustrates the importance of using a nonsta-
tionary description of the demand process rather than a stationary
approximation. Section II contains an example showing how the time-
dependent demand process influences the number in resupply and the stock

level needed to provide a given level of support.

[1] At a base, the stock level measures on-hand serviceable inven-
tory, plus items in repair at the base, plus items ordered from the
depot that have not yet arrived, minus items backordered at the base.
At the depot, the stock level measures the on-hand serviceable invento-
ry, plus units in repair at the depot, plus units en route from the
bases to the depot requiring depot repair, minus backordered items at
the depot.
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In Sec. III we assume that the demand process is a nonstationary
Poisson process. Based on this and several other assumptions, we
present an approximation to the time-dependent probability distribution,
a nonstationary Poisson distribution, for the number of units in resup-
ply at each location at time t. The approximation is similar to the one
used by Sherbrooke (1] in his analysis of the same system when the
demand process is a stationary Poisson process. In Sec. IV we develop,
under a different set of assumptions, an alternative but exact expres-
sion for the same distribution. There we assume that the demand process
is a discrete process. Specifically, we -assume that a known number of
sorties is flown each day, and the probability of an item failing on any
sortie is p. The remaining assumptions made for the derivation of the
distributions in these two sections are essentially the same.

As will be seen, the continuous time approximation developed 1in
Sec. III is easy to evaluate computationally, whereas the distribution
developed in Sec. IV is, for practical situations, intractable. Furth-
ermore, as discussed in Sec. V, the quality of the approximating distri-
bution is quite good when the chance or & backorder occurring at the
depot is small (there is some depot safety stock) and/or the proportion
of total failures requiring depot repair is small. In fact, the quality
of the approximation is as good as the one used by Sherbrooke [1] to
approximate the same distribution when the demand process is stationary.

Section VI briefly summarizes the report and discusses applications

and policy implications.
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II. SOME ILLUSTRATIONS

We now illustrate the importance of taking a time-dependent view of
the demand process. These examples consider the simplified case of a
single base operating without depot support. The two-echelon calcula-
tions developed later are not used.

Suppose that an item has a fixed daily demand rate of .8 units, and
a fixed base repair time of 5 days, and has all failures repaired at the
base. A surge occurs in flying activity, after which the base repair
time remains at 5 days and the base continues to perform all repairs;
however, the demand rate following the increase in flying has the form

A(t) = ne °F

., where oo = 3.16 and 8= .1. (Then the expected number of
demands over the first 30 days following the time at which flying

activity initially increased equals 30.)

The third column in Table 1 displays the value of

k .
“sz A(t)de,

k-5

the expected number of items in resupply at the end of day k. Suppose,
for example, the stock level on each day is established such that the
probability of having one or more backorders at the base is no greater
than .2, assuming the demand process is a nonstationary Poisson process.
(This policy is the one the Air Force uses to compute the stock level
for spare aircraft engines, except that the demand process is assumed to

be a stationary Poisson process [2,3].) For our example, the required

C N et e
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stock levels are given in the last column of Table 1. The stock level
required on day k to meet this performance goal is the smallest nonnega-

tive integer, s, such that

S

-u n
e k(uk)
_— > 8.

EE: n! —

=0

Observe that the peak requirement of 15 units occurs on day 5 and the
minimum requirement for the 30-day period, 2 units, occurs on day 30.
Furthermore, observe that the stock needed to achieve the specified
level of service changes frequently.

Recall that the expected demand over the 30-day period is 30 units.
If a stationary approximation to the demand process over the 30-day hor-

izon is used and the total expected demand is 30 units, then the

Table 1

EXPECTED NUMBFR OF UNITS IN RESUPPLY AND
REQUIRED STOCK LEVEL ON EACH DAY:
NONSTATIONARY DEMAND MODEL

Stock Level

Expected Required to

Number Achieve 0.8

Expected of Units Probability

Day Demand in Resupply of No Backorders

1 3.0 6.2 8
2 2.7 81 10
3 2.5 9.8 12
4 2.2 11.2 14
5 2.0 12.4 15
6 1.8 11.2 14
7 1.7 10.2 13
8 1.5 9.2 12
9 1.4 8.3 11
1.2 7.5 10
.7 4.6 6
5 2.8 4
.3 1.7 3
.2 1.0 2
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expected daily demand rate is 1 unit.[1] The expected number of units in
resupply on each day under this assumption is given in column two of
Table 2. Assuming the stock level is set so that the probability of
having one or more backorders is no larger than .2 on any day, the
corresponding minimum and maximum inventory requirements are estimated
to be 6 units and 7 units, respectively. Thus the actual maximum
requirement would be understated by 8 units. The level of support pro-
vided using the stationary demand model for determining stock levels
changes substantially over the 30-day horizon. Table 3 gives the proba-
bility of having one or more backorders on each day. As indicated, sup-
ply support is inadequate during the early portion of the period and is
much better than planned at the end of the period.

Reducing the resupply time is one way to reduce the requirement for
spare stock or to increase the probability of satisfying all demands

with a given stock level. To illustrate how a reduction in resupply

Table 2

EXPECTED NUMBER OF UNITS IN RESUPPLY AND
THE STOCK LEVEL ON EACH DAY:
STATIONARY DEMAND MODEL

Stock Level

Expected Required to

Number Achieve 0.8

Expected of Units Probability

Day Demand in Resupply of No Backorders

1 1.0 4.2 6
2 1.0 4.4 6
3 1.0 4.6 6
4 1.0 4.8 7
5 1.0 5.0 7

[1] The Air Force uses this method for computing demand rates dur-
ing wartime--for example, to compute spare engine requirements [2,3].

PO PRI o i dto- Sl




Table 3

PROBABILITY OF HAVING ONE OR MORE
BACKORDERS WHEN USING THE STOCK
LEVELS COMPUTED USING THE STATIONARY
DEMAND MODEL IN THE DYNAMIC ENVIRONMENT

Day Probability Day Probability
1 .428 8 .699
2 .699 9 .588
3 .857 10 475
4 .869 15 .095
5 927 20 .008
6 .869 25 .000
7 797 30 .000

time affects performance, assume the base repair time is reduced to 3
days during peacetime and the first 10 days of the surge, and is 5 days

thereafter. Table &4 displays the expected number of units in resupply

Table 4

EXPECTED NUMBER OF UNITS IN RESUPPLY AND
THE REQUIRED STOCK LEVEL ON EACH DAY:
ALTERED BASE REPAIR TIME
- Stock Level
Required to

Achieve 0.8
Expected Number of Probability
Day Units in Resupply of No Backorders

1 4.6 6
2 6.5 9
3 8.2 11
4 7.4 10
5 6.7 9
) 6.0 8
7 5.4 7
8 5.0 7
9 4.5 6
10 4.1 6
15 4.6 6
20 2.8 4

NOTE: Base repair time = 3 days through day 10,
and 5 days thereafter.

