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I. INTRODUCTION

The purpose of this report is to document the significant

results of the second year of our research program under Contract

No. DAAD05-76-C-0757. The object of this portion of the program

was to apply the A.R.A.P. Integral Theory of Impact to the

prob em of modeling the behavior of long rod penetrators.

Over the past several years the Integral Theory of Impact

has been developed by A.R.A.P. It is already proving to be a

useful tool in the design of armor and penetrators. The theory

contains the essential physics of the impact process, satisfies

all the global conservation equations and is contained in a

computer code which is simple and inexpensive to operate. The

integral theory requires far less empirical information than

some models and avoids the high cost and complexity of multi-

element codes. Its simplicity introduces a degree of economy

that makes it reasonable to conduct parametric studies so that

predicted trends are available, rather than single point predic-

tions. This aspect of the simple theory greatly facilitates

the interpretation of observations and the selection of effective

designs. The integral theory can, therefore, be used to guide

experimental programs and to select those designs which warrant

further study using the large codes.

The Integral Theory of Impact tumes that the energy of

an incoming projectile is absorbed by\the armor in one of three

forms:

1.) As dissipated energy in the form of plastic work as

the target flows around the penetrator, or as fracture energy

in newly created fracture surfaces. This nonrecoverable portion

of the total energy is characterized by an energy per unit mass

of target material, E, , and it appears to be roughly in-

dependent of velocity for each material. The product of target

density times E*p corresponds to the "adiabatic hardness" of

the material, or its hardness measured at the strain rates of

impact.

I
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2.) As elastic energy absorbed by the target in its local

elastic deformation near the penetrator and in large scale

elastic deformation modes. This elastic, or recoverable, por-

tion of the total energy is parameterized by E*e , the elastic

energy per unit target mass. E*e is a well defined function

of p/d so a single .onstant defines E*e for each material

over the complete velocity range.

3.) As kinetic energy in the target material as it ac-

celerates and begins to flow around the incoming penetrator.

This portion of the energy is expressed by C V2 , where V

is the velocity of the penetrator face relative to the target

and CD is a drag coefficient approximately equal to 1.0 for

a penetrator with a spherical front end.

Similarly, when analyzing the dynamics of the deforming

penetrator itself, there will be a quantity which measures the

dissipated energy per unit mass absorbed by the penetrator as

it deforms plastically or fractures. It is the analogue of

E~p for the target material. We will call this quantity E*d

For ductile materials, the product of penetrator density times

E*d corresponds to the "adiabatic yield strength" of the material,

which is the uniaxial yield strength of the material measured at

the strain rates of impact. E*d is assumed to be a constant

for each penetrator material.

The kinetic energy in a deforming penetrator is modeled

assuming a simple, usually linear, flowfield in the penetrator,

and simple shapes such as cubes or cylinders to approximate the

deformed shape of the projectile. The elastic energy in pene-

trators, analogous to E*e for targets, has been neglected so

far because it is relatively small compared to E*d at the

velocities of impact. However, in principle it can be included

also.

Once the two parameters E~p and E*e are known for a

target material, and E*d is known for the penetrator, the

behavior of the armor and penetrator during impact can be

2



computed from global energy and momentum conservation laws by

the A.R.A.P. Integral Theory. Since it is only the sum of E*p

and E*e which governs target performance, we shall often refer

to the sum as E. Ep and E*e have been measured in im-

pact tests for a variety of target materials from lead to boron

carbide, from salt to Rolled Homogeneous Armor, over a velocity

range from 2bft/sec to 6,400 ft/sec and have been shown to

provide an excellent description of armor behavior.4 Although

E. for a target is measured in impact tests with nondeforming

tungsten carbide balls, the same value of E. for the target

correctly predict its performance when the impactor is highly
5

deforming, such as lead or soft aluminum spheres, or with a

high L/D, such as a long rod penetrator.

Recently, a theory has been developed which related Ep

and E*e to more fundamental materials properties, such as

melting temperature, heat capacity, Young's modulus and Brinell

hardness. This makes possible the prediction of armor performance

from static tests alone. The theory has been verified experi-

mentally over the same wide range of materials for which impact

experiments have been conducted. It accurately predicts E.

to about ±15 percent for all these materials. This formula

has enabled A.R.A.P. to conduct parametric studies, using hand-

book properties of materials, which have pointed up many promising

lightweight armor materials, including some which are remarkably

economical.

In this paper, we shall report that E*d for penetrators

can also be computed from the same fundamental materials

properties, and can therefore be predicted from purely static

tests. Thus, all the input parameters required to predict

penetration by a deforming penetrator into a target can be ob-

tained from handbook values of materials properties.

3



II. INTEGRAL THEORY FOR ROD PENETRATION

The Rod Penetrator Code to be described here, which we

refer to as "ROD," uses the Integral Theory approach outlined

in the introduction. As a penetrator moves through a target

material with some velocity Vface at the penetrators front face,

the Integral Theory for target performance tells us that the

pressure at this face must be

D V 2

Pressure = pt ( " face + E*t) (1)

where is the target density and Pt hEt the adiabatic hard-

11OS toC the target material. CD 1 for a nondeforming

splhrrical front face, as reported previously. This formula has

hten verified for rigid sphere penetrators and deforming sphere

ipntrators over a wide range of projectile and target materials

,a11 velocities. Below we set up the equations governing the

initrnal dynamics of a long rod penetrator which, when coupled

with Eq. (1), which governs the target dynamics, completely

specifies the problem.

It is known from X-ray photographs that the stages of long

rod penetration may be roughly characterized as in Fig. 1. As

the rod impacts the target the pressures generated at the in-

terface begin to deform the front end of the penetrator, is in

Fig. lb. Simultaneously the target is eroded away by the sane

pressure, producing a crater, as in Fig. 1c. As oenetration con-

tinues, material at the leading face of the penetrator is eroded

away by the target, forced out laterally from the contact region

by the high pressure there and ejected back out of the crater.

As material is eroded from the rod face, new material is

supplied to this region by the shaft of the rod, which is

traveling at a higher velocity than the rod-target interface.

