DELAWARE RIVER BASIN
TRIBUTARY ALEXAUKEN CREEK,
HUNTERDON COUNTY
NEW JERSEY

LEVEL II

SCHILLER POND DAM
NJ 00153

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DEPARTMENT OF THE ARMY
Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

REPT. NO.: DAEW/PAP-53842/ NJ00153-81/05
MAY 1981
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Phase I Inspection Report
National Dam Safety Program
Schiller Pond Dam, NJ 00153
Hunterdon County, NJ

Talerico John P., P.E.

Harris-ECI
453 Amboy Ave.
Woodbridge, N.J. 07095

U.S. Army Engineer District, Philadelphia
Custom House, 2d & Chestnut Streets
Philadelphia, PA 19106

Approved for public release; distribution unlimited.

This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.
NOTICE
THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.
DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT CORPS OF ENGINEERS
CUSTOM HOUSE - 20 & CHESTNUT STREET
PHILADELPHIA, PENNSYLVANIA 19103

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08611

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Deer Head Lake Dam in Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 90-340, a brief summary of the current condition is given at the front of the report.

Based on visual inspection, available records, intentions and past operational performance, Deer Head Lake Dam, a high water potential structure, is judged to be in good overall condition. The Dam's spillways are considered inadequate because a flow equivalent to eight percent of the Spillway Design Flow - 2000 cfs - would cause the dam to be overtopped. The SDF, in this instance, is one half of the Probable Maximum Flood. The decision to consider the spillways "inadequate" instead of "sufficiently inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the danger to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, in a minimum, are recommended:

a. The spillways' adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies. Within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within twelve months from the date of approval of this report, the following remedial actions should be completed:

(1) Repair the spillway basin of the left spillway with epoxy cement.
In accordance with the provisions of the Freedom of Information Act, the inspection report will be subject to release by the owner, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Service (NTIS), Springfield, Virginia, 22151, at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the New Jersey Program was the implementation of the recommendations made as a result of the inspections. As a courtesy, we request that you be advised of proposed actions taken by the State to correct identified violations.

Sincerely,

[Signature]

[Name]

[Title]

[State Department of Environment Protection]
The data contained herein are based on a period of observation, which is a period of the construction of the
project. The data is based on a period of data collection. The data shows that the surface water quality values are generally
higher than the established criteria. The data shows that
the surface water quality values are generally higher than the
established criteria.

The project's quality control will be determined by the
project's quality control plan. The project's quality control plan
describes the procedures for controlling the quality of the
project. The project's quality control plan will be presented in
the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.

The project's quality control plan will be presented in
the project's quality control plan. The project's quality control
plan will be presented in the project's quality control plan.
DELAWARE RIVER BASIN
TRIBUTARY ALEXAUKEN CREEK, HUNTERDON COUNTY
NEW JERSEY

SCHILLER POND DAM

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA 19106

MAY, 1981
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name: Schiller Pond Dam, I.D. NJ 00153
State Located: New Jersey
County Located: Hunterdon County
Stream: Tributary Alexanken Creek
River Basin: Delaware River
Date of Inspection: January 13, and February 3, 1981

Assessment of General Conditions

Schiller Pond Dam is an earthfill dam with a concrete drop inlet, the main spillway, in the center of the dam. In addition there is an auxiliary spillway at the right end of the dam. The overall condition of the dam is good. There are no signs of distress or instability in the embankment. The downstream channel is well defined and in good condition. The low-level outlet was not opened and is not used. The hazard potential is rated as "high".

Schiller Pond Dam is considered inadequate in view of its lack of spillway capacity to pass the SDF (1/2 PMF) without overtopping the dam. The spillway is capable of passing a flood equal to 35 percent of the PMF (70 percent of the 1/2 PMF), and is assessed as "inadequate".

At present, the engineering data available is not sufficient to make a definitive statement on the stability of the dam, but based on the findings of the visual inspection, the preliminary assessment of static stability is that it is satisfactory. The following actions are recommended along with a timetable for their completion. All recommended actions should be conducted under the supervision of an Engineer who is experienced in the design, construction and inspection of dams.

1. Carry out a more precise hydrologic and hydraulic analysis of the dam within twelve months, to determine the need and type of mitigating measures necessary. Based on the results of these studies, remedial measures should be instituted. This should include the installation of a tailwater gage.

2. Construct a concrete headwall and apron at the outlet end of the discharge pipe within twelve months.
3. The trees should be removed from the embankment slopes to avoid problems that may develop from roots. The area should then be seeded to develop a growth of grass for surface erosion protection. This should be done within twelve months.

4. Determine if the low-level outlet gate is operable, and if not institute remedial action to make it operable within twelve months.

5. The owner should develop an emergency action plan (if one is not already available) outlining actions to be taken by the operator to minimize downstream effects of an emergency and establish a flood warning system for the downstream communities within three months.

Furthermore, while of a less urgent nature, the following additional action is recommended and should be carried out within twelve months.

The owner should develop, within one (1) year after formal approval of the report, written operating procedures and a periodic maintenance plan to insure the safety of the dam.

John P. Talerico, P.E.
HARRIS-ECI ASSOCIATES
Schiller Pond Dam

View of dam looking towards the auxiliary spillway. Main spillway is drop inlet in right center of photo.
This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the office of the Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
TABLE OF CONTENTS

ASSESSMENT OF GENERAL CONDITIONS

OVERVIEW PHOTO

PREFACE

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PROJECT INFORMATION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Project</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ENGINEERING DATA</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Design</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Operation</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaluation</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>VISUAL INSPECTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>OPERATION PROCEDURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam.</td>
<td>10</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>10</td>
</tr>
<tr>
<td>4.4</td>
<td>Evaluation</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>HYDRAULIC/HYDROLOGIC</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>STRUCTURAL STABILITY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ASSESSMENT/REMEDIAL MEASURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>14</td>
</tr>
<tr>
<td>7.2</td>
<td>Remedial Measures</td>
<td>14</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KEY MAP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VICINITY MAP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GEOLOGIC MAP</td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>DRAWINGS OF DAM</td>
<td></td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CHECK LIST - VISUAL OBSERVATIONS</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>CHECK LIST - ENGINEERING, CONSTRUCTION, MAINTENANCE DATA</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>PHOTOGRAPHS</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>SUMMARY OF ENGINEERING DATA</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>HYDROLOGIC COMPUTATIONS</td>
<td>1-21</td>
</tr>
</tbody>
</table>
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