—Y
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and the minimum stock level required to have at least a .o

day the peak occurs.

probability

of having no backorders on each day. Thus, by reducing the base repair
time, the peak requirement for stock is reduced by slightly over 25 per-
cent. We also note that to reduce the peak requirement, we must reduce

the repair time for several days prior to the peak, not merely on the

The type of analysis used in this simplified illustration can be

employed to investigate the impact of changing repair and transportation

times on various system performance measures. The effect of time lags

between increases (or decreases) in repair time or transportation times

and the changes in performance (and the magnitude of the changes) can be

examined using nonstationary models described in the following sections.

The examples discussed in this section are simplistic

They do not account for interactions between the depot and

cess is changing over time. The analysis becomes far more

number of units in base resupply at any point in time and,

on the time-dependent behavior of base supply performance.
plications and methods for dealing with them are discussed

two sections.

by design.

the bases.

If one is content with this simplification, then it is easy to implement

methods for finding stock levels for each location when the demand pro-

complex in

the multiechelon case than in the single-location situation, since the
straightforward technique employed in this section cannot be used to

determine impact of having a given depot stock level on the expected

ultimately,
These com-

in the next

ihman 5 N [P P VROV VISP < NISY. Y- - WPRTs KO Py
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III. A CONTINUOUS TIME MODEL

We begin this section by stating and discussing the major assump-
tions underlying the continuous and discrete time models developed here
and in Sec. IV. We then derive the time-dependent probability distribu-
tion for the number of units in depot resupply and the approximate non-
stationary probability distribution of the number of units in base resup-

ply for the continuous demand process model.

BASIC ASSUMPTIONS

For the model developed in this section, we assume that the demand
process at each base in the system is a stationary Poisson process

through time t following which it hecomes a nonstationary Poisson pro-

O\

cess. Thus, in this model the demand process is viewed as a continuous

process. When t < t., the demand rate at base j is assumed to be a con-

0)

stant Yj units per day. Following t ., we express the instantaneous

0
demand rate at base j as Xj(t) which, we assume, does not depend on the
number of units in repair. Thus we assume that the flying schedule is

met regardless of inventory considerations. To simplify our notation,

we assume, without loss of generality, that to = 0.

We also assume that

1. Lateral resupply among bases is not permitted; however, stock
levels can be changed over time at each location.
2. All failed parts are repaired.

3. Demand processes are independent from base to base.

e,
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4. All excess demand is backordered.

5. The echelon at which repair is performed depends only on the ‘f
complexity of the repair. The probability of a failed unit at
base j being repaired there is T

6. There is no waiting or batching of items before starting repair
on an item.

7. The repair time at base j is a constant Bj days, and the depot
repair cycle time, which includes the transportation time to
the depot from a base, is a constant D days.

8. The transportation time from the depot to base j is a constant
Aj days. This transportation time includes the time it takes
to place an order. Hence Aj is the order and ship time for
base j.

Before beginning the analysis, some clarifying comments concerning those

assumptions will be helpful. |

Assumption 1 is that lateral resupply is not allowed. That is,
unplanned shipments between two bases to eliminate a temporary shortage
are not allowed. The models developed here and in Sec. IV are designed
to study the implications of certain supply, maintenance, transporta-
tion, and deployment policies in a dynamic environment. Stock levels

are assumed to be specified in advance for each location at each point

in time. Although these stock levels can be altered over time to

account for planned changes in flying activity, real-time reallocation
of assets among bases is not allowed. Consequently, no attempt is made
to take advantage of the opportunities for improving system performance

that might arise. The models are by design conservative,; that is,

ISP RIS T EPC WS Y F T SN
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projected shortages could possibly be reduced by reallocating inventory
in real time when one location has a shortage while another has a con-
siderable amount of serviceable stock available. Other models can be
used to estimate the potential of lateral resupply as a means for
improving supply effectiveness (e.g., see Ref. &4).

We have also assumed that repair and transportation times are con-
stant. This assumption is unnecessary for the derivation given in this
section. Furthermore, these distributions can be time-dependent. These
extensions can be incorporated without significantly altering the
derivation we will give.

The derivation given in Sec. IV does require the repair and tran-
sportation times to be constant. A discrete time model can also be
derived using the same type of argument given in Sec. IV for the case
where the repair times and transportation times are constant but time-
dependent. However, the derivation of the distribution for the number
of units in resupply for the discrete time model is extremely complex
when repair and transportation times are assumed to be independent ran-
dom variables whose probability distributions have finite means.

Because the derivation is so long and complex, and the results are of
little practical value (because of the excessive computation required to
evaluate the probability distributions), we will not present the deriva-
tion.

The last assumption we will discuss in detail is the infinite
server assumption--A .sumption 6. Clearly, in any practical situation

the number of available servers is always finite. However, empirical

evidence suggests that whenever the utilization rate is less than .7,

&
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except for short periods of time, the infinite server approximation is
reasonable [5]. This experimental evidence also indicates that the
difference in the expected number of shortages at any point in time

between the finite and infinite server models is insignificant when the i

utilization rate is less than or equal to .5. Consequently, the infin-

ite server assumption appears to be reasonable unless the utilization
rate is greater than .7 over an extended period of time.

Additional discussion of the assumptions is given in Ref. 1.

DEPOT ANALYSIS

We begin the analysis by deriving the probability distribution for

the number of units in resupply at the depot at any time t > 0. Let
N(t) represent the number of demands placed on the depot by all bases in
(0,t}, and let m(t) represent the expected number of demands placed on

the depot during (0,t]; that is,

Next, let M(t) represent the number of parts in depot repair at time t,

let M]\t) represent the number of parts in depot repair at time t that
were in repair at time 0, and let Mz(t) denote the number of parts in
depot repair at time t that enter the depot repair process following
time 0. Thus M(t) = Ml(t) + Mz(t), t > 0. We find the probability dis-
tribution for M(t) by determining separately the distributions of Ml(t)

and Mv(t) since both terms are independent.




Since the demand process is assumed to be a stationary Poisson pro-
cess at each base through time O, the depot demand process prior to time !

