
DA 76DEPARTMENT OF DEFENSE REQUIREMENTS FOR HIGH ORDER
COMPUTER PRO--ETCIU)

7ADJNO
76EPARTMN OF TEUDENSECRETRYDEENSE

FOR HGRER
COMUHR-ETC

U

UNCLASSIFIED NL

mE 'hE/lhEE//hhEE
EhEEEElhhElhhE
IIEEIIEEIIEEI
EIIIEIIEEEEIIE
""7lllll~

-N_

DEPARTMENT OF DEFENSE

REQUIREMENTS FOR HIGH ORDER

COMPUTER PROGRAMMING LANGUAGES.

"TINMAN".

A

.- I

' /1
JUNE 1976

81 6 19 001

OFFICE OF THE UNDER SECRETARY OF DEFENSE
WASHINGTON. .C. 20301

RES.ARCH AND
CNOINEERING

Dear Friend of Ada:

Thank you for your interest in Ada.

Your name has been added to the Ada mailing list, and

occasionally you will receive information from the Ada Joint

Program Office concerning the status of the Aa progrim.

Under the Freedom of Information Act, the Ada Joint Program

Office (AJPO) mailing list is being made available on the

USC-ECLB computer. If you object to inclvsiQn of your name on

this public list, please inform the AJPO in writing. To help
keep the list up- to-date, please notify the AJM of address

changes.

Sincerely,

Larry E. Druffel, Lt. oDi., USAF
Director, Ada Joint Pro#W.m,'ffiC.

This "Tinman" document represents the requirements of the Department of
Defense for High Order Computer Programming Languages. This is the position of
the representatives of the Military Departments, as presently formulated; however,
it should be regarded as a living document to be modified as requirements become
more specific, as technical capabilities are better appreciated, or as expansion of
the explainations becomes indicated. Comments are, therefore, actively solicited
on all levels and may be addressed to the Chairman of the High Order Language
Working Group:

Lt. Col. William A. Whitaker
Defense Advanced Research Projects Agency
1400 Wilson Boulvard
Arlington, Virginia 22209

bF Z

*na the]ora saia. ,0ehola. the
people is one, aia theg have nil
one ltngonige; ana this them begin
to 8o: ana now nothing will be
restrainer (rot them, which thea
have imagined to do.

4*entesis X1 0

* --- --

1. Introduction

Like most large computer users, the United States Department of Defense has
been plagued with a proliferation of high order languages and incompatible systems
serving the "same" language. The DoD's problems are, in principal, no different from
the rest of the computer user community; they are simply larger as is the use of
computers. Further, DoD) systems are often individually very la; ge and very long
lived. Because of the intimate integration of the computer resources with the rest of
a large defense system, it has not been possible to change computer subsystems with
frequency which might characterize a commercial operation. As a result,
maintenance of the computer system is both long term and dynamic, and maintenance
in many cases involves modification of the system to respond to new threats.
Defense systems are often composed of interacting but independently developed
subsystems, sometimes brought into existence over a period of years, all of which
must be served by a common but evolving hardware base. In such an environment,
the Department of Defense finds itself spending an increasingly larger fraction of its
systems resources on software. High order language commonality and the resulting
flexibility would provide a powerful tool for reducing the high cost of software in the
DoD.

With each of the Military Departments studying this problem and making
proposals for common languages, it was clear that the greatest benefit could be
reaped by providing languages common across the Department of Defense. In
January 1975, a DoD) High Order Lanugage Working Group (HOLWG) was chartered
by DDR&E with representatives from the Military Departments to investigate the
requirements and specifications for programming language commonality, to compare
these with existing approaches, and to recommend adoption or implementation of the
necessary common language or languages. Until the matter is resolved, the DoD) will
not support any further implementation of new high order languages in R&D
programs.

-The first task of the HOL Working Group was to formulate a set of
requirements consistent with the levies of the Military Departments. This effort
proceeded as follows:

While there is no intent to replace the already standard COBOL and FORTRAN
in their field of application, initially there was no reason to unnecessarily restrict the
requirements to only those areas such as real-time applications or weapons systems
where the major problems are, although this area must receive emphasis.
Therefore, requirements were solicited from as broad a base as possible, to be
prioritized later as required. Further, inquiries were not restricted to those
programs presently using high order languages, rather, a major thrust of the effort is
to provide HOL's to meet the requirements of those who are now constrained to use

an assembly language for lack of a suitable HOL._

7 X7I

2

A major problem was to formulate the inquiry in such a way that meaningful
requirements would result. On the one hand, one wishes to avoid broad generalities
such as the obvious goals of efficiency, ease of coding, readability, etc., which, while
are very real goals, are insufficiently quantified to provide any detailed guidance. On
the other hand, to over specify the requirements at the level of individual language
features would merely formalize past idiosyncrasies and magnify distinctions which
do not represent fundamental differences. It has proved to be impassible to define
rigorously the exact level requirement desired; and, therefore, a "strawman" of
preliminary requirements was established to define this level by illustration. The
09strawman" was not intended to be complete or consistent, rather it was deliberately
provocative in order to elicit the widest possible comment. It was forwarded to the
Military Departments and, by them, to their various operating organizations. In
addition, it was distributed to other government agencies, to the academic community,
and to industry, through industry organizations and military contractors, and by direct
inquiry. A number of individuals outside the U.S. were also solicited for comments.
Hundreds of individuals and organizations have had an opportunity to examine this
document and provice inputs, the bulk of such inputs were positive and useful.
Negative comments were almost universally based on a misunderstanding of the
status of the document. Believing this to purport to be a complete and consistent set
o f requirements some correctly pointed out that it was no such thing.

--The results of four months of such input were put together in a more concrete
form, one which could then pretend to represent a fairly complete set of
requirements, although still a tentative set. This document was called
the"woodenman, " and il, too was distributed widely. It provided a more rigorous
framework for specific comment. On the basis of all inputs and the official responses
from each of the Military Departments, a more complete set of requirements has
evolved and is presented here as a "tinman." This document represents a set of
requirements for high order computer programming language consistent with the
input from the Military Services.

3

11. Definition

A high order language (HOL) is one which provides compression of a
computer program such that one HOL statement represents many machine language
instructions.

Experienced programmers in the early 50's found that they would generate
similar instruction sequences often enough that it proved useful to either set aside
duplicated blocks of cards to be inserted in the program as required, or in a more
automated fashion, to develop macros which might be defined once to the assembly
program and thereafter invoked by shorthand notation. From such beginnings high
order languages were evolved as a method for speeding up programming. The
extension and development of this technique led to the more powerful concept of a
higher level of programming language.

The first truly successful high order language was FORTRAN. It was
developed for the IBM-704 and in the original version most of its constructs were
identical to those commonly employed by machine language programmers for that
machine; in some sense, it was inspired by this specific machine. But in addition, the
constructs were sufficiently general that it could be adapted fairly easily to other
machines and the practical reality emerged the first time of constructing a program
which was machine independent, even across manufacturers. So powerful was this
concept at the time that in the early 60's the use of such high order languages was
heralded as automatic programming.(Annual Review of Automatic Programming,
Pergamon Press, Oxford, 1960, 1961, 1963, 1964, etc.)

In 1959 a meeting was held in the Pentagon to establish a common
busi ness- oriented language, the outcome of which was COBOL (Programming
Languages: History and Fundamentals, Jean E. Sammet, Prentice-Hall, Edgewood
Cliffs, N.J. 1969). Other similar attempts at fairly general languages such as
ALGOL, as well as those designed for a more specialized users such as CMS-2 or
JOVIAL have found their somewhat smaller niche in the marketplace.

* Even higher level specialized languages have come into existence such as
GPSS or SIMSCRIPT for simulation programs, or ATLAS for automatic test equipment.
These are problem-specific applications packages which may be generated through
the use of one of the other high order language programming languages and are not in
the range of the present effort.

By high order language, this report will mean a computer programming
language of the general level of COBOL or FORTRAN primarily designed for
programmers to communicate with computers. It is non-problem specific and should
be able to exercise almost all of the capability normally used by those programming
in machine language and at a reduction of an order of magnitude in the number of

4

*statements necessary. The language is relatively machine independent,
representing possible logical constructs rather than specific hardware function, and
is translated by a compiler into machine code to be run on a target machine.

.ITT

--

5

III. General Goals

In this section are listed the general goals of a DoD software program. Some
of the ways in which these impact on the detailed desired language characteristics
set out in the next section are illustrated.

These goals, and the point of view they indicate, are generated by the
chalenges of the Defense Systems Community which is concerned with what may be
loosely termed Embedded Computer Resources. They have a fair overlap with, but
a different emphisis from, those of the Automatic Data Processing Community.

There is no real attempt to order or weigh these goals at this point nor is
there any claim that the list is complete. It is merely a very brief summary of
discussions taking place during the evolution of the requirements.

A.vI

6

COST

The overriding goal of all technology and standardization programs are to
reduce the cost of Defense systems. Software is an area in which there are great
opportunities in cost savings which can be brought about through actions of the DoD.
Computer hardware savings are much more difficult to generate. Since the
Department of Defense represents only a very small fraction of the computer
hardware market, it must effectively content itself with the off-shoots of the
mainstream of computer technology. On the other hand, the DoD is the main
customer for software; and the major support for basic computer science and
technology. It is, therefore in a position to influence the state-of-the-art and to
materially change the software development process. A number of managerial
initiatives to this end are presently under development. Many of them, including the
setting up of libraries for software exchange, building up of a tool environment for
improved software production facilities, distribution of government furnished tools,
encouragement of the use of high order languages for maintenance ease, etc., depend
upon, or will be facilitated by, restriction to a minimal number of common high order
languages.

Much of each new software system is repetitive of processes that have been
written before. A few new ideas may be added, linkages may be changed, but the
bulk of the work is not new. Yet, most systems are started from scratch with little
dependence on previous work other than what the individual programmers might
remember. There is little high order language commonality. A new language or
dialect , or at least an incompatible compiler is often generated for each project and it
is impossible to sustain the creation of a truly powerful production environment.

Facilities are often locked into one particular computer because of the great
expense of transferring software to the new machine. There are several proposals
and on-going work in the DoD concerning the facilities for the translation of software
just in a commercial-like environment. This problem and its implications may be far
more serious in some of our more specialized applications. A fully supported and
controlled common language facility would eliminate most of these difficulties and
provide more flexibility to the managers to computer resources.

-4W

7

RESPONSIVENESS AND TIMELINESS

By its very nature, software is plagued with underestimates. It represents a
major fraction of the total systems capability, but is physically insignificant. There
are no power requirements, no drop tests, no critical materials consumed. It is
basically unsubstantive, at best, a few bits on a magnetic tape. It is by nature easy
and quick to change and, by implication, it is difficult to imagine how it can be lengthy
to produce. While it is easy to change, it is sometimes very hard to make it correct,
as opposed to just different. As a result, estimates of the time to complete a project
are often overly optimistic, sometimes so much so that the hardware is ready before
the software. The cost of such delays is not just the extra man hours to bring the
software into shape, but must be computed on the loss of the entire system during the
period of delay. The technology then does not exist for accurately estimating
software schedules other than by experience and analogy. Language can only
contribute to this in that it is a part of a stable software production environment.

An actual reduction in the time to produce software would be possible if the
language reduced the coding time of the project. The mere existence of the high
order language normally reduces this coding time by a fair amount and certain
language features may act to improve this. One must remember, however, that the
coding portion of a large project normally represents only ten or fifteen percent of
the total time involved and the promotion of writing ease must, therefore, be
weighted with other portions of the program production cycle. A major fraction of
this cycle, sometimes up to half, is involved with debugging and checking and,
therefore, the thrust to more reliable code must be stronger.

Specification and design is a similarly large fraction of the effort and factors
such as modularity which simplify the design are also important. The overriding
consideration must, however, be the possibility of eliminating most of the effort
altogether through reusing portions of both code and design which have been done
before. The ability to draw upon large amounts of past work, either through
libraries, previous experience, or automatic programming tools, offer the greatest
possibility for payoff in timeliness and responsiveness.

It must be pointed out that this thrust towards transportability emphasizes
- language transportability because the elements to be transported are individual

subprograms and routines, not necessarily systems concepts or coupling schemea.
It is the lack of acceptance of the possibility of using previously designed and
certified piece parts which separates present day hardware and software methods.

Au --- er

RELIABILITY

Perhaps the most characteristically military requirement for DoD software is
reliability. While all gradations of this exist in the DoD, certainly the combination of
extreme complexity in systems, some almost untestable, and the life and death
implications, not just of individuals but of millions, must be unique. This reliability
requirement is reflected in verification, validation, and certification during the
production process, as well as back-up in alternate systems, safeguards, etc. A
significant portion of the software cost is tied up ;,n this thrust, although often very
subtly. Language characteristics which promote the production of reliable code
must be weighted very highly.

Commonality allowing the reuse of previously certified blocks of code is also
of importance. Unfortunately, the technology does not exist to automatically prove
the correctness of code at a usable level. Should it eventually be possible to prove
that a code will do exactly what it is intended to do and also, as in the security
question, will not do anything that is not intended, the language features which make
this possible would have very high priority in the DoD. Until then, perhaps the best
we can do is make available facilities for investigation and experiments in this
direction.

