Hi-G Lithium Thionyl Chloride Flat Cells for Artillery/Air Delivered Expendables

D. Snuggerud
J. Surprenant
R. Waterhouse

Altus Corporation
1610 Crane Court
San Jose, CA. 95112

May 1981

First Quarterly Report for
Period 10 October 1980 - 31 December 1980
NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
**Report Title:** Hi-G Lithium Thionyl Chloride Flat Cells for Artillery/Air Delivered Expendables.

**Performing Organization:** Altus Corporation

1610 Crane Court
San Jose, CA 95112

**Contract No.:** DAAK01-86-C-0314

**Prepared by:**

D. Nuggerud, J. Surprenant, and R. Waterhouse

**First Quarterly Report:**

10/10/80-12/31/80

**Security Classification:** Unclassified

**Report Date:** May 1981

**Number of Pages:** 10

**Distribution Statement:** Approved for public release. Distribution unlimited.

**Supplementary Notes:**

- Rate capability studies on small prototype cells showed that single anode designs should be adequate for Hi-G rate specifications. Large prototype cells safely delivered 1.6 amps for 6 hours. Design work was begun on seal structures to withstand extreme g forces.

**Key Words:**

Inorganic Electrolyte battery, Thionyl Chloride, Lithium, High rate flat cell, Hi-G Battery
TABLE OF CONTENTS

I. Introduction
II. Hi-G Lithium Thionyl Chloride Flat Cells for Artillery/Air Delivered Expendables
III. Disc Cells 0.25 Inches in Thickness
   Experimental
   Results and Discussion
IV. Abuse Resistant Seals
V. Conclusion

Figure Captions

Figure 1. Altus 1.25 Inch Diameter Cells, 50 Ohm Load
Figure 2. Altus 1.25 Inch Diameter Cells, 100 Ohm Load
Figure 3. Hi-G Prototype, 2 Ohm Load
Figure 4. Hi-G Prototype 5 Ohm Load
I. Introduction

The main objective of this program is the development of a lithium thionyl chloride flat cell for the titled application. The cell shall be capable of high rate discharge after being subjected to high spin (16,000 rpm) and high shock (17,000 g's).

The starting point for this work was the current state of the art of similar small Altus cells; namely, three disc cells of sizes 0.88 inch diameter, 1.25 inch diameter, and 2.50 inch diameter. These cells exist in several designs depending upon rate capability.

During the first calender quarter a thorough mechanical analysis was made of the ceramic and case designs necessary to withstand extreme stress. Current Altus ceramic to metal seals were purposely stressed, broken, and catalogued by microexaminations for crack patterns.

Further work completed during the first quarter involved the compilation of data available on rate capability and capacity from one and two anode versions of the Altus AL125 and Altus AL125HR cells. These two cells closely approximate the intended Hi-G thickness (.25 inch) but are smaller in circumference. These results provided a base for designing several test groups to be run in early second quarter. A test schedule for Hi-G prototype cells has been proposed.

Early prototype cells were made and discharged. These cells were made from Altus AL450 cell hardware and delivered promising results. Lab work was limited in the first quarter due to Altus moving from Palo Alto to San Jose, and the necessary lab shutdown from 17 November 1980 to 17 January 1981.
II. **Hi-G Lithium Thionyl Chloride Flat Cells for Artillery/Air delivered Expendables**

The specifications for the Hi-G cell are as follows:

**Dimensions:**
- 4.25 inch diameter maximum
- 0.25 inch height maximum

**Voltage:**
- 3.70 volts maximum
- 2.50 volts minimum operating voltage

**Duty Cycle:**
- 1.6 amps for 6 hours
- 0.100 amps for 50 hours

The cell will be a disc cell design with a stainless steel case and a ceramic to metal seal. Electrode designs will be tested in both single and double anode designs. The test schedule has been proposed as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>No. of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Shock, spin, test for capacity at 20°C</td>
<td>20</td>
</tr>
<tr>
<td>B. Chill cell to -40°C. Shock, spin, test for capacity</td>
<td>5</td>
</tr>
<tr>
<td>C. Heat cell to +63°C. Shock, spin, and test for capacity</td>
<td>5</td>
</tr>
<tr>
<td>D. Store cells at +54°C for 4 weeks. Shock spin, and test for capacity at:</td>
<td></td>
</tr>
<tr>
<td>- 20°C</td>
<td>20</td>
</tr>
<tr>
<td>- -29°C</td>
<td>20</td>
</tr>
<tr>
<td>- -40°C</td>
<td>20</td>
</tr>
<tr>
<td>E. Short circuit: 24 hours at 20°C</td>
<td>5</td>
</tr>
<tr>
<td>F. Reverse voltage: 1.6 amps for 6 hours</td>
<td>5</td>
</tr>
</tbody>
</table>

Shock will be 17,000 g's for 8 milliseconds followed by 16,000 rpm for 2 minutes.
III. Disc Cells 0.25 Inch in Thickness

Experimental

Three types of disc cells of 0.25 inch in thickness have been built and discharged:

A. AL125HR  This cell is 1.25 inches in diameter by 0.25 inches in height. The internal construction is that of a single central anode surrounded by two identical cathodes. The combined cathode weight is 0.500 grams. The specified fill is 4.0 grams of 1.6 M LiAlCl₄ electrolyte.

Two lots of these cells have averaged 1.10 Ah and 1.13 Ah at discharge rates of 5.7 mA/cm². The cells demonstrated identical capacities at a lower rate of 2.9 mA/cm².

