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SECTION I
INTRODUCTION

The objective of this research is to develop procedures to predict the
family of mechanical response characteristics for René 95 at 650°C (1200°F).
This is achieved by adapting three constitutive theories available in the
literature for René 95; determining the material coefficients from a standard
set of tensile and creep experiments; and, then predicting the respounse of
several experiments distinctly different from the standard set of experiments
used to find the material constants,

The mechanical response of Rene 95 at 650°C (1200°F) is typical i1 some
ways of many high temperature alloys in that it exhibits creep, stress relax-
ation, strain recovery, and both cyclic hardening and softening. However, as
discussed in Reference 1, René 95 also exhibits some special respoase charac-
teristics that must be included in a coustitutive model. These characteristics
are: (i) the relative rate independence in the stress strain response at the
higher strain rates using engineering stress; (ii) that the material is nearly
history independent in the secondary creep domain; and (i1ii) the development
of a mean strain during symmetric load control cycling.

Constitutive modeling of metal behavior on the basis of single integral
hereditary equations, state variable equations, and also on the basis of a
yield surface approximation is available in the literature. For Rend 95 at
elevated temperature, the yield surface methods have several shortcomings. 1In
particular, since inelastic deformations are observed at stresses well below
the standard proportional limit, a continuous flow type equation appears to be
more consistent. This avoids the necessity of separating the inelastic strain

into time independent and time dependent components. Thus, only constitutive




equations that predict the total inelastic strain or total strain as a con-
tinuous function of stress are considered.

In this study, specific attention is given to the models of: Bodner aand
Partom (References 2-5); Laflen and Stouffer (Reference 6), and Rabotnov and
Papernik (References 7-8). As reported earlier (Reference 9), all three
models are continuous and phenomenologically developed, but emphasize different
physical considerations and mathematical representations. All theories are
three dimensional and have been successfully used to predict the response of
one or more metals in a high temperature environment. Modificatioms in the
theories have been made or proposed as a result of the present study. The
predictive capability of each model is evaluated by examining the following
points: (1) how well each theory can reproduce the data from which its mate-
rial constants are evaluated; (2) how well it can predict the response of a
totally unrelated set of experiments; (3) how easily the material constants
can be determined from the experimental data; and (4) the efficiency of each
model when it is used in a numerical algorithm. The paper is concluded with a

point by point comparison of the above three models,




A STATE VARIABLE APPROACH

SECTION II
THE CONSTITUTIVE FORMULATION

The basis of the constitutive equations for small strains proposed by
Bodner and Partom (References 2-5) is the separation of the total strain rate
tensor ¢ (t), into elastic (reversible) and inelastic (non-reversible) com-

ponents
€(t) = £5() + (D) (1)

that are assumed to be continuous and non-zero for all non-zero values of

stress. As a consequence, the equations do not require a yield criterion or
. . ce . ;

loading/unloading conditions. The term £ (t) is directly related to the time

derivative of stress by Hooke's Law for the small strain case. 1In general

:P

~

(t) is assumed to be of a form similar to the Prandtl-Reuss equations

P = 2%0e) = age )
where § {s a scalar material function and ép and § are the deviatoric strain
and stress tensors. In general A is taken as a function of the stress, tem-
perature and state variables, however; since this exercise is for a constant
temperature environment, temperature is omitted from the representatioan. The
dependence of A on stress and the state variables is outlined in the next few
paragraphs.

Equation 2 predicts that the response is isotropic and that the plastic
strains are incompressible. (These restrictions can be removed as shown in

Reference 5). The square of Equation 2 can be rewritten in the form




Dg = x? I, (3)

where Dg and JZ are the second invariants of the plastic strain rate and
deviatoric stress tensors, respectively. To develop a relationship between
plastic strain rate and stress, Bodner and Partom, Reference 2, 3, assumed
that some measure of the inelastic strain rate, namely Dg, should have a
mathematical form similar to the relationship between the average velocity of
mobile dislocations, U, and the applied stress, 0. Following the work of
Vreeland, Reference 10 or Gillman, Reference 11, the dislocaticn velocity

has a stress dependence which can be approximated by

- cr u-exp - B
-~ A ~ P gl

respectively, where A, B, and n are constants. Subsequently, Bodner and

Partom ultimately evolved a representation in the form

n

[\S)

oP z (4)

