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RESEARCH OBJECTIVES

1. Determine the non-asymptotic resolution of the autoregressive
(AR) spectral estimator.

2. Relate the loss of resolution of the AR spectral estimator

to the noise and interference present in the measured signal.
3. Develop computationally efficient autoregressive-moving
average (ARMA) spectral estimators to obtain improved
spectral resolution for noisy signals.
4. Investigate the properties of the ARMA spectral estimators,
theoretically and by numerical simulations.

5. Develop a robust order determination scheme. i ;
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ABSTRACT

This report summarizes the results of research during
the past two years, in understanding the resolution of the
autoregressive {(AR) spectral estimators and developing and
evaluating computationally efficient autoregressive-moving
average (ARMA) spectral estimators. The loss in the resolution
of the AR spectral estimator in the presence of noise is related
to the appearance of zeros in the z~plane. A parallel resonator
model is developed to relate the loss in resolution (bandwidth
expansion) to the signal-to-noise ratio and parameters of the
noiseless signal model.

A new technique for the identification of the order of
an AR model was derived that shows substantial stability compared
to the popular Akaike Information Criterion method. Order
determination was emphasized, since increase in the order of
the AR spectral estimator, to account for the presence of noise,
is naturally accompanied by larger variance of the estimates and
appearance of spurious peaks.

Several sub-optimum (non-maximum-likelihood) ARMA spectral
estimators were also developed. These methods are computationally
efficient, but statistically not very stable for small data records.
An evaluation of the statistical properties of the different sub-
optimum ARMA techniques led to the evaluation of asymptotic bounds
on the variances of the estimates of the parameters or the poles
and zeros of the model through the evaluation of Fisher's
information matrix. Finally, a modification of Burg's MEM spectral
estimator was developed that improves the accuracy of the spectral

estimates of complex sinusoids and makes the method considerably

more robust.
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I. INTRODUCTION

The problem of spectral estimation via the autoregressive
(AR) and autoregressive-moving-average (ARMA} modeling of the
observed noisy signal is treated in this report. High resolution
spectral analysis based on the AR model has received much
attention in recent years [1] - [3]. The basic impetus for
taking these approaches is due to the fact that the parametric
modeling schemes are data adaptive and are free from the effects
of window functions that ar. inherent in the traditional
Blackman and Tukey [ 4] type spectral estimators. Furthermore,
the AR model is easily estimated making it useful in applications
such as radar signal processing that require near-real-time
processing.

The properties of the AR spectral estimator have been
studied, theoretically in the asymptotic case [3]1, [5], [6]
and empirically [1] , [2]. 1It has been shown that this
estimator in many cases offers considerably higher resolution
based on the same amount of data, than the Blackman and Tukey
type estimators. Furthermore, the -"bove asymptotic and empirical
investigations have shown the variance of the AR estimates to
be comparable to the unsmoothed Blackman and Tukey type estimates,
for the same number of autocorrelation lags. It should be
pointed out, however, that the AR estimates usually reguire much
fewer lags for the same resolution.

Most practical applications of spectral analysis involve
noisy signals and/or multiple signal and noise mixtures.
Therefore, 1t is natural to consider the performance of the AR

spectral estimator in the presence of noise. Previous studies
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(1)1, [ 2] had shown resolution degradation in the presence
of noise. The solution presented for improving resolution was
given as increasing the order of the estimator, in a rather
arbitrary fashion.

This report deals with the question of AR signals in noise.
The main thrust of the work reported here was to improve spectral
resolution by using ARMA models for the measured signals.
Specifically some suboptimum but computationally efficient ARMA
spectral estimation algorithms were developed and their properties
studied. In the process of the investigations, an order
determination scheme as well as a new Burg type spectral

estimator, however, were also developed and will be described here.

I.1 Report Outline

This report is organized as follows. First the AR process
is defined. The sum of uncorrelated AR processes and white
noise is then considered and shown to be represented by an
equivalent ARMA process. A multiple resonator model for signals
of interest is presented and shown to be equivalent to the ARMA
model. Resolution degradation as a function of noise and
resonator pole locations is considered and from it some
representative curves of bandwidth expansion are presented.

Chapter III. of the report deals with the basic question
of AR model order determination. A new criterion related to that
of Akaike's (AIC) is derived and comparative examples are given.
The next two chapters treat the basic emphasis of this work,
namely that of ARMA spectral estimation. First, several ARMA
schemes are presented that are computationally efficient but sub-
optimum. Sub-optimality is treated with respect to the maximum-

likelihood (ML) estimates of the parameters. The subsequent
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chapter then discusses some statistical properties of classes
of ARMA spectral-estimator, with respect to the statistié used
in the estimation. Here, again, the reference scheme is the

ML estimator. The final chapter of the report deals with a

new scheme, related to Burg's MEM method, which is especially
useful for the common case of sinusoidal signals in noise. This
method is shown to be more robust than the MEM technique, with

better accuracy and equivalent or superior resolution.
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II. AUTOREGRESSIVE SPECTRAL

ESTIMATION OF NOISY SIGNALS

The most popular recent data-adaptive spectral estimation
method is one based on an all-pole model for the signal. The
algorithmic approach for the estimation of the parameters of
such a system include, the methods of fitting the autoregressive
(AR) coefficients to the data as well as the popular Burg maximum
entropy method MEM. Because of the popularity of this model
and computatioral simplicity of its estimates, the noisy signal
spectral estimation will be confined to autoregressive signal
models. That is, it will be assumed that in the absence of
noise and interference an AR model satisfactorily describes
the signal. Resolution degradation of the AR spectral estimates
in the presence of noise and interference is then investigated

and related to the changes in the model structure.

II.1 The AR Spectral Estimator

A zero-mean time series {x,_} is said to satisfy an Lth order
autoregressive model if:
L
Xy = iil Ay Xpg t Uy (IT1.1)

where {o;} denote the AR coefficients and {ut} is a zero-mean
uncorrelated (white) sequence. Another interpretation of the
model in (II.1) is that {ai} represent an L™ order one-step ahead
linear predictor of {xt}. If {ai} are then estimated, based on

a minimum mean square error criterion {ut} on the average becomes
an orthogonal sequence. It can be shown {2 ] that the model in

(ITI.1) leads to a spectral density of the form

ey
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S, (f) = e 2 l£] < 3T ) (I1.2)
aje |
where S, is the spectral level of the {ut} sequence.

The spectral density shown in (II.2) is the AR spectrum
and it is this model that is fitted to an observed time series,
by simply estimating {ai} from the time series. Several estimation
procedures for {ai} have been discussed in the literature such
as the maximum likelihood, the least-squares {7] and Burg's
method based on forward and backward prediction error filtering
[8]. If the number of data samples is not very small,
the simplest and computationally most efficient estimates of
{ai} are the sol.tion of the Yule-Walker equations. These
equations arise, simply by multiplying equation (II.1l) by
Xeojr i=1,...L and taking the expectation of both sides, to
obtain a relation between the autocorrelation function of the
process {x:} and the coefficients {ai}. The Yule-Walker equations

are then given by:

ROA = po (II.3)
where
ro Ty -- i1 ay r,
T
Ro = » A= . and Po = |
Ti-1 o %L Iy,

and where r is the autocorrelation function of {xt} at the ith

Furthermore, the power in {ut} can be found by multiplying (II.1)

by Xy and taking the expectation as:

lag.
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S = [rg -

L
z
i=

airi]AT , OT the sampling interval . (I1.4)
1

In practice {ai} and Sl are estimated from (II.3) and (II.4) based

on estimates of the autocorrelation function {fi}.

II.2 Spectral Estimation in the Presence of Noise and Interference

. - . '-
We now assume that the signal {xt} satisfies an L' " order
AR model and therefore its spectrum can be estimated as in the
previous section. The problem of interest is the estimation of

the spectrum of the observed signal
yt = X + Wy + ng (IT.5)

where {mt} is an AR(M) process and considered to be the inter-
ference and {nt} is a white noise sequence, with {nt}, {xt} and
{wt} mutually uncorrelated.
The resolution of the spectral estimators are now discussed in
the asymptotic case, that is, when the autocorrelation function
of {yt} is accurately known.

let {xt} be described by (II.1) and {ut} be given by the

following autoregressive model

The z~spectrum of Ye is then given by:

s s
_ 1 2
Sy(z) = — + — + S (II1.6)

D, (2)D (z7") D _(2)D (27 n

where S, and S, are given by (II.4) using the appropriate auto-

correlation values for {xt} and {mt}, Sh is the spectrum of ng and
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D (z) =1~ I a.z* ,» D (z2) =1- % b.zt
- X i=1 * . i=1 *
= Putting (II.6) under a common denominator, it becomes obvious
that SY(z) is the spectrum of an autoregressive moving average
— process of orders L+M and L+M, i.e., AR(L+M)/MA(L+M). This is
a process with L+M zeros and L+M poles, where, from equation
- (IT.6), the numerator polynomial coefficients are related to
{a;}, {b;} and S in an obvious manner.
- It can be seen that the estimation of SY(z) using a purely
- AR technique (all-pole) is equivalent to approximating the (L+M)
order moving average component by an AR one. This, theoretically
- would require an infinite order model. Finite order models of
- order L, however, will estimate SY(f) with good resolution, with
= L depending on the various parameters of signal noise and inter-
ference, notably their relative power.
- It is obvious now that whereas the resoclution of Blackman
: and Tukey type spectral estimations are only determined by the
—- window bandwidths in a predictable fashion, those of the AR and
- generally ARMA estimators are very much data dependent, requiring
larger all-pole orders or ARMA modeling. Figure (II.1l) shows the
- spectrum of a noiseless AR signal. Figqure (II.2) shows the
ff calculated AR (from exact values of the autocorrelation function)
spectrum of the same signal in the presence of white noise, using
order L = 20. The degradation of spectral resolution is obvious.
A different approach to the demonstration of the dependence of
L

spectral resolution on the signal-to-noise ratio is to consider a

3
Ep

parallel resonator model for the measured signal. This is

discussed in the next section.
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II.3 Parallel Resonator Model