Other features promoting reliability in the DoD programming environment,
would be simplicity and unambiguity of the language and readability of the constructs.
It has been suggested that certain new programming techniques inherently produce
better and more reliable code. A language should make it possible to use such
techniques, although the brunt of enforcement must be on the programming
management environment.

- 1---4.

9

MAINTAINABILITY

A major portion of Defense cost in software systems occurs during the
maintenance phase. These systems are often very long lived, which is to be
expected from their size and complexity and interaction with other systems. They
must be kept viable for upwards of twenty years during which time major changes
can take place in the threat, the employment concept, and even portions of the
hardware. As a result, maintenance is often a blanket for continued development
and improvement.

At the present time the statistics are somewhat deceptive in this area. On
the basis of perhaps inadequate data, one would estimate that twice as much is now
being spent on development as on maintenance. However, this figure is badly
distorted in that the largest systems are still under development, while those in
maintenance were those produced in much less ambitious times. The inventory is
still growing rapidly; when it stabalizes,one might expect to see a reversal of the
ratio. In most individual systems, the Operations and Maintenance costs exceed
those for Development and Acquisition by several times.

Over the maintenance period, the responsibility for the program will pass
through many hands both individually and corporately, between contractor and
government organizations. Over time and with each transition, knowledge is lost.
The more readable and definitive the program, the better knowledge will be
transmitted. Transportability of the main program is usually not a question in this
phase, but transportability in machine independence of the tools necessary to
maintain and support that program are vital as the facilities used in this maintenance
will change much more rapidly than will the main system hardware. Likewise, one of
the main tools is the personnel involved, Reduction of the total number of languages
with which one must work with will increase the efficiency and the reliability of the
maintenance effort. Documentation of all sorts is most important in this phase.
Whatever characteristics of the language that promote or support documentation,
internal or external, will contribute to maintainability. A certain amount of
self -documentation results just from the use of a high order language. Modularity
and structured programming can further aid. Modern techniques in this area must be
available.

- ',..----.- --. .- . -.

10

TRAINING

Training is a difficult factor to quantify. Formal courses are only a very small
fraction of the training that a programmer gets. The bulk of it is in the form of
on-job-training or simply experience. In many cases, for instance, scientific
programming, the training is woefully inadequate or even non-existent. The
disparity in the productivity between programmers may, in many cases, be traced to
inadequate training. Better than the productivity measure would be the cost
resulting from poorly written programs. Reduction of the number of languages in use
would simplify the training burden.

It might be argued, particularly by expert programmers, that transitioning to a
new language is fairly simple and should only take a few days of study and practice.
They would then argue against paying any penalty. Unfortunately, a census of the
active programmers on DoD projects, whether in-house or contract, would uncover
only a small minority of such versatile experts. The average programmer is often
tied to a single language and, at that, not completely proficient in its techniques and
tools.

The training burden would also argue for a simple language with a minimum of
unambiguous constructs. Ideally, the constructs would fail soft so that ignorance of a
facility would simply deny that facility and not result in unexpected side affects.

TRANSPORTABILITY

One of the two main technical advantages of high order languages in general is
transportability, sometimes termed "machine independence." The advantage of being
able to write a program in sufficiently general form that it could be compiled on to
more than one computer is appealing for a number of reasons. One can transfer
capabilities developed in one project to another working on different equipment, and
one can expect greater lifetime for software when it can be carried on from one
generation of machine to the next in the same installation. Both of these advantages
are clear cut and everyone with a few years of software experience has its own
examples to cite in this regard.

The language requirements associated with transportability depend on the
situation. In the very early days of SHARE, the only really large-scale computer was
the 704 and a great deal of interchange took place for programs written with fairly
standard interfaces in machine language. This was entirely adequate for that time.
The present diversity of machines requires a different technique. The use of high
order language and compiling down to machine code makes a certain amount of
machine independence possible but not necessarily inevitable. Any good high order
language should lend itself to efficient compilers for most any machine. With
appropriate linking mechanisms, programs from various languages could be put
together as required. Unfortunately, the practical world intervenes and the
production of good compilers for every language and every machine is not a
reasonable expectation, nor is sufficient familiarity on the part of majority of
programmers with a large number of languages. To make the overall software
environment relatively machine independent therefore requires a minimal number of
high order languages with reasonably general constructs and active support for wide
availability of tools and compilers. This would further suggest that high order
language compilers written in that high order language would be most appropriate.I

One of the snares that has appeared in the past inhibiting transportability has
been the occurrence of incompatible implementations of a single high order language.
A language might be insufficiently or ambiguously specified such that different
implementers making decisions in an uncontrolled fashion produce incompatible
implementations. Further, each one may have his own ideas for additions to the
defined language or perhaps may invoke subsets leaving out more difficult to
implement or momentarily unnecessary features. We have examples of literally
dozens of different implementations of a single language. These are the cruelest
mockery of language commonality. Differences are sometimes so subtle as to be
difficult to find and lead to undiscovered catastrophes. Such experiences give
programmers an almost paranoid skepticism of claims of transportability. To make
transportability a reality will, therefore, require not only a rigid and unambiguous
language specification, but control or denial of subsets and supersets and rigorous
certification of all implementations. It will further require the widespread avail ablity
of such certified compilers for many machines.

12

The payoff from transportability could be enormous. Many programming
chores are simply redoing things which have been done before. Each project
usually only adds a small fraction to the sum total of knowledge. If it could draw
upon past work, cost, timeliness and, reliability, would all be markedly improved. So
far from reality is this today that the techniques involving libraries, etc., have not
been worked out. A common high order language is simply one step, albeit an
important one, towards this goal.

13

READABILITY/WRITABILITY

The other major advantage initially claimed for high order languages was that
they were easier to read and write, being closer to natural language than is machine
code. Claims in this direction were sometimes carried to an extreme and some were
promoted so highly that their advocates would have you believe that the coder need
not know anything about the machine, simply write out the requirements in English.
History does not always support these claims. Many such languages advocated on
this basis now are the ones who have the most specialized programmers as their
users. The DoD environment is sufficiently large and specialized that the allocation
of personnel specifically for software is the rule anyway and there is no strong
requirement to eliminate other s~pecialists in this area. This is in contradistinction to
a very small commercial firm which may have insufficient demands to justify a
full-time programming staff.

Our requirement for readability and writability is therefore primarily among
specialists. The desire to communicate with a computer system in natural language
is an entirely different one in the DoD and involves query languages or applications
programs outside the scope of this high order language effort.

Readability is clearly more important to the DoD than writability. The
program is written once, but may have to be read dozens of times over over a period
of years for verification, modification, etc. This is certainly true all weapons systems
applications and even most of our scientific and simulation programs are very long
lived. This requirement is viary much different from one which might be generated,
for instance, in a university environment when a program may have a life of only a
few months and a single person working on it.

Ease of writing is not an inconsiderable goal but one which may be promoted
through intelligent terminals, preprocessors, interactive systems, etc. The language
evaluation should favor readability where conflict arises.

14

EFFICIENCY

Efficiency is probably the one overriding consideration on which high order
languages stand or f all. Whether it be in runtime speed or memory requirements,
these quantifiable costs of using a high order language in preference to machine
language or assembly code is almost universally cited as reason for rejecting HOL in a
project. Often a detailed study of the matter is not accomplished, so strong do
feelings run on this subject. Many changes have taken in place in the technology in
recent years so as to reduce the importance of this matter, but it is still suct, an
emotion-charged issue that it must be recognized as the principle customer concern.

Much of the pressure that existed some years ago towards efficiency is no
longer relevant. In former times the cost of memory was such a large fraction of the
total system expenditure that it might seem reasonable to sacrifice many other
advantages in order to obtain memory efficiency. This can no longer be said to be
the case. Software, particularly the maintenance portion, is becoming much more
important than the hardware. Hardware costs are falling at such a rate that the
change in technology over just a few months can decrease the effective cost of
memory enough to offset any loss in efficiency, while the cost of going to machine
code mnight result in a much longer delay in developing the program. Likewise, in
speed there is often a penalty to pay which is invariably judged so high, often on the
basis of experience with bad language implementations, that is common folklore that
"HOL cannot be used in real-time applications" or that one must at least have the
capability of dropping down into machine code for "time-critical" portions of the
system. Yet the cost of increasing the central processor hardware capability by
some appropriate amount may be far less than the software burden incurred.

While the cost arguments for HOL are valid, they do not take into account
some of the realities of system procurements. It has been common in the past that
the hardware configuration is determined very early in the process and the software
must be made to fit. Under these conditions, particularly when life cycle cost is not
an effective control, there is little choice for the project manager but to be driven to
efficiency. A similar situation may arise in the later phases of system life when a
new threat or other additional burden must be accommodated within existing
hardware.

What measures of efficiency are reasonable? Normally, one thinks in terms of
a few tens of percent. An implementation that is within ten percent of assembly
language code in speed of execution or memory occupied would be difficult to
distinguish, the differences in the quality of code produced by even very good
programmers is probably greater than this. (in comparisons one only cites very
good programmers. Many current implementations may be as good as an average
programmer. Further, one must measure against code which is written in a
production environment to be maintainable, etc., not using extraordinarily obscure

15

terhniques. Unique machine dependencies may still require machine code inserts.) A
thirty percent penalty might be appropriate in some situations and justified in a
sufficiently detailed examination of all costs. A fifty percent degradation for going to
high order language may be unacceptable for a project in which the efficiency of the
project code was of significance. These figures may be overly severe from a strictly
statistical view considering that the logic of a code may admit to programmer
variations much greater than these, and large improvements in speed efficiency
speed must be sought there. Nevertheless, there is no justification for adding on an
additional excessive penalty, particularly when the high order language can be very
efficient. To illustrate that an HOL can be efficient, take as an extreme example the
technique of defining the program logic in a high order language which is then
compiled by hand, a technique which has proved useful in the early phases of some
projects. Presumably, the compilation in such a case should be very good. There
are even now examples of benchmarks for which HOL compilations are better than
assembly code. These may be spurious cases, but in the end this is to be expected
theoretically since the HOL route gives a more practical vehicle for large-scale
optimization.

One of the main difficulties with many existing high order languages is that
their implementations have often been poor, particularly languages generated for
single projects and languages implemented in a short time with limited resources. It
is not surprising that the implementation is not as powerful as that which could be
obtained if 10 or 100 times more effort could be devoted to its development and to
the tools and techniques for its use. Such powerful implementations are very good
and optimize better than the average programmer. Assuming a very minimal number
of well-supported languages for the Department of Defense, one could devote
sufficient effort to provide the tools and compilers to produce very efficient object
code. It is not clear that any other language requirement mitigates against this
expectation.

This particular requirement, or solution, would reinforce the thrust to
commonality by making it attractive to reduce not only the number of languages
supported but a number of different compiler approaches and would call for the type
of control of the language which would promote large efforts for tools and compilers.
A contributing technological trend is for DoD programs, particularly those which are
the most critical real-time programs, is to have available very large computers on
which to build the system, even though it may eventually run on a small computer.
The large systems can support cross compilers which are much more powerful than
those self-hosted on a smaller target machine. While this is not yet a universal
procedure, it certainly provides a further opportunity to bring to bear tools to
promote efficient programs. In such a case, the requirement on the high order
language is to give as much information to the compiler as possible without overly
restricting its options. This argument is contrary to the current practice of providing
small subsets of a high order language for mini-computers. Such a subset would

16

only restrict the amount of information available to a compiler and would, of
necessity, produce a less efficient code. The computer might produce even poorer
code if forced to host on a small -target machine.

ACCEPTABILITY

No language is going to be of value unless it is used. There are many tangible
and intangible influences which will determine its final acceptability. The large scale
acceptability of compilers is certainly the most influential tangible asset. Perhaps
the only factor that this influences in language design should be the ability to write
compilers in the high order language.

That the language resembles something the customer is already familiar with
is certainly going to be of considerable importance. Arbitrary decisions on formats
must be take in the direction of existing DoD practice. The possibility of making
translators from existing programming languages to common languages will probably
never appear specifically as a requirement, since there is no intent at this time to
perform such translations. However, it would be difficult to deny the attractiveness
of such a possibility if it existed.

18

IV. Needed Characteristics

The set of characteristics prescribed below represent a synthesis of the
requirements submitted by the Military Departments and are intended to bo
consistent with the general goals of Section 111, to be self -consistent, and to be
achievable with existing computer software and hardware technology. The needed
characteristics are the requirements to be satisfied by an existing, modified or new
language which is selected as a Common HOL. They prescribe capabilities and
properties which a common DoD language should possess but are not intended to
impose any particular language features or mechanization of those capabilities. The
header of each item gives a general description of the needed language
characteristic while the subsequent paragraph(s) of its body provide clarification,
discuss some of the implications and problems, provide the rationale behind its
inclusion, and/or further detail the requirement. The entire text and not just the
headers constitute the requirements.