;o [

[}

to obtain the maximum flexibility in the model. Further, experience has shown
that Z is not a constant; but should be interpretated as an internal state
variable. Thus, using Equations 4, 3 and 1 gives a specific representation
for the plastic strain rate tensor. The model can be written in one dimension

as

ey = ZLEL 4 Py




where (5)(1)

The constant, Do, represents the limiting strain rate; E, the elastic
modulus; and n, a constant controlling the strain rate sensitivity. The term
o/ |o| requires that plastic strain rate and stress have the same sign. Note
that Equation 5 cannot predict strain recovery since eP = 0 whenever 0 = 0,
This deficiency could be relevant for Rend 95 since a small amount of strain
recovery is present at elevated temperatures.

The state variable, Z, is a macroscopic measure of the hardness or resis-
tance to inelastic flow. The formulation is, at least in part, motivated by
the properties of the stored energy of cold work, The evolution equation for
Z is therefore assumed to depend on the rate of inelastic working and a hard-
ness recovery term, i.e.

7 = 32

W
2

L) . (6)
wp Zrec

which is the general form

Z = £(2,0)

In order to describe both the short time stress~strain response and the long

time creep response a specific representation can be written in the form

2 AR Z-2.0F
— = m[l - o— WP - A
Z; Z, Z, (N

(l)This factor (n + 1)/n was introduced at an early stage of the development
of the theory for numerical convenience, it has been included in this presen-
tation in order to compare results.




which can be integrated to give

(]
]
(3]

2
2

t 2 b t Ir
=zo+f[l'“—z]dw"fAt at . (8)
o 1 o)

The parameters Z Zl’ ZI’ m, A and r are all constants. In general, the con-

0’
stants in Equation 7 or 8 are picked so that the integral term {s negligible
during rapid stress histories (neglecting recovery effects). The constants
ZO, Z1 and m are determined from the stress strain data; whereas A, ZI and r
are determined from the creep response.

Finally, for some materials it was found that the strain hardening charac-
teristics required some additional constants. For René 95, this possibility
was investigated to improve the predictive capability of the model. Thus, for

later use, let us generalize the constant m to
n = o, + m, exp(-(lwp), 9)

where m and ¢ are the additional material constants. A catalog of most

or ™
of the material contants and their physical meaning is given in Reference 12.

It should be noted in using the integrated form for Z, Equation 8, that
wp is the relative amount of plastic work from a given state Z° and is not an
absolute value. An interesting point is that secondary creep is the condition
for which Z =0 which leads to an equation for Z = Z(0) independent of Zo'

i.e., prior history. According to these equations, the secondary creep rate

would be independent of prior history effects.




SECTION III
PREDICTION OF MATERIAL PROPERTIES

In a recent report, Reference 12, Bodner evaluated the response of
René 95 at 650°C (1200°F) from previously published data in Reference 13.
In this work m was fixed as a constant rather than using Equation 8. The

values of the constants reported in Reference 12 are:

DO = 104 sec-1 = not used
(assumed)
Z; = 1600 MPa (232 KSI)
n = 3,2
Z, = 2200 MPa (319 KSI) A =4 x 1074 sec”!
Z, = 1600 MPa (232 KSI) r = 1.5 _
my = 0.4 MPa~' (0.058 KSI ') E = 1.77 x 10° MPa (2.57 x 10% KsI)

(m; = 0)

These constants also were used as a starting point to predict the stress-
strain and creep data reported in Reference 1. The results are shown in
Figures 1, 2, and 3. In general, reasonable agreement is found, however, the
predicted response could be improved through the strain range of interest.

One shortcoming observed in Figure 1, and also in Figure 1 of Reference 12,

is that the predicted shape of the stress-strain curve does not match the data
as well as might be desired. Another difficulty is establishing the material
constants given above. The system of equations are highly nonlinear with
complex coupling. Bodner and his coworkers have proposed a method to find
some of the above constants, Reference 12; which they have extended to the
above system of equations through a trial and error sequence of numerical
exercises. In the next section an attempt is made to improve the model in

these areas.
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Experimental and predicted response using the state variable theory
with Equation (8)
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SECTION 17V

ANALYSIS OF THE HARDENING PARAMETER

The above system of equations requires the use of 7 or 9 constants that
must be determined from the inelastic response of the material. The limiting
value of the stress rate, Do' does not appear to be critical and is generally
assumed to be 104 sec-l. The elastic modulus 1s also assumed to be known.