SCHILLER POND DAM, I.D. NJ 00153

SECTION 1

1. PROJECT INFORMATION

1.1 General

a. Authority

The National Dam Inspection Act (Public Law 92-367, 1972) provides for the
National Inventory and Inspection Program by the U.S. Army Corps of Engineers.
This inspection was made in accordance with this authority under Contract
C-FPM No. 35 with the State of New Jersey who, in turn, is contracted
to the Philadelphia District of the Corps of Engineers, and was carried
out by the engineering firm of Harris-ECI Associates of Woodbridge, New Jersey.

b. Purpose of Inspection

The visual inspection of Schiller Pond Dam was made on January 13 and February 3,
1981. The purpose of the inspection was to make a general assessment as to
the structural integrity and operational adequacy of the dam embankment and
its appurtenant structures.

c. Scope of Report

The report summarizes available pertinent data relating to the project; presents
a summary of visual observations made during the field inspection; presents an
evaluation of hydrologic and hydraulic conditions at the site; presents an
evaluation as to the structural adequacy of the various project features; and
assesses the general condition of the dam with respect to safety.
1.2 Description of Project

a. Description of Dam and Appurtenances

Schiller Pond Dam is an earthfill dam approximately 300 feet long and 18.5 feet high with a clay cut off trench. There are two spillways, an 8-foot by 6 foot concrete drop inlet which is the main spillway and a 60 foot wide grass covered auxiliary spillway. The auxiliary spillway, which was constructed by excavating the existing ground, is located at the right end of the dam. Its crest is 4.0 feet below the top of the embankment. The drop inlet is located approximately 150 feet from the left edge of the auxiliary spillway and its crest is 6.5 feet below the top of the embankment.

There is a wire screen on top of the inlet to keep the trout from going into the discharge during high pond levels. The flow from the drop inlet discharges into the downstream channel through a 72-inch corrugated metal pipe, which has two anti-seep collars extending three feet beyond the outside of the pipe. The flow from the auxiliary spillway runs perpendicular to the dam along the discharge channel for approximately 80 feet and then flows to the left along the existing ground to the downstream channel.

The embankment has a top width of 10 feet with a 3H:1V slope on the upstream face and approximately a 4H:1V slope on the downstream face.

The low-level outlet consists of a 72-inch corrugated metal pipe that carries the flow from the main spillway. The low-level flow into the pipe is controlled by a 18-inch valve located on the upstream wall of the inlet. The valve is operated manually by a removable hand crank that fits into a small iron pipe attached to the face of the inlet.

The outlet end of the pipe discharges into the downstream channel approximately 80 feet from the inlet. The channel starts at the discharge outlet and continues downstream for a distance of 600 feet where it crosses under the Pocktown-Lambertville Road through a 14 foot x 8 foot opening.

A generalized description of the soil conditions is contained in Report No. 6, Hunterdon County, Engineering Soil Survey of New Jersey, by Rutgers University. The report dated 1952, indicates the area of the dam and pond to be stratified recent alluvium, with the surrounding area being diabase bedrock.

Recent alluvium can be described as materials usually assorted by water action and ranging in size from silt with some clay, to silt and fine sand with gravel. Diabase is described as hard, non-homogeneous rock commonly identified as trap rock with variable overlaying depths of silts and silty clays with frequent gravely phases. Geologic Overlay Sheet 27 classifies the underlaying rock as diabase.
b. Location

Schiller Pond Dam is located on a tributary of Alexauken Creek, in the Township of West Amwell, Hunterdon County, New Jersey. The dam is accessible from Route 179 at Mount Airy by way of Mill Road to Rocktown-Lambertville Road.

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams" by the U.S. Department of the Army, Office of the Chief Engineers, the dam is classified in the dam size category as being "small", since its storage volume of 73 acre-feet is less than 1,000 acre-feet. The dam is also classified as "small" because its height of 18.5 feet is less than 40 feet. The overall size classification of Schiller Pond Dam is "small".

d. Hazard Classification

A hazard potential classification of "high" was assigned to Schiller Pond Dam on the basis that there are more than a dozen homes located on both sides of the stream downstream of the Rocktown-Lambertville Road. Therefore the possibility exists of the loss of more than a few lives in the event of a hypothetical failure of the dam.

e. Ownership

Schiller Pond Dam is owned by:

Mr. William Schiller
R.D.I., Box 350
Hopewell, NJ 08525
(609) 466-1687

f. Purpose

Schiller Pond Dam was originally constructed for irrigation but is presently used for recreational purposes only. The pond is stocked every year with trout by a fishing club.
g. Design and Construction History

Schiller Pond Dam was designed by the U.S. Soil Conservation Service. The permit to construct the dam was issued on September 3, 1959 with the dam being completed in November 1960.

h. Normal Operating Procedures

The discharge from the lake is unregulated and allowed to naturally balance the inflow into the lake. According to the owner the low-level outlet is not used due to the pond being heavily stocked with trout.
1.3 **Pertinent Data**

a. **Drainage Area**

 1.37 sq. mi.

b. **Discharge at Dam Site**

 Ungated spillway capacity at
elevation of top of dam:

