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Introduction

polymorphism, n.(l): capability
of assuming different forms; cap-
ability of wide variation.

-Webster's Third International Dictionary-

When von Neumann computers were still new and exciting,

scientists noted in popular accounts that unlike mechanical machines,

computers are polymorphic - their function can be radically changed

simply by changing programs. Polymorphism is fundamental, but

it quickly became familiar to the point of being obvious and has been

mentioned little since, even though it has continued to underlie

important advances such as time-sharing and programmable microcode.

Now, as we are confronted with the potential for highly parallel com-

puters made possible by very large scale integrated (VLSI) circuit

technology, we may ask:

What is the role of polymorphism in parallel computation?

To answer this question, we must review the characteristics of parallel

processing and the benefits and limitations of VLSI technology.
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Algorithmically Specialized Processors

Perhaps the most important property of VLSI circuit technology is

that the manufacturing processes use photolithographic means to create

copies of a circuit. Fabrication by photolithography (or the newer

techniques such as electron beam lithography) requires a fixed number

of steps to produce a circuit, independent of the circuit's complexity.

It costs no more to make copies of a chip containing a NAND gate than

to make copies of a chip containing a microprocessor, although yields will

likely be higher for the former and wire bonding costs higher for the

latter. Preparing and debugging the lithographic masks is expensive,

so the technology favors parallel processing techniques that employ

many copies of the same, possibly complex circuit.

Recognition of uniformity as the source of leverage in VLSI caused

a flurry of research during the past half decade. This research resulted

in a number of device proposals which we may call algorithmically

specialized processors. By focusing on computationally intensive

problems and carefully dissecting algorithms for them, researchers have

developed algorithmically specialized processors having several important

characteristics:

. construction is based on a few easily tessellated processing

elements,

* locality is exploited, that is, data movement is often limited

to adjacent processing elements,

. pipelining is used to achieve high processor utilization.

Examples of algorithmically specialized processors include designs for LU

decomposition (2,3] (the main step in solving systems of linear equations),

the solution of linear recurrences [2],tree processors [4,5,6] (used in
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searching, sorting and expression evaluation), dynamic programming [7]

(a general problem solving technique with numerous applications), join

processing [8] (for data base querying), and may others.

Algorithmically specialized processing components must usually be

joined together to solve a large computationally intensive problem.

This composition step is crucial since whole problems tend to be

multiphased and these components tend to be specialized to an algorithm

used in only one phase. For example, to solve a system of linear

equations (Axc=b) one might use a processor component to form the LU

decomposition of the matrix A (A=LU) and then use a linear recurrence

solver component to perform the substitution phases (Ly=b and Ux=y).

As another example, queries in data base query languages are formed

by composing operations such as "search" and "join".

If the component processors are implemented on chips, one way to

compose them is to wire them together. This solution is inflexible since

the components are dedicated to a particular problem and cannot be used

for another problem. Another compositional scheme is to join the

processors to a bus as "pheripherals." This is more flexible since a

processor can be used in different phases, but the bus becomes a

bottleneck and time is wasted in interphase data movement.

A more flexible approach is to replace the dedicated processing

elements with more general microprocessors and simply to program the

algorithmically specialized processors. This solution is much more

flexible since different components can use the same devices by changing

programs (provided the interconnection pattern is the same). The bus

bottleneck is eliminated. There is a loss in performance with this
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polymorphism, since circuit implementation of the primitive actions is

replaced by the slower process of instruction execution.

But the main problem with this approach is that not all algorithmically

specialized processors use the same interconnection structure (see Figure 1).

There is no guarantee that the consecutive phases of the computation can

be done efficiently in place. For example, if we have an n x n mesh

connected microprocessor structure and want to find the maximum of n

elements stored one per processor, n steps are necessary and sufficient

to solve the problem. But a faster algorithmically specialized processor

for this problem uses a tree interconnection pattern to find the solution

in 2 log n steps. For large n this is a benefit worth seeking. Again,

a bus can be introduced to link several differently connected multiprocessors

including mesh and tree connected multiprocessors. Data could be transferred

when a change in the processor structure would be beneficial. But the

bottleneck is quite serious - in the example, data has to be transferred

at n 2/log n words per step to make the transfer worthwhile. What we need

is a multiprocessor with more polymorphism that does not compromise the

benefits of VLSI technology.