The large number of characteristics reflects an attempt at thoroughness in
dealing with the relevant issues. Similarly, the length of the discussion for many
items reflects the need to resolve the ambiguities, examine the implications, and
demonstrate the feasibility of the compendious statement introducing that
characteristic. Because the characteristics address issues in the design,
implementation, and use of the language and properties of the resulting product,
there should be no correlation between the number of characteristics discussed here
and the number of features in a language which satisifes these characteristics.
Many of the characteristics will influence the choice of many features, and every
feature will be influenced by many of the needed characteristics. Good language
design is a unification process. Any language which satisfies these characteristics
must be smaller and simpler than the set of issues underlying its choice.

The material reported in the last three sections (K,L,M) was generated by the
Services at the same time as the technical characteristics, but is concerned with
translators, support software, documentation, training, standards, application
libraries, management policy, and procurement practices for the common language
and its use. These issues are important. While mistakes and'oversights in the
technical characteristics can guarantee failure of the common language effort,
success is not guaranteed no matter how technically meritorious the resulting

* .language. Success can only be guaranteed by close attention to a variety of
administrative issues, including those considered below.

Several of these issues, including those of implementation, documentation, and
support will either directly or indirectly affect the acceptability of candidate
languages. As with the needed technical characteristics for the common language,
the issues raised here are often not resolved at the most detailed level. Until more
detailed characteristics of the language come into focus there is no rationale with
which to resolve all these issues in detail.

C, I - - 7--

19

A. DATA AND TYPES
1. Typed Language
2. Data Types
3. Precision
4. Fixed Point Numbers
5. Character Data
6. Arrays
7. Records

Al. The language will be typed. The type (or mode) of all variables,
components of composite data structures, expressions, operations, and
parameters will be determinable at compile time and unalterable at run time.
The language will require that the type of each variable, and component of
composite data structures be explicitly specified in the source programs.

By the type of a data object is meant the set of objects themselves, the
essential properties of those objects and the set of operations which give access to
and take advantage of those properties. The author of any correct program in any
programming language must, of course, know the types of all data and variables used
in his programs. If the program is to be maintainable, modifiable and
comprehensible by someone other than its author, the the types of variables,
operations, and expressions should be easily determined from the source program.
Type specifications in programs provide the redundancy necessary to verify
automatically that the programmer has adhered to his own type conventions. Static
type definitions also provide information at compile time necessary for production of
efficient object code. Compile time determination of types does not preclude the
inclusion of language structures for dynamic discrimination among alternative record
formats (see A7) or among components of a union type (see E6). Where the subtype
or record structure cannot be determined until run time, it should still be fully
discriminated in the program text so that all the type checks can be completed at
compile time.

A2. The language will provide data types for integer, real (floating point and
fixed point), Boolean and character and will provide arrays (i.e., composite
data structures with indexable components of homogeneous type) and

t .4 1records (i.e., composite data structures with labeled components of
heterogeneous type) as type generators.

These are the common data types and type generators of most programming
languar',es and object machines. They are sufficient, when used with a data

20

definition facility (see E6, D6, and .11), to efficiently mechanize other desired types
such as complex or vector.

A3. The source language will require global (to a scope) specification of the
precision for floating point arithmetic and will permit precision specification
for individual variables. This specification will be interpreted as the
maximum precision required by the program logic and the minimum precision
to be supported by the object code.

This is a specification of what the program needs, not what the hardware
provides. Machine independence, in the use of approximate value numbers (usually
with floating point representation), can be achieved only if the user can place
constraints on the translator and object machine without forcing a specific
mechanization of the arithmetic. Precision specifications, as the minimum supported
by the object code, provide all the power and guarantees needed by the programmer
without unnecessarily constraining the object machine realization. Precision
specifications will not change the type of reals nor the set of applicable operations.
Precison specifications apply to arithmetic operations as well as to the data and
therefore should be specified once for a designated scope. This permits different
precisions to be used in different parts of a program. Specification of the precision
will also contribute to the legibility and implementability of programs.

A4. Fixed point numbers will be treated as exact quantities which have a
range and a fractional step size which are determined by the user at compile
time. Scale factor management will be done by the compiler.

Scaled integers are useful approximations to real numbers when dealing with
exact quantity fractional values, when the object machine does not have floating
point hardware, and when greater precision is required than is available with the
floating point hardware. Integers will also be treated as exact quantities with a step
size equal to one.

A5. Character sets will be treated as any other enumeration type.

Like any other data type defined by enumeration (see E6), it should be
possible to specify the program literal and order of characters. These properties of
the character set would be unalterable at run time. The definition of & character set
should reflect on the manner it is used within a program and not necessarily on the

21

print representation a particular physical device associates with a bit pattern at run
time. In general, unless all devices use the same character code, run-time
translation between character sets will be required. Widely used character sets,
such as, USASCI! and EBCDIC will be available in a standard library. Note that
access to a linear array filled with the characters of an alphabet, A, and indexed by
an alphabet, B, will convert strings of characters from B to A.

A6. The language will require user specification of the number of
dimensions, the range of subscript values for each dimension, and the type of
each array component. The number of dimensions, the type and the lower
subscript bound will be determinable at compile time. The upper subscript
bound will be determinable at entry to the array allocation scope.

This is general enough to permit both arrays which can be allocated at
compile or load time and arrays which can be allocated at scope entry, but does not
permit dynamic change to the size of constructed arrays. It is sufficient to permit
allocation of space pools which the user can manage for allocation of more complex
data structures including dynamic arrays. The range of subscript values for any
given dimension will be a contiguous subsequence of values from an enumeration
type (including integers). The preferable lower bound on the subscript range will be
the initial element of an enumeration type or zero, because it often contributes to
program efficiency and clarity.

A7. The language will permit records to have alternative structures, each of
which is fixed at compile time. The name and type of each record component
will be specified by the user at compile time.

This provides all that is safe to use in CMS-2 and JOVIAL OVERLAY and in
FORTRAN EQUIVALENCE. It permits hierarchically structured data of

--. heterogeneous type, permits records to have alternative structures as long as each
structure is fixed at compile time and the choice is fully discriminated at run time, but
it does not permit arbitrary references to memory nor the dropping of type checking
when handling overlayed structures. The discrimination condition will not be
restricted to a field of the record but should be any expression.

22

B. OPERATIONS
1. Assignment and Reference
2. Equivalence
3. Relationals
4. Arithmetic Operations
5. Truncation and Rounding
6. Boolean Operations
7. Scalar Operations
8. Type Conversion
9. Changes in Numeric Representation
10. 1/O Operations
11 . Power Set operations

B1. Assignment and reference operation will be automatically defined for all
data types which do not manage their data sto.age. The assignment
operation will permit any value of a given type to be assigned to a variable,
array or record component of that type or of a union type containing that type.
Reference will retrieve the last assigned value.

The user will be able to declare variables for all data types. Variables are
useful only when there are correspondling access and assignment operations. The
user will be permitted to define assignment and access operations as part of
encapsulated type definitions (see ES). Otherwise, they will be automatically
defined for types which do not manage the storage for their data. (See 06 for
further discussion).

62. The source language will have a built-in operation which can be used to
compare any two data objects (regardless of type) for identity.

Equivalence is an essential universal operation which should not be subject to
restriction on its use. There are many useful equivalence operations for some types
and a language definition cannot foresee all -these for user defined types.
Equivalence meaning logical identity and not bit-by-bit comparison on the internal
data representation, however, is required for all data types. Proper semantic
interpretation of identity requires that equality and identity be the same for atomic
data (i.e., numbers, characters, Boolean values, and types defined by enumeration)
and that elements of a disjoint types never be identical. Consequently, its usefulness
at run time is restricted to data of the same type or to types with nonempty
intersections. For floating point numbers identity will be defined as the same within
the specified (minimum) precision.

23

B3. Relational operations will be automatically defined for numeric data and
all types defined by enumeration.

Numbers and types defined by enumeration have an obvious ordering which
should be available through relational operations. All six relational operations will
be included. It will be possible to inhibit ordering definitions when unordered sets
are intended.

B4. The built-in arithmetic operations will include: addition, subtraction,
multiplication, division (with a real result), exponentiation, integer division
(with integer or fixed point arguments and remainder), and negation.

These are the most widely used numeric operations and are available as
hardware operations in most machines. Floating point operations will be precise to
at least the specified precision.

85. Arithmetic and assignment operations on data which are within the
range specifications of the program will never truncate the most significant
digits of a numeric quantity. Truncation and rounding will always be on the
least significant digits and will never be implicit for integers and fixed point
numbers. Implicit rounding beyond the specified precision will be allowed
for floating point numbers.

These requirements seem obvious, particularly for floating point numbers and
yet many of our existing languages truncate the most significant mantissa digits in
some mixed and floating point operations.

* B6. The built-in Boolean operations will include "and; " or, " "not, " and
"nor." The operations "and" and "or" on scalars will be evaluated in short
circuit mode.

Short circuit mode as used here is a semantic rather than an implementation
distinction and means that "and" and "or" are in fact control operations which do not
evaluate side effects of their second argument if the value of the first argument is
"false" or "true, " respectively. Short circuit evaluation has no disadvantages over
the corresponding computational operations, sometimes produces faster executing
code in languages where the user can rely on the short circuit execution, and
improves the clarity and maintainability of programs by permitting expressions such

24

as, '1<-7 & A[i] >x" which could be erroneous were short circuit execution not
intended. Note that the equivalence and nonequivalence operations (see B2) are the
same as logical equivalence and exclusive-or respectively.

B7. The source language will permit scalar operations and assignment on
conformable arrays and will permit data transfers between records or arrays
of identical logical structure.

Conformability will require exactly the same number of components (although
a scalar can be considered compatible with any array) and one for one compatibility
in type. Correspondence will be by position in similarly shaped arrays. In many
situations component by component operations are done on array elements. In fact,
a primary reason for having arrays is to permit large numbers of similarly treated
objects to have a uniform notation. Operations on data aggregates available directly
in the source language hide the details of the sequencing and thereby, simplify the
program and make more optimizations available In addition, they permit
simultaneous execution on machines with parallel processing hardware. Although
component by component operations will be available for built-in composite data
structures which are used to define application-oriented structures, that capability
will not be automatically inherited by defined data structures. A matrix might be
defined using an array, but it will not inherit the array operations automatically.
Multiplication for matrices would, for example, be unnatural, confusing and
inconvenient if the product operator for matrices were interpreted as a component
by component operation instead of cross product of corresponding row and column
vectors. Component by component operations also allow operations on character
strings represented as vectors of characters and allow efficient Boolean vector
operations.

Transfers between arrays or records of identical logical structure are
* necessary to permit efficient run time conversion from one object representation to

another, as might be done when data is packed to reduce peripheral storage
requirements and 1/0 transfer times but need to be unpacked locally to minimize

- processing costs.

68. There will be no implicit type conversions but no conversion operation
will be required when the type of an actual parameter is a constituent of a
union type which is the formal parameter. The language will provide explicit
conversions operations among integer, fixed point and floating point data,
between the object representation of numbers and their representations as
characters, and between fixed point scale factors.

25

Implicit type conversions which represent changes in the value of data items
without an explicit indicator in the program, are not only error prone but can result in
unexpected run time overhead.

B9. Explicit conversion operations will not be required between numerical
ranges. There will be a run time exception condition when any integer or
fixed point value is truncated.

Because ranges do not form closed systems, range validation is not possible at
compile time (e.g., "1:=1+1** may be a range error). At best, the compiler might point
out likely range errors. (This requirement is optional for hardware installations
which do not have overflow detection).

610. The base language will provide operations allowing programs to
interact with files, channels or devices including terminals. These operations
will permit sending and receiving both data and control information, will
enable programs to dynamically assign and reassign 1/0 devices, will provide
user control for exception conditions, and will not be installation dependent.

Whether the referenced "files" are real or virtual and whether they are
hardware devices, I/0 channels or logical files depends on the object machine
configuration and on the details of its operating system if present. But in any
programming system I/0 operations ultimately reduce to sending or receiving data
and/or control information to a file or to a device controller. These can be made
accessible in a HOL in an abstract form through a small set of generic 1/0 operations
(like "read" and "write, " with appropriate device and exception parameters). Note
that devices and files are similar in many respects to types, so additional language
features may not be required to satisfy this requirement. This requirement, in
conjunction with requirement ElI, permits user definition of unique equipment and its
associated 1/0 operations as data types within the syntactic and semantic framework
provided by the generic operations.

B 11. The language will provide operations on data types defined as power
sets of enumeration types (see E6). Tb - operations will include union,
intersection, difference, complement, and an eiement predicate.

As with any data type, power sets will be useful only if there are operations
which can create, select and interrogate them. Note that this provides only a very

26

special class of sets but one which is very useful for computations on sets of
indicators, flags, and similar devices in monitoring and control applications. More
general sets if desired, must be defined using the type definition facilities.

'9- 1

27

C. EXPRESSIONS AND PARAMETERS
1. Side Effects
2. Operand Structure
3. Expressions Permitted
4. Constant Expressions
5. Consistent Parameter Rules
6. Type Agreement in Parameters
7. Formal Parameter Kinds
8. Formal Parameter Specifications
9. Variable Numbers of Parameters

C1. Side effects which are dependent on the evaluation order among the
arguments of an expression will be evaluated left-to-right.