 Total spillway capacity at
 maximum pool elevation (SDF):

 c. **Elevation (Feet above NGVD)**

 Top of dam:
 Maximum pool design surcharge (SDF):
 Recreation pool:
 Spillway crest: Main: Auxiliary:
 Streambed at centerline of dam:
 Maximum tailwater:

d. **Reservoir**

 Length of maximum pool:
 Length of recreation pool:

e. **Storage (acre-feet)**

 Spillway Crest:
 Top of dam:
 Maximum pool (SDF):

f. **Reservoir Surface (acres)**

 Top of dam:
 Maximum pool (SDF):
 Recreation pool:
 Spillway crest:
g. Dam

Type: Earthfill with concrete drop inlet
Length: 220 ft. (Effective)
Height: 18.5 ft.
Top width: 10 ft.
Side slopes - Upstream: 3H:1V
- Downstream: 4H:1V
Zoning: Unknown
Impervious core: None
Cutoff: 200 ft. clay cut-off
Grout curtain: None

h. Diversion and Regulating Tunnel

i. Spillway

Type: Main: Concrete drop inlet
Auxiliary: Earth Channel
Length of weir: Main: 28 ft.
Auxiliary: 60 ft.
Crest elevation: Main: 305 NGVD
Auxiliary: 307.5 NGVD
Gates:
U/S Channel: Schiller Pond
D/S Channel: Main: Natural Channel
Auxiliary: Existing ground.

j. Regulating Outlets

Low level outlet: 72-inch C.M.P.
Controls: Manually controlled 18-inch valve.
Emergency gate: None
Outlet: 294. NGVD
SECTION 2

2. ENGINEERING DATA

2.1 Design

Drawings and specifications for the construction of the Schiller Pond Dam are available in the files of NJ Department of Environmental Protection (NJ-DEP) in Trenton and also at the offices of the U.S. Department of Agriculture - Soil Conservation Service (SCS) in Somerset N.J. The structural design data of the spillway as well as the hydrology and hydraulic data for 25-year and 50-year design storm is available at the above locations. One drawing shows the location of and data obtained from tests pits taken along the dam. Soil test results, design computations and other geotechnical data needed to assess the stability properly are not available.

2.2 Construction

Data is not available concerning the as-built construction of the dam. No data exists of construction methods, borrow sources or other data pertinent to the construction of the dam.

2.3 Operation

Formal operation records are not kept for the dam and reservoir. The pond is allowed to operate naturally without regulation.

2.4 Evaluation

a. Availability

The availability of engineering data is good. The construction plans and specifications for the dam are available from the NJ-DEP and the SCS.

b. Adequacy

The engineering data available from the plans and from the field was adequate to perform hydrologic and hydraulic computations. The data was insufficient to perform stability analysis, but a preliminary evaluation could be made based on visual observations.

c. Validity

The information contained in the drawings and checked by limited field measurements appears to be valid except downstream slope of the embankment measured 4H:1V instead of 2H:1V as shown on the plans.
SECTION 3

3. VISUAL INSPECTION

3.1 Findings

a. General

The visual inspection of Schiller Pond Dam revealed the dam and spillways to be in good condition. At the time of the inspection the pond level was just above the crest of the main spillway.

b. Dam

The earth embankment appears sound. No surface cracking on the embankment or at the toe was noticed. No sloughing or erosion of the embankment was observed. The vertical and horizontal alignments of the crest are good. A group of four evergreen trees are growing on the embankment at the junction with the left end of the auxiliary spillway. There is also one small tree growing at the water's edge left of the main spillway. No evidence of burrowing by animals was observed.

c. Appurtenant Structures

1. Spillways

The main spillway is a concrete drop inlet with an 18-inch valve. Wire fencing supported by iron pipes covers the top of the inlet to prevent the trout from going through the discharge pipe during high pond levels. The inlet is in good condition. The auxiliary spillway is grass covered and in good condition. Horizontal and vertical alignments of the auxiliary spillway are good.

2. Outlet Works

The low-level outlet works is also the main spillway. It consists of a drop inlet with a 18-inch valve attached to the front face of the inlet, and a 72-inch corrugated metal pipe that carries the flow to the downstream channel. The valve is operated by a removable hand crank. The outlet is in good condition. There is no headwall at the outlet end of the pipe. The riprap slope along the sides of the pipe is missing.
There is some minor slope erosion along the sides of the pipe, and immediately downstream along the right bank.

d. Reservoir Area

The reservoir's side slopes are flat to moderate. There are some trees along the left shore line and a evergreen nursery on the back slope. Lakeside Road runs along the right shoreline. There is no indication of slope instability.

e. Downstream Channel

The downstream channel is in good condition. It is a well defined channel that starts at the outlet and then parallels Lakeside Road until it crosses under the Rocktown-Lambertville Road 600 feet downstream. The banks are wooded and shallow with the surrounding area relatively flat. Downstream of Rocktown-Lambertville Road there are houses on both sides of the stream.
4. OPERATIONAL PROCEDURES

4.1 Procedures

Schiller Pond Dam is used to impound water for recreational activities. The level of the lake is maintained through the unregulated flow over the spillway.

4.2 Maintenance of the Dam

There is no regular inspection and maintenance program for the dam and appurtenant structures. Mr. William Schiller is responsible for the maintenance of the dam.

4.3 Maintenance of Operating Facilities

The low-level outlet operating facilities consist of the one manually operated 18-inch valve. Operation of the valve was not satisfactorily demonstrated as the hand crank was not available.

4.4 Evaluation

The present operational and maintenance procedures are fair with the dam and spillway being maintained in a serviceable condition.
5. HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

The drainage area above Schiller Pond Dam is approximately 1.37 square miles. A drainage map of the watershed of the dam site is presented on Plate 1, Appendix D.

The topography within the basin is generally moderately sloped. Elevations range from approximately 473 feet above NGVD at the northwest end of the watershed to about 305 feet at the dam site. Land use patterns within the watershed are mostly woodland.

The evaluation of the hydraulic and hydrologic features of the dam was based on criteria set forth in the Corps guidelines and additional guidance provided by the Philadelphia District, Corps of Engineers. The SDF for the Dam falls in a range of 1/2 PMF to PMF. In this case, the low end of the range, 1/2 PMF, is chosen since the factors used to select size and hazard classification are on the low-side of their respective ranges.