High resolution spectral estimation is normally used in

- situations where the signal has a "peaky" spectrum. Therefore,
-
one may postulate the signal model as the sum of the outputs of
- M second-order resonators driven by white noise. This model,
as will be shown in the sequel, lends itself to an investigation
- of the resolution degradation or bandwidth expansion as a function
of measurement noise.
- Mathematically, the signal s{(n) is modeled as [9]},
M
- s{n) = £ sm(n)
m=1
; where
sm(n) = amlsm(n-l) + amzsm(n—Z) + amou(n) (IT.7)
where u(n) is the driving noise of the signal generation process.
- It is assumed that u{(n) is white with variance oi. The signal
- model is shown in figure (II.3).
it The transfer function of the signal generation process
- is defined as
- S(z)
' where S(z) and U(2) denote the z-transforms of the signal s(n)
K] .
= and the noise u(n) respectively. The transfer function Hm(z) of
the m'th resonator is obtained by taking the z-transform of sm(n)
S (z) = a 2" ts (z) + a z—zs (z) + a_,U(2)
m ml m m2 m mo
[
Hen<ze,
Y S _(z) a
g _"m _ m0
- H (2) = gz = A B S (I1.9)
ml m2
" s - ) - ..7 .

4
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u The z-transform of the signal s(n) is then
} M
! - S(z) = L Sm(Z)
‘ R m=1

. M

) = I U(z)Hm(z)

— m=1

We can, therefore, express the transfer function for the

generation of s(n) as:
M M
L a n (1 - a
-1 kO =1
m#K

z - - a
ml

(I1.10)

It can easily be seen that the order of the numerator polynomial
N(z) of the transfer function H(z) is 2M-2 while the order of
the denominator polynomial is 2M. H(z) is also recognized as
the transfer function of an autoregressive-moving average (ARMA)
model. Therefore, using the parallel resonator model is the same
as using an ARMA model where the difference in order between the
- autoregressive (AR) and moving average (MA) terms is two.

Thus, in the absence of noise, s(n) can accurately be modeled
as an ARMA process (or the output of a pole-zero filter). TIf s(n)
is corrupted by the uncorrelated white noise sequence w(n), the

z-power spectrum of the observation, y(n), is given by

2
_ |N(z) 2 2
Sy(Z) = ID—(—Z-T u + Ow
2 2 2 2
] ou[N(z)| + Gw|D(z)[
_f therefore, in the presence of noise, the model of y(n) is
equivalent to an ARMA (2M, 2M) process. This of course is
| )
[ W — ‘."1-.‘ o -
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consistent with the model derived in the preceding section

directly from the addition of AR processes and white noise.

II1.4 Analysis of a Single Resonator

Some insight into the behavior of the parallel resonator
model in the presence of noise can be gained by examinina the
behavior of each resonator individually.

To simplify the analysis, we assume that the noise w{n) is
added equally to the output of each resonator. 1In the following
first the set of conditions which the parameters of each resonator
must satisfy for stability and resonance are discussed. The
relations between the parameters and the location of the poles
of a resonator are then derived. The effect of additive noise
on the poles 1s then examined. Finally, the perturbations of
the pole positions of the noisy resonator as a function of the
signal-to-noise ratio is analyzed.

The transfer function of the m'th resonator is given by

S _(z)
H (z) = m
m U(z)
a
= mo (I1.11)
1 - a z'-l - a 2—2
ml m2
- amO
Am(z)

The poles of Hm(z) must be complex conjugates for Sm(n) to be a
narrow vand process. The locations of the poles are tlie solution

of the quadratic equation

2 _ .2 _ -
z Am(z) =z amlz a =0 (I1.12)

or
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qni ¢ 2m Y 43
L z =
2
1 the condition for having complex conjugate poles is that
the discriminant must always be negative. That is,
— 2 )
aml + 4am2 < 0
- or
2
a
ml
a, < - 1 (IT.13)
If equation (II.13) is satisfied, then the poles would be in
- polar coordinates,
- 2 = o I9n
m - “m®
= where oy 1S the distance from the origin of the unit circle to
location of the pole and wo is the frequency of resonance in
— radians/second.
*
) The system is stable if z and z, are located within the
5]
unit circle. The conditions for stability are given by the
- Jury test
Am(l) > 0
‘g AW(—I) > 0
and 1 > 1am2i
Therefore, the parameters must satisfy
- 1 * 3m2 < 1
(IT.14)
A m1 T %m2 > 71
and la <1
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When equations (II.13) and (I1.14) are satisfied, the impulse

response h_(n) is easily shown to be {10]

-1
hm(n) yA {Hm(z)}

n .
i +
. o sin(n l)wm

mO0 sin w
m

* »
Upon substituting for z. and z in equation (II.12) and equating

* .
A (z ) and A_(z_ ), it follows easily that
m'“m m'“m

aml = 2rmc05wm

(I1.15)
a = --r2
m2 m

It has already been shown that, in the absence of noise,
the m'th resonator has 2 complex conjugate poles located within
the unit circle and 2 zeros located at the origin of the unit
circle (equation II.1ll). The effect of the addition of the white
noise is to move the zeros from the origin towards the poles,
When the noise dominates the signal, the zeros cancel the poles
resulting in a flat spectrum,

If we let ym(n) be the output of the m'th noisy resonator, then

w(n)
M

y_(n)

m sm(n) +

(II.16)

sm(n) + w'(n)

where w'(n) is white with variance

[N
314€QN

Then, the power spectrum of ym(n) is




P

a2 02
- m0 u—l + 03'
Am(z)Am(z )

2 2 2 -
mo%u + ow,Am(z)Am(z

1

1
a

)

Am(z)Am(z
If we let

l) 2 2

_ 2 -1
= amodu + ow.Am(z)Am(z

oiBm(z)Bm(z— ) (I1.17)

we see that ym(n) may be modeled as the output of a rational
transfer function with Bm(z) as the numerator and Am(z) as the
denominator polynomials with n(n) as a white input. Then

-1 -2

12 - bmzz and n(n) is a zero mean white seguence

with variance oﬁ. It is known {[11] that a Bm(z) exists which has

Bm(z) =1 - bm

its roots on or within the unit circle. Equation (II.17) can be

written as

2 -1 -2 2, _
On(l bmlz meZ ) (1 bmlz bmzz ) =

(I1.18)
aiooi + 05.(1 - amlz.l - amzz—z)(l - a2 - am222)
Upon expanding the above equation and equating terms cf equal
degree on both sides we get
am00a * Tqr (L4 k) +ary) = o (L + b2+ bh) (@)
an0er (ag, = 1) = b jo2(b o = 1) (IT1.19) (b)
amzci. = oibm2 (c)
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Equations (II.19) (b) and (c) imply
apy (@py = Dby,
- b 1= a5 — 3 (I1.20)
i m m2 ' " m2
Equations (II.19) (a) and (c) imply
a2 02 + 02 (1 + a2 + a2 ) a 02
m0"u w' ml m2° _ m2 w' (11.21)
2 2 b :
L+ b+ op2 m2
or,
— 2 2
A+ (1 + am2 + am2) _ am2 (11.22)
2 2 b '
- 1+ bml + bm2 m2
- where
= a2 02
X = m0~u
- 2
(S
= W
If the noise variance 05, is small, then X >> 1. Equation (II.22)
~ a
implies therefore that m2 >> 1 or a >> Db in which case
‘ bn m2 m2
et
% equation (II.20) shows that bml + 0., Then, for high signal-
- to-noise ratios, the zeros are located near the origin and their
- presence does not affect the spectrum seriously. The exact
locations of the zeros is found by solving equations (II.20) and
- (IT.19) simultaneously.
:; II.5 Perturbations of Pole Positions
The addition of white noisc to a process given by a resonator
mocel terds to move the power spectral density peak and to broaden
the bandwidth. It has been seen in the previous section that this
ot is caused by the zeros being shifted from the origin towards the
e poles. If we now model the observation again by an all-pole second-

order resonator model, the positions of the poles will have changed.

T




1¢e

It is this perturbation which causes an expansion in the

estimated bandwidth. In the following this effect is examined.