B. AL125  This cell is 1.25 inches in diameter by 0.25 inches in height. The internal construction consists of two anodes and three cathodes. Total cathode weight was 0.460 grams. The specified fill is 4.0 grams of 1.6 M LiAlCl₄ electrolyte.

Cells with this design averaged 1.29 Ah at discharge rates of 2.9 mA/cm² and 1.4 mA/cm².

C. Hi-G Prototype  This cell is the first Altus Hi-G prototype. Two cells were made and discharged at a 1.6 ampere rate, the higher rate of the Hi-G specification. Another cell was made and discharged at a 600 milliamp rate.

Cells were constructed from existing Altus 4.5 inch diameter hardware. Shims were welded inside the can to reduce inner dimensions to 4.33 inches in diameter and 0.150 inches in height. Anode diameter was 3.75 inches by 0.050 inches
in height. Two cathodes were used to enclose a single anode. Total cathode weight was 16 grams. The cells were filled with 50 grams of 1.6 M LiAlCl₄ electrolyte.

Test results were:

<table>
<thead>
<tr>
<th>Cell No.</th>
<th>Load</th>
<th>Capacity to 2.7 Volts</th>
<th>mA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG 1-1</td>
<td>5.0 ohms</td>
<td>10.25 Ah</td>
<td>4.5</td>
</tr>
<tr>
<td>HG 1-2</td>
<td>2.0 ohms</td>
<td>8.29 Ah</td>
<td>10.9</td>
</tr>
<tr>
<td>HG 1-3</td>
<td>2.0 ohms</td>
<td>9.38 Ah</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Results and Discussion

The voltage-time curves of two AL125HR cells are shown in Figures 1 and 2. These cells delivered 1.22 and 1.11 A/hr to 2.7 volts. The cathode efficiency of these cells was 2.44 A/hr per gram of cathode mix. Earlier experiments at Altus have shown that reduced cathode density improves capacity in thicker cathodes.

The voltage-time curves of an AL125 cell also are shown in Figures 1 and 2. These cells delivered 1.23 and 1.28 A/hr to 2.7 volts, with a cathode efficiency of 2.78 A/hr/gm cathode mix.

The voltage-time curves of the Hi-G prototypes are shown in Figures 3 and 4. Cathode efficiency was 0.64 A/hr/gm, 0.52 A/hr/cm, and 0.59 A/hr/gm cathode mix.

One of the early goals in this program is to determine whether a single anode or a double anode design is required to meet the Hi-G specifications. The model work on the AL125HR types indicates that a single anode concept is adequate. Improvements from 2.44 A/hr/gm to 2.78 A/hr/gm do not
appear to justify the added difficulties of two-anode construction. However, the discharge behavior of the Hi-G prototypes varied significantly from the models. The cause of this variance will be sought in the second quarter. It is proposed that the cathode density in the Hi-G prototype could be reduced by 50% and still have an abuse-resistant cathode. This could and should dramatically improve cathode efficiency.

Due to the Altus laboratory shutdown, the Hi-G cells were not examined after discharge. Examination of discharged cells will begin in second quarter.

IV. Abuse Resistant Seals

Tests were run on two different Altus seals as an initial investigation into abuse tolerance. The nature of the test was to weld a short length of tubing to an existing Altus seal, pressurize, and record the pressure necessary to crack the seal.

Two different aspect ratios were tried where aspect ratio equals the ceramic outside diameter divided by the ceramic thickness. Results were as follows:

<table>
<thead>
<tr>
<th>Aspect:</th>
<th>6.7</th>
<th>Aspect:</th>
<th>2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vent Pressure:</td>
<td>360 psi</td>
<td>Vent Pressure:</td>
<td>508 psi</td>
</tr>
<tr>
<td>Pressure Range:</td>
<td>240-510 psi</td>
<td>Pressure Range:</td>
<td>360-560 psi</td>
</tr>
</tbody>
</table>

In all cases the seal cracks in a circular ring near the feed through. No evidence was noted of radial cracks. Mechanical force applied to the feed through also resulted in circular type cracks.
V. Conclusion

During the first quarter the design for the single and double anode Hi-G cell has been proposed and tested in smaller cells. Results have shown that Hi-G capacity and rate can be met by a simple one anode design. Tests on larger cells have shown lower cathode efficiencies. Further work on the prototype was delayed due to facilities relocation.

Design work on a high strength ceramic-to-metal seal and cell case has neared completion. Test seals will be made in smaller can models. A program being conducted to analyze the effects of extreme stresses on existing Altus seals has yielded insight to the potential failure modes of the Hi-G seal.

Planned Investigations

Work planned for the second quarter will begin with a detailed investigation into cathode efficiencies in both smaller and larger cells. Another test program for ceramic strength will be completed in the high strength seal design.
FIGURE 1: ALTUS 1.25 INCH DIAMETER CELL, 50 $\Omega$ LOAD

To 2.5 VDC
Ampere hours : 1.23  (+)AL 125 (two anodes)
Watt hours : 3.98

To 2.5 VDC
Ampere hours : 1.22  (o)AL 125HR (single anode)
Watt hours : 3.92
FIGURE 2: ALTUS 1.25 INCH DIAMETER CELL, 100 Ω LOAD

To 2.5 VDC
Ampere hours = 1.28 (+) AL-125
Watt hours = 4.33 (two anodes)

To 2.5 VDC
Ampere hours = 1.11 (0) AL-125 HR
Watt hours = 3.65 (single anode)
FIGURE 4: Hi-G Prototype, 5 Ω Load

CELL VOLTAGE, VOLTS

HOURS
DAM FILM