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I. INTRODUCTION

The purpose of this report is to document the significant
results of the second year of our research program under Contract
No. DAADQO5-76-C-0757. The object of this portion of the program
was to apply the A.R.A.P. Integral Theory of Impact to the
proﬁ*em of modeling the behavior of long rod penetrators.

Over the past several years the Integral Theory of Impact
has been developed by A.R.A.P.}.SL It is already proving to be a
useful tool in the design of armor and penetrators. The theory
contains the essential physics of the impact process, satisfies
all the global conservation equations and is contained in a
computer code which is simple and inexpensive to operate. The
integral theory requires far less empirical information than
some models and avoids the high cost and complexity of multi-
element codes. Its simplicity introduces a degree of economy
that makes it reasonable to conduct parametric studies so that
predicted trends are available, rather than single point predic-
tions. This aspect of the simple theory greatly facilitates
the interpretation of observations and the selection of effective
designs. The integral theory can, therefore, be used to guide
experimental programs and to select those designs which warrant
further study using the large codes.

The Integral Theory of Impact tgfumes that the energy of
an incoming projectile is absorbed by ‘the armor in one of three

forms:

1.) As dissipated energy in the form of plastic work as
the target flows around the penetrator, or as fracture energy
in newly created fracture surfaces. This nonrecoverable portion
of the total energy is characterized by an energy per unit mass
of target material, E,, , and it appears to be roughly in-
dependent of velocity for each material. The product of target
density times E,p corresponds to the "adiabatic hardness" of
the material, or its hardness measured at the strain rates of

impact.




2.) As elastic energy absorbed by the target in its local
elastic deformation near the penetrator and in large scale
elastic deformation modes. This elastic, or recoverable, por-
tion of the total energy is parameterized by E,, , the elastic
energy per unit target mass. E,, 1is a well defined function
of p/d so a single constant defines E,, for each material
over the complete velocity range.

3.) As kinetic energy in the target material as it ac-
celerates and begins to flow around the incoming penetrator.
This portion of the energy is expressed by %P v2 , where V
is the velocity of the penetrator face relative to the target
and Cp is a drag coefficient approximately equal to 1.0 for
a penetrator with a spherical front end.

] Similarly, when analyzing the dynamics of the deforming

] penetrator itself, there will be a quantity which measures the
dissipated energy per unit mass absorbed by the penetrator as

it deforms plastically or fractures. It is the analogue of
: E*p for the target material. We will call this quantity E,4
- For ductile materials, the product of penetrator density times
E.q corresponds to the "adiabatic yield strength” of the material, [
which is the uniaxial yield strength of the material measured at !
the strain rates of impact. E,3 is assumed to be a constant
for each penetrator material.

The kinetic energy in a deforming penetrator is modeled
assuming a simple, usually linear, flowfield in the penetrator,
and simple shapes such as cubes or cylinders to approximate the

1 deformed shape of the projectile. The elastic energy in pene-

trators, analogous to E*e for targets, has been neglected so

far because it is relatively small compared to E,q at the

i velocities of impact. However, in principle it can be included
also.

Once the two parameters E and E are known for a
P *p *e

target material, and E,g 1is known for the penetrator, the *

‘ behavior of the armor and penetrator during impact can be




computed from global energy and momentum conservation laws by
the A.R.A.P. Integral Theory. Since it is only the sum of E*p
and E,e which governs target performance, we shall often refer

to the sum as E, . E,p and E,, have been measured in im-

pact tests for a variety of target materials from lead to boron
carbide, from salt to Rolled Homogeneous Armor, over a velocity
range from 2u ft/sec to 6,400 ft/sec and have been shown to
provide an excellent description of armor behavior.4 Although
E, for a target is measured in impact tests with nondeforming
tungsten carbide balls, the same value of E, for the target
correctly predict its performance when the impactor is highly
deforming, such as lead or soft aluminum spheres] or with a
high L/D, such as a long rod penetrator.

Recently, a theory has been developed which related Exp
and E,e to more fundamental materials properties, such as

melting temperature, heat capacity, Young's modulus and Brinell
hardness. This makes possible the prediction of armor performance
from static tests alone. The theory has been verified experi-

mentally over the same wide range of materials for which impact
experiments have been conducted. It accurately predicts E, V
to about 15 percent for all these materials. This formula 7
has enabled A.R.A.P. to conduct parametric studies, using hand-
book properties of materials, which have pointed up many promising
lightweight armor materials, including some which are remarkably

economical.

In this paper, we shall report that E,3 for penetrators
can also be computed from the same fundamental materials
properties, and can therefore be predicted from purely static
tests. Thus, all the input parameters required to predict

penetration by a deforming penetrator into a target can be ob-
tained from handbook values of materials properties.
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I1. INTEGRAL THEORY FOR ROD PENETRATION

The Rod Penetrator Code to be described here, which we
refer to as "ROD," uses the Integral Theory approach outlined
in the introduction. As a penetrator moves through a target
material with some velocity Vg,.., at the penetrators front face,
the Integral Theory for target performance tells us that the
pressure at this face must be

_ °p 2
Pressure = ¢ | 5 Vi o+ E*t) , (1

where v, 1s the target density and fckyr the adiabatic hard-
ness of the target material. Ch = 1 for a nondeforming
spherical front face, as reported previously. This formula has
been verified for rigid sphere penetrators and deforming sphere
penetrators over a wide range of projectile and target materials
and velocities. Below we set up the equations governing the
internal dynamics of a long rod penetrator which, when coupled
with Eq. (1), which governs the target dynamics, completely
specifies the problem.