At some point, Fig. id, the shaft material is used up and the

head is decelerated quickly to zero velocity by the target.

We shall model the flowfield of a rod by dividing it into

two regions; the head, corresponding to the front region of a

4
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LONG ROD MODEL
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ASSUMPTIONS:
I Conservation of energy

2. Conservation of momentum

3. Linear flow field in head

4. Continuity of mass flow across interface

5. Constant yield stress at interface

6. Mass of penetrator erodes from head
when radius exceeds coa

7. The model depends upon two parameters:

The yield stress Yo = pE d

and

The shearing radius given by coa

Figure 2
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rod which is undergoing plastic and hydrodynamic strain, and

a rear portion of the rod, the shaft, which we assume to be

undeformed rod material. In Fig. 2, the assumptions and

parameters of the model are summarized. During penetration

the head, which is in contact with the target, decelerates and

spreads laterally. We assume the mass flowfield in the head

is linear, and the head is of cylindrical shape. The motion

of the material in the head is characterized by a center of

mass velocity Vf , and by the velocity of its front face k

and side face b relative to the center of mass of the head.

Conservation of mass across the boundary between the shaft and

the head imposes the condition that the rate of flow of

material from the shaft into the head is

2Ma = 7a p (V - Vf + ) (2)

where a is the radius of the shaft, p the penetrator density,

and Vs  the velocity of the shaft.

As penetration proceeds, the head widens as rod material is

forced to flow in the lateral direction. At some distance from

the axis of the rod, say c a , we assume the flow of rod

material has been turned or sheared off by the target and no

longer can apply decelerating forces to the rod. Thus, when rod

material in the head moves beyond a distance E a , laterally,

it is assumed to be detached from the rod. The dynamics of that

material as it is further slowed by the target will not affect

the deceleration of the shaft or head. This assumption is justi-

fied for some e a because the rod material at this point in the

flow has been adiabatically heated so much by plastic work that

its shear strength is very low, so it is only able to influence

the rod through compressive or hydrodynamic forces. However,

the axial force component of the compressive hydrodynamic force

on the rod shaft will only be significant within one or two

rod radii from the central axis. Thus, we shall expect

E a 2a Thus, Eo a really characterizes the turning radius

07



of the rod material in the target or the shape of the flowfield

in the head. We further assume for simplicity that the s'- ape of

the flowfield in the head region of the rod does not change too

much from material to material. Therefore, we may take c to

be the same constant for all rod penetrators, no matter what

material.

When b (the radius of the rod head) reaches 0 a , the0

cut-off radius, we assume any further increase in the radius of

the head simply results in loss of rod material across the

boundary at E a , as in Fig. 2. The rate of mass loss from

the head will be

Nb = 472bp pb (3)

where b is the lateral velocity of material in the head of the

radius b.. Then the rate of change of mass in the head is

d 1f = M - Mb  (4)

and the rate of change of mass in the shaft is

d__ M = M (5)
dt s a

The pressure applied to the rod front face by the target

during penetration is
CD 2)

Pt(E.t + -- (Vf + (6)

as described in Eq. (1), where the front face of the rod moves

at the velocity Vf + k This pressure acts across the entire

frontal area of the rod head which is in contact with the

target. The area is b2 giving

d 2 CD2Total force = dt (MfVf + M) s -b P (E..t + (vf-+) M V

(7)

from total conservation of momentum. The second term on the right

accounts for momentum loss through mass loss out the side of the

head. Substituting from (4), we find

Ma(Vf - Vs) + MfVf + IsV s = -Tb 2pt((E*t + C--(Vf+i)2 ) (8)

8
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This may be separated into two equations for the conservation

of momentum of the head and the shaft. The shaft will only

experience decelerating forces if it has a nonzero yield

strength a In this case, we have

(Force on Shaft) = -ra 2a = MV . (9)

When a = 0 , as in the case of a shaped charge jet, which is

liquid, the shaft velocity remains constant throughout penetra-

tion. Subtracting this from (8) above, the corresponding equa-

tion for the head is obtained:

CD 2 2
f Vf = -rb-t(E*t + ?(Vf+4)2) + oaa + a (Vs - Vf) (10)

The first term on the right is the force on the head due to the

target pressure, the second term is the acceleration of the

head due to the push from behind applied by the yield strength

of the shaft, and the third term is the momentum added to the

head from the material passing into the head from the shaft.

The equations above account for momentum conservation.

Next, we require energy conservation. The total kinetic energy

in the rod is given by

V2  V2
K = Ms + ff+ f (i2 + 2 (1)

where the third term on the right accounts for the internal

kinetic energy in the flowfield of the head. a = 3 for a

cylindrical head. The total work per unit time done on the

rod by the target is

U = tlb 2 (Vf+!)(E + %(Vf+)2) (12)

This work is converted into either heating of the rod of

changing the kinetic energy of the rod. The heating rate is

given by the f4 , the rate at which rod material is converted

into the hydrodynamic state, given by

W = Ma E* d (13)

9



where E*d is the "adiabatic yield strength" of the rod

material, and Ma is the rate at which rod material enters the

head. The conservation of total energy requires:

W+ K + U = 0 (14)

Lastly, the parameter k for the half-thickness of the head and

b for the radius of the head are related to the mass of the

head by

27T.Zb 2 pp = Mf (15)

These equations completely specify the problem. We solve

them to obtain the following coupled set of differential

equations.

