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MF Radio Field Strength Measurements
in Desert Terrain Near Yuma, Arizona

1. INTRODUCTION

The possibility that a network of underground tunnels or silos containing the
MX mobile missile might be constructed in the desert regions of the southwestern
United States has renewed interest in techniques for survivable communications
between buried terminals which may be up to 50 km apart in adjacent valleys sepa-
rated bv high mountain ridges, One proposed method is to use an MF radio link
with the transmitting and receiving antennas located on the underground mobile
launch control centers. The propagation path for such a link would include two seg-
ments through the trench wall and soil overburden in addition to that over the desert
terrain, Although MF propagation curves over homogeneous earth are readily
available, 1-4 propagation anomalies caused by topographical and electrical irregu-

larities unique to the proposed MX sites need to be studied in situ.

(Received for publication 24 November 1980)
1. Terman, F.FE, (1943) Radio Engineer's Handbook, McGraw-Hill, New York,

2, Wait, J.R., and Campbell, L. L. (1953) Transmission curves for ground wave
propagation at low radio frequencies, Radio Physics Laboratory Report R-1,
Defence Research Telecommunications Establishment, Ottawa.

3. International Radio Consultative Committee (C. C. I, R.) (1974) Propagation in
Non-lonized Media (Study Group 5), Vol. 5, XIIith Plenary AssemEliy, Geneva,
1974, International Telecommunication Union, Geneva, 1975,

4. Reference Data for Radio Engineers, 4th ed. (1956) ITT Corp., New York,

p. (14T,




2. EXPERIMENTAL PROCEDURE

Between 11 September and 24 September 1977 personnel from Rome Air
Development Center (RADC/FEP) made field strength measnrements of the Yuma,
Arizona broadcast station KBLU (560 kHz, 1 kW, omni-directional in the daytime)
at several hundred positions on Luke Al” Bombing and Gunnery Range, a desert
region southeast of Yuma. At each site the surface magnetic field was measured
using a Radio Interference-Field Intensity Measuring Equipment, Singer Model
NM-25T, with a shielded 15-in. -diameter loop antenna oriented for maximum
signal. At some of the sites the loop also was lowered 2 m into a hole drilled by
a power auger to probe the radio wave attenuation with depth, The measurements
were conducted only during daylight hours to eliminate the necessity of correcting
for KBLU day-to-night antenna pattern changes and to minimize sky wave inter-
ference.

The measurement sites were accurately located in almost every case by
choosing positions near the numerous USGS markers found alongside Jeep trails.
The sites are shown in Figure 1, along with the location of the KBLU transmitting
antenna in downtown Yuma. The distribution of the markers was such that no series
of measurements was strictly aligned along a radial path from KBI.U. However,
six sectors were chosen within which the terrain could be characterized reasonably
well by a single profile, thus providing a convenient way to group and displav the
data. Dashed lines are used in Figure | to show the sector boundaries. A repre-
sentativc: puth profile, corrected for the standard tropospheric refractive index

grudicntD (4/3 earth radius), was constructed for cach sector using USGS muaps.

3. FLAT EARTH PROPAGATION THEORY

Over a flat, homogeneous, and well-conducting earth the vertical electric field

strength-distance product is given by
‘E-x] = 300 yp - 1 )] (Volts) (n

where P is the effective radiated power in kW,

Flp,) = 1 ~i Vﬁpe e % oerfed [)o)

5. Reference Data for Radio kngineers, 5th ed., (1957) ITT Corp., New York

p 741 1f.
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and

€ wkx
p, = Ipgl =~Cy5— .

F(pe) is the Sommerfeld propagation factor, P is the numerical distance,
€,= 8. 854 X 10-12 I'/m, w is the radian frequency, 0 is the surface conductivity

(Siemens/meter) and kx is the distance in wavelengths. Eq. (1) can also be expressed
loglE-x| :logl[i‘l + log 300 VE, (2)

where log = IOgIO' I F| is plotted as a function of p,ona logarithmic scale in

Figure 2, For numerical distances of the order of unity or less,
log |Fl = -0.183 Ip_| . (3)