One method to determine the hardening characteristics is to observe that
the plastic strain rate history, ép(t), and stress history,

o(t), are known from the experimental data. Thus, Z(t) can be calculated from

the second part of Equation 5 as

1
2n T

2 . 2n
z(t) = o(t) { =57 l“!"j—;"o/ |€P (&) l]
= (10)

for some choice of the constant n. Experience with the theory shows that
changes in n change the strain rate sensitivity of the prediction by scaling
the family of stress-strain rate curves on the abscissa axis but maintain the
same shape. Thus, the value of n and the Z history can be determined from two
stress strain response curves at the higher values of strain rate (to neglect
recovery effects) by choosing the value of n for which the Z histories from
each curve are the same.

The relative rate insensitivity of René 95 at the higher strain rates, as
discussed in Reference !, made the response relatively insensitive to the
choice of n about 3.0. Thus, for convenience in comparing results the func-
tions Z(t) and Wp(t) were determined from an experimental stress-—-strain curve
Reference | wusing n = 3.2. The function Z(wp) is shown in Figure 4. Also
shown in Figure 4 is Equation 6 using the constants from Reference 12. The

correlation with the data is not very good. Alternatively, the model of Z(WP)

11




r-w e “ZLWM —~—“
.

was constructed using both Equations 6 and 9, and the result is also showm in
Figure 4. This provides a much better correlation. But, it is interesting to
note that Z vs log wp is plotted, a linear relationship is obtained as showm

| in Figure 5. This suggests, at least for René 95 that

a+b W Vo<
. P™ p 1
! 2 ) ( 1)1
' P z/ - )
yA
o + 1 log Wﬁ w; > W:

(11),

would give a better representation for Z(WP). The linear term, ( 11)1, for
small values of plastic work, Wp < w;, is necessary to give the proper asymp-

totic values as wp approaches zero. The values of the comnstaats are

Zo = 340.0 KSI a = 232.0 XST
Z1 = 31.12 KSI b = 60.68

wg = 0.0265 KSI

The predicted stress-strain response using Equation 11 is shown in Figure 6. A
considerable improvement in the shape of the response has been obtained as well
as developing a systematic method to obtain above constants. Note, that the

predicted creep response was not significantly changed by the use of Equations

Ll.

12
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AN ISOCHRONOUS THEORY

SECTION V

THE CONSTITUTIVE FORMULATION

This approach is based on the Rabotnov nonlinear single integral equation
for viscoplasticity, Reference 7. The constitutive equation in a one dimen-

sional case takes the form

t
dle(ti] = o) +fK(t—r)c(r)d1 , (12)
0]

where ¢ is a nonlinear function of the total strain, €(t), at the current time,
t, and K(t)> 0 is a measure of the monotonic creep function. The inverse of

Equation 12 can be written as, Reference 8,

t
o(t) = ¢le(t)] -f R(t-T)¢le(T)]dT . “(13),
0

The relaxation functiom, R(t), 1is the resolvent kernel of K(t). Obviously,

ifd [e(t)] is replaced by E-&(t) in Equation 12 or 13 the representation reduces
to linear viscoelasticity where E is the elastic modulus. However, to clarify
the nonlinearity of the model consider a creep history whend (t) =0, , a con~

stant. Equation 12 becomes

t
gle(t)) _ 1 +4[ K(t-t)dt = f(t) (13)2
0

g

g
that is the strain function normalized by the stress,d [e(t)]/ T, becomes a
function of time alone. Thus, the theory is applicable only if the isochronous
creep curves are similar; that is, if they cau be obtained from a master curve

by scaling the ordinate at each fixed time. This similarity can be observed in

16




Figure 7 for René 95 at 650°C(1200°F). This similarity also exists for many
other materials as shown in Reference l4.