Mf =Ma - Mb (16)

M a p(V -Vf + i) fl (17)

Mb = 47,bp pb f2 (18)
CD

Vf M - (E t + C (Vf+k)2) + Ma(Vf Vs) -f2  a2 )

(19)

= -a ra2 /M (20)

KD (V+Z r Vb (V + ')K -(Vf+£) bmpt (- (Vf+) E*t) *aPpE*d b f

(21)

b= b (22)

b= K4 + K5  (23)

where 2 2 2bMf\2

K (1 - + bMb (24)
4-f + b(7T)M

f 7ra 2 p (V V 41T Lb pb
I p s f + f2p (24)2M f

10



and a2f Ib

K a f 1 b (25)
*15 ;U

3 M f
K 2 -2 -- bE

= +Q 2 - abK 4  (26)
Mf

-- (i + Z bK5 )

where

V-f(k + L j) k Mb * 2 +~~~~ +Vf)+ ffJ

Q2 = -  f - +- + - -T- + - f f+

and penetration rate (27)

p = Vf +i (28)

f and f2 are integer quantities introduced to allow the

numerical integration to proceed smoothly at certain discontinuous

transition points in the model.

f1  remains 1 unless the mass M of the shaft becomes

zero. This will happen when the shaft has been consumed by

erosion. When the mass Ms  becomes zero, fl = 0

f2 remains zero until b , the head radius, reaches eo a
Then f2  becomes 1 , and prevents the radius of the head from

increasing beyond e a . Thus, mass loss at the head also

begins to occur when f2 = 1

This set of equations is incorporated into the computer code

ROD, which is reproduced in Appendix I. The input parameters

required to operate the code consist only of the length and

radius of the rod, the density of the rod material, and its

adiabatic hardness pE* , plus corresponding quantities for the

target. The other parameters in the set of equations above are

disposed of in the following way: We have learned that a , the

yield strength of the rod, is just its "adiabatic uniaxial flow

stress" or
o = ppE*d (29)

11
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The cut-off radius e is assumed to be a constant, C = 1.36,0 0

for all materials. Furthermore, the penetration depth in the

rod program is not very sensitive to the initial assumed value

of Z , so we always set k = a , initially, but this assumption

is not critical. The only input parameters needed to operate

the code are the physical dimensions, velocities, and densities

of the target and penetrators, plus the E* values of the

materials. The value of the plastic component of E. for any

material can be derived from the formula

E.,. = 0.55 CpT 9n ( OF(TiP + 1) (30)

p m 0O8PC pT M

as derived in our previous interim report, where C is thep
head capacity, Tm the melting temperature, p the density

and aF  the strain rate corrected flow stress of the material.

Figure 3 displays the value of E, predicted by this formula

as a function of Brinell hardness for a number of materials

of interest. When elastic effects can be neglected as they can

be for most armor materials, we simply take E*t of the target

equal to E* in Eq. (30).

As we shall show in this report, for penetrators, the

corresponding E*d may be found from

E*d = XE, (31)

where X = 0.42 for the code ROD and E* for the rod is com-

puted by substituting the melting temperature, heat capacity,

density and flow stress values of the rod material into (30).

SThe values of the constants in (30) have been modified slightly

from those given in Reference 1, as a result of more extensive
impact data.

12
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III. DISCUSSION OF THE SIIPLIFIED CODE "PEN"

Recently a second model for rod penetration has been developed

which is conceptually equivalent to the code ROD, but requires

considerably less computer running time and is more useful for

analytical investigations because of the simplicity of the equa-

tions. Most of the equations (16) - (28) are used in calculating

the acceleration, energy and momentum in the flowfiele of the head.

These can be replaced by a term in the equation of momentur con-

servation (19) which accounts for accelerations in the head. The

resulting model and code is named "PEN."

As in the ROD code, a two-element rod is assumed, consisting

of a shaft and a head. The cutoff radius E a is retained, and

again is assumed to have a constant value, independent of rod mat-

erial. The initial length of the head region is assumed to be

a , and the volume of the head is assumed to be constant as it

flattens and widens upon impact. Thus,

14f =a 3p (32)

The decelerating force acting on the head is the surm of the

decelerating forces provided by the target plus the accelerating

force on the head supplied by the yield strength of the shaft:

Mff = - b2Pt(Et + C-V2) + TrapQ (Ed + (V - V )2) (33)
f Tfp s f

where the first term on the right is the force exerted on the

head by the target and the second term is the force which the

shaft exerts on the head. The term p(Vs - Vf) 2 accounts for

the momentum gained by the head from material which has entered

the head from the shaft. The frcnt face velocity of the rod is

assumed to be equal to the center of mass velocity of the head,

Vf Substituting Eq. (32) into Eq. (33) produces

14



V - 2 (E*t + CDV) + p ((V S - Vf) 2 + Ed))
f ap~ p t a 2

(34)

The corresponding equation for the velocity of the shaft is

Eq. (20), which we rewrite as

1 2Vs = 7a a(35)
S

where

a = pp E~d

The penctration p of the rod is given by

p = Vf , (36)

and the erosion of the rod length L is governed by

L=Vf - V s  (37)

The radius of the head b during the early stages of pene-

tration when it is widening, is computed in the following way:

if k is the thickness of the head,

irb2 £p = Mf =P ipra3

yielding

a3

But since the initial thickness of the head is a , then k =

a-L 0 - L) ,for b < ca ,so
0 0

L 0- L<1-

b a= C (38)

eoa  Lo0 - L1

a or

a - C
(1o

11
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defines b and completes the systet of equations. This system

of equations, Eq. (34) - Eq. (36), defines the numerical code

PEN. As with the ROD code, the only input parameters required

are the initial velocity of the rod, the values of E* for

the rod and target, and the dimensions and densities of the materials.

This model can be related to hydrodynamic models of rod pene-

trators in the following way. During steady-state penetration

of a rod, Vf typically approaches some constant value ~ V -

YV s  During this stage of penetration, may be neglected

in Eq. (33). Assuming b has reached its full value of c a
Eq. (34) may be approximated as

pp(V - f) 2 = pt 2 EV + (ptC2Ejt - p E~d) (39)

This equation may be compared to various models for rod pene-

tration, such as that found in Ref. 6,7

Sp(V S - Vf) Pt V +(R - Y) , (40)

where R is the target strength and Y the strength of the pene-

trator. Dividing Eq. (39) by 2 and comparing coefficients, we

find

1 C2C - 1
7 oD

_t 0_ - R (41)
2

Now the values of R and Y which give the best fit to experi-

ment for a number of materials have been deduced in Refs. (6-8).

In Table 1, we compile the experimental values 6 -8 of R and Y

as well as our theoretical prediction of them based on Eq. (41)

and the theoretical value for E* , Eq. (30). The good agreement

16
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indicated by Table 1 strongly indicates that the parameters R

and Y employed in the hydrodynamic models are related to the

single fundamental material property E* by Eq. (41).