- The output of the m'th resonator is
ym(n) = sm(n) + w'(n)
where sm(n) is a second-order process,
sm(n) = amlsm(n—l) + amzsm(n—Z) + amou(n)
- Ym(n) may also be modeled as a second-order process,
= ym(n) = amlym(n—l) + amzym(n—Z) + amou(n).
,; In the absence of noise, a . a| and a‘ are identical to
- ml m2 mO
. a1 2 and a0 respectively. The autocorrelation function
- r, {(n) of the process ym(n) has been shown to be given by [10],
m

_ _ .2 2 Inl| _ 2

rym(n) = a 0, P tog (Infu = o) + 0 .8 (n)
d
. where,
- 1- oi 2

2 1 + 2) cot w
1+ 0 1l + o
a4 = n m (1I1.23)
- 1 - 52 1l - 202c032u + 04
“m m m
: l - Ji
b = arctan — cotw._ . (IT.24)
m
1 + rm

and, P and w, are related to the parameters ar1’ @m2 by
L ]
ﬂ m T ""%m2
= aml
W = arccos ———
m

J——
2v am2
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a an satisfy the vyule-wWalker equations resulting in

ml’
v (0)r. (2) - 2 ()
Yoz _XEL_.ﬂjhl__,,~,:51_ﬂ. - 2 (11.25)
qn2 © 7 ) = FPm .
r- (0) - r (1)
yﬂ\ ym

pefine the siqnal-to~noise ratio £ as the power in the process

sm(n) divided by the noise power, OF

r Q) - '
ym( ) g
r =
5 M{Jz
w!
ry {0)
= __._._..—-—-m ~ 1 (11-26)
2 .
I,
W
=y = 1

gubstitute for r 0y, r, (L) and r. (2) in equation (11.25).
Ym Y1 Y
It can be shown that (Appendix A)

2

“m
5 e (11.27)
m dzg + dli + dO
where,
c, = cosz(wm - o) cos¢mcos(2wm - ¢m)
cy = 2c052(wm - Qm) - 3cos®mcos(2wm - ®m)
cy = cosz(wm I P 2cosq>mcos(2mm ~ ¢m)
d2 = cos2(wm - @m) - cos@mcos(2wm - ¢m)
d1 = 2(c052¢m + cosz(mm - ¢m) - cos¢mcos(2wm - )

- 2 _ - 2 -
d0 = 3cos ¢m cos¢7mcos(2wm ¢m) + cOSs (wm @m)
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The distance o, from the origin of the unit circle to the
location of the pole is related to the 3 dB bandwidth Bm'in

Hz of the m'th resonator by [ 9]

B
- _m
Dm
then,
'
B
' - _n
bm_e ?
"n _ Pn
2
e

’
where Bm is the 3 dB bandwidth in Hz of the noisy resonator.

Define the bandwidth expansion factor (BEF) as

T

6]
5’ en (=)
_ m _ m
BEF = g = 1 + —THE__ (I1.28)
m m

Equation (II.27) shows that the BEF depends on the signal-to-
noise ratio (SNR), £, P and W Families of curves of the BEF
as a function of the SNR in the range ~30 dB to +3C dB have been
generated for 3 different frequencies, .125 Hz, .166 HZ and .25 Hz.
They are shown in figures (II.4), (II.5) and (II.6) respectively.
It is seen from the graphs that, for the same SNR, the BEF is an
increasing functior. of Pm and a decreasing function of wy. For
small pm's, the resonator has a large bandwidth and adding white
noise (white noise has flat spectrum between -.5 Hz and +.5 Hz)
does not affect the spectrum as much as for large pm's.

The above discussion demonscrates clearly that the asymptotic

resolution of an all-pole model depends in a non-linear fashion

on both the bandwidth and frequency of the noiseless signal.

!
Ll
i
§
*
i
i
i
i




&

21

Therefore, in general an increase in the model order does not
uniformly improve the spectral estimates of all the spectral ;
peaks and the improvement is rather unpredictable. Curves such {
as given in figures (1I.4) -~ (II.6) may, however, be used as

a general guideline for the amount of degradation in a given

applicatiocn.
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III. ORDER DETERMINATION FOR AR MODELS

The previous chapter demonstrated the need for increased
order of an AR spectral estimator to improve resolution in the
presence of noise, resulting in a larger variance for the
estimates. In fact, the trade~off between the bias (or
resolution) and variance of a spectral estimator is the central
issue in spectral estimation by any method. For the traditional
(Blackman and Tukey type) spectral estimators, this trade-off
is reflected in the choice of the spectral window type and the
maximum lag of autocorrelation function used. This subject,
referred to as window carpentering, is discussed in detail by
Jenkins and Watts [12], and is straightforward because resolution
is well-defined in terms of the spectral window bandwidth.

With the popularity of data adaptive (notably the auto-

regressive (AR)) spectral estimation methods, similar resolution-
variance trade~offs are in order. Specifically, well-defined
methods are needed to determine the order of the (AR) spectral
estimator for a given data sample. Furthermore for practical
applications, these methods need to be on-line and as much as
possible objective in nature. This problem is complicated, however,
due to the data dependent nature of the resolution of the AR spectral
estimator as shown before (e.g., no well-defined window bandwidth).
Therefore, the question of order determination for the spectral
estimator seems to be best posed as a procedure for obtaining a
compromise between the AR model fit and the variance of the
estimated AR parameters as a function of the model order.

Akaike [13,14] and Parzen [15] have recently introduced scme

methods for automatic determination of orders of autoregressive
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processes. One method, based on Akaike's Information Criterion
(AIC), has gained special popularity. 1In this report, we follow
the derivations on which AIC is based, introduce appropriate
modifications to account for practical estimation procedures and
derive a new information criterion designated the Conditional

AIC (CAIC). We then present the results of a number of numerical
simulations that compare the performances of AIC and CAIC for

moder order identification and spectral estimation.

ITI.1 Akaike's Information Criterion

Akaike derived his information criterion, AIC, as an
estimate of the asymptotic relative goodness of fit of the model
to the observation. Although his derivations were based on
information theoretic arguments, the resulting parameters were
the same as the maximum likelihood estimates. 1In this section
we review the steps invelved in obtaining AIC as they pertain
to the derivation of the new criterion. We assume the time series
to be described by

a
1

~<
1}
M

iXpoj * U, t=0,...N (ITI.1)

x_L,...,xO = 0

where ug is zero-mean white and Gaussian and L is to be determined.
Through asymptotic arguments, Akaike defines an information
criterion, related to the maximum likelihood of the estimates of

a;, aj, as:

AIC(A) = (-2)1n (maximum likelihood)

(ITI.2)
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where E_ denotes asymptotic expectation, A and A are L x 1 vectors

of the ccoefficients a; and their estimates 31' The practical

AIC which is related to the full-information likelihood function

of a Gaussian process is then given by

AIC(L) = N ln (MLE of innovation variance) + 2L (I11.3) J

and the order L is chosen that minimizes AIC(L).

I11.2 The New Criterion

Since the exact maximum likelih.>d (full information

maximum-likelihood) estimates are generally not available, the

conditional MLE, one based on Yule-Walker equations or Burg's
algorithm, of the innovation variance are normally used in (I111.3).
We propose using the conditional maximum likelihood (CML) function
in (III.2). This function is based exactly on the available data
and we believe is a more sensitive indicator of the behavior of
the estimates used in practice. Thus, in the following, the CML
estimate of A and its covariance function are considered, in order
to obtain tractable expressions for (III.Z2).

The conditional (partial information) 1likelihood function

for the time series in (III.1l) is given by:

T
2 1 -CDC
L(E_\,O'u ,Xl,..,XL) = ———-N—'T exp ;‘—2' (III.4)
2 2 u
(27rcu )

2 . . . .
where o, 1s the variance of the innovation sequence u

t’
T _ .
c = Il,—al,-az,...,-aL] and
N (III.S)
Pij = Py5 7 T 0 Fk-i+l ¥k-j+l

k=L+1
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Turthermore, the CML estimate of ouz is given by:

2

54 =c"
4 =

DC/ (N-1) (III.6)

and a lower bound for the variance of the estimates of a; follows

from the Fisher's information matrix to be

2 1 2,11
var(a;] > T u A (II1.7)

where A'' is the diagonal element of the inverse of the (L + 1)-

sample covariance matrix of x It is now shown that

.
g “Att =1 (I11.8)

The innovations variance, ouz, is given by th= Yule-Walker

relation as

@]

il

at

li

H
[

o

AT (II1.9)

where AL+1 is the L+l-st order covariance matrix given by:

N
T -1
A1 T
Ll oeeo. Ty
The first diagonal element of the inverse of Ay v All is then
given by:
11 |4
Attt e T (II1.10)
By

Formula (IIT1.9) can be rewriten as




(I11.11)

and p; = Minor of element r; in A;.

Comparing (III.1l0) and (III.1ll) it is obvious that we need to show

(AL+1( = Numerator in (III.11l)

From the form of AL+1 we have

L .
- i-1
Bperl = 5ol ] + (bxy PR S R FES Y
L .
2 i-1
+ (-1) ‘E r; (=1) SEOPIREE
i=1
or
L L .
= 4y 1t3-1
lAL+ll = rOIALI + ‘;l iil rirj( 1) Uli_jl (II1.12)

But the numerator in (III.ll) is also after multiplying the matrices:

l L L
Num = r_|A - T T oririups_sy (=)
ol2L 21 i=p b 371i-3]

i+j-1
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Resulting in

g 2 = m%_ (I11.13)

as required.