The function ¢{c] is found from the family of isochronocus creep curves or
stress-strain curves obtained at various rates in tension and compression. In
general, ¢{e] represents a hypothetical state of "instantaneous" loading res-
ponse which can never be achieved in real experimentation,

Since the constitutive Equation 12 is easy to invert, the relaxation be-
havior of the material when e(t) = €+ @ coustant, is governed by Equation 13

which takes the form

t
o(t) _
XN ‘fR(t-T)dT = £,(¢) (14)
0

that is, the stress normalized by the strain function becomes a function of time
alone. 1If the creep function K (t) is chosen in the form of some analytical
expression, the relaxation function R(t) can be found by means of the integral
equation theory.

A successful representation for the ker-el function K(t) for René 95 has

been found in the form of power law

R(t =1 ) = —2 (13)
(t =7 )a

where A and % are the material constants. The coastant 2 is restricted to the
0< « < 1, which gives a weak (integrable) singularity at 7 = t that is easily
overcome numerically. The resolvent function R(t) in this case takes the form

ot fractional-exponential function

0
(a+1) n+a

o (=8) 7 (£-1)
B (=2,0-0) = Z o) (v 17 ] : (1e)

n=0




F—.'-—-————m

. where = AT (a+ 1). The properties of the function}%}(-ﬂ,t) are given in
Reference 18.

Nonlinear hereditary equations of this type describe active deformation

processes when the load 1s a nondecreasing function of time., Accordingly, a
condition of the applicability of the above equation is<3(t)‘3 0. However, the
model in question makes it possible to obtain a simple constitutive equation for
unloading in tension. If the elastic unloading is.assumed, this equation takes
the form

t L
Ee - (] +¢" = o) +f K(t - T)o(1)dT, o(e) <0,
0 (18)

% *
where E is the instantaneous modulus of elasticity, € =< (t ) is the value of
* *
maximum strain achieved in the loading process at time t , and ¢ 1is the value
*
of ¥ [e(t )]. Combining Equations 12 and 13, a single general tensile load-

unload equation can be written as, Reference 8,

t
F[E(t),E*] = o(t) +f K(t - T)o(t)dt , (19)
0

where the instantaneous load-unload master curve is

y‘¢[€(t)] when a(t) > 0

*
Fle(t), ¢ ] .
LE[E* - g(t)] +0 " when o(t) < 0 .

Equation 19 is easily extended to compressive histories as shown in the next
section. In the above equation function K(t) takes into account the entire

nistory of stress 0(t) from the moment of application of the load. The process

18
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described as active deformation (see Figure B8) corresponds to loading upwards
along the 0 = ¢$(g) curve as far as the strain et and unloading downwards along
the strajigth line O = E(E*- e(t)) + ¢*. In this case it 1is possible to take
into account the strain recovery, Egquation 19 thus makes it possible to
describe the deformation response to different histories, including cyeclic

loading and the strain recovery following removal of the load.

19
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, SECTION VI

APPLICATION TO RENE 95

To apply the model to a material it {s necessary to evaluate the constants
and A in the kernal function K(t); and, to develop a representation for the
strain function¢ [ €].

The procedure for evaluating & and A is accomplished from the data in the
isochronous creep curves. To begin, let o(t) = Oo, a constant, and substitute
Equation 16 into 12 to get

l-a
c et e at e
¢[€(t)] 0[ 1 (20)

where A1 = A/(l1 =00 ). Define some isochrone t-to of the family as the basis and

let the strain So correspond to Uo at to. Next construct the ratio

l-o

12 2 °E+A1t ]
e 1-ad
%E."’Alto ]

(21)

where ¢(€°) is the fixed strain function defined on another isochrone at the

creep stress g . Rewriting Equation 21 gives
g (22)
0 l-a
_—g = b(l + Alt )a
where

1+ A et~ (23)

22
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Equation 22 is linear in the coordinates 0,/ cand tl‘ %for any straineg .
o
-a
Therefore, the family in coordinates 00/ Cand tl » corresponding to & for each

. isochromne t, » can be brought into a straight line for the proper choice

of @ . In this case, the point of intersection of the straight line and the
ordinate axis gives the value of b, and the slope is used to determine the value

of A This procedure is illustrated in Figure 9 for e, = 2.0% and the resul-

1

ting values are given in Table 1. To obtain the best average values for b

and &, this process should be repeated for other choices of eousing the same
basis to; and, also for other choices of the basis to. This was done for René 95

and the average values are

x = 0.83 and A = 0,019 .