The Probable Maximum Flood (PMF) was calculated from the probable maximum precipitation using Hydrometeorological Report No. 33 with standard reduction factors. Due to the small drainage area, the SCS triangular hydrograph transformed to a curvilinear hydrograph was adopted for developing the unit hydrograph, with the aid of the HEC-1-DB Flood Hydrograph Computer Program.

Initial and constant infiltration loss rates were applied to the Probable Maximum Precipitation to obtain rainfall excesses. The rainfall excesses were applied to the unit hydrograph to obtain the PMF and various ratios of PMF utilizing program HEC-1-DB.

The SDF peak outflow calculated for the dam is 3,324 cfs. This value is derived from the half PMF, and results in overtopping of the dam, assuming that the lake was originally at the spillway crest elevation.

The stage-outflow relation for the spillway was determined from the geometry of the spillway and dam utilizing HEC-1 Dam Safety Version program.

The reservoir stage-storage capacity relationship was computed directly by the conic method, utilizing the HEC-1-DB program. The reservoir surface areas at various elevations were measured by planimeter from a U.S.G.S. Quadrangle topographic map. Reservoir storage capacity included surcharge levels exceeding the top of the dam, and the spillway rating curve was based
on the assumption that the dam remains intact during routing. The spillway rating curve is presented in the Hydrologic Computation, Appendix D.

A breach analysis indicates that the stage of the stream where it crosses Rocktown-Lambertville Road is 0.6 feet higher, due to dam failure from overtopping at 0.4 PMF than it would be without failure at 0.4 PMF. This is likely not to jeopardize the well traveled road downstream significantly more than without failure. The discharge facility is thus rated "inadequate".

Drawdown calculations indicate that to empty the lake to an elevation of 299.5 NGVD through the one low-level outlet would take 20 hours, assuming a 2 cfs/square mile inflow. This is not considered to be an excessive drawdown period, and provision of additional outlets should not be considered.

d. Experience Data

No records of reservoir stage or spillway discharges are maintained for this site.

c. Visual Observation

The downstream channel is in good condition. It parallels Lakeside Road until the channel crosses under Rocktown-Lambertville Road 600 feet downstream of the dam. The banks are shallow and wooded. Downstream of Rocktown-Lambertville Road, there are houses on both sides of the stream.

The side slopes of the reservoir are flat to moderate with no signs of instability. The drainage area is primarily wooded and undeveloped.

d. Overtopping Potential

A storm of magnitude equivalent to the SDF would cause overtopping of the dam to a height of 0.8 feet. Computations indicate that the dam can pass approximately 35 percent of the PMF without overtopping the dam crest. Since the 1/2 PMF is the Spillway Design Flood (SDF) for this dam, according to the Recommended Guidelines for Safety Inspection of Dams by the Corps of Engineers, the spillway capacity of the dam is assessed as "inadequate".
SECTION 6

6. STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

There are no signs of distress in the embankment of the Schiller Pond Dam. The trees growing on the embankment at the junction with the auxiliary spillway could pose a threat to stability. The spillways are in good condition.

b. Design and Construction Data

No design computations relating to stability were uncovered during the report preparation phase. No embankment or foundation soil parameters are available for carrying out a conventional stability analysis of the embankment.

c. Operating Records

No operating records are available relating to the stability of the dam.

d. Post-Construction Changes

There are no known post-construction changes since the dam was built in 1960.

e. Static Stability

A static stability analysis was not performed for Schiller Pond Dam because the lack of data on which to base assumptions of material properties within embankment zones might produce misleading results, but based on the findings of the visual inspection, the preliminary assessment of static stability is that it is satisfactory.

f. Seismic Stability

The dam is located in Seismic Zone 1, as defined in Recommended Guidelines for Safety Inspection of Dams, prepared by the Corps of Engineers. In general, projects located in Seismic Zones 0, 1 and 2 may be assumed to present no hazard from earthquake, provided the static stability conditions are satisfactory and conventional safety margins exist, and based on the findings of the visual inspection, the preliminary assessment of the static and seismic stabilities is that they are satisfactory.
7. ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

a. Safety

The dam has been inspected visually and a review has been made of the available engineering data. This assessment is subject to the limitations inherent in the visual inspection procedures stipulated by the Corps of Engineers for a Phase 1 report.

Schiller Pond Dam is inadequate because the dam does not have the spillway capacity to pass the SDF, one half of the PMF, without overtopping. Overtopping of the dam carries with it the danger of a likely progressive failure of the dam. The present spillway capacity of the dam is approximately 35 percent of the PMF.

No definitive statement pertaining to the safety of the embankment can be made without acquisition of embankment material engineering properties, but based on the findings of the visual inspection, preliminary assessment of the static stability is that it is satisfactory.

b. Adequacy of Information

The information uncovered was adequate to perform hydrologic and hydraulic computations. The data was insufficient to perform even an approximate computation of the stability of the dam. A preliminary assessment of the dam could be made by visual observation only.

c. Urgency

The remedial measures and recommended actions along with a timetable for their completion are detailed below. All recommended action should be conducted under the supervision of an engineer who is experienced in the design, construction and inspection of dams.

7.2 Remedial Measures

a. Alternatives for Increasing Spillway Capacity

Alternatives for increasing spillway capacity are as follows:

1. Increase the embankment height of the dam thus permitting a higher discharge to pass.
2. Lower the spillway crest elevation.
3. Increase the effective spillway crest length.
4. A combination of any of the above alternatives.

b. Recommendations

1. Carry out a more precise hydrologic and hydraulic analysis of the dam within twelve months, to determine the need and type of mitigating measures necessary. If required, conduct a study of the means of increasing spillway discharge capacity and develop alternative schemes for construction. This should include the installation of headwater and tailwater gages. The ability of the dam to withstand overtopping should also be studied.

2. Construct a concrete headwall and apron at the outlet end of the discharge pipe within twelve months.

3. Remove the trees from the embankment slopes to avoid problems from roots. The area should then be seeded to develop a growth of grass for surface erosion protection. This should be done within twelve months.