We now proceed to define an expression for (III.2) bhased on

the CML estimates of A and ouz. The expression for the CML given
in (III.4) is now substituted in (III.2) for the maximum likelihood
and using (II1I1.8) for the second term in (III.2) and (N - L) for

N we have:
CAIC(L) = (N - L)ln(2n8u2) + (o - 1)L (II1.14)

The factor a > 1 is included to account for the asymptotic nature
of the criterion and the fact that (II1I1.8) is a lower bound for
the variance of 31. A similar parameter was also suggested for
AIC [16] and in ([14] Akaike discusses a possible approach for
choosing a. Since CAIC(L) as given by (III.4) is dependent on
the variance of x

£ the test is standardized by introducing a

normalized innovation variance so that

CAIC(L) = (N - L)1n[5 %/ (vaf x,))
(I11.15)
+ (a - 1)L
Thus CAIC(0) = 0. The factor a is chosen to give more or less
weight to the error in the estimation of the parameters. 1In

other words, resolution can be increased at the expense of the
variance of the estimates by decreasing o. We have found,

empirically, values of 3.5-4 to give the most stable and reasonable

indication of the order.

y
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III.3 Simulation Results

We have tested the performance of CAIC relative to AIC on
a number of time series models reported previously. The data
included normal as well as uniform distributions. The estimates
were based on CML (least-square) and Yule-Walker methods. In
the great majority of cases, CAIC performed as well or superior
to AIC. Examples of these can be found in ([17]. Some estimated
spectra based on orders determined by AIC and CAIC are also shown
in figures (III.l) - (III.3). VYule~Walker equations with auto-
correlation function estimates given by

-1

=& 5L %%y
were used. The example shown in Figure (III.1) indicates the
relative stability of CAIC. Figure (II1I.2) shows that the model
order chosen by AIC results in spurious peaks, while giving
higher peak resolution than the CAIC based one. Figure (III.3)
shows that an increase in white noise level increased the AIC

order to the point that spurious spectral peaks became pronounced

while CAIC remained nearly the same, showing the relative stability

of CAIC.
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IV. SOME SUBOPTIMUM ARMA SPECTRAL ESTIMATORS

As shown in Chapter 11, the presence of additive noise on
the observations of an AR process implies that they are an
ARMA process. A popular approach to circumvent the degradation,
wrought by this model change, of the AR spectral estimate is
to derive spectral estimators based on the ARMA model. Box
and Jenkins [ 7] among others, provide an algorithm to give a
close approximation to the maximum likelihood (ML) estimate of
the ARMA parameters, assuming Gaussian observations. This is
considered th= optimum estimator in view of the desirable
properties of .aaximum likelihood [18]. But optimum «stimators
have computational disadvantages, described in the next chapter,
which have compelled many rescarchers to consider alternative
criteria that yield spectral estimators with greater computational
efficiency. There is presently considerable activity in this
area, appropriately termed suboptimum ARMA spectral estimation.

In this chapter a new suboptimum scheme is reported for
estimating the power spectral density (PSD) of an ARMA process
of known orders. After a preliminary data reduction, this scheme,
called the least squares (LS) estimator, minimizes a sum of squafed
guadratic fuﬁctions of the AR coefficients using a nonlinear least
squares algorithm. The poles of the estimated PSD are found from
the minimizing AR coefficients, and zeros are found from gquadratic
functions of these coefficients. Note that these results have
been published {[19].

The general idea of least squares fitting the ARMA parameters

is not new, and various other approaches have been suggested
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(see, e.g., [ 7] and [20]). The scheme discussed here is,

however, analogous to a minimum mean-squared error estim&tion

of the parameters appearing in the estimator discussed in [21]

and [22]. A modification of the latter estimator that is based

on the modified Yule-Walker equations (the MYW estimator) is

also presented, in which the problem of negative excursions of

the estimated PSD is corrected by tapering the estimated moving-
average autocorrelation function. Examples are shown that compare
the performance of these ad hoc techniques to the approximate

maximum likelihood method of Box and Jenkins.

IV.1l The Spectrum of an ARMA Process

Assume that we observe xt,t=l,...,N where Xy is stationary

and Gaussian of mean zero, and that Xy fits an ARMA (L,M) model.

Then we can write

L aiXpy T Up (Iv.1)

o

i

where a; are the AR parameters for the ARMA model and u, is the

MA residual sequence given by

M
U, = e, - L biEt-i
i=1

(IV.2)

where bi are the MA parameters and €y is a zero-mean uncorrelated

normal sequence of variance og. Define

T

A" = [l,-al,...,-aL].
Then the PSD of Xy is given by

_ T -2

Sx(z) = Su(z) A ZLI (Iv.3)
h T _ -1 -k . .
where Zk = {l,z 7,...,2 71, z being the z~transform operator
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z = ej“, and where Su(z) is the PSD of u- writing
s, (z) = oi{l + Bl(z’l +z) + .. * sM(z'M + M) (1IV.4)

we can express the PSD of Uy in terms of its variance ci and
M normalized autocorrelation function coefficients ei. The
normality of v, gives us the conditional expectation {23, PP-

218-225])
E(ut{ut_i) = BiUp.j (IV.5)

and, in general, 3 is the best 1inear predictor of u, given

a, . in the minimum mean-square error {mmse) sense.

1v.2 The LS Fstimator
A least sguares estimate of Bi is obtained by minimizina

Si given by

N 2

S, = L (u, ~ B;9._ )

N T ite-i
- T T 2

= n (A"X IR Y Ao SPUIFRRTIS 2% )
t=L+i+1 [tlt L) h¥ [t i,t L l]
where
T 13 .
X [Xi.xi_l,..,,xj}, i > 3.

11,3}
The derivative with respect tO ei vanishes for
R ATR.A
3, = —7 (IV.6)
2A°R_.A
ol

where

gy
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- Rt [X ¢ t-L]XT[t-i t-L-i]

T t=L+i+l ' '
-
y T T
= P o)X fe-i, tenei)) )
~ Ry = 2 Xy t—L-i]xT[t-i t-L-i]l

Ol t=L+i+l ’ '

That éi minimizes S, is seen by taking the second derivative

2 N
. 4 T T 2
S. = 2A'R_,A = 2 g (B°X (. . o) > 0. (1v.7)

dSiz i ol b=t +] [t-i,t-i~-L]

This also establishes a nonzero denominator for éi in (IV.6).
3 To get an estimate of the variance of u, we use the sample
- moment
~ N N

~2 2 - T T
(N~L)o’ = I ul = I AX o X 1A
Y g4l Y t=L+l (t,e-L17 (&, t~L]
- =aTR_a (IV.8)
foTe}

-l
o where R,o is given in (IV.6).
— The fact that u. is MA(M) implies that B, = 0 for i>M, so

one method to fit the vector A to the data is to solve the set of
equations Bi =0, i=M+1, ... .M+ L from (IV.6). Recognizing
that the denominators are nonzero, we can instead solve the

simpler system

T

A RiA =0, i=M+1, ... ,M + L. (IV.9)

The locus of solutions for each of the above equations is a quadric

surface [24, pp. 287-294], and there is no solution to the system

« . . . ,

A if the surfaces do not jointly intersect at least one point. 1In
order to obtain a value for A whether or not there is a common
intersection, we choose A to minimize Q given by

:
W . - .
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o .t
i~ 0

{ Manf

M+L
Q = ) (A
i=M+1

TRiA)Z. ) (IV.10)

The value of Q is zero at any point of intersection for all the

surfaces in (IV.9). The vector A obtained via minimization of Q

will henceforth be referred to as the LS estimate. Using the

2

LS estimate, we next find éi’ i=1l, ... ,M using (IV.6) and Su

using (IV.8) and substitute these values in (IV.4}) and (IV.3) to

get an estimate of the PSD of x henceforth termed the LS

t'

spectral estimate.

IV.3 The MYW Spectral Estimator

The rational spectral estimator in { ] (the MYW estimator)
produces A to solve the modified Yule-Walker equations, which

for an ARMA (L,M) process are

CM+1A =0 (IV.11)

where

[ = | e |-

i=l, ... ,L; j=1, ... ,L+l,

and where cX(i) is an estimate of the ith lag autocorrelation of

Xy for example,
1 N-i
Cx(l) =3 bX XpXepg- (IV.12)
t=1
Then estimates of the autocorrelation function ru(i) of u, are
found by
Il . AT A .
ru(l) = A CiA, i=0,1, ... ,M (IV.13)
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b and the estimated PSD is

9 S (2) = (£ (0) + r (1) (27}

+2) 4.+ Eu(m)(z‘M + 2% . |£TZL|‘2.

1

(IV.14)

T e

Note that the LS and MYW estimates of A are asymptotically

equivalent. To see this, observe that

p lim(N-L-k) 'R = A, + Ap
N+
- (denotes convergence in probability) [25] where Ak incorporates
- the mth lag autocorrelation rx(m) of Xy according to
- 433, = rima
@ i=1l, ... ,L+1, 3=1, ... ,L+1,
s
and that p limg C, = I|Aij|}k, i=1, ... ,L; j=1, ... ,L+l. The
~ solution to (IV.1ll) obtained by replacing CM+l by its limiting value
-l also solves (IV.9) with (N—L—k)_le replaced by its limitinag value.
- There is one other solution to this asymptotic form of (IV.9},
.: but we conjecture that it is outside the stationary region for A.
The spectral estimate given by (IV.14) is not guaranteed to
_ be a nonnegative function of z = ej2nf for fe(0,1/2]. For instance,
> if observations consist of two additive narrow-band AR(2) signalé
é having center frequencies in close proximity, the true z-spectrum
consists of two closely spaced poles just inside the unit circle
and a zero just inside the unit circle and between the poles in
- frequency. An error in estimating the numerator polynomial in
J (IV.14) can cause what should be a near-zero positive value at
2 the bottom of the trough in the frequency response of the numerator

to be a near-zero negative value, thus making the PSD estimate
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negative in a region near the peak. &an effective counter is
to reduce the depth of the trough by multiplying the ;u(i) by a
taper which slightly reduces the frequency resolution of the

estimated numerator. Use of the linear taper

T, = 1-1i/K, i=0,1, ... ,M, K> M (IV.15)

has been successful in eliminating negative excursions of the

PSD estimate when used to produce f‘u(i)t according to
r (i) = Tiru(i), i=0, ... ,M.

Another strategy, used in [20], is to replace the numerator in
(IV.14) by the periodogram of u, . For short data records, however,
the periodogram often cannot adequately represent the moving
average spectrum, resulting in inaccurate indication of the power
under the peaks of the ARMA spectrum. In tests of the MYW
estimator, all negative excursions were eliminated for K >> M.

No negative excursions were noted for the LS algorithm, but the
existence of a guarantee has not been investigated. It is
emphasized that the use of the numerator taper does not sacrifice
the resolution of the ARMA spectral estimates. This is due to
the fact that resolution is mainly determined by the poles and

the MA spectra of interest are relatively smooth.