[t is known from X-ray photographs that the stages of long
rod penetration mav be roughly characterized as in Fig. 1. As
the rod impacts the target the pressures generated at the in-
terface begin to deform the front end of the penetrator, is in
Fig. 1b. Simultaneously the target is eroded awav byv the same
pressure, producing a crater, as in Fig. lc. As penezration con-
tinues, material at the leading face of the penetrator is eroded
away by the target, forced out laterally from the contac: region
by the high pressure there and ejected back out of the crater.
As material is eroded from the rod face, new material is
supplied to this region by the shaft of the rod, which is
traveling at a higher velocity than the rod-targe: interiace.

At some point, Fig. 1d, the shaft material is used up and the
head is decelerated quickly to zero velocity by the targec:.

We shall model the flowfield of a rod by dividing it in%o
two regions; the head, corresponding to the fron: region of a
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rod which is undergoing plastic and hydrodynamic strain, and

a rear portion of the rod, the shaft, which we assume to be
undeformed rod material. 1In Fig. 2, the assumptions and
parameters of the model are summarized. During penetration
the head, which is in contact with the target, decelerates and
spreads laterally. We assume the mass flowfield in the head
is linear, and the head is of cylindrical shape. The motion
of the material in the head is characterized by a center of
mass velocity V. , and by the velocity of its front face 4
and side face b relative to the center of mass of the head.
Conservation of mass across the boundary between the shaft and
the head imposes the condition that the rate of flow of
material from the shaft into the head is

. _ 2 - -
M, = Ta op(Vs Ve + 2) (2)
where a 1is the radius of the shaft, pp the penetrator density,

and Vs the velocity of the shaft.

As penetration proceeds, the head widens as rod material is
forced to flow in the lateral direction. At some distance from
the axis of the rod, say €,2 » We assume the flow of rod
material has been turned or sheared off by the target and no
longer can apply decelerating forces to the rod. Thus, when rod
material in the head moves beyond a distance €52 laterally,
it is assumed to be detached from the rod. The dynamics of that
material as it is further slowed by the target will not affect
the deceleration of the shaft or head. This assumption is justi-
fied for some €, because the rod material at this point in the
flow has been adiabatically heated so much by plastic work that
its shear strength is very low, so it is only able to influence

the rod through compressive or hydrodynamic forces. However,
the axial force component of the compressive hydrodynamic force
on the rod shaft will only be significant within one or two

rod radii from the central axis. Thus, we shall expect

€58 < 2a . Thus, £,3 really characterizes the turning radius




of the rod material in the target or the shape of the flowfield
in the head. We further assume for simplicity that the shape of
the flowfield in the head region of the rod does not change too
much from material to material. Therefore, we may take €6 to
be the same constant for all rod penetrators, no matter what
material.

, the
cut-off radius, we assume any further increase in the radius of

When b (the radius of the rod head) reaches o8

the head simply results in loss of rod material across the
boundary at €,8 , as in Fig. 2. The rate of mass loss from
the head will be

M, = 4n£bppb (3
where b is the lateral velocity of material in the head of the
radius b .. Then the rate of change of mass in the head is

d M, =M - M (4)
dt 'f a b

and the rate of change of mass in the shafr is

d .
I Mg (3
The pressure applied to the rod front face by the target

during penetration is
“p b2
OC(E*t 5 (Ve + 2) ) (6)
as described in Eq. (1), where the front face of the rod moves
at the velocity Vf + % . This pressure acts across the entire
frontal area of the rod head which is in contact with the

target. The area is nb2 giving
d 2 Cp 2y
Total force = I (MfVf + MSVS) = -1b pt(E_,.',t + 5= (Vf+n) ) - Mbe
(7)
from total conservation of momentum. The second term on the right
accounts for momentum loss through mass loss out the side of the

head. Substituting from (4), we find

: V) o+ MU+ u V= -nbPo ((E +CD<V+s‘z>2) (8)
M (Vg - Vo) £Yf 7 MsVs T TP Pe Mkt T TNVE
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This may be separated into two equations for the conservation
of momentum of the nead and the shaft. The shaft will only
experience decelerating forces if it has a nonzero yield
strength o . 1In this case, we have

(Force on Shaft) = -nazo = MSVS . (9

When o = 0 , as in the case of a shaped charge jet, which is
liquid, the shaft velocity remains constant throughout penetra-
tion. Subtracting this from (8) above, the corresponding equa-
tion for the head is obtained:

2

. - 2 C N 2 ¥
Hele = ~mb%o  (Byp + LL(VHD®) + oma® + 1 (Vg - Vp) (10)

The first term on the right is the force on the head due to the
target pressure, the second term is the acceleration of the
head due to the push from behind applied by the yield strength

of the shaft, and the third term is the momentum added to the
head from the material passing into the head from the shaft.