Conceptually, then, the rod program PEN is equivalent to a

hydrodynamic model with strength in the target and rod, such as

Eq. (40), plus an additional term proportional to the decelera-

tion of the rod front face, which takes into account inertial

effects at the front of the rod during the early stages of impact

before equilibriur, of pressures has been established. This in-

ertial term M fVf acts as an effective stiffening or strengthen-

ing of the rod during this early phase of penetration, and accounts

for the observed fact that rods of lower L/D have a greater pene-

tration vs. rod length, P/L , than large L/D rods do. Were it not

for this term, and an additional small effect due to the initial

spreading of front face, rods of all L/D would have the same

peretration vs. length at the same velocity, as the hydrodynamic

theory of Eq. (40) predicts.

The program PEN has been extremely useful as a means of gain-

ing an intuitive understanding of rod penetration, since it can

predict rod performance over the same range of materials and vel-

ocities as the ROD code, yet has simpler equations which can be

dealt with and understood algebraically.

In Section VI, the predictions of PEN are compared to the

code ROD and to experimental data for a wide range of materials

and velocities. We have found that the value of co and X

which gives the best fit to experiment for PEN is = 1.7

X = 1.0 , and CD = 0.5 These values are used in all computa-

tions employing the PEN code.

The relationship between the material strengths Y and R

of Table I is reminiscent of the relationship between the uni-

axial tensile strength and the Brinell hardness of a material

in static tests. It is well known that the Brinell hardness B

for a ductile mate-ial, which is just the pressure that a ductile

target can sustain when impressed by a rigid ball indenter, may

be related to the uniaxial flow stress of a rod of the same material

by
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(0.3)B

Similarly, the effective strength R of the target, which

is analogous to B , may be related to the uniaxial strength Y

of the rod, which is analogous to a , by

yTHEOR. _ E./2
RTHEOR.. pE.,o-/2
R p " 0

y THEOR. .34 RT H E O R "

This strongly suggests that the relationship between Y and R

is just that between a uniaxial tensile test and a Brinell

hardness test done at the strain rates of impact. Thus PE.

which determines both R and Y , is a true measure of a

materials' strength at impact strain rates. The shear heating

process in the deforming material at these strain rates is

adiabatic rather than isothermal, since heat is generated locally

in regions of shear much faster than it can dissipate by thermal

conduction. When the local heating, with the attendant local

softening of the material, is considered, as we discussed in

Reference 4, Eq. (30) is derived for the effective material

strength at impact strain rates. We refer to pE. as the
"adiabatic hardness" of a material, and note that it

determines both target and rod strengths at these strain rates.

The quasi-hydrodynamic model of Eq. (39) is useful in

another way as a tool for analyzing qualitatively different

regimes of penetration. If the target is very hard (high E.t )

then the rod will not penetrate unless its velocity is suffi-

ciently high to overcome the target strength with kinetic

energy. The condition for the lower limit of velocity required

for penetration is formed by setting Vf = 0 in (39) and

solving for Vs .

(VS) E*t-E*d
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Penetration will not occur unless the initial rod velocity

exceeds (Vs)0 , according to this model. In reality, some

penetration does occur below this velocity but, as in Figs. 31,

32 and 33, there usually is a long straight section of the P/L

vs velocity curve which, when extrapolated to zero penetration,

intersects the velocity coordinate at a value given approximately

by (Vs) . See Ref. 6 for a discussion of this relating to

the data in Fig. 31. The discrepancy at velocities below (Vs)0

occurs because we have neglected the Vf term in Eq. (39).

When the rod is very strong compared to the target, it

may not erode at all, and then it behaves like a nondeforming

rod. This limit, in which Vf = Vs P will occur when

(Vs)0 = tE*d - Pt 0
2 D

If the quantity under the radical is >0 , there will

exist a value (Vs)°  for which penetration of the rod can

occur without erosion. For any initial velocity below (Vs)0
the rod behaves as a nondeforming projecLile, and the A.R.A.P.

integral theory for nondeforming projectiles is employed instead

of the deforming rod equation. For velocities above (Vs)0

the deforming rod model applies. Figure 35, discussed in

Section VI, affords a striking example of the transition from
nondeforming penetration to deforming rod penetration as the

striking velocity is increased.
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IV. BACKFACE EFFECTS

In order to apply the A.R.A.P. integral theory to targets

of finite thickness, bachface effects must be included. The E,

concept was originally developed for the flow of target material

around a penetrator in a semi-infinite target. The shear work

done on the target material in the flow volume defines E~t ,

the E* for the target. When the projectile has penetrated al-

most all the way through the target, to within one or two dia-

meters of the backface, the target material can spall or simply

bulge on the backside, rather than flowing around the penetrator

hydrodynamically. Thus, each small volume of target material

absorbs less energy than it would in the semi-infinite case.

Thus, the effective E, for the target decreases near the bac-

face, and we call this the backface effect.

In order to characterize the backface effect empirically,

static Brinell hardness tests were performed on 1100-F aluminum

and lexan sheets unsupported at the back, using a .250" diameter

WC ball at very shallow and very deep penetrations. At the deep

penetrations, backface effects in the target sample affected the

hardness measurement. In Fig. 4, the Brinell hardness of a 1/4'

thick 1100-F aluminum plate is measured vs. penetration depth

of the ball, and plotted as curve (a). The hardness is roughly

constant with penetration until the ball is about .150" from the

backface, at which point the hardness begins to decrease linearly

with further penetration. When the front face of the ball reaches

.475" of "penetration," so it has actually passed through the

plate, the bulge on the back of the plate fractures and the mea-

sured hardness drops to zero. For comparison, the hardness vs.

penetration depth for the same WC ball in a semi-infinite 1100-F

aluminum plate is plotted as curve (b). The ratio of measured

hardness in the .250" thick plate to the measured hardness in the

semi-infinite plate is plotted on the same graph as a solid curve,

(c). It is clear that as the ball approaches within a diameter

or so cf the backface, the hardness begins to decrease monotoni-

cally with penetration. We should expect that pE* , which

21



> o U,
w

.j.