The Configurable, H_ hly Parallel (CHiP) computer is a multiprocessor

architecture that provides a programmable interconnection structure in-

tegrated with the processing elements. Its objective is to provide the

flexibility needed to compose general problem solutions while retaining

the benefits of uniformity and locality that the algorithmically

specialized processors exploit.

The CHiP Architecture Overview

The GliP computer is a family of architectures each constructed from
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Figure 1. Interconnection patterns for algo-
rithmically specialized processors: (a)
mesh, used for dynamic programming [71;
(b) hexagonally connected mesh used for
LU decomposition [2]; (c) torus used for
transitive closure [7]; (d) binary tree
used for sorting [4]; (e) double tree
used for searching [5].

(c)
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three components: (a) a collection of homogeneous microprocessors,

(b) a switch lattice and (c) a controller. The switch lattice is the

most important component and the main source of differences among family

members.

The switch Zattice is a regular structure formed from programmable

switches connected by data paths. The microprocessors (hereafter called

PEs) are not directly connected to each other, but rather are connected

at regular intervals to the switch lattice. Figure 2 shows three

examples of switch lattices. Generally, the layout will be square

although other geometries are possible. The perimeter switches are

connected to external storage devices. A production CHiP computer might

have 2- 2 PEs. (With current technology only a few PEs and switches

can be placed on a single chip. As improvements in fabrication technology

permit higher device densities per unit area, a single chip can host a

larger region of the switch lattice. Moreover, as discussed below, the

CHiP architecture is quite suitable for "wafer level" fabrication.)

Each switch in the lattice contains local memory capable of storing

several configuration settings. A configuration setting enables the

switch to establish a direct, static connection among two or more of its

incident data paths. (Notice, this is circuit switching rather than

packet switching.) For example, we achieve a mesh interconnection

pattern of the PEs for the lattice in Figure 2(a) by assigning North-South

configuration settings to alternate switches in odd numbered rows and

East-West settings to switches in the even rows. Figure 3 illustrates

the configuration; Figure 4 gives the configuration settings of a binary

tree.
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(a) (b)

(c)

Figure 2. Three switch lattice structures.
Circles represent switches;
squares represent PEs.



Figure 3. The switch lattice of Figure 2(a) configured
into a mesh pat~crn.
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0 09 o 0
0 0- I 0 3 -0
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Figure 4. The switch lattice of Figure 2(a) config"ured

into a binary t ree.
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the controller is responsible for loading the switch memory. (This

task is performed via a separate interconnection "skeleton" that is

transparent to this discussion.) The switch memory is loaded pre-

paratory to processing and is performed in parallel with the PE program

memory loading. Typically, program and switch settings for several

phases can be loaded together. The chief requirement is that the local

configuration settings for each phase's interconnection pattern be

assigned to the same memory location in all switches. For example, in

each switch, location 1 might be used to store the local configuration

to implement a mesh pattern, location 2 might store the local

configuration for the tree interconnection pattern, etc.

CHiP processing begins with the controller broadcasting a command

to all switches to invoke a particular configuration setting. For

example, suppose it is the setting stored at location 1 that implements

a mesh pattern. With the entire structure interconnected into a mesh,

the individual PEs synchronously execute the instructions stored in

their local memory. PEs need not know to whom they are connected; they

simply execute instructions such as READ EAST, WRITE NORTH WEST, etc.

The configuration remains static. When a new phase of processing is to

begin, the controller broadcasts a command to all switches to invoke a

new configuration setting, say the one stored at location 2 implementing

a tree. With the lattice restructured into a tree interconnection pattern,

the PEs resume processing, having spent only a single logical step in

interphase structure reconfiguration.

The overview of the CHiP computer family has been superficial, but

it has provided a context in which to present a more thorough treatment.

(A comparison of the CHiP a,'chitecture with other interconnection methods

is given in reference [12]).
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The next three sections are:

A closer look, giving details about switches, lattices and
the controller

Embedding an interconnection structure, an example of how to
configure the lattice into a complete binary tree, and

Solving a system of linear equations, illustrating how a

multiphased problem might be solved.

We conclude with a Discussion section in which we mention some of the

consequences of the CHiP architecture approach.