0 is also a stationary Poisson process having rate

n

Yo = Z (l—rj) Yy
j=1
This is the case because, if a Poisson process with rate )\ is observed
and each event is recorded with probability p, then the recorded process
is a Poisson process with rate px [4]. Consequently, Ml(t) has a Pois-
son distribution with mean Yo (D-t), 0 <t <D, and Ml(t) = 0 with
probability 1 when t > D.

Next, observe that Mz(t) measures the number of units that fail at
bases (that require depot repair) during (O, t], when O < t < D, and
(t-D, t], when t > D. But the failure processes at the bases are
independent, nonstationary Poisson processes. Consequently, Mz(t) has a
nonstationary Poisson distribution, since the distribution of the sum of
independent random variables each having a nonstationary Poisson distri-
bution is again a nonstationary Poisson distribution. The mean of the
distribution is m(t), if t < D, and m(t) - m(t-D), if t > D.

By combining the above results, we see that M(t) is the sum of two
independent Poisson processes (one stationary and the other nonstation-

ary) when O < t < D. Consequently, when 0 < t < D, M(t) is nonstation-

ary Poisson distributed with expectation Yo © (D-t) + m(t). When t > D,
M(t) = Mz(t) and hence M(t) again has a nonstationary Poisson distribu-

tion. In this case the mean is m(t) - m(t-~D).
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(We note that a similar result can be obtained when D is not con-
stant, but is a random variable whose distribution has a finite mean, D.
In that case, M(t) also has a nonstationary Poisson distribution; how-
ever, its mean is not calculated in the same manner as when D is con-

stant.)

-8t

As an example, suppose Aj(t) = aje J , t >0, a model often used

to reflect flying activity during wartime. For this model,
1 t -B.x z 8.t
m(t) = Z (1-r,) a, e J dx = Z (1-r) a, (1 -e 3)/8,,
J J ] J J
j=1 0 j=1

and

n

( -B.t
- - J _
Z (-r) a (e 3)/8, + v 0-0), <D
j=1
EM(t)] =

I -8.t B.D

Z (l—rj) o, e J ed - l)/Bj, t > D.
3=1

Ultimately, we are interested in determining the probability dis-
tribution for the number of units in resupply at each base at time t.
As mentioned earlier, we will approximate this distribution with a non-
stationary Poisson distribution. As we will see, this distribution's
mean includes the expected delay experienced by a unit on order from the
depot by a base at time t due to the unavailability of serviceable depot
stock. Since an exact expression for this expected delay is unknown, we
will approximate it using the well-known queueing formula L = X * W as

follows:

Expected depot
backorders at time t
. Average depot arrival rate during
base at time t time t ~ D through time t

Expected delay experienced
by an item on order by a

114
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Let sOt represent the depot stock level at time t, and BO (t; SOt) the
expected number of backorders outstanding at the depot at time t. Then

the (approximate) expected depot delay at time t is

where

is the depot arrival rate at time t. Furthermore,

—lyy(P-t)+m(e)] "
[yy(P-t)4m(e)]7/x!, 0 < t <D,

Bo(t; s, ) =

ot
}E: (x-sot) e_[m(t)_m(t-D)][m(t) - m(t—D)]X/x!, t > D.

Xx>8
0t

Observe that, under our assumptions, the expression for expected delay

would be exact if the demand process were stationary.

BASE ANALYSIS

We now derive an approximate probability distribution for the
number of units in resupply for a base at time t > 0. Recall that the
number of units in resupply at time t at a base is the sum of the items
in base repair at time t and those items on order from the depot by the

base at time t. The number of units in base repair at time t and the




—

number of units on order from the depot at time t are independent random

variables, since the random split of a Poisson process yields two
independent Poisson processes. Thus, we can find the distribution of
the number of units in resupply at a base by separately determining the
distribution of the number of units in base repair and the distribution
of the number of units on order from the depot by the base.

Let us first find the distribution of the number of units in base
repair at base j at time t. Let Xj(t) represent this quantity. Using
the same argument as given for the depot, Xj(c) is found to have a nons-
tationary Poisson distribution. If 0 <t < Bj’ the mean of this distri-

bution is

1
r., «v. * (B,-t) + m,(t),
J YJ J J )

where, as before, Yj is the demand rate at base j at time t < 0, and

1 t
m,(t) = r,f A, (1) dr.
3 3J

If t i_Bj, then the distribution's mean is m?(t) - m?(t«Bj).

Next, we approximate the probability distribution for the number of
units on order from the depot by base j at time t with a nonstationary
Poisson distribution. (The reason for selecting the nonstationary Pois-
son distribution as the approximating distribution will be discussed
later on.) Consequently, all that needs to be done is to find an expres-
sion for the mean of the distribution at time t.

If0 <t %, the mean of the distribution of the number of units

on order from the depot at time t by base j is the sum of (a) the
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expected number of demands during (0, t} at base j requiring depot

repair (i.e., ' ' ‘

2 = —
my(e) = (1 rj)[ A0 4,

(b) the expected number of demands during (t-Aj, 0) at base j requiring
depot repair (i.e., Yj . (l-rj) . (Aj-t)), and (c) the expected number
of units backordered at the depot at time t - Aj that correspond to ord-

ers placed by base j (namely, (l-rj)' Yj + expected backorders at the

o

depot /YO

= (l—rj) Yy :E: (x—so) p(XIYOD)/YO,
X5

where s0 is the depot stock level prior to time 0 and

X
“YoP (voD)

x!

p(XIYOD) =e

is the probability that x units are in depot resupply). Thus, when 0 <
t < A, the expected number of units on order from the depot by base j

that have not arrived by time t is

2
W0 +yy ¢ (ery) o+ (gme k) (emsg) By /vy

X>s
0

In a similar manner, we may find (approximately) the expected

number of units on order from the depot by base j when t > A, . This

3

expected value is the sum of (a) the expected number of demands during
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(t-Aj)) and (b) the expected number of base j orders backordered at the

the interval (t-Aj, t] at base j requiring depot repair (m

depot at time t-A . This latter quantity can be determined as follows.