~Jz
W U- W

Q0

U /
CC

WOL z

im Z 0  c'J 
U

U-,

0

ULU

-. 4

0~0

SSOUP04 Ilu04'

22 4



measures the target strength at the strain rates of impact,

should decrease in roughly the same way as the measured static

hardness does near the backface.

In a second experiment, the Brinell hardness at deer pene-

tration in lexan plates was measured over a range of plate thick-

ness and ball diameters. The results are show.r in Fif . 5. It

was founC that the results could be fit empirically by

rSo , T - p L - l)r
Brinell hardness B = (42)

7-p+r Bo , ' - p < ( - l)r

where E = 4 , B°  is the hardness of a semi-infinite lexan plate,

T is the plate thickness, p the penetration depth of the ball,

and r the contact radius of the depression made by the ball in

the target. Obviously, r < a , where a is the ball radius, and

V2ap '-p , p . a

r = (43): a p >a(

In Fig. 6, this expression is compared with the measured value of

relative hardness at various penetrations for the alurmin= plate

discussed in Fig. 4. The agreement is qualitatively good, al-

though there are certainly other expressions which would charac-

terize the hardness near the backface as weli.

The form of expression, (Eq. (42), was chosen as our model

for the backface because of the following intuitive model for

*7 backface effects. We assume that the flowfield of target

*materials around the penetrator extends for some distance in front

of the penetrator. We expect this distance to be proportional to

the contact radius r of the penetrator, and to extend a distance

or in front of the penetrator, from the point of maximum contact

width. Thus, for a spherical indenter imbedded less then one

radius deep in a target, the flowfield is assumed to extend a

distance r from the surface of the target. Once the ball

is fully imbedded, then r = a , and the flowfield extends a

distance a in front of the ball, as measured from the center

23
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of gravity of the ball. Thus, the backface effect will begin to

show up when p - a = T - 8a for a fully imbedded ball, hence

Ec. (42). For a blunt nosed object, such as a cube or cylinder

impacting end on into a target, the widest point of the penetra-

tor occurs at the leading face, unlike the sphere. Then the

backface eftect begins to occur when

p = - a ,

so we can summarize:

Backface -bdel

For a sphere:

E* , T - p . (8 - l)r

E*t (44)1Eg (L.B8Pr ) , - p < (8 - l)r

For a cube or cylinder:

E., T - p >_ 8r
E*t E (45)

We have made the assumption here that the dynamic stength of the

target, E, , decreases near the lackface in the same way as the

static strength does. We do not a priori expect these formulas

with the same constants to work well for all materials, since

brittle materials will show spall and other backface effects when

the penetrator is many diameters from the backface. It is pos-

sible that by making 8 inversely proportional to the failure

strain of the target, the formula may be generalized. Such ap-

proaches will be considered in subsequent work. For many ductile

materials, however, we have found that Eq. (44) and Eq. (45)

accurately describe the decrease of E* near the backface.

As an example, refer to Figs. 7, 8 and 9 in which nonde-

forming tungsten carbide balls and highly deforming lead projec-

tiles were fired into rolled homogeneous armor, 5083 aluminum,
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and titanium armor. In each case the theoretical residual ve-

locity of the projectile is plotted vs. target thickness for a

given initial projectile velocity, using the A.R.A.P. rigid

sphere and deforming cube programs and the backface model of

Eqs. (44) and (45). In all cases, a = 4 . The theoretical

values of E,, which have been verified for each material in the

semi-infinite case, were used in this calculation. In the same

figure are plotted the predicted residual velocities for no back-

face effect. The value of target thickness at which the resi-

dual velocity equals zero measures the stopping thickness re-

quired for each projectile at the indicated initial velocity.

Arrows on each figure indicate the experimental thickness which

stopped or failed to stop the projectile. We conclude that the

backface model with = 4 works quite well for RHA, titanium

and 5083 aluminum.

It should be pointed out that there are exceptions to this

model. Certain composite materials, such as fiberglass and

Kevlar woven rovings are better modeled as having no backface

effects, or << 1 Similarly, brittle materials act as though

S>> 4 . Fortunately, however, a large number of ductile

materials including many important armor materials are described

by a = 4
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V. OBLIQUE PENETRATION

When a rod impacts an armor plate at an oblique angle, the

forces on the rod will not be axially symmetric. Thus we include

in the rod program a lateral force FL acting on the head of

the rod, as well as the axial force FA  which was described in

Sections !I and III. A bending mode, characterized by uB P the

lateral displacement of the head relative to the axis of the

shaft, and a twisting angle ¢ relative to the direction of rod

motion are included. In addition, the trajectory of the rod no

longer will follow the initial direction of flight, so instead

of one parameter p for penetration we employ p as the total

length of penetration plus X , the angle of penetration relative

to the original velocity direction. All these quantities are de-

fined in Figs. 10a and 10b.

First, consider the dynamics of the rod itself. The total

energy of the rod is
(I I U2+ 2)+1 21 + (46)

where I is the rod moment of inertia, U is the center of

mass velocity of the rod and uB the bending velocity. Since

bending and other nonaxial effects are generally small correc-

tions to the total penetration, we treat the rod as a single

element, not separating it into head and shaft, for the purpose

of calculating these effects.

The variables expressing lateral deflection are then

determined by

S (L/2) (47)
L I

where L is the total length of the rod, and
5F 

L - 5F(48)
UB - M + Mf

The lateral force FL is computed in the following way.

As the rod impacts a target at an oblique angle, one corner of
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the front end first makes contact with the target when the

center of the front face of the rod is still a distance

d = a tan e

from the target, measured in the direction of the rod velocity.