A Closer Look

We review some of the characteristics that distinguish members of the

family of CHiP computers.

Switches. It is convenient to think of switches as being defined by

several parameters.

m - the number of wires entering a switch on one data path, or data
path width,

d - the degree, or number of incident data paths,

c - the number of configuration settings that can be stored in a
switch.

The value of m reflects the balance struck between parallel and serial

data transmission. This balance will be influenced by several considerations,

one of which is the limited number of pins on the package containing the

chips of the CHiP lattice. Specifically, if a chip hosts a square region

of the lattice containing n PEs, then the number of pins required is

proportional to m/ln.

The value of d will usually be 4, as in Figure 2(a), or 8, as

in Figure 2(c). Figure 2(b) shows a mixed strategy which exploits

the fact that switches tend to be used in two different roles. Switches

at the intersection of the vertical and horizontal switch corridors tend
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to perform most of the routing while those interposed between two

adjacent PEs act more like extended PE ports for selecting data paths

from the "corridor buses". Specializing the degree of the switch to

these activities reduces the number of bits required to specify a

configuration setting and thus saves area.

The value of c is influenced by the number of configurations that are

likely to be needed for a multiphase computation and the number of bits

required per setting. This latter number depends on the degree and the

crossover capability of the switch.

"Crossover capability" is a property of switches referring to the

number of distinct data path groups that a switch can simultaneously

connect. We speak of data path "groups" rather than data path pairs

since fanout is permitted at a switch, i.e. a switch can connect more

than a pair of data paths. Crossover capability is specified by an

integer g in the range 1 to d/2, i.e. 1 indicates no crossover and

d/2 is the maximum number of distinct paths intersecting at a degree d

switch. Like the three parameters mentioned above, the crossover

capability g is fixed at fabrication time.

The number of bits of storage needed for a switch is modest, dqc.

This provides a bit for each direction for each crossover group for each

configuration setting. A technique to reduce this value is to provide

for the loading of switch settings while the CHiP processor is executing.

This quality, called "asyncronous loading", permits a smaller value of c

by taking advantage of two facts: algorithms often use configurations that

differ in only a few places, and configurations often remain in effect

long enough to provide time to prepare for future settings.

Lattice. From Figure 2 it is clear that lattices can differ in

several characteristics. The PE degree, like the switch degree, is the
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number of incident data paths. Most algorithms of interest use PEs of

degree eight or less. Larger degrees are probably not necessary since

they can be achieved either by multiplexing data paths or, with some

loss in PE utilization, by logically coupling processing elements, e.g.

two degree four PEs could be coupled to form a degree six PE where one

serves only as a buffer.

Call the number of data paths that separate two adjacent PEs the

corridor toidth, w. (See Figure 2(c) for a w = 2 lattice.) This is

perhaps the most significant parameter of a lattice since it influences

the efficiency of PE utilization, the convenience of interconnection

pattern embeddings, and the overhead required for the polymorphism.

To see the impact of corridor width, let us embrace graph embedding

parlance and say that a switch lattice hosts a PE interconnection pattern.

In theory, even the simplest lattice (like the one in Figure 2(a)) can

host an arbitrary interconnection pattern. But to do so may require the

PEs to be underutilized for two reasons. First PEs may be coupled to

achieve high PE degree as mentioned at the beginning of this section.

Second, and more importantly, adjacent PEs in the (logical) guest inter-

connection pattern may have to be assigned to widely spaced PEs in the

hosting lattice (i.e. separated by unused PEs) in order to provide

sufficiently many data paths for the edges. (Figure 5 shows the embedding

of K4, 4 in the lattice of Figure 2(c) where the center column of PEs is

unused.) Increasing corridor width improves processor utilization when

complex interconnection patterns must be embedded since it provides more

data paths per unit area.

How wide should corridors be? It all depends on which interconnection

patterns are likely to be hosted and how economically necessary it is to

maximize Ph utilization. For most of the algorithmically specialized
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Figure S. Graph K4, shown in (a) is embedded into the lattice of

Figure 2(c) using a switch with crossover value q = 2.
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embedding into the plane and embedding into the CHiP lattice.

The complete binary tree has e-1 PE's, one at each node. One

possible layout of this structure in the CHiP lattice is a direct

translation of the "hyper-l" strategy [1] illustrated in Figure l(d).