The equations above account for momentum conservation.
Next, we require energy conservation. The total kinetic energy
in the rod is given by

2
v M.V M
_ ’s £'f £ . 2
K=M 5 t—==t VY (2° + > b“) (11)
where the third term on the right accounts for the internal
kinetic energy in the flowfield of the head. o =3 for a
cylindrical head. The total work per unit time done on the
rod by the target is

. 2 . Cp . ...2
U= o b2 (Vet) By + 2V ) (12)

This work is converted into either heating of the rod of
changing the kinetic energy of the rod. The heating rate is
given by the W , the rate at which rod material is converted
into the hydrodynamic state, given by

W="M Euq (13)
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where E,q 1is the "adiabatic yield strength" of the rod
material, and Ma is the rate at which rod material enters the
head. The conservation of total energy requires:

W+K+U-=0 (14)

Lastly, the parameter & for the half-thickness of the head and
b for the radius of the head are related to the mass of the
head by
2. _
2712b Pp = Mg (15)
These equations completely specify the problem. We solve

them to obtain tne following coupled set of differential

equations.
Me = M, - M (16)
- _ 2 . .
Ma = Ta pp(Vs - Vf + 2) fl (17)
My = aﬂibppb - £, (18) |
' 1 (.2 Ch 5 i
Ve = - %f(ﬂb b By + 22 (V) + M (Ve = V) -, - oma )
(19)
vV = -cnaz/M (20)
S S i
. 2 CD . 2 \4 K 2 ;
K = -(Vern)mb%o, (22 (Ve + Egp) - M aPpExd - 2 (VE + ) i
v (21) ;
" _bfa _ & (22) I
; b=7\f "2
i‘ b =K, + K2 (23) g
. where ﬁf 2
R, =@ - f D e+ (% ) 7\ M
£,malp (V_-V,) + £, 4mebo b (£)
178 Pp V™ VE 2 p ‘2 "




and 2
5  4%b 27 (
. M
3 f -,
. K+ Q, - — bK
g = - 2 2 a 4 (26)
£ o+ 3K
a (2 2 5
where

2 . 2 .
. 2 2 \' MV
_ 2 . b £ a's . M g2, 2 '
Qz"{Mf<7&+&_+2—>'_Z_+2—(b +vf)+vafo}

and penetration rate (27

p = Vf + 2 (28)

fl and f2 are integer quantities introduced to allow the
numerical integration to proceed smoothly at certain discontinuous
transition points in the model.

fl remains 1 wunless the mass M of the shaft becomes
zero. This will happen when the shaft has been consumed by

erosion. When the mass Ms becomes zero, fl =0

f2 remains zero until b , the head radius, reaches €£,8
Then f2 becomes 1 , and prevents the radius of the head from
increasing beyond e,d - Thus, mass loss at the head also

begins to occur when £, =1

2
This set of equations is incorporated into the computer code
ROD, which is reproduced in Appendix I. The input parameters
required to operate the code consist only of the length and
radius of the rod, the density of the rod material, and its
adiabatic hardness pE, , plus corresponding quantities for the
target. The other parameters in the set of equations above are
disposed of in the following way: We have learned that o¢ , the
yield strength of the rod, is just its 'adiabatic uniaxial flow

stress' or
o = ppE*d (29)

11
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The cut-off radius €5 is assumed to be a constant, €0 = 1.36,
for all materials. Furthermore, the penetration depth in the
rod program is not very sensitive to the initial assumed value
of & , so we always set & = a , initially, but this assumption
is not critical. The only input parameters needed to operate
the code are the physical dimensions, velocities, and densities
of the target and penetrators, plus the E, values of the

materials. The value of the plastic component of E, for any
material can be derived from the formula

0p(T;,€)

E7‘r = 055 Cme in (m + 1) (30)

as derived in our previous interim report,l where C is the
head capacity, Tm the melting temperature, p thepdensity
and Op the strain rate corrected flow stress of the material.
Figure 3 displays the value of E, predicted by this formula
as a function of Brinell hardness for a number of materials

of interest. When elastic effects can be neglected as they can
be for most armor materials, we simply take E,, of the target
equal to E, in Eq. (30).

As we shall show in this report, for penetrators, the
corresponding E,3 may be found from

Eid = XE, (31)

where x = 0.42 for the code ROD and E, for the rod is com-
puted by substituting the melting temperature, heat capacity,
density and flow stress values of the rod material into (30).

%

qEThe values of the constants in (30) have been modified slightly
from those given in Reference 1, as a result of more extensive
impact data.
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III. DISCUSSION OF THE SI!PLIFIED CODE "PEN"

Recently a second model for rod penetration has been developed
which is conceptually equivalent to the code ROD, but requires
considerably less computer running time and is more useful for
analytical investigations because of the simplicity of the equa-
tions. Mcst cf the equations (16) - (28) are used in calculating
the acceleration, energy and momentum in the flowfield of the head.
These can be replaced by a term in the equation of momentur con-
servation (19) which accounts for accelerations in the head. The

resulting model and code is named "PEN."