We assume the plastic and drag forces acting on the rod begin

to increase from zero at this initial instant of contact and

rise linearly to their fully-imbedded values when the face of

the rod is fully imbedded in the target. The penetration p is

measured in the program from this initial contact point. At

this point the center of the front face of the rod is a distance

(a - sin &) from the target, measured along a normal to the target
face. Thus, we treat the target as having an effective thickness

= T + a sin e , where T is the true target thickness. The

total plastic and drag pressure exerted on the head of the rod

is computed from (1), and F A and FL  are found by multiplying

this pressure by the front face area and lateral area, respec-

tively, in contact with the target. The head of the rod will

begin to widen as soon as the decelerating force of the target

acts on it. Full embedding of the head (see Fig. 10) occurs

when

P = Po (a + b) tan (e - x) (49)

The pressure at the contact interface is

t(Et + C-(Vf + R )2

and according to our assumption of a linear initial increase in

the contact area, the force exerted on the front face of the rod
is FA = P- b2 P(E + CD(V + i)2) P < Po (50)

p 0 t (f )

and the force exerted on the side face is

FL P- 47ibp t(E* + CD(Vf + i) 2  P Po (51)
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We assume this linear increase in contact area holds true up to

the point of full embedding at the penetration p = po ' For

P > PO 0 FL drops to zero since the lateral forces acting on

all sides of the head cancel each other, yielding

C 2)C
FA 2t(E*t + (Vf + ) p >p 0  (52)

FL 0

Upon exiting from the backface of the target, the backface model

described in the previous section is generalized to oblique exit

in the following way. Et and the drag coefficient CD near

the backface are assumed to decrease according to (45), where the

distance from the penetrator to the backface is taken as the pro-

jected distance measured normal to the backface. The reduced

values of E. and CD are substituted directly into the

formula for FA Near the backface, the projected distance from

the center of the rod face to the backface is r - p cos (e - X)
and the expression for the effective E*t corresponding to (45)

is
E~t =U (53)

where a is defined by

1i T - p cos(e - X) > r
( r -P cos(e - X) (54)

4 r - p cos(e - x) < r

A similar dependence is assumed for CD near the backface.

T is the effective plate thickness (T + a sin 8) measured from

the point of initial contact. As the axial force decreases near

the backface, the lateral force FL increases because of the

imbalance in the effective E. of the target on the sides of the

head. Therefore, we assume

FL = (1 - a) ( 4 Tbipt(E.t + C(Vf + i) 2 (55)

These assumptions completely specify the backface effects for

oblique exit from the target.
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The equations above, in addition to those described in

Section III, are integrated numerically to predict the residual

mass, residual velocity, ballistic limit velocity, and other

parameters for oblique penetration as well as normal penetration.

The oblique model described here has been included in the PE:4

code, but has not thus far been added to the code ROD. A copy

of the code PE\1 is reproduced in Appendix II. The input para-

meters which require specification are the geometric dimensions,

densities and E-. values of the target and penetrator materials,

and the initial striking velocity and olbiquity angle of the

penetrator. The output includes ballistic limit velocity or

penetration depth, residual mass and residual velocity of the

penetrator.

wI
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VI. COMfPARISON OF EXPERIMENT WITH THEORY

In order to check the programs ROD and PEN against experi-

ment under controlled conditions, several long rods of

L/D = 10 were fired for us into Rolled Homogeneous Armor

targets of Brinell hardness 290 kg/mm2 by the Ballistics

Research Lab, Aberdeen Proving Grounds. In order to avoid back-

face effects which might modify the effective E., of the target

in these initial experiments, very thick targets of thickness

greater than twice the total rod penetration were used. The rods

were chosen to provide a variety of materials and strengths, from

1018 steel to soft lead to Mallory 3000, a tungsten alloy. The

re!Liting data were compared to predictions from the ROD and PEN

programs to select a best fit value of c , which characterizes

the maximum head width, and X , which relates E-d to the rod

strength in Eq. (31). The theoretical values of E_, for the tar-

get and penetrator material were used, based on formula (30) and

the melting temperature, hardness and heat capacity of the

respective materials. The best fit values for ROD

were found to be E 1.36, = .42 , and for PEN, E= 1.7

and X = 1.0.

A comparison of the resultant theoretical predictions with

experiment for the code ROD is shown in Figs. 11 through 13. The

corresponding fit to the data for the code PEN is shown in Fig. 14.

The high velocity lead rod deformed upon exit from the gun barrel

and had a highly irregular shape and L/D - 5 upon impact at the

target. We have used L/D = 5 in computing the theoretical

penetration for this data point. Agreement with experiment in all

cases is within about 15%.

Next, the code was tested for rods against finite thickness

targets at normal incidence. The values of the parameters X

and E found above were kept the same. In the numerical code

this set of experiments amounts to a test of the accuracy of the

backface model, presented in Section IV. The ballistic limit

velocity VBL was determined in the code by incrementally

raising the striking velocity of the rod until penetration was
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achieved. This theoretical VBL from the ROD code was compared
9

to one set of experiments (Lambert ) with 65 gm Bearcat steel

rods of L/D = 5 , 10 and 20 into RHA targets of various hard-
A _ 2

ness from BHN = 260 to 375 kg/mm 2  These date are presented in

Figs. 15 through 17. Agreement is excellent, although there is

a slight tendency for the higher L/D rod to overpenetrate and

the lower L/D rod to underpenetrate. In Figs. 18 through 20

these data of Lambert are plotted in dimensionless form against

another set of experiments (Herr 0 ) in which 1.94 , 3.89 , and

7.78 gram Bearcat steel rods were fired into RHA plates which

were annealed to a Brinell hardness of 400. In Figs. 18 through 20

the plate thickness is expressed in units of T/D or (thickness)/

(rod diameter), since it is the rod width D that sets the dimen-

sion for backface effects. It is apparent in the figures that the

two sets of experimental data do not overlap, particularly for

L/D = 10 and 20 . This can be shown to be a result of the dif-

ferent Brinell hardnesses of the armor targets used in the two
11

sets of experiments. Note, for example, that the 1.94 , 3.89

and 7.78 gram rods do fall on the same ballistic curve. In

Herr's experiments, all targets were heat treated to a uniform

hardness of BHN = 400 Thus, they all had the same value of

E, , about 215 Btu/lb. In Lambert's data, the Brinell hardness
2.varies from about 260 to 375 km/mm with corresponding values

of E,, ranging from 170 to 210 Btu/lb. The theoretical curves

corresponding to these two sets of E* values are plotted in

Figs. 18 through 20, where the average E* of Lambert's targets,

190 Btu/lb, is used. The theory clearly shows the same shift

in VBL with hardness that is seen in the experimental data.