4. Determine if the low-level outlet is operable, and if not institute remedial action to make it operable within twelve months.

The following additional action is recommended:

The owner should develop an emergency action plan (if one is not already available) outlining actions to be taken by the operator to minimize downstream effects of an emergency and establish a flood warning system for the downstream communities within three months.

c. O & M Procedures

The owner should develop, within one (1) year after formal approval of the report, written operating procedures and a periodic maintenance plan to insure the safety of the dam.
PLATES
LEGEND

TRIASSIC

Rb Brunswick Formation
Rdb Diabase

GEOLOGIC MAP
SCHILLER POND DAM

PLATE 3
APPENDIX A

CHECK LIST - VISUAL OBSERVATIONS

CHECK LIST - ENGINEERING, CONSTRUCTION

MAINTENANCE DATA
<table>
<thead>
<tr>
<th>Name Dam</th>
<th>Schiller</th>
<th>Pond Dam</th>
<th>County</th>
<th>Hunterdon</th>
<th>State</th>
<th>New Jersey</th>
<th>Coordinators</th>
<th>NJ-DEP</th>
</tr>
</thead>
</table>

- **Date(s) Inspection**: January 13, 1981
- **Weather**: Clear
- **Temperature**: 0°F

- **Pool Elevation at Time of Inspection**: 305 NGVD
- **Tailwater at Time of Inspection**: 294.5 NGVD

Inspection Personnel:
- **January 13, 1981**
 - William Birch
 - Thomas Moroney
 - Joseph Sirianni (Recorder)

- **February 3, 1981**
 - Thomas Moroney

OWNER/REPRESENTATIVE:
- **January 13, 1981**
 - William Schiller
 - R.D.1, Box 350
 - Hopewell, NJ 08525
EMBANKMENT

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE CRACKS</td>
<td>None noticed.</td>
<td></td>
</tr>
<tr>
<td>UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE</td>
<td>None noticed.</td>
<td></td>
</tr>
<tr>
<td>SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES</td>
<td>Some minor erosion on the downstream slope by the outlet pipe.</td>
<td></td>
</tr>
<tr>
<td>VERTICAL & HORIZONTAL ALIGNMENT OF THE CREST</td>
<td>Horizontal and vertical alignments appear good.</td>
<td></td>
</tr>
<tr>
<td>RIPRAP FAILURES</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
EMBANKMENT

VISUAL EXAMINATION OF EMBANKMENT

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTH EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Embankment is grass covered and in good condition. A small clump of evergreen trees growing at the junction of the embankment with the left end of the auxiliary spillway. One small tree growing at edge of the pond left of drop inlet.</td>
<td>Remove trees.</td>
</tr>
</tbody>
</table>

JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction of the embankment with the auxiliary spillway is in good condition.</td>
<td></td>
</tr>
</tbody>
</table>

ANY NOTICEABLE SEEPAGE

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>None noticed.</td>
<td></td>
</tr>
</tbody>
</table>

STAFF GAGE AND RECORDER

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>

DRAINS

<table>
<thead>
<tr>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>
OUTLET WORKS

VISUAL EXAMINATION OF CRACKING & SPALLING OF CONCRETE SURFACES IN STILLING BASIN

N/A - Main spillway (also outlet works) discharges directly into the downstream channel. Auxiliary spillway discharges onto existing ground and then into the downstream channel.

INTAKE STRUCTURE

Main spillway is concrete drop inlet with a valve and is in good condition.

N/A - Auxiliary spillway.

OUTLET STRUCTURE

A 72-inch corrugated metal pipe in good condition. There is no headwall at outlet end of pipe. Riprap of slope along sides of pipe is missing. There is minor erosion of slope on sides of pipe. Valve was not opened as hand crank was missing. Owner stated valve not used due to pond being stocked with trout.

Provide concrete headwall and apron. Determine if low-level outlet gate is operable.

OUTLET FACILITIES

None.

EMERGENCY GATE

None.
UNGATED SPILLWAY

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE WEIR</td>
<td>Main spillway is a concrete drop inlet with a valve. The spillway is in good condition. Auxiliary spillway is a grass channel.</td>
<td></td>
</tr>
<tr>
<td>APPROACH CHANNEL</td>
<td>The pond is the approach channel for both spillways.</td>
<td></td>
</tr>
<tr>
<td>DISCHARGE CHANNEL</td>
<td>Main spillway: 72-inch corrugated metal pipe, in good condition, is the discharge channel and low-level outlet. Auxiliary spillway: Grass covered channel in good condition.</td>
<td></td>
</tr>
<tr>
<td>BRIDGE AND PIERS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td>Observations</td>
<td>Remarks and Recommendations</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Monumentation/Surveys</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td>Observation Wells</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td>Weirs</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td>Piezometers</td>
<td>None.</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>
RESERVOIR

<table>
<thead>
<tr>
<th>VISUAL EXAMINATION OF</th>
<th>OBSERVATIONS</th>
<th>REMARKS AND RECOMMENDATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The slopes are flat to moderate. There are some trees growing along the left shore and a evergreen nursery on the back slope. There is no indication of slope instability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDIMENTATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None observed. Pond covered with ice.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Downstream Channel