Figure 6 illustrates this embedding into the lattice of Figure 2(a) and

it is clear that a significant number (approaching one half) of the PEs

are used in T-q naive approach. The problem is that although the

hyper-H is an excellent embedding on plain silicon where the placement

of PEs and data paths is arbitrary, CHiP lattice embeddings must conform

to the prespecified PE and data path sites. As we shall see, this

constraint is not onerous.

To illustrate an optimal embedding (in terms of maximizing the

use of PEs), assume that we have an n x n CHiP lattice where n = 2k

for some integer k. This gives 22k PEs, so a binary tree of depth 2k

fits with only one unused PE, since it has 22k- 1 nodes. Call this

unused IE a "spare."

We proceed inductively by pairing two embedded subtrees to form

a new tree one level higher. For the basis of the induction it is

convenient to use a three node binary tree embedded with one spare in

a 2 x P portion of the lattice. Pairing square subtree embeddings

produces rectangles with sides in ratio 2:1. Pairing these rectangles

yields squares again. In general we pair two subtrees each with 22 -1

nodes and a spare to produce a new 2 2k -1 node tree in which one of the

subtree's spares becomes the root of the new tree and the other spare

becomes the spare of the new tree. The interesting problem is to place

the spares at the proper sites for the next step in the induction.
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lattice of Figure 2(a); the switches are not shown.

if wc adopt the strategy of the hyper-H embedding and locate thle

root at the center of thle tree, then it makes sense to place a spare at

the middle of one side so that when this tree is paired to form the next

larger true, there is a spare at the interface ready to become the new

root. This will be in the center of the new tree as we intend. (Of

course, since thle sides always have an even number of P~s, "middle"

here means adjacent to the midpoint of one side.) But we cannot

pair two trees with their spares in thle middle of one side since this

will leave us with eithter a buried spare that is useless for forming

the next larger tree or it will leave us with a spare on the perimeter

at a site inappropriate fur thle embedding of the next larger tree.

(.See Figure 7.)

Thle solutioni is to pair one subtree with a spare located at the

middle of one side with a suhtree whose spare is at the corner. The

spare in the middle becones the root of the new tree and the corner spare
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new spare0

new root L old root

Figure 7. Pairing subtrees using spares located at the
midpoint of one side.

can be located (using reflection) to become either a middle spare or a

corner spare of the new tree depending on which is needed for the next

inductive step. Thus, at each step in the induction we must use (and

we can create) two types of embeddings: middles and corners. (See

Figure 8.) Notice that the basis tree, embedded in a 2 x 2 portion of

the lattice, actually serves as both types.

Trees, of course, are planar; that is, they can be embedded in the

plane without crossovers. But if the reader endeavors to follow the

preceding algorithm with the lattice in Figure 2(a), it will appear as

though crossovers are required, at least during the early stages of the

embedding. It is possible, using basis elements of fifteen node trees
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old root f- n - -3

new root

I-igure 8. The formation of "middles" and "corners" embeddings

using a middle and corner pair.

embedded in 4 - 4 square regions of the lattice, to achieve a completely

planar embedding. A soltiton is shown in Figure 9.

So?.in9 a Sytem o.' Linear Equations

In ordLr to illustrate how the ClliP processor can be used to compose

a|lgorithms, we post, the prohlem of solving a system of linear equations,

I .c. to .Olve A.: !, for ;in x n coefficient matrix A of bandwidth w

;ind ). vector . We shall use tvho algorithmically specialized processors

LA
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Figure 9. Planart embedding of a 2.5S node complete M1na11-"

tree inlto the lattice of Figure 2(a).
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due to tt.T. Kung and C.E. Leiserson as described in Mead and Conway [1].

The first is an LU-decomposition systolic array processor that factors A

into upper and lower traingular matrices U and L.

a1 1  a12 a13 a14 01 1 01 ul1 U12 u1 3 u14  0

a21 a22 a23 a24 a25 X21 1 u22 u23 u24 u25

a31 a32 a33 a34 a35 k31 232 1 u33 u34 u35

a4 1 a4 2 a43  .. 41 242 243 1

a52 53 252 253

S0 i 0

The second systolic processor solves a lower triangular linear system

,, = / where L is the output from the decomposition step. (We call this

the LTS solver.) The final result vector x can be found by solving

,*I = a where U is the upper triangular matrix from the first step and y

is the vector output of the second step. By rewriting U as a lower

triangular system we can rouso the LTS solver. Our approach will be to

compose these pieces into a harmonious process to solve the entire

probl em.