Recall that

e
Bo(t—Aj; sO,t—Aj) (E- A(T)dr)

t-D-A,
J

3 represents (approximately) the average delay experienced by a unit on
order at the depot at time t-Aj. Multiplying this quantity by the aver-
age arrival rate from base j during (t-D-Aj, t-D], we obtain an estimate
of the number of units ordered from the depot by base j prior to t-Aj

but not received by time t. Then, combining these expressions, we have

..A.
J
(1-r,) A,(1)dr
./:fD—A. >3

2 2 j
= - -+ . . .
mj(t) mj(t Aj) o Bo(t Aj,s

J A ()dr

t-D-4A,
3

O,t—A,)
J

as the mean of the nonstationary Poisson distribution of the number of

units on order from the depot by base j at time t > Aj. If the value of

i) oA is somewhat larger than the expected number in the depot repair
s .

cycle at time t-§j, so that

Bo(t-A

) 20,
3

i* %0,¢t-A

————
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or if rj approaches 1, then the expected number of units being delayed
at the depot for delivery to base j is approximately equal to 0. 1In
either case, as we show in Sec. V, the nonstationary Poisson distribu-
tion is an excellent approximation to the distribution of the number of
units on order from the depot by base j.

We have shown that the time-dependent distribution for the number
of units in base repair is a nonstationary Poisson distribution, and
that the time-dependent distribution for the number of units on order
from the depot by a base can be approximated by a nonstationary Poisson
distribution. These two distributions are independent, since the number
of demands for depot resupply and base repair during any interval of
time are independent random variables. (This is the case since the ran-
dom split of a nonstationary Poisson process--the failure process at the
base--reslts in these two independent nonstationary processes.) The
number of units in resupply at the base is therefcre the convolution of
the random variables for the number of units in base repair and the
number of units on order from the depot by the base. Consequently, the
time-dependent distribution of the number of units in resupply at a base

can be approximated by a nonstationdry Poisson distribution.

é
{




{ 21~

\ IV. A DISCRETE-TIME, SORTIE-ORIENTED MODFL

We now develop, under a somewhat different set of assumptions, an
exact, rather than an approximate, distribution for the number of units
in resupply at time t at any location. The approach taken here differs
from the one used in Sec. III. The major difference is that we now con-
sider time to be divided into discrete increments, for example, into
days. On each day, the number of demands for spare stock for an item at
a base depends on the known number of sorties flown that day. We assume
the probability is p that an item will fail during a sortie. This
assumption implies that the probability that an item fails on a sortie
does not depend on either the base from which the sortie is flown or the

type of sortie flown. (This assumption is made only to simplify the

analysis. It can be dropped and the method we will use can be modified

to develop the desired probability distributions; however, the computa-

tional burden increases substantially.) We also assume that each air-
craft contains only one unit of the item. Our analysis can easily be
extended to systems containing more than one unit per aircraft. We con-
tinue to make Assumptions 1 to 8 listed in Sec. III. In addition, we
assume that the probability of base repair is the same at all bases,
i.e., r;=r, although this assumption is not crucial and is made only

J

to simplify the presentation. Lastly, we assume that Aj > Bj; that is,

the depot-to-base transportation time is at least as large as the base

repair time. This assumption is satisfied in most instances in the Air

Force. For example, the base repair time for F-15 avionics items is

normally only several days, whereas the depot-to-base order time plus

et
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transportation time is usually 10 or more days. Again, this assumption
could be removed without changing the method used to compute the desired
distributions.

The number of units in resupply on day k at base j is the number of
units ordered from the depot by base j by day k-Aj that have not arrived
at base j by day k, denoted by w (k), plus all units ordered by base j
from the depot during days k-Aj + 1 through k-gj, denoted by wjz(k),
plus all demands occurring at base j on days k-Bj + 1 through k, denoted
by wj3(k). Since the random variables w (k), W (k), and W (k) meas-
ure the number of units in resupply that are due to demands occurring in
non-overlapping intervals of time (see Fig. 2), and since the demand on
any day is independent of that on any other day (we assume that aircraft
are available to fly the scheduled sorties), these random variables are
independent. Thus we can find the distribution for the number of units
in resupply at base j on day k by determining separately the distribu-
tions of W (k), W _(k), and W (k) and taking the convolution of these

il j2 j3
three distributions.

Bﬂerﬂnu,i
time
[ - i 1 -
v ! 1
Day {k-Aj-D+1) Day {k-Aj+1) Day(k -Bj+1) Day k
l-c—— Depot repair cycle time +L Depot-to-base —-—¢
transportation
time

Fig. 2—Time sequence at base |

Before we derive these distributions, let us introduce some new

nomenclature and make some observations. Let
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X Kj = the number of sorties flown on day k at base j,
X 0 = the number of sorties flown on day k at all other bases,
X K = X kj+ xkO = the total sorties flown on day k,
Y K0 = the number of failures at base j on day k requiring depot repair,
Y K = the number of failures at all other bases on day k requiring

J depot repair,

= +

Yk ij Yko’ and
q = (1-r)p.

Since there are Xk sorties flown on day k, each of which generates

? a failure requiring depot repair with probability q, Y, has a binomial

k
ﬁ distribution, that is,
| X -y
X u k
(3 - et a0 T L yme, kg,
P(Yk = y) =
0 , otherwise

We assume that demands resulting from sorties flown on day k are

entered into the depot or base repair cycle at the end of day k. All

repairs are assumed to be completed at the end of a day.

Consequently, the probability that y units are in the depot repair i

3 cycle just after the end of day k is

2 : y 2 : - E :
Xi q (1-q) Xi-'y y ¥y=0, 1, ..., Xi’ f
i i i
IO R A

i
0 , otherwise.

4
i
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where the index of summation i ranges from k-D+1 through k.

Let us first derive P(wjl(k) = w). Observe that any unit on order
from the depot by base j prior to day k-Aj-D + 1 must have been satis-
fied by the end of day k, assuming that a first-come first-serve policy
is followed. Consequently, wjl(k) measures the number of depot orders
placed by base j on days k-Aj-D + 1 through k-Aj that are not satisfied
by day k. Let sy represent the depot stock level on day k-Aj. We will

find P(wjl(k) = w) by determining

P = = +
My () = v E Y, =55+ ¥,
i
where the index of summation, i, ranges from i = k-Aj-D+1 through i =
k-4, .
J
Next, observe that if some orders placed on the depot by base j on
days k-Aj-D+l through k-Aj are not satisfied by day k, then the number
of failures on days k-A -D+1 through k—Aj at all bases that require
J

depot repair must exceed the depot stock available to meet those

demands. That is, if w > 1, then

k-A,

i
E Yi > 95

i=k—D—Aj+l

Consequently, there exists a first day among the days k-D-Aj+1 through
k-Aj when the total depot demand over this period exceeds s Let L be

the random variable denoting this day. By conditioning on L we see that
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k~A,
]
= = = P(W
P(W ) () W] z Y; =55t Y) z (W, ) )
i 2=k-n—Aj+1
= =0" = M = l = .
wlL 23 E Yi g + y) P(L=0| E Sy + y)
i i