At 560 kliz, kq. (3) is valid for distances out to at least 50 km if 6 = 0,01 S/m and
to 100 km for ¢ = 0,02 S/m, Combining Egs. (2) and (3),
0.0915 ¢ wk
log 'E+x! T - ——= % x+log300 yP. (4)

lquation (4) is in the standard form v = mx + b, where, upon the application of

linear regression anulvsis to the measured fE xf data, the slope

¢ wk
m = —0.0915 "0 (5)

vields un estimate for 0, and the v-intercept

b = log 300D (6)

indicates an apparent radiated power

1.0
| h
=0\ \
§ osl log IFI==0.183 1P|
§ - by Figure 2, Amplitude of the
z F(p.)-l-i.ﬁfﬁe-p‘erfc(w. ) Propagation Factor
5 | where P.-S;.—w -k!—x
2
S
€
a

o.' ) — A ' i - A A A L -}

[¢] 02 04 0.6 08 1.0 12

EFFECTIVE NUMERICAL DISTANCE [Pg|
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4. RESULTS OF REGRESSION ANALYSIS

4.1 Estimate of Conductivity

The upper portions of Figures 3 to 8 show measured values of |- x| ona
logarithmic scale vs distance from the KBLU antenna. The lower portions are
corresponding terrain profiles which reveal long flat path segments occasionally
interrupted by relatively steep ridges, The effective conductivity of these flat seg-
ments was estimated by fitting a regression line to selected data points not too close
to the mountain ridges, and then using kg, (5) to estimate 0. The regression line
is shown in the figures as a solid line, and the v estimates are given in Table 1,
Assuming the datg is normally distributed about the regression line, we can assign
confidence limitsb to the calculated values of v, The results of choosing a 95 percent
interval are shown in the last column of Table 1. Evidently only the 100° - 107.5°
sector contained enough data over a sufficiently long and flat range to permit a
reasonably accurate estimate for 0, which was 0.022 S/m. This value is somewhat
higher than the 0. 01 8/m estimated by 1\10rganT or the 0.008 S/m estimated by the
| A S ON 8

Some of the data scatter within the flat segments was due to the fact that the
measurements were not along radial paths, and each data point within a given
sector actually represents propagation over a slightly different path. Additional
perturbations were produced by local anomalies such as ore deposits, faults, power
and telephone lines, and railroads, as well as by focussing, diffraction, and multi-

path effects.

Table 1. FEstimated Effective Conductivity

Sector No, Data Correlation Esto 959% Conf. Limits
(Degrees] Points Coefficient [S/m] [S/m)
90 - 100 24 0. 39 0.023 *
100 - 107.5 44 0.70 0.022 0.018 - 0.033
107.5 - 110 19 0.42 0,029 *
110 - 116 21 0.22 0.026 *
116 - 120 6 0,22 0.030 *
123 - 137 20 0.52 0.023 0.011 - 0,122

e

“The data scatter was too great to permit an accurate determination of 0.

(Due to the number of references cited above, thev will not be listed here. See
References, page 20.)




4.2 Apparent Radiated Power

In Figurcs 3 to 8 the dushed lines plot | k- x| from Eq. (4) for o It carth of
conductivity 0. 02 S;m {from & 560 kHz transmitter radisting 1 kW,  Regression
analvsis on RADC measured data over path sepments where no moeuntain ridges oo
interposed between the transmitter and observer (for example, Figures 7 and 8
vields v-intercepts displuaced approximately 1.6 dB3 below the equivialent 1 kW nonsinael
value,  This discrepancy could be due to the NM-257T calibration, since )o x5 dito
supplied by KBLU is consistently higher thun the RADC measurements,  On the other
hand, bevond the Gila Mountains (Figures 3 through 6) the regression lines are dis-
placed from 3 to 5 dB below the nominal 1 kW value. This reduction in upparent
radiated power can be interpreted as the effect of the mountain ridge in extruacting
energy from the propaguting ground wave.

The losses may be due to scattering by the terrain elevation changes and/or

to increased absorption by a poorly conducting path segment, but neither mechanism

& can be adequately treated by flat carth theorv, Indeed for certain paths the signal
P i
4 strength drops by as much as 15 dB behind the mountain ridges (Figures 6 and ) and
i then exhibits a recovery effect with distance,  Such a variation requires the more
7
B comprehensive theory which follows in the next section,
3. PROPAGATION OVER ROUGH, NON-BHOMOGENFEOUS TERRAIN
5.1 Hufford's Integral Eqguation
' Calculations of the effecets of irregular terrain can be made viu 4 one-dimen-
9 . : .
sionul integral cquation derived by Hufford. His kq. (11) in the notation of
Figure 9 is
- <
ds
Wix) = 1= [ W(s) (8) ~maiee ()
o vs(x—s) '
where W is the attenuation function for the Hertz potential.  In terms of the vertical
electric field, an approximate cxpression for W s
RN Foex i
It !

9, Hufford, G.A, (1952) An integral cquation approach to the problem of wave
propagation over an irregular terrain, Quart. J. Appl. Math. &3!\1-404.