The first problem we must solve is the embedding of the Kung-Leiserson

;'stolic processors. These algorithmically specialized processors are

defined for n x ' arrays of bandiidth zv,. (Figure 10 shows the LU-

decomposition processor for a w = 7 system. Figure 11 shows a suitable

o = 4 lower triangular system solver processor.) Since the LU-decomposition

processor is hexagonally connected, it will be convenient to embed the

processors into the lattice shown in Figure 2(b). The obvious strategy
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is to connect the processors in such a way that the lower triangular

output L of the decomposition step connects directly to the input of

the lower triangular system solver. It is also obvious that these

embeddings should be placed at the perimeter of the CHiP lattice so that

matrix A and vector b can be received from external storage. Figure 12

shows such an embedding* where the PE labellings correspond to those

given in Figures 10 and 11.

1  u kK~

j+2 j~ lj

. j+ j .I Ukkk
0 20

S 0
4 6 ~k+3

a a

ai,i-2 16i-2, i

ai' i'l a i i 'i

Figure 10. The Kung-Leiserson systolic array for LU-decomposition.
Labellings indicate data paths. For timings, see
reference [1].

* Although the data paths are bidirectional, we have used arrows to emphasize

the direction of data movement.
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I + I+2, i.+3,

A C
°k

b.

Figure 11. The Kung-Leiserson systolic LTS solver for w=4. Labellings
indicate data paths for elements of L and 1. For timings,
see reference [1].
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Figure 12. The embedding of the f,(U-decompositioru processor and
the .TS solver in the lattice of Figure 2{b). PF.
label lings correspond to Fi gurL 10 and 11.
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Several simple transformations have been employed to accomplish

the embedding. The most noticable is that the hexagonal structure has

been slightly deformed to accomodate the rectangular CHiP lattice and

the LU-decomposition processor has been rotated clockwise 1200. The

constant inputs (O's and -1) that appear on the perimeter of the systolic

array have been suppressed since they can be generated internally to the

PEs. The output wires carrying the L matrix result have been assigned

to one of the available ports and routed to the inputs of the LTS solver.

Finally, to embed the double channel between PEs of the LTS solver we

have routed data diagonally out of the North-East port into the South-East

port. Notice that since the diagonal elements of L are all 1, they are not

explicitly produced.

The next problem to solve is the rewriting of U as a lower

triangular sys em suitable for input into another embedded LTS solver.

We must wait until U has been entirely produced before performing this

operation. So, rather than writing the elements of U to external storage

as they are produced, we thread them through the lattice (assuming there

is sufficient space to store them all). We also thread the y vector

output from the LTS process along with U. Then in the second phase of

our algorithm, we can process the elements through another embedded LTS

solver.

Perhaps the most elegant way to thread If and y through the lattice

is to use a graph embedding due to Aeliunas and Rosenberg [13]. The

scheme has the advantage of not requiring a large "bundle" of wires along

the perimeter of the lattice when the threads double back. (Figure 13

illustrates the embedding required for doubling back.) As the U and y

values are produced, they are passed from PE to PE. (They could be



-24-

"concentrated" by storing several per PE.) When U and y are completely

produced, the first phase is completed.

* K L

1

S I , I

I . V

1.: - , [ | ! -"

Figure 13. The Ale Iitinas-Rosenherg embedding of the threads
doubling back.
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Between the first and second phases we make a minor reconfiguration.

(This reconfiguration would not have been necessary had the phase 1

configuration been somewhat mere clever; but as an example, it would also

have been somewhat more confusing.) The second configuration embeds the

LTS solver into the fourth row of processors as illustrated in Figure 14.
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Figure 14. The simple phase 2 embedding
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The inputs to this group of processors come from reversing the direction

of flow of the threaded values from phase 1. Notice that this reversal

of flow has the effect of renumbering the matrix U to be in lower

triangular form appropriate for the LTS solver. The appropriate values

of the y vector are also available at the proper locations. The outputs

from the second phase eminate from the western port of processor (4,1).