IV.4 Simulation Results

Figure (IV.1l) shows LS estimates of the PSD of 20 realizations

of X, = Wy + Yt + 0.5 n, where w, = 0.4 w - 0.93 w

t t-1 te

t=2 and

Ye = -0.5 Vel = 0.93 Ye-r + Ne and where Err Mg and n, are

t

mutually independent i.i.d. Gaussian of mean zero and unit variance.

Q in (IV.10) is minimized using the conjugate gradient technique [26]
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with A starting at the origin. The combined effect of the plots
is to suggest a bias in the estimator which smears the séectra.
In Fig. (IV.2) the tapered MYW estimate is depicted for the same
set of realizations. K in (IV.15) is set to the minimum value
that succeeds in eliminating all negative excursions of the
spectral estimate. In this set, the untapered MYW estimates of
seven realizations went negative, and K = 34. Figure (IV.3) shows
the unconditional least squares Box and Jenkins estimate for the
same set of realizations. It is apparent that the performance
of the MYW estimator is nearly as good as that of the Box and
Jenkins estimator for most realizations. The disturbing tendency
of the MYW estimator to produce an occasional aberrant estimate
is also exhibited in the figure.

The simulations provide evidence that the computational
simplification, compared to the optimum schemes, provided by
data reduction in the LS estimator is accomplished at the expense
of a substantial tradeoff in statistical efficiency. The results
also suggest that the MYW estimator has higher statistical efficiency
than the LS estimates. These observations, coupled with the high
computational efficiency of the former, lead us to conclude that

the MYW estimator is the superior of the two suboptimum spectral .

estimators considered.
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V. STATISTICAL CLASSIFICATION OF SOME ARMA SPECTRAL ESTIMATORS

-
- Many of the spectral estimates appearing in the engineering
) and statistics literature over the last two decades fall into

) one of two classes. In the minimal sufficient (MS) class, the
AR and MA parameters are adjusted simultaneously to give a least :
squares or approximately least sqguares fit to the observed data i

— vector. The name "minimal sufficient" acknowledges that no
reduction of the data is a sufficient statistic for stationary

- Gaussian time series having zeros in the power spectral density

: (PSD) (31]. The resulting estimates are approximately maximum

—

- likelihood (ML) for Gaussian data. In the sequel, it is assumed

; that the data is a Gaussian time series, and the ML ARMA
parameter estimate is referred to as optimum, for reasons

- discussed in Chapter IV. Thus, optimum solutions are contained

wd in the MS class. The equations for the least squares solution

i are highly nonlinear, and thus estimators in this class are

: typified by nonlinear optfuaization algorithms and other iterative
approaches and their concomitant pitfalls, i.e., nonconvergence

- or convergence to local rather than global extrema, the need for

‘g preliminary ARMA parameter estimates to start the iterations,

B and large coﬁputer memory and time requirements. The auto-
correlation function ~tass 1s composed of estimators which
utilize a fixed, finite number of lags of the sample ACF. The

- estimation equations are usually linear or quadratic, and often

i the AR parameters are estimated alone, after which estimates

either of the MA parameters or of some function related to the

PSD of the MA residuals are computed using the AR estimates. All
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of the estimators in this class are suboptimum, the truncated
sample ACF being a data reduction. Further, an optimum fitting
requires that all parameters be adjusted simultaneously,
Suboptimality, then, is the price paid for the gains in
computational simplification and relaxed memory requirements

of estimators in this class.

In its emphasis on computational efficiency, the literature
has left largely unanswered questions regarding the statistical
efficiency of estimators in the ACF class. We provide in this
chapter an evaluation of Fisher's information matrix for the
truncated sample ACF of ARMA processes. Only the asymptotic
(infinite observaticn record, i.e., N » =} case is treated to
make the analysis tractable, and the magnitude and angle of poles
and zeros of the PSD are taken as parameters of interest. The
results will yield asymptotic bounds on the statistical efficiency

of any estimator in the ACF class.

V.l Classification of Some ARMA Spectral Estimators

In keeping with the goal of obtaining asymptotic results,
the estimators to be discussed are classified according to the
limiting form that the statistic on which they are based takes
as N approaches infinity. The MS class includes the methods of
Tretter and Steiglitz ([32], Hannan {33], Akaike [34), Konvalinka
and Matousek [35]), and Box and Jenkins ({7, pp. 231-235). The
methods of Walker [36], Hsia and Landgrebe ({37], Graupe,
Krause and Moore [38], Sakai and Arase [39], Satorius and Alexander
[40]), Ka2h [?1], Kinkel et al. [22], and Bruzzone and Kaveh [19)
are included in the ACF class. Cadzow's method [20) is based on

a reduction of nearly all N lags of the sample ACF and hence does
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not fit into either class. We have observed a tendency toward
large frequency errors in Cadzow's method as well as an
exaggeration of the sharpness of spectral peaks while requiring
nearly as much computer time and memory as methods in the MS
class. These facts, in conjunction with the suboptimality of
the method as a result of the use of a data reduction as well
as non-simultaneous determination of the AR and MA parameters,
lead us to dismiss Cadzow's method from further analysis., A
number of estimators, e.g., [36], which are based on the sample
ACF yet claim to be asymptotically efficient from a subclass of
the ACF class. There is no discrepancy here, however, in that
efficiency obtains in the limit as first the number of obs:rvations,
then the number of sample ACF lags, approach infinity. 1In
practice we are not at liberty to extend the estimators in su~h
fashion, so these estimators are analyzed assuming a finite
truncation of the sample ACF.

Looking more closely at the ACF class, we see that {371,
[21], [22), {40] and [19] first compute an estimate of the AR
parameters, and then use these to estimate some function related
to the MA parameters. Thus, the statistical efficiency of these
estimators is determined largely by the efficiency of the AR
parameter estimates in the first stage, The AR parameters
determine the pole locations of the ARMA PSD, and consequently
they have far greater influence on its shape than do the MA
parameters in the problem of high resolution spectra, It is
clear that the asymptotic efficiency with respect to only the
estimated pole locations of various estimators is a meaningful

criterion by which to judge them. For example, [37], [21], [22],

U
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(40] and any method based on modifying the numerator portion

of their estimated PSD's (as in Kay (41]) are equivalent by

: this criterion, a result that agrees with our experience.
The two popular sample ACF's
i c (i) = & M kit 1 w01 k
X N g=1] E t+i reresty
) and (v.1)
- : p Nd .
rx(l) = T ) XeXppg 1=0,1,...,k
t=1
B are asymptotically eguivalent for finite k. We take as the
- statistic of interest C[kl'k2] [cx(kl),cx(kl+l),...,cx(k2)],
= kl < k2. This allows us to take into account the effect of not
- using low-lag ACF values, as is the case in the five estimators
listed in the previous paraagraph, wherein cx(o) is not used to
i estimate the AR parameters. The asymptotic Fisher's information
- matrix is derived for any subset of the poles and zeros by
_ appropriate choice of the parameter vector.
- We mention briefly the work of Gersch (42], who provides
the asymptotic covariance matrix of the AR parameter estimates
- gotten from the modified Yule~Walker operations, and that of
5 Sakai and Tokumaru {471, who give the covariance of the estimated
power spectrum gotten from using {21] or [22] (these are
equivalent)., Little else has been done to analyze the suboptimum
ARMA spectral estimators, and while these results are useful,
- they lack the general applicability of the analysis we now undertake.
-~ " i - . N
- —— L
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V.2 Evaluation of Fisher's Information Matrix

We begin by evaluating the asymptotic covariance matrix of

3‘: the sample ACF for an ARMA(L,M) process, where we assume L > 0,
using the notation and assumptions of Chapter IV. It is known
- that (12, p. 1811, for a stationary time series Xy
l o
¢im cov[ck(k),cx(i)] =X oy (L)y(i+e-ky+y (i42)y (1-k) (V.2)
N-rov : jm—w
- where yli) = E(xtxt+i)' The ACF of an ARMA(L,M) process is
recursive beginning with lag M. Starting values are given by
- the appropriate system below (see (441},
- - - - - )
1 ay a, ces ap.y -apl{y) DO
<3 .
~ay 1-a, -a, Y 0 vy (1) Dl
“82 -al—a3 l—a4 - 0 0 y{2) = 082 D2 i L>M >0
. : : . : y(L-1 5 (V.3a)
-~a ~a. _ ~a. _ ‘e -a 1 (L)
_, L L-1 L-2 1 Y L L
1 ~a -a -a - 0 ) D
. 1 5 -1 "3 0 0} [ v(0) [ B
- ~ay  l-a, -a, —ay 0 o 0 of{ v(1) D)
~a, -aj-ay l-a, 0 0 0 0 0 i (2) D,
.1 hd : . * :
y(L-1;
h A Ay ta_, eee T3y 1 0 0 ... 0} v (L) =c§ Di M>L>
0 -a “a; 1 . -a, -a, 1 0 0 [y (L+1) L4l
0 0 - - - - N
ap 3y a, ay I oo 0y (L+2) DL+2
L0 0 0 vee O 0 0 0 «o. 1f{ v g D
: M
- (V.3b)
i
- - .
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where
2 % e b,)B,det ) 2p (V. 4)
D=O o E a,- B.etO... + O (] Va
i € J=i+l 2=1 'S A j~1-2 £ 1
with BO =1, Bi = bi for i=1,...,M, B.l =0 for i > M, a; = 0 for
3
i>L, and £ = 0 for j < i. Also,
i
ap @2 ay |
- a a1
2 = 0 =1l ... a ol ;x> (V.5)
0 0 al
1 : k=0
where a;, = 0 for i > L. For M > 1 and L > 1 we extend the vector

of starting values to lag M+L-1 using the AR recursion
L)

y(k) =

[ N

aiY(k—i). (V.6)

i=1

Although this recursion can be used to extend the ACF arbitrarily
far, the infinite sums in (V.2) are simplified by expressing the