<table>
<thead>
<tr>
<th>Visual Examination of Condition (Obstructions, Debris, etc.)</th>
<th>Observations</th>
<th>Remarks and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel in good condition well defined with no debris.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slopes of channel are about 2-feet high, steep and wooded. Surrounding area of channel is flat. Minor erosion of right bank just downstream of the outlet pipe.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approximate Number of Homes and Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are more than a dozen houses both sides of the downstream channel after it crosses under Rocktown-Lambertville Road approximately 600 feet downstream of the dam.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN OF DAM</td>
<td>Available on microfilm at NJ Department of Environmental Protection (NJ-DEP), 1474 Prospect Street, P.O. Box CN-029, Trenton, NJ 08625</td>
</tr>
<tr>
<td></td>
<td>Available at U.S. Department of Agriculture Soil Conservation Service (SCS) 1370 Hamilton Street, Somerset, NJ 08873</td>
</tr>
<tr>
<td>REGIONAL VICINITY MAP</td>
<td>Available. Hunterdon County Map and U.S.G.S. Quadrangle sheet for Stockton, N.J.</td>
</tr>
<tr>
<td>CONSTRUCTION HISTORY</td>
<td>No formal history exists, but can be deduced from available microfilm at NJ-DEP.</td>
</tr>
<tr>
<td>TYPICAL SECTIONS OF DAM</td>
<td>Available on microfilm at NJ-DEP and SCS files.</td>
</tr>
<tr>
<td>HYDROLOGIC/HYDRAULIC DATA</td>
<td>Limited data available at NJ-DEP and SCS files.</td>
</tr>
<tr>
<td>OUTLETS - PLAN</td>
<td>Available on microfilm, NJ-DEP and SCS files.</td>
</tr>
<tr>
<td>- DETAILS</td>
<td>Available on microfilm, NJ-DEP and SCS files.</td>
</tr>
<tr>
<td>- CONSTRAINTS</td>
<td>None.</td>
</tr>
<tr>
<td>- DISCHARGE RATINGS</td>
<td>Not available.</td>
</tr>
<tr>
<td>RAINFALL / RESERVOIR RECORDS</td>
<td>Not available.</td>
</tr>
</tbody>
</table>
CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
(continued)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN REPORTS</td>
<td>None available.</td>
</tr>
<tr>
<td>DESIGN COMPUTATIONS</td>
<td></td>
</tr>
<tr>
<td>HYDROLOGY & HYDRAULICS</td>
<td></td>
</tr>
<tr>
<td>DAM STABILITY</td>
<td></td>
</tr>
<tr>
<td>SEEPAGE STUDIES</td>
<td></td>
</tr>
<tr>
<td>MATERIALS INVESTIGATIONS</td>
<td></td>
</tr>
<tr>
<td>BORING RECORDS</td>
<td></td>
</tr>
<tr>
<td>LABORATORY FILLD</td>
<td></td>
</tr>
<tr>
<td>POST-CONSTRUCTION SURVEYS OF DAM</td>
<td></td>
</tr>
<tr>
<td>BORROW SOURCES</td>
<td></td>
</tr>
<tr>
<td>SPILLWAY PLAN - SECTIONS - DETAILS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Available on microfilm, NJ-DEP and SCS files.</td>
</tr>
<tr>
<td>ITEM</td>
<td>REMARKS</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>OPERATING EQUIPMENT PLANS AND DETAILS</td>
<td>None available.</td>
</tr>
<tr>
<td>MONITORING SYSTEMS</td>
<td>None available.</td>
</tr>
<tr>
<td>MODIFICATIONS</td>
<td>None</td>
</tr>
<tr>
<td>HIGH POOL RECORDS</td>
<td>Not kept.</td>
</tr>
<tr>
<td>POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS</td>
<td>None</td>
</tr>
<tr>
<td>PRIOR ACCIDENTS OF FAILURE OF DAM - DESCRIPTION - REPORTS</td>
<td>None known to exist.</td>
</tr>
<tr>
<td>MAINTENANCE OPERATION RECORDS</td>
<td>None known to exist.</td>
</tr>
</tbody>
</table>
APPENDIX B

PHOTOGRAPHS
Photo 1 - View of dam taken from right bank of auxiliary spillway. Note clump of trees on embankment in right of photo. (Photo taken on January 13, 1951.)
Photo 2 - View of discharge channel of auxiliary spillway. (Photo taken on January 13, 1981.)

Photo 3 - View of downstream slope looking towards left end of dam. Note low-level outlet pipe in the lower right. (Photo taken on February 3, 1981.)
Photo 4 - View of upstream slope of dam looking towards the right end. (Photo taken on January 13, 1981.)

Photo 5 - View of drop inlet (main spillway) and pond from the top of the embankment. (Photo taken on January 13, 1981.)
Photo 6 - View of downstream channel and outlet pipe from top of the embankment. (Photo taken on January 13, 1981.)

Photo 7 - View of 72-inch C.M.P. outlet pipe. Note minor erosion on sides of pipe. (Photo taken on February 3, 1981.)
Photo 8 - View of downstream channel crossing under Rocktown-Lambertville Road. (Photo taken on January 13, 1981.)

Photo 9 - View of channel and houses downstream from Rocktown-Lambertville Road. (Photo taken on January 13, 1981.)
APPENDIX C

SUMMARY OF ENGINEERING DATA
Check List

Hydrologic and Hydraulic Data

Engineering Data

Name of Dam: **SCHILLER POND DAM**

Drainage Area Characteristics:
- **1.4 square miles**

Elevation Top Normal Pool (Storage Capacity):
- **305 NGVD (18 acre-feet)**

Elevation Top Flood Control Pool (Storage Capacity):
- **N/A**

Elevation Maximum Design Pool:
- **312.3 NGVD (SDF pool-83 acre-feet)**

Elevation Top Dam:
- **311.5 NGVD (73 acre-feet)**

Spillway Crest:

- **Main:**
 - **Elevation:** 305 NGVD
 - **Type:** Concrete drop inlet
 - **Width:** 10 feet
 - **Length:** Entire length

- **Auxiliary:**
 - **Elevation:** 307.5 NGVD
 - **Type:** Natural channel
 - **Width:** 20 feet
 - **Length:** 60 feet

Outlet Works:

- **Type:** 72-inch C.M.P.
- **Location:** Upstream face of spillway
- **Entrance Inverts:** 294.5 NGVD
- **Exit Inverts:** 294.0 NGVD
- **Emergency Draindown Facilities:** 18-inch valve 72-inch C.M.P.