These are the values solving Ax = b.

To sunmarize, the system of linear equations Ax = b is solved in two

phases on the CiP processor. In phase 1 an embedded LU-decomposition

processor takes A as input and produces matrices L and U as output. The

L output is immediately input to an LTS solver that also takes b as input

and solves Ly = b. The vector y and the matrix U are threaded through the

lattice. Phase 1 completes when A has been decomposed. In phase 2

another embedded LTS solver takes the threaded output from phase 1 (by

reversing its flow) and solves Ux = y.

Phase 2 makes scant use of parallelism - it runs in the same time as

phase 1 and the data are already in the CHiP processor. And as noted, the

interphase reconfiguration was not essential. But, there are algorithms

to solve the phase 2 problem that do make essential use of configurability

to make effective use of parallelism [14). A complete development of the

approach is not possible here, but the essential idea due to Chen, Kuck

and Sameh [I1] is straightforward: A transformantion on U enables us to

decompose the matrix into blocks B l... Bk whose product yields the result.

Because the product operation is associative, the whole product can be

formed by taking paiiwise products in parallel, then pairwise products

of the results, etc. By reconfiguring the threaded portion of the lattice

using one of several rather complicated interconnection patterns that
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either implicitly or explicitly embed a tree, we can perform these pairwise

products in parallel. The result is a faster parallel algorithm made

possible by configurability.

Discussion

Several characteristics of the CHiP approach should be mentioned.

First, the algorithmically specialized processors translate mutatis

mutandis to programs for the CHiP computer. Thus, we have a ready

supply of algorithms that can effectively use the parallel processor.

Of course, all of these algorithms use one interconnection structure,

and it is possible that improved algorithms might be found that exploit

the availability of multiple interconnection structures.

Second, configurability provides both interphase and intraphase

flexibility. This distinction, though not very clear-cut, tends to

correlate with whether or not pipelining is being used. If a problem is

solved by a sequence of phases that each complete before the next one

begins, we tend to use regular configurations that change at the completion

of a phase (interphase). The whole lattice is in a mesh or tree pattern.

For a series of pipelined algorithms that can be coupled together, as in

the last section , we tend to form regions of the lattice dedicated to each

algorithm with data paths interconnecting the regions. We refer to this as

intraphase configurability because within one phase we interconnect

several regular structures. Clearly, we need not change configurations

to exploit the advantage of configurability.

Both kinds of configurability are useful in adapting to changes in

problem size. For example, two different small problems might operate

concurrently on different regions of the CHiP processor using entirely

different interconnection schemes. One pattern could change while the



thcr remailned fi xed by loading switc hes of tile fixed region with two

copies of the same configuration setting. Pipelined processors, whose

size is uUallV a function of the input width, can be tailored to the

right size at loading time.

Another consequence of confi :ihlt' is that it is quit(- fault

tolerant. Sipposing than an error is detected in a processor, data path

or s it ch, we (anu simply route :around the offending device. I-or convenience,

W e night cho.se to icave other processors anused to "square up" the

iattic, whvii iatching dimensions are i,,portant.

Perhaps the most intriguing consequence of configurability's fault

tolerance is the possibility A' "wafer level" fabrication. That is,

instead of dicing a wafer and discarding the faulty processor chips, we

can leave a VLSI wafer whole and simply route around the unusable

processors. (We could use the dicing corridors for data paths, and

switches.) For example if a water contains 100 processor chips and

yield characteristics indicate that roughly one third are faulty, then

a wafer is acceptable if we can finl a'i S x 8 sublattice that is functional.

Tihe mapping of the switches to host the f x in the 100 could be done

on the wafer 1)y special circuitry designed for that purpose. Although the

number of pins required for the wafer would be large, their number is only

proportional to the perimeter rather than the area. This actually reduces

the nimber of wires bonded.

By integrating programmable switches with the processing elements,

the Cll P computer achieves a polymorphism of interconnection structure

that also preserves locality. This enables us to compose algorithms that
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exploit different interconnection patterns. In addition to responding

to different problem sizes and characteristics, the flexibility of

integrated switches provides substantial fault tolerance and permits

wafer level fabrication.
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