This is a semantic restriction on the evaluation order of arguments to
expressions. It provides an explicit rule (i.e., left-to-right) for order of argument
evaluation, but allows the implementations to alter the actual order in any way which
does not change the effect. This provides the user with a simple rule for
determining the effects of interactions among argument evaluations without imposing
a strict rule on compilers which are sophisticated enough to detect potential
side-effects and optimize through reordering of arguments when the evaluation
order does not affect the result. Control operations (e.g., conditional and iterative
control structures), of course, must be exceptions to this general rule since control
operations are in fact those operations which specify the sequencing and evaluation
rules for their arguments.

C2. Which parts of an expression constitute the operands to each operation
within that expression should be obvious to the reader. There will be few
levels of operator hierarchy and they will be widely recognized.

Care must be taken to ensure that the operator/operand structure of
expressions is not psychologically ambiguous (i.e., to guarantee that the parse
implemented by the language is the same as intended by the programmer and
understood by those reading the program). This kind of problem can be minimized
by having few precedence levels and parsing rules by allowing explicit parentheses
to specify the intended execution order, and by requiring explicit parentheses when
the execution order is of significance to the result within the same precedence level
(e.g., "X divided by Y divided by ZV and "X divided by Y multiplied by Z"). The user
will not be able to define new operator precedence rules nor change the precedence
of existing operators.

28

C3. Expressions of a given type will be permitted anywhere in source
programs where both constants and references to variables of that type are
allowed.

This is an example of not imposing arbitrary restrictions and special case
rules on the user of the source language. Special mention is made here only because
so many languages do restrict the form of expressions. FORTRAN, for example, has
a list of seven different syntactic forms for subscript expressions, instead of allowing
all forms of arithmetic expressions.

C4. Constant expressions will be allowed in programs anywhere constants
are allowed, and constant expressions will be evaluated before run time.

The ability to write constant expressions in programs has proven valuable in
languages with this capability, particularly with regard to program readability and in
avoiding programmer error in externally evaluating and transcribing constant
expressions. They are most often used in declarations. There is no need, however,
that constant expressions impose run time costs for their evaluation. They can be
evaluated once at compile time or if this is inconvenient because of incompatibilities
between the host and object machines, the compiler can generate code for their
evaluation at load time. In any case, the resulting value should be the same (at least
within the stated precision) regardless of the object machine (see 02). Allowing
constant expressions in place of constants can improve the clarity, correctness and
maintainability of programs and does not impose any run time costs.

C5. There will be a consistent set of rules applicable to all parameters,
whether they be for procedures, for types for exception handing, for parallel
processes, for declarations, or for built-in operators. There will be no
special operations (e.g., array substructuring) applicable only to parameters.
Uniformity and consistency contributes to ease of learning,

implementing and using a language; allows the user to concentrate on the
programming task instead of the language;, and leads to more readable,
understandable, and predictable programs.

C6. Formal and actual parameters will always agree in type. The number of
dimensions for array parameters will be determinable at compile time. The
size and subscript range for array parameters need not be determinable at
compile time, but can be passed as part of the parameter.

29

Type transfers hidden in procedure calls with incompatible formal and actual
parameters whether intentional or accidental have long been a source of program
errors and of programs which are difficult to maintain. On the other hand, there is no
reason why the subscript ranges for arrays cannot be passed as part of the
arguments. Some notations permit such parameters to be implicit on the call side.
Formal parameters of a union type will be considered conformable to actual
parameters of any of the component types.

C7. There will be only four classes of formal parameters. For data there
will be those which act as constants representing the actual parameter value
at the time of call, and those which rename the actual parameter which must
be a variable. In addition, there will be a formal parameter class for
specifying the control action when exception conditions occur and a class for
procedure parameters.

The first class of data parameter acts as a constant within the procedure body
and cannot be assigned to nor changed during the procedures execution; its
corresponding actual parameter may be any legal expression of the desired type and
will be evaluated once at the time of call. The second class of data parameter
renames the actual parameter which must be a variable, the address of the actual
parameter variable will be determined by (or at) the time of call and unalterable
during execution of the procedure, and assignment (or reference) to the formal
parameter name will assign (or access) the variable which is the actual parameter.
These are the only two widely used parameter passing mechanisms for data and the
many alternatives (at least 10 have been suggested) add complexity and cost to a
language without sufficiently increasing the clarity or power. A language with
exception handling capability must have a way to pass control and related data
through procedure call interfaces. Exception handling control parameters will be
specified on the call side only when needed. Actual procedure parameters will be
restricted to those of similar (explicit or implicit) specification parts.

C8. Specification of the type, range, precision, dimension, scale and format of
parameters will be optional in the procedure declaration. None of them will
be alterable at run time.

Optional formal parameter specification permits the writing of generic
procedures which are instantiated at compile time by the characteristics of their
actual parameters. It eliminates the need for compile time "type" parameters. This
generic procedure capability, for example, allows the definition of stacks and queues
and their associated operations on data of any given type without knowing the data
type when the operations are defined

30

C9. There will be provision for variable numbers of arguments, but in such
cases all but a constant number of them must be of the same type. Whether a
routine can have a variable number of arguments must be determinable from
its description and the number of arguments for any call will be determinable
at compile time.

There are many useful purposes for procedures with variable numbers of
arguments. These include intrinsic functions such as "print," generalizations of
operations which are both commutative and associative such as "max" and "mi," and
repetitive application of the same binary operation such as the Lisp "list" operation.
The use of variable number of argument operations need not and will not cause
relaxation of any compile time checks, require use of multiple entry procedures allow
the number of actual parameters to vary at run time, nor require special calling
mechanisms. If the parameters which can vary are limited to a program specified
type treated as any other argument on the call side and as elements of an array within
the procedure definition, full type checking can be done at compile time. There will
be not prohibition on writing a special case of a procedure for a particular number of
arguments.

LM 7

31

0. VARIABLES, LITERALS AND CONSTANTS
1. Constant Value Identifiers
2. Numeric Literals
3. Initial Values of Variables
4. Numeric Range and Step Size
5. Variable Types
6. Pointer Variables

D1. The user will have the ability to associate constant values of any type
with identifiers.

The use of identifiers to represent constant values has often made programs
more readble, more easily modifiable and less prone to error when the value of a
constant is changed. Associating constant values with an identifier is preferable to
assigning the value to a variable because it is then clearly marked in the program as a
constant, can be automatically checked for unintentional changes, and often can have
a more efficient object representation.

02. The language will provide a syntax and a consistent interpretation for
constants of built-in data types. Numeric constants will have the same value
(within the specified precision) in both programs and data (input or output).

Literals are needed for all atomic data types and should be provided as part of
the language definition for built-in types. Regardless of the source of the data and
regardless of the object machine the value of constants should be the same. For
integers it should be exact and for reals it should be the same within the specified
precision. Compiler writers, however, would disagree. They object to this
requirement on two grounds: that it is too costly if the host and object machines are
different and that it is unnecessary if they are the same. In fact, all costs are at
compile time and must be insignificant compared to the life time costs resulting from

"a. object cope containing the wrong constant values. As for being unnecessary, there
* have been all too many cases of different values from program and data literals on

the same machine because the compile time and run time conversion packages were
different and imprecise.

03. The language will permit the user to specify the initial values of
individual variables as part of their declaration. Such variables will be
initialized at the time of their apparent allocation (i.e., at entry to allocation
scope). There will be no default initial values.

32

The ability to initialize variables at the time of their allocation will contribute
to program clarity, but a requirement to do so would be an arbitrary and sometimes
costly decision to the user. Default initial values on the other hand, contribute to
neither program clarity nor correctness and can be even more costly at run time. It
is usually a programming error if a variable is accessed before it is initialized. It is
desirable that the translator give a warning when a path between the declaration and
use of a variable omits initialization. Whether a variable will be assigned is in
general an unsolvable problem, but it is sometimes determinable whether
assignments occur on potential paths. In the case of arrays, it it possible at compile
time only to determine that some components (but not necessarily which) have been
initialized. There will be provision (at user option) for run time testing for
initialization.

04. The source language will require its users to specify individually the
range of all numeric variables and the step size for fixed point variables. The
range specifications will be interpreted as the maximal specifications will be
interpreted as the maximal range of values which will be assigned to a
variable and the minimal range which must be supported by the object code.
Range and step size specifications will not be interpreted as defining new
types.

Range specifications are a special form of assertion. They aid in
understanding and determining the correctness of programs. They can also be used
as additional information by the compiler in deciding what storage and allocation to
use (e.g., half words might be more efficient for integers in the range 0 to 1000).
Range specifications also offer the opportunity for the translator to insert range tests
automatically for run time or debug time validation of the program logic. With the
ranges of variables specified in the program, it becomes possible to perform many
subscript bounds checks at compile time. These bounds, checks, however, can be
only as valid as the range specifications which cannot in general be validated at
compile time. Range specifications on approximate valued variables (usually with
floating point implemetation) also offer the possibility of their implementation using
fixed point hardware.

05. The range of values which can be associated with a variable, array, or
record component will be any built-in type, any defined type or a contiguous

-~ subsequence of any enumeration type.

There should not be any arbitrary restrictions on the structure of data. This
permits arrays to be components of records or arrays and permits records to be
components of arrays.

33

D6. The language will provide a pointer mechanism which can be used to
build data with shared and/or recursive substructure. The pointer property
will only affect the use of variables (including array and record components)
of some data types. Pointer variables will be as safe in their use as are any
other variables.

Assignment to a pointer variable will mean that the variable's name is to act as
an additional label (or reference) on the datum being assigned. Assignment to a
nonpointer variable will mean that the variable's name it to label a copy of the object
being assigned. For data without alterable component structure or alterable
component values, there is no functional difference between reference to multiple
copies and multiple references to a single copy. Consequently, pointer/nonpointer
will be a property only of variables for composite types and of composite array and
record components Because the pointer/nonpointer property applies to all variables
of a given type, it will be specified as part of the type definition. The use of pointers
will be kept safe by prohibiting pointers to data structures whose allocation scope is
narrower than that of the pointer variable.

Such a restriction is easily enforced at compile time using hierarchical scope
rules providing there is no way to dynamically create new instances of the data type.
In the latter case, the dynamically created data can be allocated with full safety using
a (user or library defined) space pool which is either local (i.e., own) or global to the
type definition. If variables of a type do not have the pointer property then dynamic
storage allocation would be required for assignment unless their size is constant and
known at the time of variable allocation. Thus, the nonpointer property will be
permitted only for types (a) whose data have a structure and size which is constant in
the type definition or (b) which manage the storage for their data as part of the type
definition. Because pointers are often less expensive at run time than nonpointers
and are subject to fewer restrictions, the specification of the nonpointer property
will be explicit in programs (this is similar to the Algol-60 issue concerning the
explicit specification of "value" (i.e., nonpointer) and "name" (i.e. pointer). The need
for pointers is obvious in building data structures with shared or recursive
substructures: such as, directed graphs, stacks, queues, and list structures.
Providing pointers as absolute address types, however, produces gaps in the type
checking and scope mechanisms. Type and access restricted pointers will provide
the power of general pointers without their undesirable characteristics.

k7

34

E. DEFINITION FACILITIES
1. User Definitions Possible
2. Consistent Use of Types
3. No Default Declarations
4. Can Extend Existing Operators
5. Type Definitions
6. Data Defining Mechanisms
7. No Free Union or Subset Types
8. Type Initialization

El. The user of the language will be able to define new data types and
operations within programs.

The number of specialized capabilities needed for a common language is large
and diverse. In many cases, there is no consensus as to the form these capabilities
should take in a programming language. The operational requirements dictating
specific specialized language capabilities are volatile and future needs cannot always
be foreseen. No language can make available all the features useful to the broad
spectrum of military applications, anticipate future applications and requirements or
even provide a universally "best" capability in support of a single application area.
A common language needs capability for growth. It should contain all the power
necessary to satisfy all the applications and the ability to specialize that power to the
particular application task. A language with defining facilities for data and
operations often makes it possible to add new application-oriented structures and to
use new programming techniques and mechanisms through descriptions written
entirely within the language. Definitions will have the appearance and costs of
features which are built into the language while actually being catalogued accessible
application packages. The operation definition facility will include the ability to
define new infix operators (but see H2 for restrictions). No programming language
can be all things to all people, but a language with data and operation definition
facilities can be adapted to meet changing requirements in a variety of areas.

The ability to define data and operations is well within the state of the art.
- Operation definition facilities in the form of subroutines have been available in all

general purpose programming languages since at least the time of early FORTRANs.
* Data definition facilities have been available in a variety of programming languages

for almost 10 years and reached their peak with a large number of extensible
languages(Stephen A. Schuman (Ed.) Proceedings of the International Symposium on
Extensible Languages, SIGPLAN Notices, Vol. 6, No. 12, December 1971. Also, C.
Christensen and C.J. Shaw (Ed.), Proceedings of the Extensible Language
Symposium, SIGPLAN Notices 4, August 1989.) (over 30) in 1968 and shortly
thereafter. A trend toward more abstract and less machine-oriented data

35

specification mechanisms has appeared more recently in PASCAL(Niklaus Wirth, "An
Assessment of the Programming Language PASCAL, "Proceedings of the International
Conference on Reliable Software 21-23 April 1973, p. 23-30). Data type
definitions, with operations and data defined together, are used in several languages
including SIMULA-67(Jacob Palme, "SIMULA as a Tool for Extensible Program
Products, "SIGPLAN Notices, Vol. 9, No. 4, February 1974). On the other hand,
there is currently much ferment as to what is the proper function and form of data
type definitions.