Observe that points of the master curve ¢ [c(0)] at time t = 0 can be de=termined
from Equation 22 for each base curve Oo and to. Thus the master curve is
derived from the extrapolated point b. The master curve should therefore be
considered as a hypothetical instantaneous response function.

To establish a representation of the strain function ¢ [e(t)], it is advan~-
tageous to observe that the right hand side of Equation 12 represents a
pseudo stress; (t) that depends on the actual stress historyo (1) for t&{0,t]

and contains all the hereditary information. Thus Equation 12 can be written

as

. ole ()] = o (¢) (24)




where

t
s = o) +af T2
0 (t-1 ‘ (25)

Further, since Equation 12 is assumed to uniquely describe the strain function

for any stress history, ¢ [ c(t)] possesses a unique inverse

e(t) = ¢ L{o(t)] (26)

Thus, using Equations 25 and 26 the history dependence can be represented by a
pseudo stress-strain equation.
A specific representation for René 95 can be established by using the

Ramber-0Osgood equation, Reference 15, for:y-l[c(t)]. Let

1
e(r) = 8°8(r)] = 8‘;) + [:ﬂgt)]a (27

where E is the elastic modulus of the material, M and m are constants that must
be determined from the master curveg (0) =¢ [e(0)]. The values M = 1351 MPa (196
KSI) and M = 0.05 were found for René 95 at 650°C. (1200°F).

The stress strain curves at ditferent stress rates and the creep curves
calculated using Equations 27 and 25 are shown in Figures 10, 11, and 12. The
model exhibits a rate sensitivity which is determined by a spacing of three
solid lines in Figure 1O representing change of strain rate of 104. René 95
does not exhibit the same magnitude of rate sensitivity in this range. However,
good approximation of the creep curves makes it reasonable to use this simple

approach for a description of the material behavior.




TABLE 1. COEFFICIENTS FOR THE ISOCHRONQUS CREEP THEORY
' t
o i 5% Al ! b
min ! MPa (KSI) |
| |
1 . 1224.6 (177.6) 0.111 | 0.898
| 50 ' 1124.5 (163.1) 0.107 | 0.827
i
1000 "‘ 1043.9 (151.4) 0.112 | 0.735
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A NONLINEAR CREEP FORMULATION

SECTION VII

PROPERTIES OF THE CONSTITUTIVE THEORY

Most of the classical methods of predicting creep are based on integral
type constitutive equations coanstructed from or equivalent to nonlinear "super-
position" type arguments. As such, they fail to accurately predict strain
recovery in metals at elevated temperature. This and other considerations
suggest the following approach for developing a successful viscoplasticity
constitutive law:

(1) The formulation should, at least in part, be developed directly from
so.e important experimentally determined function. This is to avoid
material functions with no physical meaning.

(2) Since elevated temperature material respounse is usually rate (time)
dependent, a constitutive formulation similar to viscoelasticity is
appropriate, however; the approach must be modified to predict the
correct anelastic recovery properties for metals.

(3) Establish and experimentally verify a one dimensional constitutive
theory. Then, if the material is isotropic, homogeneous, and iso-
choric, a three dimensional model can be theoretically developed with
a minimum of one scalar material function. (It is unlikely that such
a model could predict all of the material memory effects that would be
observed in multiaxial testing. However, once developed, such a model
would help identify which material memory effects need additional
representation.)

To begin, let us select an equation that will adequately predict the con-

stant stress creep response of metals. The results of the experiments in
Reference 1 can be collectively modeled by the Marin-Pao equation, Reference 17.

30
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K[o,t] = A(D[1 - exp(=8(0)¢t)] + F:;nin(d)t , (28)

where K[o,t] is the uniaxial creep function. The minimum creep rate is denoted
byg:nin’ and all three coefficients are functions of the creep stressg .

Next, assume that the response characteristics described by the constant
load creep test, Equation 28 or equivalent, must be contained in any general
constitutive representation for a time varying stress history. Further, thermo-
dynamic coordinates g, can be introduced into the formulation to account for the
history and memory effects. Furthermore, it can be assumed that the time argu-
ment should be replaced by a "material clock",Z . In Reference 6, a complete
development was given which included the q and% . However, it was found that it
was not necessary to include these terms in order to represent the material
response examined herein. Therefore, the simpler representation is outlined
below.

