.~ AD=AU99 776 PURDUE UNIV LAFAYETTE IN DEPT OF COMPUTER SCIENCES F/6 9/2
INTRODUCTION TO THE CONFIGURABLE HIGHLY PARALLEL COMPUTER, REVI==ETC(U)
MAY 81 L SNYDER NDNMO-OO-K-OGIG
UNCLASSIFIED CSO-TR-351

......... pTIC

|I|||
iz

Illll

—

————
.

W.E WZB Hm
- el £

a2
e
[l

<

*
MICROCOPY RESOLUTION” T£S1 CHART

|

§ECU|".|TY CLASSIFICATION OF THIS PAGE (When Data Entered)

LEVEL#

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. RERORT NUMBER
D-TR-351 v

2. GOVT ACCESSION NC.| 3. RECIPIENT'S CATALOG NUMBER

8. TITLE (and Sublnlo

~INTRODUCTION TO THE ;ONFIGURABLT HIGHLY
PARALLEL COMPUTER -
R/& Vi .54 07\‘ -~
s o

D- 4091776

8. TYPE OF REPORT & PERIOD CCVERED

Technical, Interim

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a)

1 0{Lawrence Snyder

%. CONTRACY OR GRANT NUMBER(e)

NO0O14-80-K-08164° "
I~5' N00014-81-K-636.a’

'9. PERFORMING ORGANIZATION NAME AND ADDRESS

West Lafayette, Indiana 47907

Purdue University, Department of Computer Sciencd & .
—Task /SRQ 106/ o

T0. BROGAAM ELEMENT, -noucr TASK
T AREA & wonx "UNIT NUMBER

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Information Systems Program
Arlington, VA 22217

12. REPORY DATE N o

" ; 18 May 51981

13. NUMBER OF PAGES

31

—

14._ MONITORING AGENCY NAME & ADDRESS(!f different from C- ~trolling Office)

ﬂ/ I/' Tl-’lm 7- i /,./1'. r,,, /-’g/:,rb

15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

150, DECL ASSIFICATION/ DOWNGRADING
1 SCHEDULE

16. OISTRIBUTION STATEMENT (ol this Report)

Distribution of this report is unlimited

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

“

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

ELECTE
JUNS 198t

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Conifinue on reveras slde if neceseary and identily by block number)

parallel computation, VLSI, configurable architecture, CHiP Processor,
graph embeddings, switch lattice, integrated interconnection structure

ity by block der)

\20 ABSTRACT (Continue on reverse aide if r y and id:
S The Configurable, Highly Parallel (CHiP) Computer family is introduced. These
architectures are built around a lattice of programmable switches and data
paths that permit processing elements to be connected in arbitrary pattcrns.
The approach preserves locality. The parameters that determine various family
members are discussed including switch configuration storage capacity, switch
and processor element degrees and corridor width. An efficient embedding of a
complete binary tree is presented to illustrate interconnection pattern __, | ¢

DD | 3% 1473

EDITION OF | NOV 68 13 OBSOLETL
SN 0102-LF-014-6601

1 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

AN

(20) programming. An algorithm for solving a system of linear equations is
given to illustrate the versatility of configurability.

Accession For)
NTIS GRARI f‘

DTIC TAB 0O
Unannounced 0
Justification
By.

| Distribution/

L‘___f_r‘ailability Codes
Avail and/or

Dist Special

z
4

SECURITY CLASSIFICATION OF“THIS PAGE(When Data Entered)

Introduction to the Configurable, Highly

Parallel Computer

Lawrence Snyder
Department of Computer Sciences
Purdue University
West Lafayette, IN
47907

Abstract: The Configurable, Highly Parallel (CHiP) Computer
family is introduced. These architectures are built around
a lattice of programmable switches and data paths that
permit processing elements to be connected in arbitrary
patterns. The approach preserves locality. The parameters
that determine various family members are discussed including
switch configuration storage capacity, switch and processor
element degrees and corridor width. An efficient embedding
of a complete binary tree is presented to illustrate inter-
connection pattern programming. An algorithm for solving a
system of linear equations is given to illustrate the
versatility of configurability.