As in the ROD code, a two-element rod is assumed, consisting
of a shaft and a head. The cutoff radius €, is retained, and
again is assumed to have a constant value, independent of rod mat-
erial. The initial length of the head region is assumed to be
a , and the volume of the head is assumed to be constant as it
flattens and widens upon impact. Thus,

vy = malo (32)
The decelerating force acting on the head is the sum of the

decelerating forces provided by the target plus the accelerating

force on the head supplied by the yield strength of the shaft:

%

Mele = - %o (Ext + 7 VE) + ﬂazop(E*d + (Vg - Ve)?) (33)

where the first term on the right is the force exerted on the
head by the target and the second term is the force which the
shaft exerts on the head. The term op(VS - Vf)2 accounts for
the momentum gained by the head from material which has entered
the head from the shaft. The front face velocity of the rod is
assumed to be equal to the center of mass velocity of the head,
Ve . Substituting Eq. (32) into Eq. (33) procuces

14
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. %

- 1 b?
Ve = EE; (-0, ;; (Ext +- VE) + o5 ((Vg - Vg2 + Euq))
(34)

The corresponding equation for the velocity of the shaft is

} Eq. (20), which we revrite as
|
U= - & rato 35
s i (35)
s where
o =p_ Eud .

P

The penetreticn p of the rod is given by

p=Ve, (36)
and the erosion of the rod length L 1is governed bv
L=v, -V, (37)
The radius of the head bt during the early stages of pene- !
tration when it is widening, is computed in the following way:
If & 1is the thickness of the head,
2 = 3
b lpp = Mf = pp Ta
yielding
3
- a
!L—ET.
But since the initial thickness of the head is a , then & =
: a - (Lo - L), for b < €,a , SO
L L-L N
| 2, et o1
, (L - L) a = €o
3 1 - & .
a ,
: b= ) (38) |
| L -1L !
€,8 ) (o — > 1 - S% !
9 ° J
1




PN g

defines b and completes the system of equations. This system

of equations, Eq. (34) - Eq. (38), defines the numerical code

PEN. As with the ROD code, the only input parameters required

are the initial velocity of the rod, the values of E, for

the rod and target, and the dimensions and densities of the materials.

This model can be related to hydrodynamic models of rod pene-
trators 1in the following way. During steady-state penetration

of a rod, V¢ typically approaches some constant value ~ % Ve -
% Vs . During this stage of penetration, Vf may be neglected

in Eq. (33). Assuming b has reached its full value of €,8
Eq. (34) may be approximated as

- 2 = 2 2 2 -
pp(vs Vf) DCEOTVf + (ptEOE*t DpE*d) (39)

This equation may be compared to various models for rod pene-
tration, such as that found in Ref. 6,7

Fo,(Vg - V)t = 3o VE+ R-Y) (40)

where R is the target strength and Y the strength of the pene-
trator. Dividing Eq. (39) by 2 and comparing coefficients, we
find

1 .2
EoCD — 1

Z
2

p.e E.t

S — «——— R (41)
P Exd

iz < > Y

Now the values of R and Y which give the best fit to experi-
ment for a number of materials have been deduced in Refs. (6-8).
In Table 1, we compile the experimental values®8 of R and Y
as well as our theoretical prediction of them based on Eq. (41)
and the theoretical value for E, , Eq. (30). The good agreement

16
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indicated by Table 1 strongly indicates that the parameters R
and Y employed in the hydrodynamic models are related to the
single fundamental material property E, by Eq. (41).

Conceptually, then, the rod program PEN is equivalent to a
hydrodynamic model with strength in the target and rod, such as
Eq. (40), plus an additional term proportional to the decelera-
tion of the rod front face, which takes into account inertial
effects at the front of the rod during the early stages of impact
before equilibriurm of pressures has been established. This in-
ertial term Mfo acts as an effective stiffening or strengthen-
ing of the rod during this early phase of penetration, and accounts
for the observed fact that rods of lower L/D have a greater pene-
tration vs. rod length, P/L , than large L/D rods do. Were it not
for this term, and an additional small effect due to the initial

spreading of front face, rods of all L/D would have the sare
peretration vs. length at the same velocity, as the hydrodynamic

theory of Eq. (40) predicts.

The program PEN has been extremely useful as a means of gain-
ing an intuitive understanding of rod penetration, since it can
predict rod performance over the same range of materials and vel-
ocities as the ROD code, yet has simpler equations which can be
dealt with and understood algebraically.

In Section VI, the predictions of PEN are compared to the
code ROD and to experimental data for a wide range of materials
and velocities. We have found that the value of €, and ¥
which gives the best fit to experiment for PEN is €, = 1.7,

x = 1.0, and Cp = 0.5 . These values are used in all computa-
tions employing the PEN code.

The relationship between the material strengths Y and R
of Table 1 is reminiscent of the relationship between the uni-
axial tensile strength and the Brinell hardness of a material
in static tests. It is well known that the Brinell hardness B
for a ductile mate~rial, which is just the pressure that a ductile
target can sustain when impressed by a rigid ball indenter, may
be related to the uniaxial flow stress of a rod of the same material
by
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o = (0.3)B

Similarly, the effective strength R of the target, which
is analogous to B , may be related to the uniaxial strength Y
of the rod, which is analogous to ¢ , by

THEOR. 0 E,./2
RTHEOR. ~ 5 E.c;
—> (THEOR. _ ,, pTHEOR.