E2. The "use" of defined types will be indistinguishable from built-im types.

Whether a type is built-in or defined within the base will not be determinable
from its syntactic and semantic properties. There will be no ad hoc special cases
nor inconsistent rules to interfere with and complicate learning, using and
implementing the language. If built-in features and user defined data structures and
operations are treated in the same way throughout the language so that the base
language, standard application libraries and application programs are treated in a
uniform manner by the user and by the translator, then these distinctions will grow
dim to everyone's advantage. When the language contains all the essential power,
when few can tell the difference between the base language and library definitions,
and when the introduction of new data types and routines does not impact the
compiler and the language standards, then there is little incentive to proliferate
languages. Similarly, if typed definitions are processed entirely at compile time and
the language allows full program specification of the internal representation, there
need be no penalty in run time efficiency for using defined types.

E3. Each program component will be defined in the base language, in a
library, or in the program. There will be no default declarations.

As programmers, we should not expect the translator to write our programs
for us (at least in the immediate future). If we somehow know that the translator's
default convention is compatible wth our needs for the case at hand we should still
document the choice so others can understand and maintain our programs. Neither
should we be able to delay definitions (possibly forget them) until they cause trouble
in the operational system. This is a special case of requirement [1.

E4. The user will be able, within the source language, to extend existing
operators to new data types.

- -.

36

When an operation is an abstraction of an existing operation for a new type or
is a generalization of an existing operation, it is inconvenient, confusing and
misleading to use any but the existing operator symbol or function named. The
translator will not assume that commutativity of bulit-in operations is preserved by
extensions, and any assumptions about the associativity of built-in or extended
operations will be ignored by the translator when explicit parentheses are provided
in an expression.

E5. Type definitions in the source language will permit definition of both the
class of data objects comprising the type and the set of operations applicable
to that class. A defined type will not automatically inherit the operations of
the data with which it is represented.

Types define abstract data objects with special properties. The data
objects are given a representation in terms of existing data structures, but they are
of little valus until operations are available to take advantage of their special
properties. When one obtains access to a type, he needs its operations as well as
its data. Numeric data is needed in many applications but is of little value to any
without arithmetic operations. The definable operations will include constructors,
selectors, predicates, and type conversions.

E6. The data objects comprising a defined type will be definable by
enumeration of their literal names, as Cartesian products of existing types
(i.e., as array and record classes), by discriminated union (i.e., as the union of
disjoint types) and as the power set of an enumeration type. These
definitions will be processed entirely at compile time.

The above list comprises a currently known set of useful definitional
mechanisms for data types which do not require run time support, as do garbage
collection and dynamic storage allocation. In conjunction with pointers (see D6),

-- they provide many of the mechanisms necessary to define recursive data structures
* and efficient sparse data structures.

T.

E 7. Type definitions by free union (i.e., union of non-disjoint types) and
subsetting are not desired.

Free union adds no new power not provided by discriminated union, but does
require giving up the security of types in return for programmer freedom. Range and

37

subset specifications on variables are useful documentation and debugging aids, but
will not be construed as types. Subsets do not introduce new properties or
operations not available to the superset and often do not form a closed system under
the superset operations. Unlike types, membership in subsets can be determined
only at run time.

E8. When defining a type, the user will be able to specify the initialization
and finalization procedures for the type and the actions to be taken at the time
of allocation and dleallocation of variables of that type.

It is often necessary to do bookkeeping or to take other special action when
variables of a given type are allocated or dleallocated. The language will not limit the
class of definable types by withholding the ability to define those actions.
Initialization might take place once when the type is allocated (i.e., in its allocation
scope) and would be used to set up the procedures and initialize the variables which
are local to the type definition. These operations will be definable in the
encapsulation housing the rest of the type definition.

38

F. SCOPES AND LIBRARIES
1. Separate Allocation and Access Allowed
2. Limiting Access Scope
3. Compile Time Scope Determination
4. Libraries Available
5. Library Contents
6. Libraries and Compools Indistinguishable
7. Standard Library Definitions

Fl. The language will allow the user to distinguish between scope of
allocation and scope of access.

The scope of allocation or lifetime of a program structure is that region of the
program for which the object representation of the structure should be present.
The allocation scope defines the program scope for which own variables of the
structure must be maintained and identifies the time for initialization of the structure.
The access scope defines the regions of the program in which the allocated structure
is accessible to the program and will never be wider than the allocation scope. In
some case, the user may desire that each use of a defined program structure be
independent (i.e., the allocation and accessing scopes would be identical). In other
cases, the various accessing scopes might share a common allocation of the
structure.

F2. The ability to limit the access to separately defined structures will be
available both where the structure is defined and where it is used. It will be
possible to associate new local names with separately defined program
components.

Limited access specified in a type definition is necessary to guarantee that
- changes to data representations and to management routines which purportedly do

* not affect the calling programs are in fact safe. By rigorously controlling the set of
operations applicable to a defined type, the type definition guarantees that no
external use of the type can accidentally or intentionally use hidden nonessential
properties of the type. Renaming separately defined programming components is
necessary to avoid naming conflicts when they are used.

Limited access on the call side provides a high degree of safety and eliminates
nonessential naming conflicts without limiting the degree of accessibility which can
be built into programs. The alternative notion, that all declarations which are
external to a program segment should have the same scope, is inconvenient and

39

costly in creating large systems which are composed from many subsystems because
it forces global access scopes and the attendant naming conflicts on subsystems not
using the defined items.

F3. The scope of identifiers will be wholly determined at compile time.

Identifiers will be declared at the beginning of their scope and multiple use of
variable names will not be allowed in the same scope. Except as otherwise
explicitly specified in programs, access scopes will be lexically embedded with the
most local definition applying when the same identifier appears at several levels.
The language will use the above lexically embedded scope rules for declarations and
other definitions of identifiers to make them easy to recognize and to avoid errors
and ambiguities from multiple use of identifiers in a single scope.

F4. A variety of appl icati on- oriented data and operations will be available in
libraries and easily accessible in the language.

A simple base alone is not sufficient for a common language. Even though in
theory such a language provides the necessary power and the capability for
specialization to particular applications, the users of the language cannot be
expected to develop and support common libraries under individual projects There
will be broad support for libraries common to users of well recognized application
areas. Application libraries will be developed as early as possible.

F5. Program components not defined within the current program and not in
the base language will be maintained in compile time accessible libraries.
The libraries will be capable of holding anything definable in the language and
will not exclude routines whose bodies are written in other source languages.

The usefulness of a language derives primarily from the existence and
accessibility of specialized appli cati on- oriented data and operations. Whether a
library should contain source or object code is a question of implementation
efficiency and should not be specified in the definition of the source language, but the
source language description will always be available. It should be remembered,
however, that interfaces cannot be validated at program assembly time without some
equivalent of their source language interface specifications, that object modules are
machine-dependent and, therefore, not portable, that source code is often more
compact than object code, and that compilers for simple languages can sometimes

40

compile faster than a loader can load from relocatable object programs. Library
routines written on other languages will not be prohibited provided the foreign
routine has object code compatible with the calling mechanisms used in the Common
HOL and providing sufficient header information (e.g., parameter types, form and
number) is given with the routine in Common HOL form to permit the required compile
time checks at the interface.

F6. Libraries and Compools will be indistinguishable. They will be capable
of holding anything definable in the language, and it will be possible to
associate them with any level of programming activity from systems through
projects to individual programs. There will be many specialized compools or
libraries any user specified subset of which is immediately accessible from a
given program.

Compools have proven very useful in organizing and controlling shared data
structures and shared routines. A similar mechanism will be available to manage and
control access to related library definitions.

F7. The source language will contain standard machine independent
interfaces to machine dependent capabilities, including peripheral equipment
and special hardware.

The convenience, ease of use and savings in production and maintenance
costs resulting from using high order languages come from being able to use
specialized capabilities without building them from scratch. Thus, it is essential that
high level capabilities be supplied with the language. The idea is not to provide all
the many special cases in the language, but to provide a few general casc .hich will
cover the special cases.

There is currently little agreement on standard operating system, 1/0, or file
system interfaces. This does not preclude support of one or more forms for the near
term. For the present the important thing is that one be chosen and made available
as a standard supported library definition which the user can use with confidence.

7?'

41

G. CONTROL STRUCTURES
1. Kinds of Control Structures
2. The Go To
3. Conditional Control
4. Iterative Control
5. Routines
6. Parallel Processing
7. Exception Handling
8. Synchronization and Real Time

G1. The language will provide structured control mechanisms for sequential,
conditional, iterative, and recursive control. It will also provide control
structures for (pseudo) parallel processing, exception handling and
asynchronous interrupt handling.

These mechanisms, hopefully, provide a spanning set of control structures.
The most appropriate operations in several of these areas is an open question. For
the present, the choice will be a spanning set of composable control primitives each
of which is easily mapped onto object machines and which does not impose run time
charges when it is not used. Whether parallel processing is real (i.e., by
multiprocessing) or is synthesized on a single sequential processor, is determined by
the object machine, but if programs are written as if there is true parallel processing
(and no assumption about the relative speeds of the processors) then the same
results will be obtained independent of the object environment.

It is desirable that the number of primitive control structures in the language
be minimized, not by reducing the power of the language, but by selecting a small set
of composable primitives which can be used to easily build other desired control
mechanisms within programs. This means that the capabilities of control
mechanisms must be separable so that the user need not pay either program clarity
or implementation costs for undesired specialized capabilities. By these criteria, the
Algol-60 "FOR" would be undesirable because it imposes the use of a loop control
variable, requires that there be a single terminal condition and that the condition be
tested before each iteration. Consequently, "FOR" cannot be composed to build
other useful iterative control structures (e.g., FORTRAN "DO"). The ability to
compose control structures does not imply an ability to define new control operations
and such an ability to define new control operations, and such an ability is in conflict
with the limited parameter passing mechanisms of C7.

G2. The source language will provide a "GO TO" operation applicable to
program labels within its most local scope of definition.

42

The "GO TO" is a machine level capability which is still needed to fill in any
gaps which might remain in the choice of structured control primitives, to provide
compatibility for translitterating programs written in older languages, and because of
the wide familiarity of current practitioners with its use. The language should not,
however, impose unnecessary costs for its presence. The "GO TO" will be limited to
explicitly specified program labels a'. the same scope level. Neither should the
language provide specialized facilitiefs which encourage its use in dangerous and
confusing ways. Switches, designational expressions, label variables, label
parameters and numeric labels are not desired. Switches here refer to the
unrestricted switches which are generalizations of the "GO TO" and not to case
statements which are a general form for conditionals(see G3). This requirements
should not be interpreted to conflict with the specialized form of control transfer
provided by the exception handling control structure of G7.

G3. The conditional control structures will be fully partitioned and will permit
selection among alternative computations based on the value of a Boolean
expression, on the subtype of a value from a discriminated union, or on a
computed choice among labeled alternatives.

The conditional control operations will be fully partitioned (e.g., an "ELSE"
clause must follow each "IF IEN") so the choice is clear and explicit in each case.
There will be some general for, of conditional which a'lows an arbitrary computation
to determine the selected situation (e.g., Zahn's device(Donald E. Knuth, "Structured
Programming with go to Statemenis," ACM Computer Surveys, Vol. 6, No. 4,
December 1974) provides a good solution to the general problem). Special
mechanisms are also needed for the more common cases of the Boolean expression
(e.g., "IF THEN ELSE") and for value or type discrimination (e.g., "CASE" on one of a
set of values or subtype of a union).

G4. The iterative control structure will permit thb termination condition to
b Iappear anywhere in the loop, will require control variables t be local to the

iterative control, will allow entry only at the head of the loop, and will not
impose excessive overhead in clarity or rui the execution costs for common
special case termination conditions (e.g., fixed number of iterations or
elements of an array exhausted).

In its most general form, a programmed loop is executed repetitively until
some computed predicate becomes true. There may be more than one terminating
predicate, and they might appear anywhere in the loop. Specialized control
structures (e.g., "WHILE DO") have been used for the common situation in which the

43

termination conditions precedes each iteration. The most common case is
termination after a fixed number of iterations and a specialized control structure
should be provided for that purpose (e.g., FORTRAN "0O" or Algol-SO "FOR"). A
problem which arises in many programming languages is that loop control variables
are global to the iterative control and thus, will have a value after loop termination,
but that value is usually an accident of the implementation. Specifying the meaning of
control variables after loop termination in the language definition resolves the
ambiguity but must be an arbitrary decision which will not aide program clarity or
correctness, and may, interfere with the generation of efficient object code. Loop
control variables are by definition variables used to control the repetitive execution
of a programmed loop and as such will be local to the loop body, but at loop
termination it will be possible to pass their value (or any other computed value) out of
the loop, conveniently and efficiently.