CSD-TR-351
November 1980
Revised May 1981

The research described herein is part of the Blue CHiP Project.

Funding is provided in part by the Office of Naval Research under Contract
N00014-80-K-0816 and Contract NOOO14-81-K-0360, Special Research
Opportunities Program Task SRO-100.

81 6 0501

i 2

B}

Introduction

polymorphiem, n.(l): capability
of assuming different forms; cap-
ability of wide variation.

-Webster's Third International Dictionary-

When von Neumann computers were still new and exciting,
scientists noted in popular accounts that unlike mechanical machines,
computers are polymorphic - their function can be radically changed
simply by changing programs. Polymorphism ig fundamental, but
it quickly became familiar to the point of being obvious and has been
mentioned little since, even though it has continued to underlie
important advances such as time-sharing and programmable microcode.
Now, as we are confronted with the potential for highly parallel com-
puters made possible by very large scale integrated (VLSI) circuit

technology, we may ask:
What is the role of polymorphism in parallel computation?

To answer this question, we must review the characteristics of parallel

processing and the benefits and limitations of VLSI technology.

A~~~-L_. e

' -2- ;

Algorithmically Spectalized Procegsors
Perhaps the most important property of VLSI circuit technology is
that the manufacturing processes use photolithographic means to create
copies of a circuit., Fabrication by photolithography (or the newer
techniques such as electron beam lithography) requires a fixed number

of steps to produce a circuit, independent of the circuit's complexity.

It costs no more to make copies of a chip containing a NAND gate than

to make copies of a chip containing a microprocessor, although yields will
likely be higher for the former and wire bonding costs higher for the
latter. Preparing and debugging the lithographic masks is expensive,

so the technology favors parallel processing techniques that employ

many copies of the same, possibly complex circuit.

Recognition of uniformity as the source of leverage in VLSI caused
I a flurry of research during the past half decade., This research resulted
in a number of device proposals which we may call algorithmically
spectialized procesgors. By focusing on computationally intensive
: ; problems and carefully dissecting algorithms for them, researchers have
developed algorithmically specialized processors having several important
' characteristics:
. construction is based on a few easily tessellated processing
elements,
. locality is exploited, that is, data movement is often limited
to adjacent processing elements,

. pipelining is used to achieve high processor utilization.

TR PRI PR o

Examples of algorithmically specialized processors include designs for LU

decomposition [2,3] (the main step in solving systems of linear equations}),

the solution of linear recurrences [2], tree processors [4,5,6] (used in

h“‘ I T ——

-3-

searching, sorting and expression evaluation), dynamic programming [7]

(a general problem solving technique with numerous applications), join

processing [8] (for data base querying), and may others.
Algorithmically specialized processing components must usually be

joined together to solve a large computationally intensive problem.

This composition step is crucial since whole problems tend to be

iq multiphased and these components tend to be specialized to an algorithm
used in only one phase. For example, to solve a system of linear
equations (Ax=b) one might use a processor component to form the LU
decomposition of the matrix A (4=LU) and then use a linear recurrence
solver component to perform the substitution phases (ILy=b and Uzr=y).

As another example, queries in data base query languages are formed

by composing operations such as "search" and "join".

A If the component processors are implemented on chips, one way to

'l compose them is to wire them together. This solution is inflexible since
; the components are dedicated to a particular problem and cannot be used

: for another problem. Another compositional scheme is to join the

_é processors to a bus as '"pheripherals." This is more flexible since a
processor can be used in different phases, but the bus becomes a
bottleneck and time is wasted in interphase data movement,

A more flexible approach is to replace the dedicated processing
elements with more general microprocessors and simply to program the 4
algorithmically specialized processors. This solution is much more 4
flexible since different components can use the same devices by changing
programs (provided the interconnection pattern is the same). The bus

bottleneck is eliminated. There is a loss in performance with this

polymorphism, since circuit implementation of the primitive actions is

replaced by the slower process of instruction execution,
But the main problem with this approach is that not all algorithmically

specialized processors use the same interconnection structure (see Figure 1).