This strongly suggests that the relationship between Y and R
is just that between a uniaxial tensile test and a Brinell

hardness test done at the strain rates of impact. Thus ¢E

Y 2

which determines both R and Y , is a true measure of a

materials' strength at impact strain rates. The shear heating

process in the deforming material at these strain rates is
adiabatic rather than isothermal, since heat is generated locally
in regions of shear much faster than it can dissipate by thermal
conduction. When the local heating, with the attendant local
softening of the material, is considered, as we discussed in
Reference 4, Eq. (30) is derived for the effective material
strength at impact strain rates. We refer to pE, as the
"adiabatic hardness' of a material, and note that it

determines both target and rod strengths at these strain rates.

The quasi-hydrodynamic model of Eq. (39) is useful in
another way as a tool for analyzing qualitatively different
regimes of penetration. If the target is very hard (high E. )
then the rod will not penetrate unless its velocity is suffi-
ciently high to overcome the target strength with kinetic
energy. The condition for the lower limit of velocity required
for penetration is formed by setting V. =0 in (39) and

solving for VS:

Dt )
(Vs)o = —; el Exr - Eud




-

———————————

Penetration will not occur unless the initial rod velocity
exceeds (Vs)o , according to this model. 1In reality, some i
penetration does occur below this velocity but, as in Figs. 31, {
32 and 33, there usually is a long straight section of the P/L i
vs velocity curve which, when extrapolated to zero penetration,
intersects the velocity coordinate at a value given approximately
by (Vs)o . See Ref. 6 for a discussion of this relating to

the data in Fig. 31. The discrepancy at velocities below (Vs)O
occurs because we have neglected the Ve term in Eq. (39).

When the rod is very strong compared to the target, it
may not erode at all, and then it behaves like a nondeforming

rod. This limit, in which Vf = VS , will occur when
opEad ~ PofoEat
(Vs)o = 2j‘mD ¢
Pee€o 7

1f the quantity under the radical is >0 , there will
exist a value (Vs)O for which penetration of the rod can
occur without erosion. For any initial velocity below (Vs)O
the rod behaves as a nondeforming projeciile, and the A.R.A.P.
integral theory for nondeforming projectiles is employed instead
of the deforming rod equation. For velocities above (Vs)O
the deforming rod model applies. Figure 35, discussed in
Section VI, affords a striking example of the transition from
nondeforming penetration to deforming rod penetration as the

striking velocity is increased.




IV. BACKFACE EFFECTS

In order to apply the A.R.A.P. integral theory to targets
of finite thickness, bacl:face effects must be included. The E,
concept was originally developed for the flow of target material
around a penetrator in a semi-infinite target. The shear work
done on the target material in the flow volume defines E, ¢ ,
the E, for the target. When the projectile has penetrated al-
most all the way through the target, to within one or two dia-
meters of the backface, the target material can spall or simply
bulge on the backside, rather than flowing around the penetrator
hydrodynamically. Thus, each small volume of target material
absorbs less energy than it would in the semi-infinite case.
Thus, the effective E, for the target decreases near the back-
face, and we call this the backface effect.

In order to characterize the backface effect empirically,
static Brinell hardness tests were performecd on 1100-F aluminum
and lexan sheets unsupported at the back, using a .250" diameter

r WC ball at very shallow and very deep penetrations. At the deep i
' penetrations, backface effects in the target sample affected the
hardness measurement. In Fig. 4, the Brinell hardness of a 1/4"
thick 1100-F aluminum plate is measured vs. penetration depth

of the ball, and plotted as curve (a). The hardness is roughly
constant with penetration until the ball is about .150" from the
backface, at which point the hardness begins to decrease linearly

with further penetration. When the front face of the ball reaches

.475" of "penetration,' so it has actually passed through the
plate, the bulge on the back of the plate fractures and the mea-
sured hardness drops to zero. For comparison, the hardness vs.
penetration depth for the same WC ball in a semi-infinite 1100-F
aluminum plate is plotted as curve (b). The ratio of measured
hardness in the .250" thick plate to the measured hardness in the
semi-infinite plate is plotted on the same graph as a solid curve,
(¢). It is clear that as the ball aprroaches within a diameter
or so cf the backface, the hardness begins to decrease mcnotoni-

! cally with penetration. We should expect that pE, , which
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measures the target strength at the strain rates of impact,
should decrease in roughly the same way as the measured static
hardness does near the backface.

In a second experiment, the Brinell hardness at deer pene-
tration in lexan plates was measured over a rarge of plate thick-
ness and ball diameters. The results are showr in Fig. 5. It
was founc that the results could be fit empirically by

(Bo , 1 - p > (- Dr
Brinell hardness B =
1—:§%¥i—£ Bo, 1-p< (8- Dr

where & = 4 B, is the hardness of a semi-infirite lexan plate,

1 1s the plate thickness, p the penetration denth of the ball,

and r the contact radius of the depression made by the ball in
the target. Obviously, r < a , where a 1is the ball radius, and
VZap - p° , p<a
r o= s b oa (43)
\

In Fig. 6, this expression is compared with the measured value of
relative hardness at various penetrations for the aluminum plate
discussed in Fig. 4. The agreement is qualitatively good, al-
though there are certainly other expressions which would charac-

terize the hardness near the backface as well.