G5. Recursive as well as nonrecursive routines will be available in the
source language. It will not be possible to define procedures within the body
of a recursive procedure.

Recursion is desirable in many applications because it contributes directly to
their elegance and clairty and simplifies proof procedures. Indirectly, it contributes
to the reliability and maintainability of some programs. Recursion is required in
order to avoid unnecessarily opaque, complex and confusing programs when
operating on recursive data structures. Recursion has not been widely used in DoD
software because many programming languages do not provide recursion,
practitioners are not familiar with its use, and users fear that its run time costs are to
high. Of these, only the run time costs woulc J>-tify its exclusion from the language.

A major run time cost often attributed to recursion is the need for the
presence of a set of "display" registers which are used to keep track of the
addresses of the various levels of lexically imbedded environments and which must
be managed and updated at run time. The display, however, is necessary only in
programs in which routines access variables which are global to their own definition,
but local to a more global recursive procedure. This possibility can easily be
removed by prohibiting the definition of procedures within the body of a recursive
procedure. The utility of such a combination of capabilities is very questionable, and
this single restriction will eliminate all added execution costs for nonrecursive
procedures in programs which contain recursive procedures.

As with any other facility of the language, routines should be implemented in
the most efficient manner consistent with their use and the language should be
designed so that efficient implementations are possible. In particular, the most
possible regardless of whether the language or even the program contains recursive

44

procedures. When any routine makes a procedure call as its last operation before
exit (and this is quite common f or recursive routines) the implementation might use
the same data area for both routines, and do a jump to the head of the called
procedure thereby saving much of the overhead of a procedure call and eliminating a
return. The choice between recursive and nonrecursive routines involves
trade.-offs. Recursive routines can aid program clarity when operating on recursive
data, but can detract from clarity when operating on iterative data. They can
increase execution time when procedure call overhead is greater than loop overhead
and can decrease execution times when loop overhead is the more expensive.
Finally, program storage for recursive routines is often only a small fraction of that
for a corresponding iterative procedure, but the data storage requirements are often
much larger because of the simultaneous presence of several activations of the same
procedure.

G6. The source language will provide a parallel processing capability. This
capability should include the ability to create and terminate (possibly pseudo)
parallel processes and for these processes to gain exclusive use of resources
during specified portions of their execution.

A parallel processing capability is essential in embedded computer
applications. Programs must send data to, receive data from, and control many
devices which are operating in parallel. Multiprogramming (a form of pseudo
paralell processing) is necessary so that many programs within a system can meet
their differing real time constraints. The parallel processing capability will minimally
provide the ability to define and call parallel processing and the ability to gain
exclusive use of system resources in the form of data structures, devices and pseudo
devices. This latter ability satisfies one of the two needs for synchronization of
parallel processes. The other is required in conjunction with real time constraints

* (see G8).
The parallel processing capability will be defined as true parallel (as opposed'1: to coroutine) primitives, but with the understanding that in most implementations the

object computer will have fewer processors (usually one) than the number of parallel
paths specified in a program. Interleaved execution in the implementation may be

- required.

The parallel processing features of the language should be selected to
eliminate any unnecessary overhead associated with their use. The costs of parallel
processes are primarily 'n run time storage management. As with recursive routines
most accessing and storage management problems can be eliminated by prohibiting
complex interactions with other language facilities where the combination has little if
any utility. in particular, it will not be possible to define a parallel routine within the

45

body of a recursive routine and it will not be possible to define any routine including
parallel routines within the body of those parallel routines which can have multiple
simultaneous activations. If the language permits several simultaneous activations of
a given parallel process then it might require the user to give a upper bound on the
number which can exist simultaneously. The latter requirement is reasonable for
parallel processes because it is information known by the programmer and
necessary to the maintainer, because parallel processes cannot normally be stacked,
and because it is necessary for the compilation of efficient programs.

G7. The exception handing control structure will permit the user to cause
transfer of control and data for any error or exception situation which might
occur in a program.

It is essential in many aplications that there be no program halts beyond the
user's control. The user must be able to specify the action to be taken on any
exception situation which might occur within his program. The exception handling
mechanism will be parameterized so data can be passed to the recovery point.
Exception situations might include arithmetic overflow, exhaustion of available space,
hardware errors, any user defined exceptions and any run time detected
programming error.

The user will be able to write programs which can get out of an arbitrary nest
of control and intercept it at any embedding level desired. The exception handling
mechanism will permit the user to specify the action to be taken upon the occurrence
of a designated exception within any given access scope of the program. The
transfers of control will, at the users option, be either forward in the program (but
never to a narrower scope of access or out of a procedure) or out of the current
procedure through its dynamic (i.e., calling structure. The latter form requires an
exception handling formal parameter class (see C7).

* G8. There will be source language features which permit delay on any
control path until some specified time or situation has occurred, which permit
specification of the relative priorities among parallel control paths, which
give access to real time clocks, which permit asynchronous hardware
interrupts to be treated as any other exception situation.

When parallel or pseudo parallel paths appear in a program it must be
possible to specify their relative priorities and to synchronize their executions.
Synchronization can be done either through exclusive access to data (see G6) or
through delays terminated by designated situations occurring within the program.

46

These situations should include the elapse of program specified time intervals,
occurrence of hardware interrupts and those designated in the program. There will
be no implicit evaluation of program determined situations. Time delays will be
program specifiable for both real and simulated times.

* o'

47

H. SYNTAX AND COMMENT CONVENTIONS
1. General Characteristics
2. No Syntax Extensions
3. Source Character Set
4. Identifiers and Literals
5. Lexical Units and Lines
6. Key Words
7. Comment Conventions
8. Unmatched Parentheses
9. Uniform Referent Notation
10. Consistency of Meaning

HI. The source language will be free format with an explicit statement
delimiter, will allow the use of mnemonically significant identifiers, will be
based on conventional forms, will have a simple uniform and easily parsed
grammar, will not provide unique notations for special cases, will not permit
abbreviation of identifiers or key words, and will be syntactically
unambiguous.

Clarity and readability of programs will be the primary criteria for selecting a
syntax. Each of the above points can contribute to program clarity. The use of free
format, mnemonic identifiers and conventional forms allows the programmer to use
notations which have their familiar meanings to put down his ideas and intention$ in
the order and form that humans think about them, and to transfer skills he already
has to the solution of the problem at hand. A simple uniform language reduces the
number of cases which must be dealt with by anyone using the language. If
programs are difficult for the translator to parse they will be difficult for people.
Similar things should use the same notations with the special case processing
reserved for the translator and object machine. The purpose of mnemonic
identifiers and key words is to be informative and increase the distance between
lexical units of programs. This does not prevent the use of short identifiers and
short key words.

H2. The user will not be able to modify the source language syntax.
Specifically, he will not be able to modify operator hierarchies, introduce new
precedence rules, define new key word forms or define new infix operator
precedences.

If the user can change the syntax of the language, then he can change the
basic character and understanding of the language. The distinction between

48

semantic extensions and syntactic extensions is similar to that between being able to
coin new words in English or being able to move to another natural language.
Coining words requires learning those new meanings before they can be used, but at
the same time increases the power the language for some application areas.
Changing the grammar, (e.g., Franglais, the use of French grammar with interspersed
English words) however, undermines the basic understanding of the language itself,
changes the mode of expression, and removes the commonalities which obtain
between various specializations of the language. Growth of a language through
derinition of new data and operations and the introduction of new words and symbols
to identify them is desirable, but there should be no provision for changing the
grammatical rules of the language. This requirement does not conflict with E4 and
does not preclude associating new meanings with existing infix e-erators.

H3. The syntax of source language programs will be composable from a
character set suitable for publication purposes, but no feature of the language
will be inaccessible using the 64 character ASCII subset.

A common language should use notations and a character set convenient for
communicating algorithms, programs, and programming techniques among its users.
On the other hand, the language should not require special equipment (e.g., card
readers and printers) for its use. The use of the 64 character ASCII subset will
make the language compatible with the federal information processing standard 64
character set, FIPS-1, which has been adopted by the U.S.A. Standard code for
Information Interchange (USASCII). The language definition will specify the
translation from the publication language into the restricted character set.

H4. The language definition will provide the formation rules for identifiers
and literals. These will include literals for numbers and character strings and
a break character for use internal to identifiers and literals.

Lexical units of the language should be defined in a simple uniform and easily
understood manner. Some possible break characters are the space(W. Dijkstra,
coding examples in Chapter 1, "Notes in Structured Programming," in Structured
Programming by O.-J. Dahl, E. W. Dijkstra and C.A.R. Moore, Academic Press,
1972. & Thomas A. Standish, "A Structured Program to Play Tic-Tac-Toe," notes
for Information and Computer Science 3 course at Univ. of California-Irvine,
October 1 974) (i.e., any number of spaces or end-of-line), the underline and the tilde.
The space cannot be used if identifiers and user defined infix operators are lexically
indistinguishable, but in such a case the formal grammar for the language would be
ambiguous (see HI). A literal break character contributes to the readability of

49

programs and makes the entry of long literals less error prone. With a space as a
break character one can enter multipart (i.e., more than one lexical unit) identifiers
such as "REAL TIME CLOCK" or long literals, such as, "3.14159 26535 89793." Use
of a break can also be used to guarantee that missing quote brackets on character
literals do not cause errors which propagate beyond the net end-of-line, the
language should require separate quoting of each line of a long literal: "This is a long"
"literal string".

H5. There will be no continuation of lexical units across lines, but there will
be a way to include object characters such as end-of-line in literal strings.

Many elementary input errors arise at the end of lines. Programs are input
on line oriented media but the concept of end-of-line is foreign to free format text.
Most of the error prone aspects of end-of-line can be eliminated by not allowing
lexical units to continue over lines. The sometimes undesirable effects of this
restriction can be avoided by permitting identifiers and literals to be composed from
more than one lexical unit (see H-4) and by evaluating constant expressions at compile
time (see C4).

H6. Key words will be reserved, will be very few in number, will be
informative, and will not be usable in contexts where an identifier can be used.

By key words of the language are meant those symbols and strings which
have special meaning in the syntax of programs. They introduce special syntactic
forms such as are used for control structures and declarations or the are used as infix
operators, or as some form of parenthesis. Key words will be reserved, that is
unusable as identifiers, to avoid confusion and ambiguity. Key words will be few in
number because each new key word introduces another case in the parsing rules and
thereby adds to complexity in understanding the language, and because large
numbers of key words inconvenience and complicate the programmer's task of
choosing informative identifiers. Key words should be concise, but being
information is more important than being short. A major exception is the key word
introducing a comment; it is the comment and not its key word which should do the
informing. Finally, there will be no place in a source language program in which a
key word can be used in place of an identifier. That is, functional form operations
and special data items built into the language or accessible as a standard extension
will not be treated as key words but will be treated as any other identifier.

LM.

50

H7. The source language will have a single uniform comment convention.
Comments will be easily distinguishable from code, will be introduced by a
single (or possibly two) language defined characters, will permit any
combination of characters to appear, will be able to appear anywhere
reasonable in programs, will automatically terminate at end-of-line if not
otherwise terminated, and will not prohibit automatic reformatting of
programs.

These are all obvious points which will encourage the use of comments in
programs and avoid their error prone features in some existing languages.
Comments anywhere reasonable in a program will not be t&!ken to mean that they can
appear internal to a lexical unit, Such as, an identifier, key word, or between the
opening and closing brackets of a character string. One comment convention which
nearly meets these criteria is to have a special quote character which begins
comments and with either the quote or an end-of-line ending each comment. This
allows both embedded and line-oriented comments.

H8. The language will not permit unmatched parentheses of any kind.

Some programming languages permit closing parentheses to be omitted. If,
for example, a program contained more "BEGINs" than "ENDs" the translator might
insert enough "ENDs" at the end of the program to make up the difference. This
makes programs easier to write because it sometimes saves writing several "ENDs"
at the end of programs and because it eliminates all syntax errors for missing "ENDs."
Failure to require proper parentheses matching makes it more difficult to write
correct programs. Good programming practice requires that matching parentheses
be included in programs whether or not they are required by the language.
Unfortunately, if they are not required by the language then there can be no syntax
check to discover where errors were made. The language wJ1 require full
parentheses matching. This does not preclude syntactic features such as "case x of

* si, s2 ... sn end case" in which "end" is paired with a key word other than "begin." Nor
does it alone prohibit open forms such as "if-then-else-."

H9. There will be a uniform referent notation.

The distinction between function calls and data reference is one of
representation, not of use. Thus, there will be no language imposed syntactic
distinction between function calls and data selection. If, for example, a computed
function is replaced by a lookup table there should be no need to change the calling
program. This does not preclude the inclusion of more than one referent notation.

5 1

H1Q. No language defined symbols appearing in the same context will have
essentially different meanings.

This contributes to the clarity and uniformity of programs, protects against
psychological ambiguity and avoids some error prone features of extant languages.
In particular, this would exclude the use of =to imply both assignment and equality,
would exclude conventions implying that parenthesized parameters have special
semantics (as with PL/1 subroutines), and would exclude the use of an assignment
operator for other than assignment (e.g., left hand side function calls). It would not,
however, require different operator symbols for integer, real or even matrix
arithmetic since these are in fact special cases of the same abstract operations and
would allow the use of generic functions applicable to several data types.