ACF 1n terms of its poles, i.e.,
ALGLT T, 1 > M, (V.7)
where the Gj are zeros of the characteristic equation

1 - Jhooagz =0 , (v.8)
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and Aj is the residue of Gj‘ Using the extended ACF, we find

Cae

the xj by solving

-
3 . 1 1 .. 1 ) A Y (M)
] _
[ Gl G2 .o GL kz Y (M+1)
4 = . (Vv.9) j
L-1 L-1 L-1 _ |
Gl G2 v GL XL Y (M+L-1)
The infinite sums in (V.2) can be expressed in terms of one-sided
- infinite sums, as
- 2z y2) 4 v%0) 5§ =0
i=1
k-]
- N - =
Toy(Lyv(i+3) = 20 L y()y(i+]d) + I y(D)y(F-1)| ; 3 odd (V.10)
i=-o i=0 i=1 J
— i
- 2] T oy(D)y(i+3) + T y(L)yG-1)| + v () ; 3 eve
.~ i= i:l -
- and the infinite sums can be separated into terms of the ACF
directly influenced bv the MA parameters and those followina the
- recursive form (V.7), as
3 w A M-1 0
oy y(i+3) = I y(1)y(i+3) + I y(1)y(i+3)
1=0 i=0 i=M
But, from (V.7),
w o L L . P
- Toy()y(i+d) = % 5 A g Mg 11
. . n m n
) 1=M i=M m=1 n=1
ﬁ L L o j
= - - . . L L G
& .A i 1-M. 1+j-M - o n .
m=1 n=1 ™" i=M Gm Gn - - \m\n 1-G_ G’ 1=0,1,2,...,
m=1 n=1 m n
(Vv.11)
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where the assumption that all poles are inside the unit circle
allows the interchange of summation and guarantees converéence
to the closed form result.

Substituting (V.11l) into (V.10), we have

2 m .
Ye0) +2 T - ; 3=0
m=1 n=1l GmGn
j-1
S M-1 7
I y(@)y(i+3) = 2] I y@)y(i+3) + & y(i)y(3-i)y +
] ==o00 1=0 1=
L L an
2 I OA_ A a— ; j odd
m=1 n=1 mn 1 GmGn
3.
M-1 771
20 L y(D)y@a+3) + 0 o y(D)yy(G-1y| +
i=0 i=1 J
L L G-

n R
Y (7) + 2 mzl nzl kan T:E;€; ;] even.

Finally, we note that (V.2) can be rewritten

o0

¢im cov[cx(k),cx(R)J = é z

N+ j==x

y{i)y (i+2=kK)+y (i) vy (i-2-~k),

so that

{(v.12)

(V.13) H




[~ ]
P i=1 m=1 n=1 m n
- iMoo - o
N 5 oyc@) + L Y(l)Y(l+Zl) +
i=1 i=
- L L l+Gn2Q
¢ oy(yy(2e-i)y ¢ LI A A (5= )
- i=1 m=1 n=1 m'n'1-G Gn
L@yt g b= k>0
2 M-1
- 2im cov[cx(k),c*(i)l = N % Y(i)(y(i+l+k)+y(i+%—k)) + (v.l4)
= N=+® N * i=0
2+k-1 g-k-1
- 2 2
z Y(i)y(2+k—i) + L Y(i)Y(Q-k—i) +
e i=) i=1
4
- L L Gn“kmng'k
T I )\mkn(———m—"—) ; A=k = 1,3,5/+->-
m=1l n=1 mn
5 5 M-1
b | . 5 T y(i)(y(i+l+k)+y(i+1-k)) +
i=0
L+K -k
5 -1 ~5— 1
5, Y(i)Y(Hk—i) + I Y(i)v(l-k—i) +
- i=1 i=1
Q L L G Q+k+G -k
= T T o (=2 n
R S
m=1 n=1 mn
12 a+k,, 282Ky . g-k =
ﬁ(Y ("‘Z’_)"'\l (T’)) ’ Q«k"214'61--~'
| -
]
o L -~ .‘
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where terms used in the finite sums are obtained using (V.6).

Note that the above assumes & > k, 2 > 0 and k > 0. This

b presents no problem in evaluating the covariance matrix, for
cx(k) = cx(-k) implies that negative values of 2 and k are not
_ needed, and the toeplitz form of the covariance matrix implies
that cov[cx(k),cx(z)] = cov[cx(l),cx(k)]. The case L = 0 is
handled by (V.3b) with (V.4) and (V.5). (V.10) is modified to
M
- 2 T Yz(i)+Y2(0);j=0
i=1
- ( j-1
o M 2
) I y(i)y(i+)) = 2] L o y()y{({i+3) + T y()y(3-i)| ; 3 odd  (V.15)
- i=-w i=0 i=1
5 i
(=] M 2 1 2 3
21 L y(i)y(i+iy + I Y1)y (3-1) | +y (%); j even.
i=0 i=1
- Then, using (V.2), we have, for L = 0,
rd
4
o
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M
= Z 2z 4% >+y2<o>] ; 2=k=0
_ o1
- M, M
5 oyS(i) + I y(i)y(i+22) +
i=1 i=0
-1 . 1, 2 2
L oy(i)y(22-1) (+ ﬁ(Y (0)+y“(2)); 2=k>0
_ i=1
2 M
N Ty (L) (y(i+2+k)+y (i+2-Kk)) +
- i=0
V)
g-k=~1
- 2
im covic.(k),c_(e)] = T oy(i)y(e-k-1i) + (V.16)
X X .
N-ca i=1
: g+k=-1
- P
& b y{i)y (2+k-1) : 2-k=1,3,5,...
i=1
e
- SUT v () (y (k) +y (1+2-k)) +
i=0
k]
]
' Q+k 2=k
- -1 — -1
£ y(i)y(e+k=1i) + ¢ y(i)y (e=k=-1i) | +
i=1 i=1
- 1{ 2,24k 2,8~k
3 R (T)"’Y (—2-—) : -k=2,4,6,...
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The probability density function (p.d.f.) of the sample ACF
of an ARMA process is asymptotically multivariate Gaussian [ .

If we denote

T _ .
F[kllkzl - [Y(kl)IY(kl+1)r---[Y(k2)] ’ k2 > kl 7
and
A = lim E(C -7 ) (C -7 )T
Tlkyskl T Noe (ko ko1 [ky k17 P T Ik kT Tk ok, (V.17)

then the asymptctic p.d.f. of C is given by
(ky,ks)

k,=k, 1
2y = @m % |a 7 exo[- ke
£(Cy G,P,o = Xpi- =
[k, kp) G B0 Ky k) 7 2%, k)
T,-1
r R (C . 4T )
ey ko)) Mo kg1 ik k) T T k] ] . W

where G represents the vector of poles and P the vector of zeros.

Fisher's information matrix is given by ({451 (denocte lim f = fm)
N—+«
| 2),"
I.(2 ) = -E{V, {[7, 1lnf(C G,P,0_")1 } (Vv.19)
c'vo B 85 [k k,] €
We take 3 | = [(G | |G [, b [P, | Ip [, Y
“O L l L L/2 I ll"” L/2I l T M/2 I\rll’"'.l M/2 r

where the assumption that poles and zeros occur in complex conjugate
pairs halves the size of the parameter vector. The ¢; are angles of

the pole pairs, and zeros Pi solve
1-bizt - . -2 M=o, (V.20)

each pair having angle by
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We have been unable to obtain the derivatives in (V.19)

E - due to the complicated nature of the p.d.f., and, even if they
Ii were available, it is doubtful that the expectation would vyield
5 to a concise solution. Numerical methods are not well developed
ﬁ — for multiple integrals, and these have the added complication
of being improper, so we consider Monte Carlo methods. The
most basic approach is to generate several thousand pcints !
~ (C[kl,kzl)i distributed according to (V.18) and to approximate
the expectation by a sample mean
- > 1 7 2,7
Ic(8g) = 5 E |vg {1V, tnf((Cpy o )16 P00 )] 3 =
) i=1l{ "o o 1772
el s
= 1. {17, Q £ ((C ). lG,p 0~2)]T}] (V.21)
N{ 2N £, i1 @ [kl’k2] itertrTe ) !
- where - 1s the number of points generated. The matrix of second
'j partials is computed using standard numerical routines, i.e.,
_ we make small perturbations in 80. For each new 90, we recompute
- poles Gi,i=l,...,L and zeros Pi,i=l,...,M, which occur in conjugate
pairs. Then, we obtain the corresponding vectors A and B by solving
. (1-6,27 1) (1-G,2 ™1 ... (1-G, 2™ 1) = 1-a 2z t-. -2 27 F
A (V.22)
(1-py 2”1 (1-p,z™h) L (1mp 2™l = ezl 2 Y
from which we proceed to the calculation of y(i) and eventually
- A[kl k2]' The sum in (V.21) is evaluated for the several perturba-
ﬁ tions of 90 needed in numerical evaluation of the matrix of second
= partials, using the same set {(C[kl,kzl)i} each time. 1If we are
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interested in the information with respect only to poles, we

use the reduced parameter vector OOT = [IG

We then estimate the asymptotic Cramer-Rao bound on the error
covariance matrix for 60 (note that we consider only the class of

asymptotically unbiased estimators) as

T 1

E (80-60)(90-90) > 1 (80) (V.23)

where the matrix ordering is
R >Q ~ YTRY > YTQY

for R and Q square of dimension (say) K and y any vector of
dimension K.
Questions regarding the details of the Monte Carlo simulation
are under invesStigation. Next, we will consider the special
2

case of AR time series in white noise of variance On - The

effect of this noise on the information in C[k K. is evaluated
1772

by replacing y(0) obtained from (V.3a) by y'(0) = y(0) + onz.
This will give a quantitative measure of the effect of the model-
change phenomenon in the presence of noise. Studies of more general

time series and noise will follow.