The form of expression, (Eq. (42), was chosen as our model
for the backface because of the following intuitive model for
backface effects. We assume that the flowfield of target
materials around the penetrator extends for some distance in front
of the penetrator. We expect this distance to be proportional to
the contact radius r of the penetrator, and to extend a distance
gr in front of the penetrator, from the point of maximum contact
width.
radius deep in a target, the flowfield is assumed to extend a
distance Br Once the ball
is fully imbedded, then r = a , and the flowfield extends a

in front of the ball, as measured from the center

Thus, for a spherical indenter imbedded less then one
from the surface of the target.

distance Ba
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of gravity of the ball. Thus, the backface effect will begin to
show up when p - a = 1 - Ba for a fully imbedded ball, hence
Ec. (42). For a blunt nosed object, such as a cube or cylinder

impacting end on into a target, the widest point of the penetra-
tor occurs at the leading face, unlike the sphere. Then the

backface eftect begins to occur when

p=1- Ba,

SO we can summarize:

Backface Model

For a sphere:

| , T-p2 (B - Dr
- p+
E.. (T T r) , T =-p < (B - Dr
For a cube or cylinder:
Ey , T =D 2 Br
E, (l—ggz) , T - p < 8r

We have made the assumption here that the dynamic stength of the
target, E, , decreases near the tackface in the same way as the
static strength does. We do not a priori expect these formulas
with the same constants to work well for all materials, since
brittle materials will show spall and other backface effects when
the penetrator is many diameters from the backface. It is pos-
sible that by making R inversely proportional to the failure
strain of the target, the formula may be generalized. Such ap-
proaches will be considered in subsequent work. For many ductile
materials, however, we have found that Eq. (44) and Eq. (45)
accurately describe the decrease of E; near the backface.

As an example, refer to Figs. 7, 8 and 9 in which nonde-
forming tungsten carbide balls and highly deforming lead projec-
tiles were fired into rolled homogeneous armor, 5083 aluminum,
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and titanium armor. In each case the theoretical residual ve-
locity of the projectile is plotted vs. target thickness for a
given initial projectile velocity, using the A.R.A.P. rigid
sphere and deforming cube programs and the backface model of
Eqs. (44) and (45). 1In all cases, B = 4 . The theoretical
values of E, , which have been verified for each material in the
semi-infinite case, were used in this calculation. In the same
figure are plotted the predicted residual velocities for no back-
face effect. The value of target thickness at which the resi-
dual velocity equals zero measures the stopping thickness re-
quired for each projectile at the indicated initial velocity.
Arrows on each figure indicate the experimental thickness which
stopped or failed to stop the projectile. We conclude that the
backface model with B = 4 works quite well for RHA, titanium
and 5083 aluminum.

It should be pointed out that there are exceptions to this
model. Certain composite materials, such as fiberglass and
Kevlar woven rovings are better modeled as having no backface
effects, or B << 1 . Similarly, brittle materials act as though
g >> 4 . Fortunately, however, a large number of ductile
materials including many important armor materials are described
by B =4




V. OBLIQUE PENETRATION

When a rod impacts an armor plate at an oblique angle, the
forces on the rod will not be axially symmetric. Thus we include
in the rod program a lateral force FL acting on the head of
the rod, as well as the axial force FA » which was described in

Section: II and III. A bending mode, characterized by u the

lateral displacement of the head relative to the axis of Ehe
shaft, and a twisting angle ¢ relative to the direction of rod
motion are included. In addition, the trajectory of the rod no
longer will follow the initial direction of flight, so instead

of one parameter p for penetration we employ p as the total
length of penetration plus X , the angle of penetration relative
to the original velocity direction. All these quantities are de-

fined in Figs. 10a and 10b.

First, consider the dynamics of the rod itself. The total
energy of the rod is

2

T = (MS + Mf)(f U™ + 10 Y + 5 I¢
where 1 1is the rod moment of inertia, U 1is the center of
mass velocity of the rod and ﬁB the bending velocity. Since
bending and other nonaxial effects are generally small correc-
tions to the total penetration, we treat the rod as a single
element, not separating it into head and shaft, for the purpose
of calculating these effects.

The variables expressing lateral deflection are then
determined by

¢ = L2 (47)

where L 1is the total length of the rod, and

Y L (48)
u = ———
B~ M+ Mg

The lateral force F; is computed in the following way.
As the rod impacts a target at an oblique angle, one corner of
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the front end first makes contact with the target when the
center of the front face of the rod is still a distance

d = a tan &

from the target measured in the direction of the rod velocity.
We assume the plastic and drag forces acting on the rod begin
to increase from zero at this initial instant of contact and
rise linearly to their fully-imbedded values when the face of
the rod is fully imbedded in the target. The penetration p is
measured in the program from this initial contact point. At
this point the center of the front face of the rod is a distance
(a - sin ¢) from the target, measured along a normal to the target
face. Thus, we treat the target as having an effective thickness
1T =T+ a sin 8 , where T 1is the true target thickness. The
total plastic and drag pressure exerted on the head of the rod
is computed from (1), and FA and FL are found by multiplying
this pressure by the front face area and lateral area, respec-
tively, in contact with the target. The head of the rod will
begin to widen as soon as the decelerating force of the target
acts on it. Full embedding of the head (see Fig. 10) occurs
when