However, L = f if and only if the total demand on days k-D-Aj+1 through

£-1 does not exceed SO and the demand on day ¢ is sufficient to raise

the total demand for days k-D-Aj + 1 through ¢ above sO. Thus

P(wjl(k) = wl E Y. =55+ Y)
i
k—Aj 50 XQ
£=k—Aj—D+l a=max(0,sO—XQ) e=sO—a+l
§-1 KA
= =3 =e: = +
P(le(k) w| E Y, =a; YQ e; E Yi So y)
i=k—Aj—D+l i=k—Aj—D+l
k-A,
2-1 b
P( E Yi=a, Y2=e 2 Y,=so+y).
i=k—Aj—D+l i=k~Aj—D+l

Also, since the probability of a failure on a sortie is independent of

the number of failures occurring on all other sorties, we see that
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2-1 KAy
P Yi=a; Yl=el 2 Yi=SO+y
i=k—Aj-D+l i=k—Aj~D+l
-1 k-A,
P =3 =a: = -
Y1 a; YR e; E Yi so+y (ate)
i=k-A,-D+1 i=k-A,-D+1
. g j
k-A,
]
P E =
Yi so+y
i=k-A . -D+1
]
-1 k-4,
X
> o)y 2n
i=k-A.-D+1 i=+1
a e 0+y—(a+e)
k-A,
J
2 ¢
i
i=k-A,-D+1
J
so+y

whenever k-Aj—D+l<l<k—Aj. The obvious adjustments must be made for the
cases where { = k—Aj—D+l and £ = k—Aj.

Observe that if wjl(k) = w, then some of these units could be
demanded from the depot by base j on day %, where, as before, £ is the
first day among the days k-Aj-D+1 through k-Aj when the total depot
demand exceeds sg s and the remainder of these units are demanded at base
j during days 2+1 through k—Aj. Let Zjl represent the number of units

ordered from the depot by base j on day £ that are unsatisfied by day k.

Note that
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measures the number of nits that fail at base j on days %+1 through k-A

that require depot repair. Then

-1 k—Aj
P{wW, . = E Y. =a; Y = =
( i1 w i a YQ e; Y so+y)
i=k-A . ~D+1 i=k~-A,~D+1
min(e,w) k-—AJ
= E PlZ . =f; E Y
J¢ i]
£=0 i=¢+1
o1 k—AJ
= w-f ’ Y =a;Y, =e; Yi=so+y)
1=k—AJ,—D+l i=k—Aj—D+l ‘
min(e,w) iy k-A,
N
= P Z_9=f Y.=a;Y.=e; E Y.,=s_ +v
i+ i x i 0~
£=0 i=k—Aj—D+1 i=k—Aj—D+l
k-A, k-A
j A-1 ]
3 =py—- = =@ =
,( E Yij w—f ' E Yi a;Yy=e; z Yi sO+y)
i=2+1 i=k—Aj -D+1 i=k-A,-D+1
]

Note that Zjl depends only on the number of failures at all bases

requiring depot repair on days k-Aj-D+1 through ¢, and that
k-A,
J
E Yij
i=4+1
depends only on the number of failures requiring depot repair on days

£+1 through day k-Aj. The latter implies that

k-Aj 6-1 k—Aj
=ty— 7 o= =a- =g 4+
P( z Yij W fl E s a,YQ e; E Yi qo y)
{=2+1 i=k-Aj—D+l i=k—Aj-D+1




= S =c -(ate
P( E \ij w-§f 1 E Yi 90+y (a ev

i=0+1 i=0+1
k-A k-A, ]
] 1 1
X X
2 %, 2
i=0+1 i=i+1
w-f so+y-(a+e)—(w—f)
k—A,
J
E X,
i
1= +1

s”+y—(a+e)

and the former implies that

-1 R“Aj
4 = ! =a: romm e Y =g 4v
. P(7il f| E \i a; \Q e; E =50 })
i=k-A,-D+1 i=k-\, -D+1]
J 3
nin(X..,e,w) 71—

5

P = 7 =n T = = . =oly =
z ; A(ng f. E &i a; &Q e; YQj g) P(Y;j £ \: e)
g=t '

i=k~A1—D+l

X, N
. g . 2e-g QJ) . B (J)
mm(XQ.,e,W)(() (a+e—.<;0—f) ( g (0‘8

o
g= (a+e—so)

ate-s s.—a X ~e |
0 0 4
min (X ,,e,w)( )' ( ) . ( )
2 f ~f X, . &
o/ \E AT A
(XQ )
g:
X, .
8

By combining the above results we carn determine

s,
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k-A,
]
= =5 +
P(wjl(k) W Y1 50 y)
i=k-A,-D+1
J
Since, under our assumptions, ]
k-A
J
Y,
i
i=k-A, -D+1
J
has a binomial distribution as noted previously, we can evaluate P(wj1
,'i
(k) = w) using !
k-A k-A, :
] 3 ‘
{ = = = [ =g + « P ] =g 4y ~ ,
P(wjl(k) W) E P(le(k) w E Y. =sg y) I( E Y =5, >), w1,
v>w i=k=A, -D+1 i=k-A =D+l ,

and

[e5)

P(wjl(k) =0) =1~ :E: P(wjl(k) = w).
w=1l

Next, let us establish the probability distributions for the random
variables sz(k) (the number of failures at base j during days k-éj+1
through k-ﬁj that require depot repair) and ij(k) (the number of
failures at base j on days k-Bj+1 through k). Since the probability
that a failure will occur on a sortie does not depend on the number of
failures occurring on other sorties, wj2(k) and Wjj(k) are independent

and binomially distributed. In particnlar, sz(k) has a binomial dis-

tribution with parameters
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and q, and Vj3(k) has a binomial distribution with parameters

k
E X..
1]
i=k-B.+1
J
and p.
Recall that the number of units in resupply on day k at base j, wj
(k), is the sum of wjl(k), wjz(k), and wj3(k). We also have established
that these three random variables are independent. Since we have shown

how to determine the distribution for wjl(k), wjz(k), and Wj3(k), the

distribution for Wj(k) is the convolution of these three distributions.
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V. A COMPARISON OF THE EXACT AND APPROXIMATE MODELS

In previous sections we developed two representations of the proba-
bility distribution of the number of units in resupply at each location
based on different assumptions concerning the nature of the demand pro-
cess. Furthermore, the probability distribution obtained in Sec. III is
only an approximation to the actual distribution of the number of units
in resupply at a base.