The representation given in Equation 28 or equivalent can be extended to
include transient stress histories, 0 (T) for T € (-w,w). This extension rests on
the assumption:

The amount of creep that occurs in some infinitesimal increment of
time [t, T + A 7] depends only on the mean value of stress, temper-
ature, and a measure of the material state present during that in-
crement of time.
This assumption allows a representation for transient stress histories to be
established by partitioning g (t) for t€5[t0,t] into N subintervals, evaluating
the response in each interval, and integrating to obtain the total response.

Let E(i = 1,2,...N) be the time at the beginning of the ith time interval and

. .th . .
let GL be the average values of stress during the i time interval.




The increment of strain at any time T due to a stress pulse Oi during the time
interval [T, §_+ 32} is assumed to be given by the Equation 28 applied at

*
time ‘i and substracted at time T, where

%
T a 1'i+cr.AT1 (29)

for 0< @ < 1. The variable & is a material function that allows for varying
amounts of anelastic recovery to be included in the model. In general, dwill be
a path and time dependent state varilable. Proceeding to construct an integral
using a method similar to linear viscoelasticity, Reference 6, gives a repre-

sentation for the inelastic strain as

t
EI(t) = a 2 RKlc(t),t = 1] + (1L - ) 2 Klo(1),5] it. (7.3)  (30)
0 ot g £=0
The total strain, &(t), is then given by
e(t) = U(Et) + el (31)

where E is the elastic modulus.

Let us consider the effect of the material parameter @ on the range of
values 0< 2 < |, If 2= |, Equations 30 and 31 corresponds to the viscoelas-
ticity theory of Stouffer, Reference 16, where all primary creep is anelastic
and therefore recoverable. Also, for a constant stress history, Equation 30

yields the creep Equation 28. If a2 = 0, then Equation 3l becomes

t £ 32
e(t) = [ A [,;E(T) 3 dt ., D)
0 i£=0

32
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In this case, the model predicts that the creep is permanent for all time (i.e.,
non-recoverable) as in plasticity. The result for a = 0 also corresponds to the
response during high stress rate loading. Thus o is a viscoplasticity parameter
that controls the relative contribution of the viscoelastic and plastic compo-
nents to the total inelastic strain.

As shown through the previous discussion, Equation 30 is sufficiently
general to model the spectrum of deformation response features characteristic of
materials at elevated temperatures. However, during an arbitrary stress history,
a method 1s needed which will translate the current stress condition into a
value of ¢ . For example, if the stress is constant, then & should be unity in
order to predict the creep curve response. Conversely, if the material is
experiencing a rapid change in stress, then the response should correspond to a
plastic deformation and o should approach zero. However, if anelastic recovery
occurs in the material during a rapid stress transient, then a method of accoun-
ting for this type of response is needed and 0 cannot be exactly zero. These
considerations are used to develop a representation fora . It is shown in
Reference 6, thata is a function of the history of the stress rate and that

must also satisfy certain continuity requirements.

33




SECTION VIII

APPLICATION TO RENE 95

To use the above system of equations for a real material it {s necessary to
develop representations for the functions A(J), B (g) and éln(o) in Equation 28
along with the parameter a. At the outset of the program it was decided to use

the simplest form for a, namely

Qe
2
o

. for
ala(t)] = (33)

Qe
AN
o
L)

0 for

This provides the opportunity to investigate the interaction between the first
and second terms in Equation 30. In general, to predict creep, @ = 0 during the
initial load to the creep stress and % = 1 during the constant stress portion of
the creep history. Conversely, &= 0 for the duration of a constant stress rate
test in tension or compression. This approximation is reasonable for Renéd 95
for stress rate above 7 MPa/min (1.0 KSI) since there is very little effect of
the stress rate on the response. (See Figure 6 of Reference 1). However, if
the rate processes are in the creep domain, as shown in Figure 6 of Reference 1,
then Equation 33 would anot be expected to predict the correct response. This
deficiency could easily be corrected with a set of experiments at very low
constant stress to determine<1[5].

The minimum creep rate function, ém(o) and the magnitude of the primary
creep A(J), can be directly determined creep response data as given in Table 2.