52

1. DEFAULTS, CONDITIONAL COMPILATION AND LANGUAGE RESTRICTIONS
1. No Defaults in Program Logic
2. Object Representation Specifications Optional
3. Compile Time Variables
4. Conditional Compilation
5. Simple Base Language
6. Translator Restrictions
7. Object Machine Restrictions

11. There will be no defaults in programs which affect the program logic.
That is, decisions which affect program logic will be made either irrevocably
when the language is defined or explicitly in each program.

The only alternative is implementation dependent defq~ilts with the translator
determining the meaning of programs. What a program does, should be
determinable from the program and the defining documentation for the programming
language. This does not require that binding of all program properties be local to
each use. Quite the contrary, it would, for example, allow automatic definition of
assignment for all variables or global specification of precision. What it does
require is that each decision be explicit: in the language definition, global to some
scope, or local to each use. Omission of any selection which affects the program
logic will be treated as an error by the translator.

12. Defaults will be provided for special capabilities affecting only object
representation and other properties which the programmer does not know or
care about. Such defaults will always mean that the programmer does not
care which choice is made. The programmer will be able to override these
defaults when necessary.

The language should be oriented to provide a high degree of management
control and visibility to programs and toward self -documenting programs with the
programmer required to make his decisions explicit. On the other hand, the
programmer should not be forced to overspecify his programs and thereby cloud
their logic, unnecessarily eliminate opportunities for optimization, and misrepresent
arbitrary choices as essential to the program logic. Defaults will be allowed, in fact,
encouraged in don't care situations. Such defaults will include data representations
(see J4), open vs. closed subroutine calls (see J5), and reentrant vs. nonreentrant
code generation.

53

13. The user will be able to associate compile time variables with programs.
These will include variables which specify the object computer model and
other aspects of the object machine configuration.

When a language has different host and object machines and when its
compilers can produce code for several configurations of a given machine, the
programmer should be able to specify the intended object machine configuration.
The user should have control over the compile time variables used in his program.
Typically they would be associated with the object computer model, the memory
size, special hardware options, the operating system if present, peripheral
equipment or other aspects of the object machine configuration. Compile time
variables will be set outside the program, but available for interrogation within the
program (see 14 and C4).

14. The source language will permit the use of conditional statements (e.g.,
case statements) dependent on the object environment and other compile time
variables. In such cases the conditional will be evaluated at compile time and
only the selected path will be compiled.

An environmental inquiry capability permits the writing of common programs
and procedures which are specialized at compile time by the translator as a function
of the intended object machine configuration or of other compile time variables (see
13). This requirement is a special case of evaluation of constant expressions at
compile time (see C4). It provides a general purpose capability for conditional
compilation.

15. The source language will contain a simple clearly identifiable base or
kernel which houses all the power of the language. To the extent possible,
the base will be minimal with each feature providing a single unique capablity

- not otherwise duplicated in the base. The choice of the base will not detract
from the efficiency, safety, or understandability of the language.

The capabilities available in any language can be partitioned into two groups,
those which are definable within the base and those which provide an essential
primitive capability of the language. The smaller and simpler the base the easier the
language will be to learn and use. A clearly delineated base with features not in the
base defined in terms of the base, will improve the ease and efficiency of learning,
implementing and maintaining the language. Only the base need be implemented to
make the full source language capability available.

54

Base features will provide relatively low level general purpose capabilities
not yet specialized for particular applications. There will be no prohibition on a
translator incorporating speciaized optimizations for particular extensions;. Any
extension provided by a translator will, however, be definable within the base
language using the built-in definition facilities. Thus, programs using the extension
will be translatable by any compiler for the language but not necessarily with the
same object efficiency.

16. Language restrictions which are dependent only on the translator and not
on the object machine will be specified explicitly in the language definition.

Limits on the number of array dimensions, the length of identifiers, the number
of nested parentheses levels in expressions, or the number of identifiers in programs
are determined by the translator and not by the object machine. Ideally, the limits
should be set so high that no program (save the most abrasive) encounters the limits.
In each case, however: (a) some limit must be set, (b) whatever the limit, it will impose
on some and therefore must be known by the users of the translator, (c) letting each
translator set its own limits means that programs will not be portable, (d) setting the
limits very high requires that the translator be hosted only on large machines and (e)
quite low limits do not impose significantly on either the power of the language or the
readability of programs. Thus, the limits should be set as part of the language
definition. They should be small enough that they do not dominate the compiler and
large enough that they do not interfere with the usefulness of the language. If they
were set at say the 99 percent level based on statistics from existing DoD computer
programs the limits might be a few hundred for numbers of identifiers and less than
ten in the other cases mentioned above.

P Ianguage restrictions which are inherently dependent only on the object
environment will not be built into the language definition or any translator.

Limits on the amount of run time storage, access to specialized peripheral
equipments, use of special hardware capabilities and access to real time clocks are
dependent on the object machine and configuration. The translator will report when
a program exceeds the resources or capabilitis of the intended object machine but
will not build in arbitrary limits of its own.

55

J. EFFICIENT OBJECT REPRESENTATIONS AND MACHINE DEPENDENCIES
1. Efficient Object Code
2. Optimizations Do Not Change Program Effect
3. Machine Language Insertions
4. Object Representation Specifications
5. Open and Closed Routine Calls

J 1. The language and its translators will not impose run time costs for
unneeded or unused generality. They will be capatle of producing efficient
code for all programs.

The base language and library definitions might contain features and
capabilities which are not needed by everyone, or at least, not be everyone all the
time. The language should not force programs to require greater generality than
they need. When a program does not use a feature or capability it should pay no run
time cost for the feature being in the language or library. When the full generality of
a feature is not used, only the necessary (reduced) cost should be paid. Where
possible, language features (such as, automatic and dynamic array allocation, process
scheduling, file management and 1/O buffering) which require run time support
packages should be provided as standard library definitions and not as part of the
base language . The user will not have to pay time and space for support packages
he does not use. Neither will there be automatic movement of programs or data
between main store and backing shore which is not under program control (unless
the object machine has virtual memory with underlying management beyond the
control of all its users). Language features will result in special efficient object
codes when their full generality is not used. A large number of special cases should
compile efficiently. For example, a program doing numerical calculations on
unsubscripted real variables should produce code no worse than FORTRAN.
Parameter passing for single argument routines might be implemented much less
expensively than multiple argument routines.

One way to reduce costs for unneeded capabilities is to have a base language
whose data structures and operations provide a single capability which is
composable and has a straight-forward implementation in the object code of
conventional architecture machines. If the base language components are easily
composable they can be used to construct the specialized structures needed by
specific applications, if they are simple and provide a single capability they will not
force the use of unneeded capabilities in order to obtain needed capabilities, and if
they are compatible with the features normally found in sequential uniprocessor
digital computers with random access memory they will have near minimum or at
least low cost implementation on many object machines.

56

J2. Any optimizations performed by the translator will not change the effect
of the program.

More simply, the translator cannot give up program reliability and
correctness, regardless of the excuse. Note that for most programming languages
there are few known safe optimizations and many unsafe ones. The number of
applicable safe optimizations can be increased by making more information available
to the compiler and by choosing language constructs which allow safe optimizations.
This requirement allows optimization by code motion providing that motion does not
change the effect of the program.

J3. The source language will provide encapsulated access to machine
dependent hardware facilities including machine language code insertions.

It is difficult to be enthusiastic about machine language insertions. They
defeat the purpose of machine independence constrain the implementation
techniques complicate the diagnostics, impair the safety of type checking, and detract
from the reliability, readability, and modifiability of programs. The use of machine
language insertions is particularly dangerous in multiprogramming applications
because they impair the ability to exclude, "a priori," a large class of time-dependent
bugs. Rigid enforcement of scope rules by the compiler in real time applications is a
powerful tool to ensure that one sequential process will not interfere with others in
an uncontrolled fashion. Similarly, when several independent programs are
executed in an interleaved fashion, the correct execution of each may depend on the
others not having improperly used machine language insertions.

Unfortunately machine language insertions are necessary for interfacing
special purpose devices, for accessing special purpose hardware capabilities, and
for certain code optimizations on time critical paths. Here we have an example of
Dijkstra's dilemma in which the mismatch between high level language programming
and the underlying hardware is unacceptable and there is no feasible way to reject
the hardware. The only remaining alternative is to "continue bit pushing in the old
way, with all the known ill effects." Those ill effects can, however, be constrained to
the snallest possible perimeter in practice if not in theory. The ability to enter
machine language should not be used as an excuse to exclude otherwise needed

- . facilities from the HOL; the abstract description of programs in the HOL should not
require the use of machine language insertions. The semantics of machine language
insertions will be determinable from the HOL definition and the object machine

) description alone and not dependent on the translator characteristics Machine
language insertions will be encapsulated so they can be easily recognized and so that
it is clear which variables and program identifiers are accessed within the insertion.
The machine language insertions will be permitted only within the body of compile

57

time conditional statements (see 14) which depend on the object machine
configuration (see 13). They will not be allowed interspersed with executable
statements of the source language.

J4, It will be possible within the source language to specify the object
presentation of composite data structures. These descriptions will be
optional and encapsulated and will be distinct from the logical description.
The user will be able to specify the time/space trade-off to the translator. If
not specified, the object representation will be optimal as determined by the
translator.

It is often necessary to give detailed specifications of the object data
representations to obtain maximum density for large data files to meet format
requirements imposed by the hardware of peripheral equipment, to allow special
optimizations on time critical paths, or to ensure compatibility when transferring data
between machines.

It will be possible to specify the order of the fields, the width of fields, the
presence of don't care fields, and the position of word boundaries. It will be
possible to associate source language identifiers (data or program) with special
machine addresses. The use of machine dependent characteristics of the object
representation will be restricted as with machine dependent code (see .13). When
multiple fields per word are specified the compiler may have to generate some form
of shift and mask operations for source program references and assignments to those
variables (i.e., fields). As with machine-language insertions, object data
specifications should be used sparingly and the language features for their use must
be Spartan, nor grandiose.

If the object representation of a composite data object is not specified in the
source program, there will be no specific default guaranteed by the translator. The
translator might, for example, attempt to minimize access time and/or memory space
in determining the object representation It might, depending on the object machine

* . characteristics, assign variables and fields of records to full words, but assign array
elements to the smallest of bits, bytes, half words, words or exact multiple words
permitted by the logical description.

J5. The programmer will be able to specify whether calls on a routine are to
have an open or closed implementation. An open and a closed routine of the
same description will have identical semantics.

58

The use of inline open procedures can reduce the run time execution costs
significantly in some cases. There are the obvious advantages in eliminating the
parameter passing, in avoiding the saving of return marks, and in not having to pass
arguments to and from the routine. A less obvious, but often more important
advantage in saving run time costs is the ability to execute constant portions of
routines at compile time and, thereby, eliminate time and space for those portions of
the procedure body at run time. Open routine capability is especially important for
machine language insertions.

The distinction between open and closed implementation of a routine is an
efficiency consideration and should not affect the function of the routine. Thus, an
open routi ne will di f fer f rom a syntax macro i n that (a) i ts gl obal envi ronment i s that of
its definition and not that of its call and (b) multiple occurrences of a formal value (i.e.,
read only) parameter in the body have the same value. If a routine is not specified
as either open or closed the choice will be optimal as determined by the translator.

59

K. PROGRAM ENVIRONMENT
1. Operating System Not Required
2. Program Assembly
3. Software Development Tools
4. Translator Options
5. Assertions and Other Optional Specifications

K1. The language will not require that the object machine have an operating
system. When the object machine does have an operating system or
executive program, the hardware/operating system combination will be
interpreted as defining an abstract machine which acts as the object machine
for the translator.

A language definition cannot dictate the architecture of existing object
machines whether defined entirely in hardware or in a hardware/software
combination. It can provide a source language representation of all the needed
capabilities and attempt to choose these so they have an obvious and efficient
translation in the object machines.

K2. The language will support the integration of separately written modules
into an operational program.

Separately written modules in the form of routines and type definitions are
necessary for the management of large software efforts and for effective use of
libraries. The user will be able to cause anything in any accessible library to be
inserted into his program. This is a requirement for separate definition but not
necessarily for separate compilation. The decision as to whether separately
defined program modules are to be maintained in source or object language form is a
question of implementation efficiency, will be a local management option and will not
be imposed by the language definition. The trade-off s involved are complicated by
other requirements for type checking of parameters (see CS), for open subroutines
(see .15), for efficient object representations (see J 1), and for constant expression
evaluation at compile time (see C4). In general, separate compilation increases the
difficulty and expense of the interface validations needed for program safety and

A reliability and detracts from object program efficiency by removing many of the
optimizations otherwise possible at the interfaces, but at the same time it reduces the
cost and complexity of compilation.

60

K3. A family of programming tools and aids in the form of support packages
including linkers, loaders and debugging systems will be made available with
the language and its translators. There will be a consistent easily used user
interface for these tools.