To test the accuracy of the approximation, we compared distribu-
tions obtained using this approximation with those calculated using the
exact expression developed in Sec. IV. A sample of eight avionics items
found on the F-15 weapon system was selected to make the comparison.
These items were chosen to represent various combinations of an item's

failure rate and its value of r, the probability that it is repaired at

a base. Items were chosen that have low, medium, and high failure
rates, and values of r ranging from .05 to .95. (The experiment was
essentially a 3- experiment in which all combinations of failure rates

(low, medium, high) and r values (low, medium, high) were represented.)

The demand models were selected so that a substantial degree of
nonstationarity was present. The models reflected a sharp increase in
flying activity at each base following a long period during which flying
activity was constant. After the initial surge, flying activity was
assumed to decrease exponentially at each base so that 30 days later it
had returned to approximately the stationary value that preceded the

surge. (See Fig. 3 for an illustration.)




> ~
gor ~
- ‘\~,\\
& ~—
———§f3| ——
0
3
32
10 -
|- 1 | 1 1 | | | | |
-10 -5 0 5 10 15 20 25 30 35 40 45
Surge day = 0 Day following surge

Fig. 3--Daily flying activity at the base for which the
exact and approximate distributions were calculated

The base repair times, Bj, order and ship times, éj’ and depot
repair cycle times, D, were 4 days, 10 days, and 40 days for each item,
respectively.

Using these data, we compared the approximate and exact distribu-
tions for days 5, 15, and 30 following the surge in flying. First, we
assumed the depot had no safety stock, that is, we assumed the depot
stock was approximately equal to the expected number of units in the
depot repair cycle. To be precise, we set the depot stock level for
each day so that it was equal to the smallest integer that was greater
than or equal to the expected number of units in the depot repair cycle
at that time. This meets current Air Force policy, which requires that
the depot stock level should be at least as large as the expected number

of units in the depot repair cycie [6]. This comparison is a "worst
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case'" type of comparison; if the depot stock is larger than this lower
bound, the quality of the approximation must improve. This fact is sub-
sequently illustrated. Furthermore, note that as the depot stock level

approaches infinity,

P, () = 0) + 1.

Consequently, the number of units in resupply at base j on day k when %
= e is W (k) =W (k). Recall that W (k) and W (k) are independent
j2 i3 j2 33
random variables and each has a binomial distribution. If the length of
the time period used in the exact model approaches zero, then each of
these binomial distributions approaches a Poisson distribution. Thus if
SO * » and the length of the time period in the exact model approaches
zero, the exact distribution approaches a Poisson distribution (since
the sum of two independent Poisson random variables is a Poisson random
variable) and the exact and approximate distributions become identical.
In the experiment we also assumed that the flying activity at the
base for which the exact and approximate distributions were explicitly
calculated was one-half the system's total. This again is a worst-case
type of comparison. By having a large fraction of activity concentrated
at a single base, we increase the effect that the depot stock level has
on the distribution of the number of units in resupply at that base. If
the flying activity at a base is small in comparison with the total sys-
tem flying activity, then depot backorders have a minimal effect on the
expected number of units in resupply at the base. The effect of depot
delay in satisfying base orders on the quality of the approximation

increases as the fraction of depot demands attributable to the base

gt a—
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increases. Thus, the experiment was designed to test the quality of the
approximating distribution under reasonably extreme conditions.

The results of the experiment showed that in all cases the nonsta-
tionary Poisson distribution is an excellent approximation to the exact
distribution of the number of units in resupply at a base, e¢ven when the
depct stock level is at its lower bound. The distributions generally
agree to two decimal places. Table 5 compares the approximate and exact
distributions for three items on days 5, 15, and 30, for various values
of r and p. The quality of the approximation also appeared to be
affected by the items' failure rate for similar values of r; the quality
of the approximation imprcved slightly as the failure rate decreased.

To illustrate the effect of the depot stock level on the quality of
the approximation, we next increased its value. The effect of this
increase is illustrated in Table 6. As the example demonstrates, the
quality of the approximation always improves as the depot stock level
increases.

This experiment has shown that a nonstationary Poisson distribution
provides an excellent approximation to the distribution of the number of
units in resupply at a base under certain conditions. We believe that
in several respects the test performed was a 'worst case' type of test.
There was a substantial initial increase in flying activity per day fol-
lowed by a rapid decline in flying activity, the depot stock level was
low, and the base examined produced half the depot demand. Although we

have obviously performed a limited test, the results indicate that in

realistic situations a nonstationary Poisson distribution can safely be

used to represent the distribution of the number of units in resupply.




Table 5

COMPARISON OF THE EXACT AND APPROXIMATE
DISTRIBUTIONS OF THE NUMBER OF UNITS IN
BASE RESUPPLY WHEN THE DEPOT STOCK LEVEL
EQUALS THE SMALLEST INTEGER GREATER THAN
OR EQUAL TO THE EXPECTED NUMBER OF
UNITS IN DEPOT RESUPPLY

Probability Distribution

No. of Units
Day in Base Resupply Approximate Exact
r=.05 p=.0001
Day 5 0 .959 .954
1 .040 .045
2 .001 .001
Day 15 0 .960 .953
1 .039 .046
2 .001 .001
Day 30 0 .969 .960
1 .031 .039
2 .001 .001
r= .96, p=.01
Day 5 0 .108 .101
1 .240 .231
2 .267 .266
3 .199 .203
4 111 .203
5 .049 .054
6 .018 .020
Day 15 0 .182 .020
1 .310 3142
2 .264 .263
3 .150 147
4 .064 .061
5 .022 .020
Day 30 0 .244 .248
1 344 .346
2 .243 .241
3 114 112
4 .040 .039
5 .011 011
r=.5 p=.0001
Day 5 0 .969 967
1 .030 .032
2 .001 .001
Day 15 0 .972 .970
1 .027 .029
2 001 .001
Day 30 0 .978 .976
1 022 .025
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Table 6

COMPARISON OF THE EXACT AND APPROXIMATE DISTRIBUTIONS OF
THE NUMBER OF UNITS IN BASE RESUPPLY ON DAY 15
WHEN r = .6 AND p = .002