A representation of this data is given by

1

aGo) = Téﬁ\%f explexp(a; + 3,001, (34)

. 2 + ¢ca0)
em(d) = -E;f exp(c1 €,
(35)
34
M.;.]_:_ B'I' ) v e -
m— = b P

o

i




The time parameter was found to have the form

o b2
8(o) = b,( g5 ) (36

from the onset of secondary creep. However, the constant, b, was picked to gi
the best prediction of the response in tension and compression. Also, it is
expected that the coefficients ayy 2y, bl’ b2’ ¢, and ¢y would be different in
tension and compression, however; sufficient data is not available to totally
determine all the compression coefficlents. Thus, the same values for tension
and compression are used in both cases. The values used for René 95 are given
in Table 3.

The reproduction of the creep and tensile data using Equation 30 is shown
in Figures, 13, 14, and 15. Since the model does not predict strain rate
effects for the current choice of @, only one curve is shown in Figure 13 with
the nominal experimental response. The accuracy is certainly within the comnsi
tency of the experimental data. 1In all cases, the shape and magnitudes of the
predicted curves match the response gquite well.

Another fundamental property of the model that should be included in this

section is the response on unloading. In general, Equation 30 is a creep formu-

lation that will predict a positive inelastic strain rate for all positive
values of stress. This implies that the model cannot predict "elastic" un-

loading. Thus, Equation 30 is modified such that

efry = o

whenever (37

g((:)) G(D) <o

where e is a small positive parameter.
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A consequence of Equation 37 is that recovery cannot be predicted by the model

! if a= 0, Thus, e = 69 MPa/min (10 KSI/min) was used for René 95.




TABLE 2. CREEP PROPERTIES OF RENE 95 AT 650°C(1200°F)
Min Inelastic
Creep Spec Creep value of
Stress Number Rate A(G)
MPa (KSI) %/min 4
877.0 (127.2) 2 -7 3.21 x 1074 0.111
903.5 (131.0) 3-5 2.76 x 107% 0.120
965.3 (140.0) 2 -8 4.4 x 1074 0.133
| 1034.3 (150.0) 3-8 1.15 x 1073 0.166
| 1034.3 (150.0) 1 -5 2.0 x 1073 0.094
| 1089.4 (158.0) 1 -8 9.09 x 1073 0.163
} 1156.3 (167.7) 2 -5 4.00 x 1072 0.285
1206.6 (175.0) 1 -7 L 1.63 x 107! 0.804
37




TABLE 3. COEFFICIENTS FOR EQUATIONS 34, 35 AND 36
! FOR RENE 95 AT 650°C(1200°F).

- Coefficient Tension and
Compression
o1 - 0.9370
5q MPa! 0.187 x 1072
xs1™hy (1.295 x 107%)
b, min " 0.200
{
! .0
bz | 15
y -30.67
Cys upa~! 0.244 ’,
?
(ksT™H) (0.1684) ;
|
: J
38
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Figure 13. Experimental and predicted stress-strain response using the
non-linear creep theory.
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PREDICTIONS AND RESULTS
SECTION IX

THE PREDICTIVE CAPACITY OF THE MODELS

In the three previous parts of this report, the material parameters for the
models were determined from the tensile and creep response of the material. In
general, it was found that the models could reproduce the response character-
istics relatively well, and the accuracy was within the repeatabilit; of the
experimental data. The predictive capability of the models depends upon their
ability to reproduce the strain response to stress histories distinctly dif-
ferent from the previous set of experiments. Thus, the models were used to
predict three different hysteresis loops and stress relaxation.

Let us consider first a simple hysteresis loop under stress control. The
stress history is 0, +1151, -~1151, 0 MPa (0, +167, ~167, O KSI) at a rate cor-
responding to 10 CPM. The predicted results are shown in Figures 16, 17, and
18. It can be seen that the Bodner-Partom model, Figure 16, overpredicts the
strain in compression. This results from assuming the response in tension and
compression are equal. However, on this particular test, the Laflen-Stouffer
model underpredicts the compression. This most likely reflects the difference
between response in Figure 17 and the nominal compressive response of the mate-
rial. The Rabotnov-Papernik prediction appears to be best for this particular
test.