Hydrometeorological Gages:

- **Type:** None
- **Location:** None
- **Records:** None

Maximum Non-Damaging Discharge: 2,207 cfs at elevation 311.5 NGVD
PLATE 1, APPENDIX D

SCHILLER POND DAM
DRAINAGE BASIN

Scale: 1" = 2,000 FT.
Area of the lake at normal pool level:
(Area measured from U.S. G.S. quad at EL = 305.0 = 5.5 Acre.

Height of the Dam = 18.5 ft (From File)

Small Dam, High Hazard
S.D.F. = 1/2 PHI

Hydrologic analysis:

D.A. = 1.37 sq. miles

Inflow hydrograph at reservoir was determined using HEC-1 DB program. Inflow routed through the reservoir.

Elevation Area - Capacity Relationship

Information obtained from U.S. G.S.

Elevation | 294 | 305 | 320
Area (AC) | 0 | 5.5 | 23.4

HEC-1 DB Program will include storage capacity from surface area and elevation.
Determination of PMP

Probable Maximum Flt. (inches) for an area of 10 square miles and 6 hour duration = 26"

D.A = 137 sq. miles

Zone = 6

The Corps of Engineers recommended that 20% reduction be applied to the report value for a 10 sq. miles drainage area in order to provide for the imperfect fit of the storm hydrograph patterns to the shape of the particular basin.

Because of the unlikeliness of a perfect strike of a storm center on any particular small basin, no variation is assumed between point and 10 square miles precipitation

\[P_{N,P} = 26" \times (1-0.2) = 20.8" \]

This adjustment is made by the Committee

Depth area duration relationship:
Percentage to be applied to the above 6 hr PMP

- 6 hr = 100%
- 12 hr = 108%
- 24 hr = 117%
- 48 hr = 127% (Not necessary)

Initial Mc.: Initial = 1.0 inch
Cust. Initial infiltration = 0.1 inch/hr
DETERMINATION OF T_e

1. Estimating T_e from velocity estimate and watershed length (Ref. Design of Small Dam: Fig 30)

| Overland Flow | $\frac{473 - 360}{2400} \text{ m/s} = 0.47 \text{ m/s}$ | 3 m/s | Remarks
| Natural channel with well directed (Lake excluded) |
| Reach L | $\frac{360 - 365}{2950} \text{ m/s} = 0.19 \text{ m/s}$ | 1.54 m/s | Natural channel with well directed (Lake excluded) |

$T_e = \frac{2400}{3 \times 3600} + \frac{2950}{1 \times 3600} = 1.04 \text{ hrs.}$

2. Estimating T_e assuming same vel of 1.54 m/s

$T_e = \frac{5350}{1.5 \times 3600} = 0.99 \text{ hrs}$

3. From Nomograph of design of Small Dam (S.C.S. Guide) - same as Kirkpich

$T_e = \left(\frac{11.9 - 1}{H} \right)^{3.85}$ \(L \text{ in miles} = 1.01 \text{ miles} \)

$T_e = \left(\frac{11.9 \times 1.01}{16.8} \right)^{3.85}$ \(H = 16.8 \text{ ft} \)

$T_e = 1.36 \text{ hrs.}$

Use $T_e = 1 \text{ hrs.}$

$L_{aq} = 1.6 \text{ yrs.}$ $T_e = 1.6 \times 1 = 0.6 \text{ hrs.}$
DAM & SPILLWAY

DAM

Spillway

Emergency

K 220'

Box type Spillway

Water entering through all four sides of the spillway:

- Total length of spillway main = 28'
- Elevation = 305.0 ft MSL

Elevation shown in S.C.S. drawing are added with 202 ft to get the actual elevation comparable to U.S.G.S.

- Total effective length of emergency spillway = 60'
- Elevation of Aux. Spillway = 307.4 ft MSL

- Length of Dam = 220'
- Ave. ft of Dam = 311.5 ft MSL

Outlet 6' & 8'
Drop inlet spillway:

\[E/H \text{ length} = 28' \]

\[Q_s = C_s \cdot L_s \cdot H_s^{1.5} = 3.3 \times 28 \cdot H_s^{1.5} = 92.4 \cdot H_s^{1.5} \]

Considering flow through the tube (2' x 2')

\[e_0 = \left(C_d \cdot A_0 \cdot \sqrt{2g \cdot H_0} \right) \]

\[= 1.63 \left(\frac{T}{A_0^2} \right) \sqrt{2 \cdot \sqrt{H_0}} \]

\[= 1.63 \sqrt{H_0} \]

Where \(H_0 \) = Difference of elevation between MW and TW
Tailwater assumed to be \(= 296 \text{ FT MSL} \)

Invert of tube \(= 294 \text{ FT MSL} \)

| Res. Ed | Head over spillway | \& through spillway | Head for critical flow | Flow through critical line | \[e_0 = 1.63 \sqrt{H_0} \] |
|---------|--------------------|----------------------|------------------------|---------------------------|
| 305 | - | - | - | - | - |
| 306 | 1 | 92.4 | Skill 10 | 452 |
| 307.4 | 2.4 | 343 | Control 11.4 | 482 |
| 309 | 4 | 739 | 13 | 515 |
| 311.5 | 6.5 | 155 | 563 | 590 |
| 313 | 8 | 17 | 623 | 655 |
| 315 | 10 | 19 | 686 | 715 |
| 317 | 12 | 21 | 770 | |
| 319 | 14 | 23 | | |
| 321 | 16 | 25 | | |
| 325 | 20 | 29 | | |
Stage Outflow Relationship:

1. Flow through Drop inlet Q0 (Stillway)

2. Flow through Emergency Spillway

\[QA = 3.3 \times H_A^{1.5} = 3.3 \times 60 = 198 \text{ m}^3 \text{s}^{-1} \]

3. Flow through Dam

\[QD = 2.75 \times H_D^{1.5} = 2.75 \times 220 = 605 \text{ m}^3 \text{s}^{-1} \]