There is no guarantee that the consecutive phases of the computation can

be done efficiently in place. For example, if we have an n x n mesh

connected microprocessor structure and want to find the maximum of n2

elements stored one per processor, n steps are necessary and sufficient
to solve the problem. But a faster algorithmically specialized processor
for this problem uses a tree interconnection pattern to find the solution

in 2 log n steps, For large n this is a benefit worth seeking. Again, !

a bus can be introduced to link several differently connected multiprocessors
including mesh and tree connected multiprocessors. Data could be transferred :

when a change in the processor structure would be beneficial. But the

bottleneck is quite serious - in the example, data has to be transferred Pg
at ng/log n words per step to make the transfer worthwhile. What we need

is a multiprocessor with more polymorphism that does not compromise the

benefits of VLSI technology.

The Configurable, Highly Parallel (CHiP) computer is a multiprocessor

architecture that provides a programmable interconnection structure in-

tegrated with the processing elements, Its objective is to provide the
flexibility needed to compose general problem solutions while retaining
the benefits of uniformity and locality that the algorithmically

specialized processors exploit,

The CHiIP Architecture Overview

The CHiP computer is a family of architectures each constructed from

Al

1
t

OO0

(d)

(a)

mEREEE
O
BNV
i B |
o

(— — (e)

— . (L, T2 73

- ﬂ - - L—

}> J Figure 1. Interconnection patterns for algo-

= rithmically specialized processors: (a)
mesh, used for dynamic programming [7];
(b) hexagonally connected mesh used for

] LU decomposition [2]; (c) torus used for
transitive closure [7]; (d) binary tree

used for sorting [4]); (e) double tree

A
| li —{ -4 >] used for searching [5].

—

)§ ‘ (

S a4 e]

_— - . - -

-6-

three components: (a) a collection of homogeneous microprocessors,

(b) a switch lattice and (c¢) a controller. The switch lattice is the
most important component and the main source of differences among family
members.

The switeh lattice is a regular structure formed from programmable
switches connected by data paths. The microprocessors (hereafter called
PEs) are not directly connected to each other, but rather are connected
at regular intervals to the switch lattice. Figure 2 shows three
examples of switch lattices., Generally, the layout will be square
although other geometries are possible. The perimeter switches are
connected to external storage devices. A production CHiP computer might
have 28 - 216 PEs. (With current technology only a few PEs and switches
can be placed on a single chip. As improvements in fabrication technology
permit higher device densities per unit area, a single chip can host a
larger region of the switch lattice, Moreover, as discussed below, the
CHiP architecture is quite suitable for '"wafer level' fabrication.)

Each switch in the lattice contains local memory capable of storing
several configuration settings. A configuration setting enables the
switch to establish a direct, static connection among two or more of its
incident data paths. (Notice, this is circuit switching rather than
packet switching.) For example, we achieve a mesh interconnection
pattern of the PEs for the lattice in Figure 2(a) by assigning North-South
configuration settings to alternate switches in odd numbered rows and
East-West settings to switches in the even rows. Figure 3 illustrates

the configuration; Figure 4 gives the configuration settings of a binary

tree,

()
e
./
el ‘{“. S
SO IRTIRIR
Sy o, (55
1 '.‘..‘. i o 2 = N
SRS "‘D’ 4
& N~
edeS oS00 0 o
e a ba pagapetas
OIRIX IXTRT
(H]

.’:‘
4%
5

e |
e
LY
5
O

Figure 2. Three switch lattice structures.
Circles represent switches;
squares represent FPCs,

O
O

o 0 0
o .