1‘I"'I‘GL/zlI¢ll"'l¢L/2}‘
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VI. SPECTRAL ESTIMATION FOR NOISY COMPLEX SINUSOIDS

High resolution spectral estimation has found special
popularity in applications involving real or complex sinusoidal
signals. Examples of these applications include radar doppler
processing, and radar or other sensor array processing for
improved angular resolution [27]. A method that has found
special appeal in these applications is the maximum entropy
method of spectral analysis (MEM) introduced by Burg [ 81].
However, there have been several disturbing problems with this
method when applied to sinusoids, notably, frequency errors
depending on the sinusoidal components' phases and line splittiﬁg
under high order estimates and large signal-to-noise ratios.

We have considered the frequency error problem and have
investigated a modification to Burg's original alagorithm,
which we denote the tapered Burg algorithm. The tapered Burg
technique is a direct result of considering a weighted least-
squares fit to the parameters of the all-pole model, subject
to Levinson's recursion constraint, in place of the usual
unweighted least-squares fit. The algorithmic consequence
cf this approach is the inclusion of an appropriate taper
in the calculation of the partial-correlation coefficients in
the usual Bufg algorithm. Based on the expression for the
frequency error in the spectral estimate of a sinusoid, an
optimum taper is derived. The performance of this optimum taper
is then compared with those of the rectangular (untapered Burg)
and Hamming tapers. It appears that this taper makes MEM spectral
estimates of sinusoids using Burg's technique more robust, without

sacrificing its resolution.

gy
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In the popular derivation the MEM coefficients define a
predication error filter (PEF) and are chosen so as to minimize
the average of the forward and backward prediction residual
energies subject to Levinson's recursion constraint. 1In [ 8]
Burg generalized this derivation by minimizing a weighted
average of the residual energies. This was presumably done to
allow the analyst to reflect his or her confidence in possibly
disjoint data records. For contiguous data, it did not appear
that any weighting of the average residuals was needed,
Therefore, the popular MEM spectral estimate has been that of
Burg's original suggestion of using a rectangular (uniform)
taper. Recently, Swingler showed [28], through numerical
simulations, that a reduction in the error in the estimated
frequency of a real sinusoid is obtained if a Hamming taper is
employed in the calculation of Burg's partial-correlation
(PARCOR) estimates. This method of tapering is exactly that
reported in [ 8] by Burg.

In this chapter, we first derive an expression for the
estimated frequency error of a real sinusoid using Burg's tapered
method. This is a generalization of the error expression for the
untapered Burg's technique reported by Swingler [29]. Wwe
subsequently use the error expression to derive an "optimum”
taper. Finally, simulation results comparing the optimum,
Hamming and rectangular tapers in obtaining Burg spectral estimates

of complex sinusoids in noise are given.

VI.1 Generalized Error Expression

In this section we derive an expression for frequency error

of sinusoid based on the tapered Burg technique for a ceneral
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weighting function. Let the taper wm(t) be defined as a
function of the continuous variable t for {t]| < ﬁ%ﬂ and take

on the value zero elsewhere. Let the discrete time version be

_ _ N-m
ka = wm(k T) . (VI.1l)

As in (6) we assume that the window is normalized and non-negative:

N-m

I w =1 , allm,
k=0 mk
wix 20 , all m,k .

The non-negativity insures that the magnitude of the partial
correlation coefficients (PARCORs) do not exceed unity.

For the data record xk,k=0,l,...,N, the mth PARCOR is given
in this tapered Burg method as [ 8]

N-m

kio wmkDmkEmk

qdm = "2 §Nom > ; (VI.2)
kﬁo wmk(Dmk + Emk)

where Dmk and Emk are given in (VI.6).

For X, = cos (6k + ¢), the first PARCOR is

2 N-1
sin“(9) I wlkcos(29k+e+2¢)
_ k=0
a1, = ~|cos(8) + NoT (VI.3)
l+cos(8) & wlkcos(2ek+6+2¢)
k=0
We choose to express the first PARCOR as
aj; = -cos (6+8)
= -[cos (6)+6sin(B)) , for 6 << 1 . (VI.4)
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From (VI.3) we identify & as

N-1
L wlkcos(26k+e+2¢)
k=0

N1 (VI.5)

l+cos(8) I wlkcos(26k+e+2¢)
k=0

To look at the conditions which make § small we further assume
that the window wl(t) is even and thus its Fourier transform

Wl(m) is real. The summation in (VI.5) then becomes

N-1
LI wW,,cos(28k+9+2¢) =
K=0 1k
(VI.6)

(=4

cos (NO+24) ¢ (=1)

n=-=-w«

n(N—l)Wl(2ﬁn+2¢)

Since Wl(m) is bandlimited on the order of %@T r/s we can approximate

the summation when [3| < 7 and N >> 1 as
N-1
z wlkcos(29k+e+2$) = COS(N8+2¢)W1(2@)
k=0 (VI.?7)

i

=0 gy < el <m - gy

From (VI.6) and the constraints on Wik We have that wl(O) = 1.
Thus we see that the assumption § << 1 is valid when [3} < =«

and N »>> 1,

The second PARCOR is exactly given by

B N-2
1+ &+ ¥ w,,.COs(20Kk+20+2¢)
a - 2k
a,, = - & k=0 (VI.8
22 B A N-2 -8)
1+ = I w,_ cos(28k+28+2¢)
B 2k
( k=0
where
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e
I
jo1]

+ 2a,,cos(B) + cos(28)

11

o
1

all + 2allcos(8) + 1

Using the approximation for a results in

11

A= -(1-6%)sin(8) , B = (1-8°%)sin(8) ,
and thus

as, = 1, 8§ << 1

The Levinson recursion gives a,) = ap; +taz,3;9 = 2all and the

resulting PEF is then (1, -2 cos (8-¢) , 1). Comparing this to
the ideal PEF (1, -2 cos (8) , 1), we identify the frequency

error as

I

Af

N-1
Toow
k=0

cos (20k+6+29)

NoT (VI.9)
l+cos (89) I W.,,cos (26k+68+20)

1k

k=0 1k
which may be approximated by
1 N-1
Af = 5= sin(9) I w,,C0Ss(290k+9+2¢),
27 k=0 1k
(Vvi.1lo(a))
n i
=T < 180 < - g
© 3= sin(2)cos (N8+25)W, (29) . (VI.10 (b))
For uniform weighting, Vi = % , we have
N-1 . !
- 1 8 ‘
I W), COS (20K+8+426) = % cos (N8+29) 2%%%%yl

and (l0a) reduces to Swingler's expression [29].
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VI.2 An Optimum Taper

If we consider the phase ¢ as a random variable uniformly

distributed on [-7m,7) then the mean value of the frequency error

is zero, using (l0a). The variance of this frequency error is then
1 > N-1 N-1

var (Af) = —= sin® (9) I z wlklecos(29(k-Q)). (VI.1l1)
8 k=0 2=0

As a criterion for selecting a taper we use the average frequency
error variance:

m
f var (Af)de

o

<var (Af)> =

N o

! N:l N:l
-"——3- L L
81~ k=0 1=0

1 1 1
wlkle{f Sk-g T T S1-k+t T T S1ak-g) o (V1.12)

where the subscripted delta is the digital (Kronecker) impulse.
With the normalization constraint introduced using the Laagrange

multiplier A the resulting optimum taper is given by the solution of

ewW, =1, ¢c;. = 2,c;. ;A=) (VI.13)
1 11 1] 0 , otherwise 1

The general system of equations with a tri-diagonal coefficient
matrix has a known recursive solution related to the LU decomposition
of the coefficient matrix (see for example [30]). For the system

of equations with the special coefficient matrix in (VI.13), we

have derived closed form expressions for the taper coefficients

(Appendix B). These are given for the m-th order PARCOR by:

_ 6 (k+l) (N-m-k+l)

Wik = TR (s s TRemsT ¢ k=0« /N-m (VI.14)
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Thus, this optimum taper is parabolic in form, it is even,

L . -m+ - .
positive and has a maximum at k = N g 1 . Furthermore, knowing

Woo and Wl from (VI.14), one can generate the remaining

coefficients recursively from:

Wi = WLy T WL oy = A (VI.15)

VI.3 Simulation Results

The effect of tapering was numerically investigated by
generating spatial samples of complex sinusoids in noise for
various, phase and angle (frequency) combinations. For brevity
of space, however, cnly the results of a very few representative
simulations are included in this report. The method designations
on the plots are: Burg for untapered Burg method, WBurgH and
WBurgO for tapered Burg technique using the Hamming taper and
the optimum taper respectively. The Hamming taper is used for
comparison with the simulations in [28].

Figure (VI.l) shows three tapered Burg spectral estimates
of two complex sinusoids at -30° and -45° off broadside with zero
phases each, in complex white noise. The signal-to-noise ratio

is 15 dB where SNR(dB) = 10 log(RMRIIRNAe, = 1t j5 opyious in this
°n
example that WBurgO has the smallest frequency errors as well as
the highest resolution. This has been the case in the great
majority of the examples that we have run thus far. Except
for a few cases the bias of WBurg optimum has been lower than Burg.
The resolution of WBurg Hamming, however, was found to be consistently
poorer than Burg and WBurgO. Figure (VI.2) shows the spectral

estimate of a real sinusoid with a large SNR. It can be seen that
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WBurg optimum taper has reduced the frequency error and prevented

peak splitting which is shown by the untapered Burg method of

‘: order 4. This again was accomplished without sacrificing
i resolution.