The time has passed in which a programming language can be considered in
isolation from its programming environment. The availability of programming tools
which need not be developed and/or supported by individual projects is a major
factor in the acceptability of a language. There is no need to restrict the kinds or
form of support software available in the programming environment, and continued
development of new tools should be encouraged and made av3ilable in a competitive
market. It is, however, desirable that tools be developed in their own source
language to simplify their portability and maintainability.

K(4. A variety of useful options to aid generation, test, documentation and
modification of programs will be provided as support software available with
the language or as translator options. As a minimum these will include
program editing, post- mortem analysis and diagnostics, program ref ormating
for standard indentations, and cross-reference generation.

There will be special facilities to aid the generation, test, documentation and
modification of programs. The "best" set of capabilities and their proper form is not
currently known. Since nonstandard translator options and availability of
nonstandard software tools and aids do not adversely affect software commonality,
the language definition and standards will not dictate arbitrary choices. Instead, the
development of language associated tools and aids will be encouraged within the
constraint of implementing and supporting the source language as defined. Tools and
debugging aids will be source language oriented.

* Some of the translator options which have been suggested and may be useful
include the following. Code might be compiled for assertions which would give run
time warnings when the value of the assertion predicate is false. It might provide
run time tracing of specified program variables. Dimensional analysis might be done
on units of measure specifications. Special optimizations might be invoked. There
might be capability for timing analysis and gathering run time statistics. There might
be translator supplied feedback to provide management visibility regarding progress
and conformity with local conventions. The user might be able to inhibit code
generation. There might be faciities for compiling program patches and for
controlling access to language features. The translator might provide a listing of the
number of instructions generated against corresponding source inputs and/or an
estimate of their execution times. It might provide a variety of listing options.

61

K5. The source language will permit inclusion of assertions, assumptions,
axiomatic definitions of data types, debugging specifications;, and units of
measures in programs. Because many assertional methods are not yet
powerful enough for practical use, nor sufficiently well dev.eloped for
standardization, they will have the status of comments.

There are many opinions on the desirability, usefulness, and proper form for
each of these specifications. Better program documentation is needed and
specifications of these kinds may help. Specifications also introduce the possibility
of automated testing, run time verification of predicates, formal program proofs, and
dimensional analysis. The language will not prohibit inclusion of these forms of
specification if and when they become available for practical use in programs.
Assertions, assumptions, axiomatic definitions and units of measure in source
language programs should be enclosed in special brackets and should be treated as
interpreted comments -- comments which are delimited by special comment brackets
and which may be interpreted during translation or debugging to provide units
analysis, verification of assertions and assumptions, etc.--but whose interpretation
would be optional to translator implementations.

62

L. TRANSLATORS
1. No Superset Implementations
2. No Subset Implementations
3. Low-Cost Translation
4. Many Object Machines
5. Self-Hosting Not Required
6. Translator Checking Required
7. Diagnostic Messages
8. Translator Internal Structure
9. Self -Implementable Language

Li. No implementation of the language will contain source language features
which are not defined in the language standard. Any interpretation of a
language feature not explicitly permitted by the language definition will be
f orbidden.

This guarantees that use of programs and software subsystems will not be
restricted to a particular site by virtue of using their unique version of the language.
It also represents a commitment to freezing the source language, inhibiting
innovations and growth in the form of the source language, and confining the base
language to the current state of the art in return for stability, wider applicability of
software tools, reusable software, greater software visibility, and increased payoff
for tool building efforts. It does not, however, disallow library definition
optimizations which are translator unique.

L2. Every translator for the language will implement the entire base
language. There will be no subset implementations of the base language.

If individual compilers implement only a subset of the language, the there is no
chance for software commonality. If a translator does not implement the entire

* language, it cannot give its users access to standard supported libraries or to
application programs implemented on some other translator. Requiring that the full
language be implemented will be expensive only if the base language is large,
complex, and nonuniform. The intended source language product from this effort is a
small simple uniform base language with the specialized features, support packages,

-d and complex features relegated to library routines not requiring direct translator
support. If simple low cost translators are not feasible for the selected language,
then the language is too large and complex to be standardized and the goal of
language commonality will not be achievable.

63

L3. The translator will minimize compile time costs. A goal of any translator
for the language will be low cost translation.

Where practical and beneficial the user will have control over the level of
optimization applied to his programs. The programmer will have control over the
tradeoffs between compile time and run time costs. The desire for small efficient
translators which can be hosted by machines with limited size and capability should
influence the design of the base language against inclusion of unnecessary features
and towards systematic treatment of features which are included. The goal will be
effective use of the available machines both in object execution and translation and
not maximal speed of translation.

Translation costs depend not only on the compiler but the language design.
Both the translator and the language design will emnphasize low cost translation, but
in an environment of large and long-lived software products this will be secondary to
requirements for reliability and maintainability. Language features will be chosen to
ensure that they do not impose costs for unneeded generality and that needed
capabilities can be translated into efficient object representations. This means that
the inherent costs of specific language features is the context of the total language
must be understood by the designers, implementers and users of the language. One
consequence should be that trivial programs compile and run in trivia) time. On the
other hand, significant optimization is not expected from a minimal cost translator.

L4. Translators will be able to produce code for a variety of object
machines. The machine independent parts of translators might be built
independent of the code generators.

There is currently no common widely used computer in the DoD. There are
at least 250 different models of commercial machines in use in DoD with many more
specialized machines. A common language must be applicable to a wide variety of
models and sizes of machines. Translators might be written so they can produce
object code for several machines. This reduces the proliferation of translators and
makes the full power of an existing translator available at the cost of producing an
additional code generator.

L5. The translator need not be able to run on all the object machines.
Self-hogting is not required, but is often desirable.

The DoD operational programming environment includes many small machines
which are unable to support adequately the design, documentation, test, and

64

debugging aids necessary for the development of timely, reliable or efficient
software. Large machine users should not be penalized for the restrictions of small
machines when a common language is used. On the other hand, the size of machines
which can host translators should be kept as small as possible by avoiding
unnecessary generality in the language.

L6. The translator will do full syntax checking, will check all operations and
parameters for type compatibility and will verify that all language imposed
semantic restrictions on the source programs are met. It will not
automatically correct errors detected at compile time.

The purpose of source language redundancy and avoidance of error prone
language features is reliability. The price is paid in programmer inconvenience in
having to specify his intent in greater detail. The payoff comes when the translator
checks that the source program is internally consistent and adheres to its authors'
stated intentions. There is a clear trade-off between error avoidance and
programming ease; surveys conducted in the Services show that the programmers as
well as managers will opt for error avoidance over ease when given the choice. The
same choice is dictated by the need for well documented maintainable software.

L7. The translator will produce compile time explanatory diagnostic error
and warning messages. A suggested set of error and warning situations will
be provided as part of the language definition.

The translator will attempt to provide the maximal useful feedback to its user.
Diagnostic messages will not be coded but will be explanatory and in source language
terms. Translators will continue processing and checking after errors have been
found but should be careful not to generate erroneous messages because of
translator confusion. The translator will always produce correct code; when source
programs errors are encountered by the translator or referenced program structures
omitted, the compiler will produce code to cause a run time exception condition upon
any attempt to execute those parts of the program. Warnings will be generated
when a source language construct is exceptionally expensive to implement on the
specified object machine. A suggested set of diagnostic messages provided as part
of the language definition contributes to commonality in the implementation and use of
the language. The discipline of designing diagnostic messages keyed to the design
may also uncover pitfalls in the language design and thereby contribute to a more
precise and better understood language description.

65

L8. The characteristics of translator implementations will not be dictated by
the language definition or standards.

The adoption of a common language is a commitment to the current state of the
art for programming language design for some duration. It does not, however,
prevent access to new software and hardware technology, new techniques and new
management strategies which do not impact the source language definition. In
particular, innovation should be encouraged in the development of translators for a
common language providing they implement exactly the source language as defined.
Translators like all computer programs should be written in expectation of change.

L 9, Translators for the language will be written in their own source

language.

There will be at least one implementation of the translator in its own language
which does all parsing and compile-time checking and produces an output suitable
for easy translation to specific object machines. If the language is well-defined and
uniform in structure, a self -description will contribute to understanding of the
language. The availability of the machine independent portion of a translator will
make the full power of the language availabie to any object machine at the cost of
producing an additional code generator (whose cost may be high) and it reduces the
likelihood of incompatible implementations. Translators written in their own source
language are automatically available on any of their object machines providing the
object machine has sufficient resources to support a compiler.

W-7

66

M. LANGUAGE DEFINITION, STANDARDS AND CONTROL
1. Existing Language Features Only
2. Unambiguous Definition
3. Language Documentation Required
4. Control Agent Required
5. Support Agent Required
6. Library Standards and Support Required

MI. The language will be composed from features which are within the state
of the art and any design or redesign which is necessary to achieve the
needed characteristics will be conducted as an engineering design effort and
not as a research project.

The adoption of a common language can be successful only if it makes
available a modern programming language compatible with the latest software
technology and is compatible with "best" current programming practice but the
design and implementation of the language should not require additional research or
require use of untried ideas. State-of-the-art cannot, however, be taken to mean
that a feature has been incorporated in an operational DoD language and used for an
extended period, or DoD will be forever tied to the technology of FORTRAN-like
languages; but there must be some assurances through analysis and use that its
benefits and deficiencies are known. The larger and more complex the structure,
the more analysis and use that should be required. Language design should parallel
other engineering design efforts in that it is a task of consolidation and not innovation.
The language designer should be familiar with the many choices in semantic and
syntactic features of language and should strive to compose the best of these into a
consistent structure congruous with the needed characteristics. The language
should be composed from known semantic features and familiar notations, but the use
of proven feature should not necessarily impose that notation. The language must
not just be a combination of existing features which satisfy the individual

-~ requirements but must be held together by a consistent and uniform structure which
acts to minimize the number of concepts, consolidates divergent features and

- simplifies the whole.

M2. The semantics of the language will be defined unambiguously and
clearly. To the extent a formal definition assists in attaining these objectives,
the language's semantics will be specified formally.

A complete and unambiguous definition of a common language is essential.
Otherwise each translator will resolve the ambiguities and fill in the gaps in its own

67

unique way. There are currently a variety of methods for format specification of
programming language semantics but it remains a major effort to produce a rigorous
formal description and the resulting products are of questionable practical value.
The real value in attempting a formal definition is that it reveals incomplete and
ambiguous specifications. An attempt will be made to provide a formal definition of
any language selected but success in that effort should not be requisite to itsIselection. Formal specification of the language might take the form of an axiomatic
definition, use of the Vienna Definition Language, or use of some othts- formal
semantic system.

M3. The user documentation of the language will be complete and will
include both a tutorial introductory description and a formal in-depth
description. The language will be defined as if it were the machine level
language of an abstract digital computer.

The language should be intuitively correct and easily learned and understood
by its potential users. The language definition might include an Algol-60 like
description(P. Naur (Ed.), "Revised Report on the Algorithmic Language Algol-GO,"
Communication of the A.C.M. Vol.6, No. 1, January 1963, p. 1-17.) with the
source language syntax given in BNF or some other easily understood metalanguage
and the corresponding semantics given in English. As with the descriptions of digital
computer hardware, the semantics and syntax of each feature must be defined
precisely and unambiguously. The action of any legal program will be determinable
from the program and the language description alone. Any computation which can
be described in the language will ultimately draw only on capabilities which are built
into the language. No characteristics of the source language will be dependent on
the idiosyncrasies of its translators.

The language documentation will include syntax, semantics and examples of
each language construct, listings of all key words and language defined defaults.
Examples shall be included to show the intended use of language features and to
illustrate proper use of the language. Particularly expensive and inexpensive
constructs will be pointed out. Each document will identify its purpose and
prerequisites for its use.

M4. The language will be configuration managed throughout its total life
cycle and will be controlled at the DoD level to ensure that there is only one
version of the source language and that all translators conform to that
standard.

68

Without controls a hopefully common language may become another umbrella
under which new languages proliferate while retaining the same name. All
compilers will be tested and certified for conformity to the standard specification and
freedom from known errors prior to their release for use in production projects.
The language manager will be on the OSD staff, but a group within the Military
Departments or Agencies might act as the executive agent. A configuration control
board will be instituted with user representation and chaired by a member of the OSD
staff.

M5. There will be identified support agent(s) responsible for maintaining the
translators and for associated design, development, debugging and
maintenance aids.

Language commonality is an essential step in achieving software commonality,
but the real benefits accrue when projects and contractors can draw on existing
software with assurance that it will be supported, when systems can build from off
the shelf components or at least with common tools, and when efforts can be spent to
expand existing capabilities rather than building from scratch. Support of common
widely used tools and aids should be provided independent of projects if common
software is to be widely used. Support should be on a DoD-wide basis with final
responsibility resting with a stable group or groups of qualified in--house personnel.

M6. There will be standards and support agents for common libraries

including application-oriented libraries.

In a given application of a programming language three levels of the system
must be learned and used: the base language, the standard library definitions used in
that application area, and the local application programs. Users are responsible for
the local application programs and local definitions but not for the language and its
libraries which are used by many projects and sites. A principal user might act as
agent for an entire application area.

-A4

I