Thus, the different values of E* corresponding to different

Brinell hardnesses, as predicted by Eq. (30), account for the

apparent failure of scaling in the data. This set of experiments

provides a sensitive test of the ability of the Integral Theory

to predict the effect of materials properties, such as hardness,

on penetration and ballistic limit.
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In Figs. 21 through 24 the theoretical value of the residual

mass MR versus striking velocity is compared to experiment9'1 0

for Bearcat steel and Mallory 3000 rods. The residual mass

computed in the program is the sum of the mass of the head and

shaft of the rod at the instant the target backface is reached.

Although there is a fair amount of scatter in the data, good

qualitative agreement is attained over the range of velocities

and target thicknesses in the experiment. In Figs. 25 through

29 the predicted residual velocity of the rod fragment is com-

pared with experiment for various thickness targets and rods

of various L/D , for Mallory 3000 as well as steel. These

comparisons are typical. The agreement is good between the

code and experiment to about ±15%.

In Figs. 30 and 31 typical oblique rod shots 9 are compared

to the PEN code prediction. The ballistic limit is plotted

versus striking velocity for Bearcat rods into RHA at 600

incidence. Again, the agreement between theory and experiment

is good to better than 10%.

In order to provide further confirmation of the numerical

codes, especially over a wider range of materials, published

data were obtained for long rods (wires) of gold, tin, aluminum,

and magnesium fired into 7075-T6 Aluminum semi-infinite targets.
6

The values of E, for the targets and penetrators were obtained

from handbook data on the materials involved, and substituted

into formula (30). The resulting values of E,, are displayed

in Fig. 32, together with the experimental and theoretical

curves of penetration versus velocity for the four rod materials.

The penetration is normalized to allow presentation of all

curves on the same graph. The very good agreement over a

range of rod density from 1.8 to 19 gm/cc confirms that density

variations are taken into account correctly in the code.

As yet another test of the influence of the material

hardness on penetration, published data 7 for steel and Densimet

17 rods fired into various types of semi-infinite steel targets
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PENETRATION OF LONG WIRES OF
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lI

were compared to the PEN numerical code. For these data, the

maximum velocity is 3000 m/sec, considerably higher than for

the previous data for steel rods in Fig. 11. As Figs. 33,14 shiow

agreement is good over the entire range of velocity for all of

the materials.

Finally, the rod code was tested for the interesting case

of a dense, strong rod into a low density target, in this case
12

Bearcat steel rods into a 6061-T6 Al target. The steel rod,

if sufficiently strong, will not deform at low velocities and

will follow the ballistic curve of a nondeforming projectile.

At high enough striking velocity, the front face pressure on the

rod exceeds the yield strength, and the rod begins to erode

rapidly and behaves like a deforming rod. In Fig. 35, data

are presented which display this transition for rods of various

strengths. The theoretical curves corresponding to rods of

Rockwell hardness Rc = 40 , 50 and 60 (E, = 207, 236 and 256

Btu/lb) clearly show that the stronger rod begins to deform

at higher velocity. These data provide a critical test of the

way the rod strength enters the code, since the transition from

nondeforming to deforming rod is so sharp. Experiments such

as this one provide a sensitive means for empirically determining

the uniaxial adiabatic yield strength of a rod.
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VII. CONCLUSIONS

The Integral Theory of Impact has been applied to the pro-

blem of modeling the behavior of long-rod penetrators. A two-

cell model for the deforming rod is employed, assuming conser-

vation of energy and momentum, and using the A.R.A.P. concept of

adiabatic hardness, pE* , to account for material strengths. A

numerical code based on these assumptions has been developed

which can predict the performance of rod penetrators impacting

finite thickness targets. The input parameters required to

operate the code consist only of the physical dimensions of the

target and penetrator, and standard handbook properties of the

materials, such as density, heat capacity and Brinell hardness,

which is needed to compute pE*

The code predictions of ballistic limit velocity, penetration

depth, residual mass and residual velocity are in good agreement

(typically ±15%) with experiment over a wide range of materials

and velocities. The code accurately predicts the relative im-

provement in performance of a rod when its strength is increased,

or when the target hardness is changed, and also predicts the

approximate velocity at which a rod transitions from nondeforming

+o deforming penetration.

The current treatment of oblique impact does not attempt to

handle fracture of the rod shaft or jetting of the rod front end

during impact. However, where shaft fracture is not a problem,

the code predictions of ballistic limit are in good agreement

with experiment.

65



REFERENCES

1. Donaldson, Coleman duP. and 11cDonough, Thomas B.: A Sim-
ple Integral Theory for Compact Cratering by High Speed
Particles. DNA 3234F, Aeronautical Research Associates
of Princeton, Inc., Princeton, NJ, 08540, 4 December 1973.

2. Donaldson, Coleman du?., Contiliano, Ross M., and McDonough,
Thomas B.: A Study of Water Drop Displacement and Deforma-
tion in Aerodynamic Shock Layers. A.R.A.P. Report No. 265,
Aeronautical Research Associates of Princeton, Inc.,
Janaury 1976.

3. McDonough, Thomas B. and Contiliano, Ross If.: The Sensitivity
of Impact Response to the Mechanical Behavior of the Pene-
trator. A.R.A.P. Report No. 266, Aeronautical Research
Associates of Princeton, Inc., January 1976.

4. Donaldson, Coleman duP., Contiliano, Ross M., and Swanson,
Claude V.: The Qualification of Target Materials using the
Integral Theory of Impact. A.R.A.P. Report No. 295,
Aeronautical Research Associates of Princeton, Inc.

5. Contiliano, Ross M., and Donaldson, Coleman duP.: The
Development o- a Theory for the Design of Lightweight
Armor. A.R.A.e. Report No. 313, Aeronautical Research As-
sociates of Princeton, Inc., November 1977.

6. Allen, William A., and Rogers, James W.: Penetration of
a Rod into a Semi-Infinite Target. J. Franklin Institute,
272, 275 (1961).