- Figure (VI.3) is a plot of the maximum frequency error for
each method for a unit amplitude real sinusoid at angle (frequency)
of & = /5 as a function of the number of data samples. The

. maximum frequency errors were found by solving for the pole
J locations over the range of values for the sinusoid phase ¢.

_j The noise variance is ci = 0.025. It should be noted that the
optimum taper was derived on the basis of minimum average frequency

e variance. This simulation shows comparative error reduction for

il the maximum frequency error only for 8 = 7/5 between the optimum

= and Hamming tapers. As was pointed out earlier, however, all
of our simulations have shown better resolution for the optimum
taper compared to the Hamming one. It is alsoc interesting to note

‘: that the main reduction in frequency error is apparently obtained

—_ by tapering the first order residual energy only. This has also

- been borne out by the majority of our simulations.

~ W — i v - .
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FIGURE VI.3 Maximum errors in the estimated frequency of a real
sinusoid as a function of data length.
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VII. SUMMARY AND CONCLUSIONS

Data-adaptive spectral estimation methods have found
widespread application in recent years, notably in radar signal
processing. The work summarized in this report was concerned
with two such methods: the autoregressive (AR) and the auto-
regressive-moving average (ARMA) spectral estimators. Our
main concern in this investigation was the resolving capabilities
of the different models in the presence of noise and the
statistical properties of some new spectral estimators.

Since the AR methods are by far the most popular, we
postulated an AR noilseless signal model. The resulting appropriate
model 1n the presence of noise was then shown to be ARMA. To
investigate the degradation in resolution in the spectrum of
noisy signals, we also used a parallel resonator model for the
signal. This model was also shown to be eguivalent to an ARMA
one. The resonator model, however, made it possible to evaluate
the loss in resolution as a function of signal-to-noise ratio and
signal parameters.

Since an ARMA model may be approximated by a high-order
AR one, attention was next focussed on the development of a
robust method for identifying the order of an AR model. A method
closely related to that of Akaike's information criterion was
developed. This method proved to be more stable than the
minimum AIC.

ARMA spectral estimation was treated extensively in this work.
The generality of the model was important from two distinct points
of view: 1) as the apprcoriate model for noisy AR signals, thus

to improve resolution; 1ii) as a resonable model for signals with
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spectra, narrow or wide, possessing deep nulls and/or sharp
roll-offs. Because of the computational complexities of'the
optimum (maximum likelihood) method of estimating the ARMA
parameters, several sub-optimum, computationally efficient
techniques were devised. These methods behaved reasonably well
for moderate to large data samples, but were inferior to the
optimum one, as expected, in terms of statistical efficiency.
The efficiency of various classes of ARMA spectral estimators
are currently under further investigation by Monte Carlo
simulations and will be reported on in the future.

The maximum entropy method (MEM) of spectral estimation,
using Burg's technique, has been very popular in estimating
the spectra of sinusoidal type signals. It has been Xknown,
however, that the accuracy of such spectral estimates 1is
significantly influenced by the phase of the sinusoids. Based
on some recent results, we developed an optimum taper for the
residual eneraies in the Burc MEM technique. It was shown that
the use of such a taper substantially reduced the sensitivity
of the spectral peaks to the sinusoids' phases and markedly
reduced the occurrence of line-splitting in the usual MEM
estimates. It is remarkable that these improvements were made
without sacrifice in the resolution of the spectral estimates.
Work is continuing to more fully explain the effect of such a
taper and its ramifications in Burg-type parameter estimation

techniques.
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APPENDIX A
Equation (II.25) is
r. (0)r. (2) ~ r2 (1)
' Yo Yn Y
a = (A.1)
m2 2 2
r: (0) - r> (1)
Y Y
= _p-2
m

Now substitute for r_ (0), r. (2) and r_ (1) in A.1,
Y Y Ym

2 2 2 2 2 2 2 2 2
(amoouacos¢m+ow.)(amooua:mcos(ZWm—¢m))—(amoouaomcos(wm-¢m))
2 2
2 2 2 2 2
(amoouacos¢m+ow,) (amocuanmcos(wm ¢m))
= 12 (A.2)
m

Expanding the numerator and denominator of equation A.2, we get,

(aioci)2a23icos¢cos(2wm-¢m)+aiooioi.anicos(2wm-®m)
(aiooi)zazoicosz(wm—¢m)
(aiooi)2a2c052¢m+c£,+2aioa§o£.acos¢m
- (ai;oi)2a20icosz(wm-¢m)
= _pvi (A.3)

Define the signal-to~noise ratio § as

> ’
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where,
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2
02
wl
r 0
ym( )
> -1
(S
w
vy -1 (A.4)
(0) = aiooiacos¢m

Dividing the numerator and denominator of A.3 by o:, and using

A.4, we get,

2
9 cos(2wm—¢m) cos(2wm—¢m) , cos (wm—¢m) 2
¥ cos ¢ oy cos - 2 m
m m coSs DF
2 5 P cosz(wm-¢m)
Yo+ 1 + 2y - v il 5
cos ¢m
2
_____,l
o' (A.S)
Rearranging terms in A.5, we have
cos$ cos(2w_-¢_)-c 52(w - ) [+ (2w_=¢_)
Y *m i bm © m %m YCOS¢cOS (2w =,
2 2 2 2 2
Y[cos &m PpLcOS (wm-@m)]+2Ycos ¢m+cos @m
, 2
'
= - — (A.6)
’m
0'2
As y + = , = 2m + 1 and the left-hand side of equation A.6 is,
c°m

W TR ST . e




cos¢mcos(2wm~¢m)-cosz(wm—¢m) .

2 2 2
cos”9 -p cos (wm-¢m)

. 2 2 .
Solving for pmcos (wm—¢m) in A.7 we get,

2 2, -4 Y-cos? (w -
P COS (wm—¢m)—cos¢mcos(2wm ¢m) cos (wm ¢m)
2
+cos ¢m

Substitute A.8 in A.6 to get,

Yz[cos¢mcos(2wm—¢ )—c052(wm-¢m)]+ycos¢mcos(2wm—¢m)

m

2
Y

—cos¢mcos(2wm-¢m)+cos2(wm—¢m)J+2ycosz®m+cosz¢m

2
m

But the signal-to-noise ratio is (equation A.4)
£ =y-1

A.7 then becomes,

2

{(E+1) cos¢mcos(2wm—¢m)-cosz(wm-¢m) +(5+1)cos¢mcos(2wm—¢m)

(g+1)

2 —cos@mcos(2wm-@m)+cosz(wm—¢m)]+2(£+l)cosz¢m+cosz¢m

Ol

e

I —

2
m

Equation A.10 simplifies to,




73

gz(cosz(wm—¢m)-cos¢mcos(2wm-¢m)]—£{3cos¢mcos(2wm-¢m)

te

—2c032(wm-¢m)]—2cos¢mcos(2wm—¢m)+cosz(wm-¢m)

52[cosz(wm—@m)—cos¢mcos(2wm—¢m)}+2£[cosz¢m—cos¢mcos(2wm—¢m)

————TE
{

2 2 2
+COoS (wm—¢m)]+3cos ¢m-cos¢mcos(2wm-¢m)+cos (wm-Qm)

(a.11)
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APPENDIX B

In this appendix we derive a closed form expression for

the solution of the following equations:

2 -1 0 .o 0 Wy A
-1 2 -1 0 ..
0 -1 2 -1 v 0 = . (B.1)
0 -1 2 W A
JUN J
where )\ is the normalization factor for W.
A recursive algorithm for a set of linear equations with
a general tridiagonal coefficient matrix is given in [30]. We
use the notation used in this reference to derive our closed
form solution.
The solution for Wy o= Wy 1s given by
IN
WN‘—"-Wl:&;; (B.2)
where according to [30]
k-1
9y = A - b)) X ) Ip—1 » k=1, ... N
o = 2+6k , k=2, ... ,N
(B.3)
alv= 2
1
g, = =
k Y
We first derive an expression for Bk. Let Bk = —vk/sk, where
Vi and Sk are integers.
From (B.3)
- 1 ._
Bk = T ¢ k=2, ... ,N (B.4)




(B.5)
(B.6)
But we have v, = 1, 62 = 2 and m, = 1 and from (B.6) it is
obvious that m o = constant. Therefore,
, Ve Sk

- S Sko1e1

= or with v, = 1, 52 = 2

3 g, = ~=d) (B.7)

# o now simply follows as

@@

- a = 248 = & k=1, LN (B.8)
Let h, = kg, and substitute for ¢, in (B.3). h, then satisfies
the difference equation

2

hk - hk—l = kX , ho =0 (B.9)

Z-transform (B.9) to get
A
- H(z) = == z (B.10)
z-1 (2_1)2

ol
¥ resulting in
e ,.AL.}.-__ . et et — — i e j




L

il

(o

k
hk = (step)*(ramp)A = X I j
J=1
= k(k+l) A
=
Therefore
k+1
I = 72

Substitute in (B.2) to get

Using (B.l13) as the initial condition

other wi's, noting that
w -—

K 2 Wieo1 + Wi_o T -x , k=2, ... ,N

Z~transform of (B.14) results in

3 2
Wiz) = T2 A (N+2)z) . \z

(z=1)3  2(z-1)%  (z-1)2

(B.11)

(B.12)

{B.13)

we can now solve for

Taking the inverse transform of (B.1l5) gives

wo o= o MOcHD) (k#2) o (N+2)KA L0y
k 2 :
or
_ k(N+1-k)
Yk = 7}

The normalization factor )\ can now be found

N
-1 12
A= (L w) =
k=1 k N (N+ N+2
Alternatively,
= ., _N
‘el T W T w3

(B.14)
_ N)
=7
(B.15)
(B.16)
as
(B.17)
(B.18)
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