P =P, = (a + b) tan (&8 - x) (49)

The pressure at the contact interface is
C .
D 2
pt(E*t + T(Vf +2)7)

and according to our assumption of a linear initial increase in
the contact area, the force exerted on the front face of the rod

is

C
= B gp2 D )2
Fp = pg ™ Pcae * Ve + D, P 2pg (50)
and the force exerted on the side face is
C
- B_ D 1)2
FL = po 4mboc (By + 2V + D), P < B (1)
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We assume this linear increase in contact area holds true up to
the point of full embedding at the penetration p = P, - For
P> Py FL drops to zero since the lateral forces acting on
all sides of the head cancel each other, yielding

F. = mb%p. (E.. + CD(V +
A towt 2t P> P, (52)
F, =0

]

L

Upon exiting from the backface of the target, the backface model
described in the previous section is generalized to oblique exit
in the following way. E,.t and the drag coefficient Cp near
the backface are assumed to decrease according to (45), where the
distance from the penetrator to the backface is taken as the pro-
jected distance measured normal to the backface. The reduced

values of E, and C, are substituted directly into the

formula for FA . Hear the backface, the projected distance from
the center of the rod face to the backface is 7t - p cos (& - x),
and the expression for the effective E,t corresponding to (45)

is
E .t = o, (53)
where a 1is defined by
1 , T - pcos(b - x) > BT
o = 4
) T-ones(e—@,r-p<205(6-><)<8r (39

A similar dependence is assumed for CD near the backface.

1 1is the effective plate thickness (T + a sin 6) measured from
the point of initial contact. As the axial force decreases near
the backface, the lateral force FL increases because of the
imbalance in the effective E, of the target on the sides of the

head. Therefore, we assume

c .
FL o= (L= o) (4mbep, (Eye + ,2(Vg + %) (55)

These assumptions completely specify the backface effects for
oblique exit from the target.
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The equations above, in addition to those described in
Section III, are integrated numerically to predict the residual
mass, residual velocity, ballistic limit velocity, and other
parameters for oblique penetration as well as normal penetration.
The oblique model described here has been included in the PEX
code, but has not thus far been added to the code ROD. A copy
of the code PEY is reproduced in Appendix II. The input para-
meters which require specification are the geometric dimensions,
densities and E, values of the target and penetrator materials,
and the initial striking velocity and olbiquity angle of the
penetrator. The output includes ballistic limit velocity or
penetration depth, residual mass and residual velocity of the

penetrator.
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VI. COMPARISON OF EXPERIMENT WITH THEORY

In order to check the programs ROD and PEN against experi-
ment under controlled conditions, several long rods of
L/D = 10 were fired for us into Rolled Homogeneous Armor
targets of Brinell hardness 290 kg/mm2 by the Ballistics
Research Lab, Aberdeen Proving Grounds. In order to avoid back-
face effects which might modify the effective E, of the target
in these initial experiments, very thick targets of thickness
greater than twice the total rod penetration were used. The rods
were chosen to provide a variety of materials and strengths, from
1018 steel to soft lead to Mallory 3000, a tungsten alloy. The
recilting data were compared to predictions from the ROD and PEN
programs to select a best fit value of €, wiiicih characterizes
the maximum head width, and yx , which relates E,q to the rod
strength in Eq. (31). The theoretical values of E, for the tar-
get and penetrator material were used, based on formula (30) and
the melting temperature, hardness and heat capacity of the
respective materials. The best fit values for ROD
wer2 found to be £, = 1.36 , x = .42 , and for PEY, e = 1.7
and x = 1.0

A comparison of the resultant theoretical predictions with
experiment for the code ROD is shown in Figs. 11 through 13. The
corresponding fit to the data for the code PEN is shown in Fig. 14.
The high velocity lead rod deformed upon exit from the gun barrel
and had a highly irregular shape and L/D ~ 5 uvon impact at the
target. We have used L/D = 5 in computing the theoretical
penetration for this data point. Agreement with experiment in all

cases is within about 15%.

Next, the code was tested for rods against finite thickness
targets at normal incidence. The values of the parameters ¥
and € found above were kept the same. In the numerical code
this set of experiments amounts to a test of the accuracy of the

backface model, presented in Section IV. The ballistic limit

velocity VBL was determined in the code by incrementally
raising the striking velocity of the rod until penetration was
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achieved. This theoretical VBL from the ROD code was compared

: to one set of experiments (Lambertg) with 65 gm Bearcat steel
: rods of L/D =5, 10 and 20 into RHA targets of various hard-

‘} ness from BHN = 260 to 375 kg/mm2 . These date are presented in

Figs. 15 through 17. Agreement is excellent, although there is

a slight tendency for the higher L/D rod to overpenetrate and

the lower L/D rod to underpenetrate. In Figs. 18 through 20

these data of Lambert are plotted in dimensionless form against

another set of experiments (Herrlo) in which 1.94 , 3.389 , and

7.78 gram Bearcat steel rods were fired into RHA plates which

i were annealed to a Brinell hardness of 400. 1In Figs. 13 through 20
the plate thickness is expressed in units of T/D or (thickness)/
(rod c¢iameter), since it is the rod width D that sets the dimen-
sicn for backface effects. It is apparent in the figures that the