7. Hohler, V., and Stilp, A.J.: Penetration of Steel and High
Density Rods in Semi-Infinite Steel Targets. 3rd Interna-
tional Symposium on Ballistics, March 1977, Karlsruhe.

8. Wilkins, Mark L., and Guinam, Michael W.: Impact of Cylinders
on a Right Boundary. J. Appl. Phys., 44, 3, March 1973.

9. Lambert, J.P., Misey, J.J., Morfogenis, P.G., and Zukar,
J.A.: Behind Armor Data for Long Rod Penetrators. B.R.L.
Interim Memorandum Report No. 430, USA Ballistic Research
Laboratories, Aberdeen Proving Ground, MD, September 1975.

10. Herr, Louis, and Grabanek, Chester: Ballistic Performance
and Beyond Armor Data for Rods Impacting Steel Armor Plates.
B.R.L. Memorandum Report No. 2575, USA Ballistic Research
Laboratories, Aberdeen Proving Ground, MD, January 1976.

11. Private Communication, Konrad Frank, USA Ballistic Research
Laboratories, Aberdeen Proving Ground, MD.

12. Private Communication, John H. Suckling, USA Ballistic Re-
search Laboratories, Aberdeen Proving Ground, MD.

66



APPENDIX 1

LISTING OF ROD CODE



L C.. fU Ll b H b SMAI A'iL 5 KILd,I r,

ULI.JbL. t LL Ib I UN LP51 (12)o ASAVLC.3b)pAbLALL(.So)

LLLJDLk. '- KLLCI I M L bU 1!

LUUbLL PxtIC1blU'i iUVLO~IJ
UUtbLL PnKLLISION f-OFAIL,LbI 1N,YILLU.

LU~bLL PImLL1IU'i L.IANJ,k uIAt(,LPbIAMIlriLK, LLPL,1ILLI.hmUe

LJULE Fk. L1I1bP1 oi.Lt 51G A

UL) sL t FL P(L C IIu v ,uv ,DvvpULLe,l

L

L LAI U.

L 1A I Z IU

L Ib IlvLu

~L (2 u v
'<ALu(I)t(J LL' L L~lTR6 (YJry,.m -4LA
Aod P M"VA ( j o)

AMLAU~(#1) :Lt'u AV

le PUe'"A I('h10.O)

L3 v(I :3 Au
A L,(1.3 L, U I A

Abmb LL I ) Z Aj

AbLuIA1L(bU1O.O)/
15 L .v I ;,uLI s LS4

V b L-I I U. LI L

V ILLVzY ILLO*L)t

OU lye JS:lNARU~L

ubIAiNIAb(J)

LIJSA14LOST (J5)

L INIIIALIZE PAKAMk.Itfi
UU IU.S Jbs1,vVLLUL
bLALt:ASCALL (Jb)
V09SAVL(Jb)
AgAbAvtjb)*SLALL
THLMCPRTM1IK(J5)*SLALE
LL .N Ia mALL N U i's cAt.
Vu 96 NVl3NV2,NVS*1



i'(NLAN.LI. 0.5) tPU IL) 07

'41 CUr. I I L

PMAZU *

U'AU , U)
mozu . 0

SI zu *u

L2LLIL1 M/t.U

VLi?=- 1 9 0
ALPiia1 ZQ ."

MUMUZIAU* V
mumuEu.OS*m1LIlo(

Vt' :vu

vN~~ v u '

V b V 1)~

LU iL: LZU.U I *'KU*

V~ A I~ J I , 3c

LbJ I nUZ b U O *IOi

* ~ ~ 1 FO iUMAT(UlIb~b,'LIA

CUSILO91 .0AK

A11lltWMU1ArC*A*(IL.ttQ.1t. vt
993 t~t AUM I IL'Cb 1 aH~t AU P 0L*t'b, 'ztbl /lLv
u' AC o 1:1.0 iu
t. ALSS .0li

PAL 7:1.0

9ALq:U.Oj



C fkttp~ INAir% UP A1L 0LIf'4

fI SIAL IS u 4VVL

~FLALZ1.U

v~xvDk AL*t.
L EPubI11UN UI 11AL

L PUi;I lUlvU Lu q A t"r bu II UM
~VMAA(Ie U.L)U)* LAL

MA +M A*1 )N't'UI)

o2b2+~1ub2*ul * (1 U- AL'4)

mPN'jm:mU-mF -m

S U~'tKILUULJS VAMIAtLLi,

u ItflFAtS(uIrtm)

c (Lmi1)ITI1 ILJ'< HALlI LTVcAIIUN~

IF (tv0.VL.(4fu0) Gu 1U I

LF(t'UM.L).NMufU) LU ILI I

99 LU'i I ;,IUL
L
C ItldLULIAT. UtJTI0,,AL vAIfjA0ji IKtI1uuI

jf' (tuoi.lI *LT*.5)S 6~U ILI L95

AKI IL(5p5Q) I ,VFAL2t,ULe,O,t uL)p ,~pAL#i&.L(\LM ,

A~i1L(b55) MU (wpM,U-1biN',L)r'd' P2~ UULe,TLI"P-

50 F-mMAIU()12.L4)

55 PU~lAi(' kP50',UIb,b#' FYJtLL)='p Ljbob)

89', LUN I lUL
100 C U"41 1 UL

C
L C- INAL VAo~IAtiL.Lb PCjoloI~ul

I MICK I HjCA~/bL-ALE

I CONI INUL
.t$L9"I/LENLIM

AaA/SCALL
LtNUi1HZLEN61 /SCALL
NHITL(5,99$i A, VQLiILLNlTIH

999 FURMAT. fLSTARTM'vUli.4#' HN'UTAKZ't Ule.'4)

59 FUNMA10('O'LL) UP9 iUN, FINAL F.AMAMtILWSS')



PAm II L ( 5o b Ii PV~( P ,I

lUVtx(UPlA~u/(2.O*A)

0 4 3 P UeKNA( TLvLtqL)= g?

3M t j w, I Z Vt :Vp +V o

96 L. I I N 11 k

LALL LA1i
t



APPENDIX 2
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