Consider next, the response to a similar history except that the material
is initially loaded in compression rather than tension; i.e., 0, -1131, #1151, O
MPa (0, =167, +167, 0 KSI). The constants in all three models were adjusted to
predict the same response in tension and compression due to the lack of compres-

sion data. Thus, the predicted response can be obtained by rotating Figures 16,




B e v 4 s - ot

17, and 18 about the origin 180 degrees. However, the relationship between the
observed response in tension and compression does not follow this simple rule.
Thus, the compressive response must be included in the models to accurately
predict the hysteresis response of René 95, especially for several cycles.

Another evaluation was made by comparing the predicted response to the
unbalanced hysteresis loop shown in Figyres 19, 20, and 21. In this example,
the stress history is 0, 1151, -600, 0 MPa (0, 167, -87, O KSI), also at a rate
equivalent to 10 cpm. The prediction of all three models is approximately
equivalent and matches the experimental data relatively well.

As a final example, consider the capability of the models to predict stress
relaxation to a 1,07 step strain history. As shown in Figure 22, the Bodner-
Partom and Rabotnov-Papernik models are relatively accurate at long times.
However, the initial rate of stress relaxation is not predicted very well by
either counstitutive theory. To avoid inverting Equatioa 30, the observed stress
history from the stress relaxation experiment was used to calculate the
corresponding strain history. These results are given in Table 4. It can be
seen that the predicted strain history is essentially constant over the entire
domain of the experimental data even though the average strain is not 1.0%.
However, from the stress-strain curves, Figures 7 and 9 of Reference 1, it can

be seen that the error is within the response band of the material.
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Figure 16. Experimental and predicted cyclic response using
the state variable theory
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Figure 18. Experimental and predicted cyclic response using
the isochronous theory
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Figure 21. Experimental and predicted unbalanced cyclic
response using the non-linear creep theory
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TABLE 4. PREDICTION OF CONSTANT STRAIN RESPONSE FROM THE STRESS
RELAXATION DATA USING THE NONLINEAR CREEP MODEL.

Time, Stress Total Strain
Min. MPA (KSI) Percent
2.0 1093 (158.5) 1!341
6.0 1063 (154.2) 1.317
10.0 ‘ 1051 (152.5) 1.318
14.0 1033 (149.9) 1.305
18.0 1026 (148.8) 1.304
22.0 | 1021 (148.1) 1.305
26.0 % 1015 (147.3) 1.305
30.0 E 1010 (146.5) 1.305
34.0 { 1006 (145.9) 1.305
! 38.0 ! 1002 (145.3) 1.305
? 42.0 998 (144.7) 1.305
i 46.0 993 (l144.1) 1.305
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SECTION X

SUMMARY OF PREDICTIONS AND RESULTS

A review of the results suggests there are three major aspects of the
response of Rend 95 that are not included in the above models. First, it is
essential to include the compressive response characteristics. This involves
developing a method of measuring high temperature compressive creep using two
extensometers to compensate for bending as mentioned in Reference 1. Second,
since two-thirds of the creep response prior to failure is in the tertiary creep
domain, it is necessary to include tertiary creep effects in the models to
predict plastic strains above 1.5%-2.0% in René 95. This could be important in
finite element modeling of complex structural components. Third, the models
should be modified to include cyclic history effects. This amounts to including
tertiary creep and a damage measure in the mechanical constitutive equation.
These topics must be addressed for a significant improvement in high temperature
modeling of René 95.

Finally, it is appropriate to make a direct comparative study of the three
models used in this investigation. This is shown in Table 5. It can be seen
that no model can fully predict the entire list of response characteristics
reviewed. Thus, one must choose the model that can best predict the response
characteristics that are most important for a particular material or structural
situation. In general, it appeared that it is easier to determine the material
parameters in the Rabotnov-Papernik and Laflen~-Stouffer models. However, the
analysis of Z(wp) presented in Part 2 is expected to lead to a direct method of
determining the constants in the Bodner-Partom model. Conversely, the Bodner-
Partom model is best suited for numerical computation. The use of the elapsed
time, t =T , in the other models require integration on [0,t] for each choice of
the current time t. This is a disadvantage if the stress or strain history is
to be evaluated at a large anumber of time points such as in a finite element
analysis of a structure.
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