Stage in Reservoir (m)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Stillway</th>
<th>Emergency Stillway</th>
<th>Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_A</td>
<td>198 H_A</td>
<td>605 H_D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage (m)</th>
<th>365</th>
<th>366</th>
<th>367.41</th>
<th>368</th>
<th>369</th>
<th>371.5</th>
<th>373</th>
<th>375</th>
<th>377</th>
<th>379</th>
<th>381</th>
<th>383</th>
<th>385</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q0 (m^3/s)</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>16.44</td>
<td>0</td>
<td>0</td>
<td>2.267</td>
<td>4.325</td>
<td>4.373</td>
<td>6.348</td>
</tr>
<tr>
<td>QD (m^3/s)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9.15</td>
<td>11.1</td>
<td>0</td>
<td>111</td>
<td>1.325</td>
<td>3.733</td>
<td>3.733</td>
<td>14.348</td>
</tr>
<tr>
<td>Total (m^3/s)</td>
<td>0</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17.6</td>
<td>14.620</td>
<td>15.5</td>
<td>38,029</td>
<td>41.5</td>
<td>599</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Table continues with more data]
Reach 1:
L = 800 ft
S = 0.095

Reach 2:
L = 2,000 ft
Length of Reach = 1,200
S = 0.0125

CROSS SECTION AT D/S REACH
Overtopping Potential

\[\% \text{ of PHF} \]

Outflow \rightarrow \text{CFS}

Overtopping of Dam occurs at El 311.5

\[\alpha = 2207 \left(\frac{35}{\text{PHF}} \right) \]
BREACH ANALYSIS

Assume breach begins to develop when reservoir stage reaches above the dam.

Time of Failure = 16.25 hrs.

Top of Dam = 311.3

Assume Vertical Slope

El = 297.0

Effect of breach was analyzed at 800 ft 0/5 of Dam.

Max. Stage without Dam break = 285.1

Max. Stage with Dam break = 285.7

0.6 feet increase = 0.4 psi

Effect of breach was also analyzed at 2000 ft 0/5

Max. Stage without Dam break = 271.7

Max. Stage with Dam break = 272.5

There will be 0.8 ft increase in stage due to Dam break at 0.4 psi.
Drawdown time computation

When the gate is open
Normal Velocity \(V = \frac{Q}{A}\) at \(E_1 = 305 \)

\[h_{flow} = \frac{Q}{2gA} \times t = \frac{2 \times 6.45}{2 \times 9.81 \times 2} = 2.74 \text{ sec} \]

\[\Delta = \frac{C}{V^2} \]

\[C = 0.62 \]

\[A = \frac{V^2}{2g} \]

Assume Tailwater Elev. \(E_2 = 299.5 \)

\[A_2 = \frac{A_1^2}{A_1} \]

\[A_1 = \frac{A_2 \times 5.5}{11} \]

\[h_1 = 11 \]

\[\text{Drawdown time} = \frac{Vol \times A_F 	imes 42560}{8 \times 3600} = 12.1 \frac{Vol}{A_F} \]

<table>
<thead>
<tr>
<th>EL</th>
<th>AC</th>
<th>AC</th>
<th>AF</th>
<th>FT</th>
<th>CYS</th>
<th>CYS</th>
<th>HRS</th>
<th>HRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>197</td>
<td>3:07</td>
<td>3:07</td>
<td>1.43</td>
<td>3.5</td>
</tr>
<tr>
<td>304</td>
<td>4.5</td>
<td>4.0</td>
<td>4.6</td>
<td>176</td>
<td>2:31</td>
<td>5:36</td>
<td>1.44</td>
<td>6.75</td>
</tr>
<tr>
<td>303</td>
<td>3.5</td>
<td>3.7</td>
<td>3.7</td>
<td>152</td>
<td>2:10</td>
<td>5:18</td>
<td>1.47</td>
<td>9.82</td>
</tr>
<tr>
<td>302</td>
<td>2.88</td>
<td>3.27</td>
<td>3</td>
<td>152</td>
<td>2:10</td>
<td>5:18</td>
<td>1.47</td>
<td>9.82</td>
</tr>
<tr>
<td>301</td>
<td>2.10</td>
<td>2.54</td>
<td>2</td>
<td>164</td>
<td>2:56</td>
<td>1:24</td>
<td>1.57</td>
<td>12.95</td>
</tr>
<tr>
<td>300</td>
<td>1.62</td>
<td>1.91</td>
<td>1</td>
<td>181</td>
<td>3:17</td>
<td>10:22</td>
<td>1.57</td>
<td>16.5</td>
</tr>
<tr>
<td>299.5</td>
<td>1.02</td>
<td>1.75</td>
<td>1.25</td>
<td>184</td>
<td>2:53</td>
<td>15:36</td>
<td>1.59</td>
<td>19.95</td>
</tr>
</tbody>
</table>

Time of drawdown without inflow = 10.74 \(\approx 11 \) hrs.

Time of drawdown with 100% inflow = 20 hrs.
MULTI-INDEX TO BE PERFORMED

COHAN'S MATTING EDITION

UNAVERAGED COMPUTATION

MP-APM DATA

0.00, 20.00, 120.00, 184.00, 177.00, 0.00, 0.00, 0.00

ASEAN COMPUTED BY THE PROGRAM IS 0.400

LOSS IN TA

Y: 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

USE MYOGRAPHER DATA

THE 0.00 LASS 0.00

REPRESSION DATA

SYSLA = 1.00 GREEN = -0.05 BROAD = 3.00

USE MYOGRAPHER IN END OF REPRESSION LASS FOR 0.50 HOURS. LASS PLOT VOLT 1.00

END-POWER FLOW

DISCHARGE

Table: Data of Dam Safety Analysis

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Elevation</th>
<th>Fall/Waft</th>
<th>Spillway Erosion</th>
<th>Top of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>111.10</td>
<td>305.00</td>
<td>311.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.50</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Reach</th>
<th>Maximum Time</th>
<th>Reach</th>
<th>Maximum Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Elevation: 111.10
- Fall/Waft: 305.00
- Spillway Erosion: 311.50
- Top of Dam: 2.00
- Reach: 1.00
- Maximum Time: 0.50