15




provided W is slowly varying, The quantity

. ar, ik(r,+r, -r,.)
t'(s):elﬂ/4 % [(w nz] o 17270

where § is the (normalized) surface impedance

€ W i
& - -(0)'_ 0)"/4.

Figure 9, Geometry for the Integral kquation.
s and x are the horizontal distances of the
scattering point Q and the observer P,
respectively, from the source T. «a@is.the slope
of rg, p is the terrain slope at Q, and nis a
unit vector at  normal to the terrain

The factor 8r2/3n takes into account the terrain slope and the aspect angle with

respect to the observer, As may be seen from Figure 9,

ar
e C sin (5 - @)

where 8 is the terrain slope and v is the slope of ry

FFor gently undulating terrain with gradual inhomogeneitics, the functions W(s)

and f(s) are slowly varying. 7To the extent that W and I can be represented as con-

stants within arbitrarily small intervals s = S, S,.10 an approximate solution

of Eq, (7) is

W, =1 -2 w1 (8)
n
where Wn is a constant value for W over the nth interval, fn is a constant value

for f over the same interval and




5.2 Numerical Solution for Special Cases

Equation (8) was solved numerically via a CDC 6600 computer for several

cases. In Figure 10 the results of including a Gaussian-shaped ridge
G(x) = hexp [ -9 (XT;,B)z] (9)

on an otherwise flat, homogeneous earth are shown for t'vo values of conductivity.
In Eq. (9), G(x) is the terrain elevation, h is the ridge height at x=b and w is the
ridge width measured at Gi(x) = h/10. This form corresponds to the model chosen
by Berry. ! The attenuation function [WI at first decreases at the flat earth rate,
and then increases to a maximum just before the crest of the ridge. Behind the
ridge there is a minimum, and then a partial recovery with increasing distance
from the source.

Figure 11 illustrates the perturbation in W[ caused by a 6 km wide segment
of conductivity o centered at 30 km, in an otherwise homogeneous flat path of
conductivity 0.02 S/m. Such a path represents the much poorer conductivity ex-
11 IWI follows the flat earth attenuation rate out to
the beginning of the segment, and then, depending on the selected value for O
decreases more or less rapidly until the far edge of the segment is reached. As in
the case of the ridge, |\\'| partially recovers as the distance from the inhomo-
geneity increases. (The abrupt conductivity change in this model does not satisfy
the conditions under which kq. (8) was derived, so the results are not valid inthe

immediate vicinity of the edgesof the segment.) A comparison of Figures 10 and 11

pected in the mountain ridges.

with 7 and 8 seems to show that the effect of a segment of poor conductivity more
closely matches the observed

E: x| variation than the elevation effect. The models
demonstrate that irregularities in both profile and earth conductivity play significant
roles in determining the propagation of MF over ridges.

10. Berry, L., A. (1967) Radio propagation over a Gaussian-shaped ridge, IEEE
Trans. Antennas Propag. AP-15(No. 5):701-702,

11, FAO-Unesco, Soil Map of the World, Vol. II, Unesco-Paris, 1974,

17
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6. PENETRATION BELOW THE DESERT FLOOR

Attenuation of ML ficlds with depth in homogencous, well-conducting soil is

described by

where HO is the magnitude of the field at the surface, y is the depth below the sur-
face and 55 is the depth of penetration or skin depth. Attenuation measurements of
tne magnetic fields penetrating the desert soil were made by lowering 4 loop an-
tenna into 18-in. diameter holes drilled approximately 6-ft deep by a commercial
power auger, and recording the decibels change from the surface reading., An
effective skin depth was then calculated via

8.69 v
5 = - . (10)
s 1[0 | dBJ H] dB]

A total of 30 holes were drilled at various locations as indicated in I'igure 1. The
relutive attenuation was read to within about £ 0. 25 dB on the NM-25T punel meter,
and the depth was measured accurately. The average skin depth calculated was

28. 25 ft with 4 standard deviation of 13.0Y ft.

7. DISCUSSION AND CONCLUSIONS

The data in this report can be used to estimate total propagation path loss for
a point-to-point communication link between terminals buried in the desert south-
cast of Yuma and separated by mountain ridges. The desert valley soils have rela-
tively high apparent conductivity, with a correspondingly low attenuation of propa-
gating MF radio waves, The mountain ridges can have a large effect which depends
on the location of the terminal. The mountains can be modeled to predict the
attenuation, but good accuracy requires that both the terrain profile and the ground
constants be known. An overburden of desert soil will result in additional loss.

The measurements and portions of the modeling work in this report were pre-
sented to an MX C3 working group at a technical interchange meeting at Norton AFB,

California on 14 December 1977.
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