F two sets of experimental data do not overlap, particularly for

L/D =10 and 20 . This can be shown to be a result of the dif-

ferent Brinell hardnesses of the armor targets used in the two

11 Note, for example, that the 1.94 , 3.89

and 7.78 gram rods do fall on the same ballistic curve. In

sets of experiments.

lerr's experiments, all targets were heat treated to a uniform
hardness of BHN = 400 . Thus, they all had the same value of
E, , about 215 Btu/lb. 1In Lambert's data, the Brinell hardness
varies from about 260 to 375 km/mm2 with corresponding values

of E, ranging from 170 to 210 Btu/lb. The theoretical curves J
corresponding to these two sets of E, values are plotted in i

: Figs. 18 through 20, where the average E, of Lambert's targets,
. 190 Btu/1lb, is used. The theory clearly shows the same shift

‘ in Vg with hardness that is seen in the experimental data.

. Thus, the different values of E, corresponding to different
Brinell hardnesses, as predicted by Eq. (30), account for the
apparent failure of scaling in the data. This set of experiments
provides a sensitive test of the ability of the Integral Theory

to predict the effect of materials properties, such as hardness,
on penetration and ballistic limit.
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In Figs. 21 through 24 the theoretical value of the residual
9,10

mass MR versus striking velocity is compared to experiment
for Bearcat steel and Mallory 3000 rods. The residual mass
computed in the program is the sum of the mass of the head and
shaft of the rod at the instant the target backface is reached.
Although there is a fair amount of scatter in the data, good
qualitative agreement is attained over the range of velocities
and target thicknesses in the experiment. 1In Figs. 25 through
29 the predicted residual velocity of the rod fragment is com-
pared with experiment for various thickness targets and rods
of various L/D , for Mallory 3000 as well as steel. These
comparisons are typical. The agreement is good between the
code and experiment to about *157.

In Figs. 30 and 31 typical oblique rod shot59 are compared
to the PEN code prediction. The ballistic limit is plotted
versus striking velocity for Bearcat rods into RHA at 60°
incidence. Again, the agreement between theory and experiment
is good to better than 107%.

In order to provide further confirmation of the numerical
codes, especially over a wider range of materials, published
data were obtained for long rods (wires) of gold, tin, aluminum,
and magnesium fired into 7075-T6 Aluminum semi-infinite targets.6
The values of E, for the targets and penetrators were obtained
from handbook data on the materials involved, and substituted
into formula (30). The resulting values of E, are displayed
in Fig. 32, together with the experimental and theoretical
curves of penetration versus velocity for the four rod materials.
The penetration is normalized to allow presentation of all
curves on the same graph. The very good agreement over a
range of rod density from 1.8 to 19 gm/cc confirms that density
variations are taken into account correctly in the code.

As yet another test of the influence of the material
hardness on penetration, published data7 for steel and Densimet

17 rods fired into various types of semi-infinite steel targets

e
e —
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were compared to the PEN numerical code. For these data, the
maximum velocity is 3000 m/sec, considerably higher than for

the previous data for steel rods in Fig. 11. As Figs. 33,7%4 show
agreement is good over the entire range of velocity for all of
the materials.

Finally, the rod code was tested for the interesting case
of a dense, strong rod into a low density target, in this case
Bearcat steel rods into a 6061-T6 Al target.12 The steel rod,
if sufficiently strong, will not deform at low velocities and
will follow the ballistic curve of a nondeforming projectile.

At high enough striking velocity, the front face pressure on the
rod exceeds the yield strength, and the rod begins to erode
rapidly and behaves like a deforming rod. In Fig. 35, data

are presented which display this transition for rods of various
strengths. The theoretical curves corresponding to rods of
Rockwell hardness RC = 40 , 50 and 60 (E, = 207, 236 and 256
Btu/lb) clearly show that the stronger rod begins to deform

at higher velocity. These data provide a critical test of the
way the rod strength enters the code, since the transition from
nondeforming to deforming rod is so sharp. Experiments such

as this one provide a sensitive means for empirically determining

the uniaxial adiabatic yield strength of a rod.




VII. CONCLUSIONS

The Integral Theory of Impact has been applied to the pro-
blem of modeling the behavior of long-rod penetrators. A two-
cell model for the deforming rod is employed, assuming conser-
vation of energy and momentum, and using the A.R.A.P. concept of

adiabatic hardness, pE, , to account for material strengths. A
numerical code based on these assumptions has been developed
which can predict the performance of rod penetrators impacting
finite thickness targets. The input parameters required to
operate the code consist only of the physical dimensions of the
target and penetrator, and standard handbook properties of the
materials, such as density, heat capacity and Brinell hardness,
which is needed to compute pE,

The code predictions of ballistic limit velocity, penetration
depth, residual mass and residual velocity are in good agreement
(typically #15%) with experiment over a wide range of materials

and velocities. The code accurately predicts the relative im-
provement in performance of a rod when its strength is increased,
or when the target hardness is changed, and also predicts the
approximate velocity at which a rod transitions from nondeforming
+o> deforming penetration.

The current treatment of oblique impact does not attempt to
handle fracture of the rod shaft or jetting of the rod front end
during impact. However, where shaft fracture is not a problem,
the code predictions of ballistic limit are in good agreement
with experiment.
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