Depot Stock Level Equals No. of Probability Distribution
the Smallest Integer that Units in - c
is Greater Than or Equal to: Base Resupply Approximate Exact
Expected number of units 0 .632 573
in depot resupply (sg = 3) 1 .336 315
2 .106 .090
3 022 018
4 .004 .003
Expected number of units 0 571 586
in depot resupply plus 1 1 .320 312
(sg=4) 2 .090 .084
3 .017 016

We also observed that the computation time needed to compute the
exact distribution ranged from roughly 500 to 2000 times the amount
needed to calculate the approximate distribution. Considerably less
than a second of CPU time (on an IBM 370/168) was required to compute
the approximate distribution in all cases. Furthermore, mery computa-
tional problems (both roundoff and underflow difficulties) frequently
arose during the calculation of the exact distribution. Depending on
the values assumed by the distribution's parameters, different
approaches had to be taken to compute the exact distribution. Because
of the large amount of time needed to perform these calculations and the
numerical problems that are present, the exact representation of the
probability distribution for the number of units in resupply cannot be
used in studies involving laige numbers of items. It will not be of
practical use in an Air Force requirements computation system for the
same reasons,

In Ref. 1, Sherbrooke analyzed the same system that we have exam-

ined under the assumption that the demand process is a stationary Pois-

son or compound Poisson process. His development closely parallels the




one given in Sec., II1, The expression he develops for the distribution
of the number of units in resupply is an approximation. Shanker (7]
compares Sherbrooke's approximation with the exact one that he develops.
He shows that when the depot stock level exceeds the expected number in
the depot repair cycle, Sherbrooke's approximation is quite good. We
note that Sherbrooke's approximation is widely used in practice (for
example, it is the basis for the Air Force's Variable Safety Level
method [6,7]). Based on the comparison we have made and the ones

reported by Shanker, we believe that the approximation developed in Sec.

II1 is as accurate as the one developed by Sherbrooke.
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VI. CONCLUDING REMARKS

Our primary objective was to demonstrate that methods are available
that can be easily used to help assess the Air Force's ability to sup-
port its flying mission during a surge in flying activity. Two
approaches were taken to derive, under different sets of assumptions,
the probability distribution of the number of units in resupply at each
location in the two-echelon system at any time t. As was shown, one is
an approximation to this distribution while the other is an exact
representation. Furthermore, we have shown that the approximation is
easily computed and closely approximates the exact distribution; the
exact distribution is computationally intractable and of little practi-
cal value.

To this point our attention has focused on developing these methods
for evaluating supply system performance. There are many potential
applications of these models to the analysis of the effect of transpor-
tation and maintenance policies on supply system performance. However,
we will discuss the principal applications of the nonstationary demand
models in the areas of stock-level determination for spare recoverable
items in a dynamic, short-time-horizon, wartime environment and during
initial provisioning.

Planners are constantly faced with the problem of determining what
amount of inventory should be prepositioned as war readiness stock and
what airlift capabilities should be provided so as to achieve a speci-

fied level of supply effectiveness for a short-time-horizon armed con-

flict. One of the main applications of this nonstationary probability




-39.

distribution is to help answer these questions. Since the models meas-
ure the probability of having a specific number of shortages for each
item at any time t for given item stock levels, the stock levels
required to achieve any desired level of supply effectiveness can be
calculated for each item at any point in time. For example, suppose a
required level of supply support is established for a group of items for
each day in the planning horizon. Furthermore, assume that the first
time when additional inventory can be provided from another location--
say, via airlift--is on day nl, the second time on day n2. and the last
time on day n - Then the time horizon can be subdivided into n + 1
periods whose lengths correspond to the times between successive
arrivals of additional inventory. If we also know the desired supply
support goals for each period, the times at which additional supplies
can arrive, the maximum amount of stock that can be received (or
shipped) in each delivery, and the expected number of parts to be con-
sumed on each day, then we can use nonstationary demand models to estab-
lish the quantity of each item that should be prepocsitioned and shipped
in each delivery.

Several models can be formulated for calculating the desired
dynamic stock levels. The models can be quite simple or rather complex,
depending on the choice of the objective function and constraints. For

example, if a supply-effectiveness constraint is stated by item, such as

that the fill rate must be at least .8 on each day, and the goal is to
provide the minimum amount of inventory to have on hand each day to meet
this constraint, then the stock levels can be found in a relatively

straightforward manner. [f the objective is to minimize inventory
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investment over all items while satisfying constraints on the expected
number of serviceable aircraft available on each day, the problem
becomes much more difficult. Nonetheless, for any choice of objective
function and constraints, the optimal stock levels could be computed for
each item in each period, once the dynamic models have been used to cal-
culate nonstationary distribution of the number of units in resupply at
each location.

Dynamic models can also be used for explicitly examining the impli-
cations of transportation policy--the number and timing of deliveries of
additional inventory--on supply-effectiveness and cost. The amount of
prepositioned stock that is needed can be calculated as a function of
the transportation policy selected. Thus the proper balance between
inventory costs and transportation costs can be established to achieve
any desired level of performance. As a consequence, inventory policy--
for example, for WRSK and BLSS--and transportation policy for supplying
inventory to a theater of war can be established recognizing the
existent interactions.

The currert Air Force policy for determining requirements for war
reserve material is stated in AFLCR 57-18 [8]. The methods described in
this regulation for computing stock levels take into account whether an
item has a Remove-and-Replace (RR) or a Remove-Replace-Repair (RRR)
maintenance concept, whether an item is a Line Replaceable Unit (LRU) or
a Shop Replaceable Unit (SRU), and whether the unit is primarily
repaired at a base or a depot. For example, the formula for computing

the stock level for an LRU that is repaired primarily at a base follow-

irg an RRR maintenance concept is:

MG
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Quantity = DR x QPA x FH + BRR x BRC x QPA,
where

DR = total demand rate at a base for an item
(demands per 100 flying hours),

QPA = number of units of the item on an aircraft,

FH = flying hours (in hundreds of hours) in the
period of time in which the item's repair
facility is being set up,

BRR = expected number of base level repairs (in
hundreds of flying hours), and

BRC = flying hours (in hundreds of hours) occurring
during a base repair cycle.

Observe that the stock level is computed using an expected-value
type of calculation. No attempt is made to take the uncertainty of
demand into account. Potential supply performance on each day cannot
easily be determined using the current Air Force methodology. Note that
the choice of the BRC factor affects the stock level significantly.
There is no guarantee that the proper action is to set BRC so that the

term BRR x BRC x QPA is as large as possible. Because this peak

requirement may occur for only a small fraction of the planning horizon,
b a large investment in the item may be undesirable. In fact, it is
impossible to ascertain what value BRC should assume without performing
the type of analysis discussed in Secs. III and IV. Furthermore, the
interaction between the depot and bases is ignored entirely in these
calculations. In short, the current policy has some serious defects.

The inadequacy of the present policy has been recognized by Air

Force planners. As a result, a revision to AFLCR 57-18 is being




-42-

L prepared which these planners believe will address its major deficien-
cies. The following is a brief description of the revised method [9].

Stock levels are first calculated for each item using the present
Air Force technique. These stock levels are made as large as possible
by finding the period during which the expected number of units in ba<e
resupply is at its maximum. For example, for an LRU repaired primarily
at a base using an RRR maintenance concept, the stock level is maximized
by selecting the period during which the BRC factor is the largest.
This resulting auantity can be further adjusted by multiplving it by a
factor to yield some safety stock.

Using these stock levels, the expected number of backorders and the
expected number of serviceable aircraft are computed. These performance
measures are calculated under the assumption that the number of units in

base resupply for each item is Poisson distributed. The mean of this

distribution is assumed to be equal to the maximum expected number of
units in resupply during the planning horizon. Once the expected per-
formance levels have been determined, a heuristic, which is a gradient
type of procedure, is used to find new values for the stock levels.
These stock levels are selected in the hope of achieving these two per-
formance levels at minimum cost.

There are drawbacks to the revision of the current Air Force method

for computing war readiness stocks that we have discussed. First, it
does not consider the dynamic nature of the problem. Setting the mean
of the Poisson distribution describing the number of units in base e~

supply to its largest value over the planning horizon makes the dynamic

problem appear to be static. It is unknown whether the maximum mean

A
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occurs for a significant fraction or a very small fraction of the plan-
ning horizon. The differences between the maximum and minimum values of
the mean are not considered. The actual mean value of the Poisson dis-
tribution over the planning horizon should be used in setting stock lev-
els. Otherwise, serious errors can occur when setting item stock lev-
els. Furthermore, the system's dynamic performance cannot be readily
examined.

A second drawback is that the revised method does not accurately
take into account the effect of depot stock on base level performance.
Consequently, it cannot very easily analyze the complex interactions
between depot stock levels and expected base level performance.

Finally, the revised method makes it difficult to measure the
effect of transportation policy. This occurs because daily fluctuations
in expected performance are not considered in the optimization pro-
cedure.

The last model we will discuss is the one used by the Air Force to
compute spare aircraft engine requirements for a wartime environment
[2,3]. It is a stationary model. The daily demand rate at a location
is increased to reflect the average daily flying activity there over the
planning horizon. Using this average daily demand rate, the stock lev-
els are computed separately for each location, thereby ignoring any
depot-base interactions. Some of the pitfalls of using this model for
determining wartime stock levels are illustrated in the example
presented in Sec. II. As shown in that example, this approach makes it

impossible to evaluate the dynamic behavior of the system. It also

assumes that the output rates of the base and depot repair processes
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immediately following the increase in flying activity instantaneously
equal the wartime rates--an impossibility, since at best the output rate
at time t from base maintenance must correspond to the input rate at
time t minus the base repair time, B, that is, at time t-B. But the
input rate at time t-B would most likely be considerably less than the
input rate at time t. Thus the resupply rate during the critical early
portion of a short war will most likely be overstated.

The models we have briefly discussed, and others like them, for
computing item stock levels based on a nonstationary representation of
the demand process would use primarily the same planning data that are
required by current techniques, but would use these data more effec-
tively. Consequently, the data needed are simply the dynamic base and
depot repair times, NRTS rates, flying schedules, failure rates, and the
transportation policy. Rather than aggregating flying and failure data
over the planned horizon, we can obtain more precise estimates of the
inventory requirements and supply effectiveness throughout the horizon
by using the projected daily flying activity.

In addition to the application we have discussed, dynamic models
can also be used effectively during the initial provisioning process to
determine both when inventory should be added Lo the system and how much
inventory is needed at each point in time to achieve a desired level of
supply support. The initial provisioning techniques currently used by
the Air Force are steady-state approaches. For example, the standard
method for computing requirements is described in AFLCR 57-27 [10]). It

is a simple deterministic model in which both the peak and average daily

flying programs are used to forecast demand, and hence requirements, for
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each item. This forecasted demand is implicitly assumed to occur uni-
formly at a constant rate during a year, even though demand is random
and the rate changes dramatically as additional aircraft are placed into
service. For basically the same reasons that we have already discussed,
this model inadequately addresses the dynamics of the demand process for
recoverable items of a new system over a period of time. Hence, it
gives an inaccurate portrayal of both expected supply support (such as
NMCS rates, fill rates, backorders, etc.) and inventory requirements.
This is illustrated in the following example.

Suppose a new aircraft system is introduced intoc the Air Force over
a two-year period. Furthermore, suppose the solid line in Fig. & is the
graph of the expe~ted number of units in resupply in the system at each
point in time throughout the two-year horizon. The dashed lines
represent the number of units in resupply in the system assumed by the
AFLCR 57-27 model. Since the average number of units in resupply deter-
mines the stockage requirements, excess inventories will be on hand for
certain portions of the two-year period, while at other times the system
will experience severe shortages. This, of course, makes the planned

flying program extremely difficult to achieve.

Flying hr/mo

) 1 1 J
0 1 2 3 4

Time (in years)

Fig. 4 — Expected number of units in resupply in the system :
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Rather than using a stationary model to describe demand during the
provisioning process, dynamic models like the one developed in Sec. III
can be used. The data required include the aircraft delivery and flying
schedules, base and depot repair times, NRTS rates, failure rates, and
order-and-ship-times. The only difference in data requirements is that
the expected demand rate has to be expressed as a function of time. But
this can be easily done using a computer. Once this nonstationary
representation of the demand process is available, a model can be used
to ascertain the optimal delivery schedule of spares for each item.

A model could be developed that determines the stocks that should
be delivered so that the total cost of spares procurement is minimized
subject to aggregate supply effectiveness constraints “or each period (a
month or quarter) of the initial provisioning planning rizon. The
cost could represent the discounted cost of purch .ing s, .res over the
planning horizon. Each constraint could, for example, establish a max~
imum expected number of shortage days that would be allowed during a
specific time period. Thus, the effect of different support goalr for
different periods could be explicitly examined using the model, and the

effect on procurement cost could be measured directly.
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