Figure 3. The switch lattice of Figure 2(a) configured
into a mesh pat:crn,

Figure 4., The switch lattice of Figure 2fa) confipured
into a binary tree, '

s ettt AR L bl . . .

ity ntingaben

The controller is responsible for loading the switch memory. (This
task is performed via a separate interconnection ''skeleton" that is
transparent to this discussion.} The switch memory is loaded pre-
paratory to processing and is performed in parallel with the PE program
memory loading. Typically, program and switch settings for several
phases can be loaded together. The chief requirement is that the local
configuration settings for each phase's interconnection pattern be
assigned to the same memory location in all switches. For example, in
cach switch, location 1 might be used to store the local configuration
to implement a mesh pattern, location 2 might store the local
configuration for the tree interconnection pattern, etc.

CHiP processing begins with the controller broadcasting a command
to all switches to invoke a particular configuration setting. FYor
example, suppose it is the setting stored at location 1 that implements
a mesh pattern. With the entire structure interconnected into a mesh,
the individual PEs synchronously execute the instructions stored in

their local memory. PEs need not know to whom they are connected; they

' simply execute instructions such as READ EAST, WRITE NORTH WEST, etc.

>

The configuration remains static., When a new phase of processing is to
begin, the controller broadcasts a command to all switches to invoke a
new configuration setting, say the one stored at location 2 implementing
a tree. With the lattice restructured into a tree interconnection pattern,
the PEs resume processing, having spent only a single logical step in
interphase structure reconfiguration.

The overview of the CHiP computer family has been superficial, but
it has provided a context in which to present a more thorough treatment.
(A comparison of the CHiP a.chitecture with other interconnection methods

is given in reference [12]).

R

-10-

The next three sections are:

4 closer look, giving details about switches, lattices and
the controller

Embedding an interconnection structure, an example of how to
configure the lattice into a complete binary tree, and

Solving a system of linear equations, illustrating how a
multiphased problem might be solved.

We conclude with a Discussion section in which we mention some of the

consequences of the CHiP architecture approach.

A Closer Look
We review some of the characteristics that distinguish members of the
family of CHiP computers.
Switches. It is convenient to think of switches as being defined by
several parameters.

m - the number of wires entering a switch on one data path, or data
path width,

d - the degree, or number of incident data paths,

e - the number of configuration settings that can be stored in a
switch,

The value of m reflects the balance struck between parallel and serial
data transmission. This balance will be influenced by several considerations,
one of which is the limited number of pins on the package containing the
chips of the CHiP lattice., Specifically, if a chip hosts a square region
of the lattice containing n PEs, then the number of pins required is
proportional to mve.
The value of d will usually be 4, as in Figure 2(a), or 8, as
in Figure 2(c). Figure 2(b) shows a mixed strategy which exploits
the fact that switches tend to be used in two different roles, Switches

at the intersection of the vertical and horizontal switch corridors tend !

-

to perform most of the routing while those interposed between two

adjacent PEs act more like extended PE ports for selecting data paths
from the "corridor buses'". Specializing the degree of the switch to
these activities reduces the number of bits required to specify a

configuration setting and thus saves area.

The value of ¢ is influenced by the number of configurations that are
likely to be needed for a multiphase computation and the number of bits
required per setting, This latter number depends on the degree and the
crossover capability of the switch.

"Crossover capability" is a property of switches referring to the
number of distinct data path groups that a switch can simultaneously
connect. We speak of data path "groups" rather than data path pairs
since fanout is permitted at a switch, i.e., a switch can connect more
than a pair of data paths. C(rossover capability is specified by an
integer g in the range I to d/2, i.e. 1 indicates no crossover and
d/2 is the maximum number of distinct paths intersecting at a degree d
switch. Like the three parameters mentioned above, the crossover
capability g is fixed at fabrication time.

The number of bits of storage needed for a switch is modest, dge.
This provides a bit for each direction for each crossover group for each
configuration setting. A technique to reduce this value is to provide
for the loading of switch settings while the CHiP processor is executing.
This quality, called "asyncronous loading', permits a smaller value of ¢
by taking advantage of two facts: algorithms often use configurations that
differ in only a few places, and configurations often remain in effect
long enough to provide time to prepare for future settings.

Lattiee. From Figure 2 it is clear that lattices can differ in

several characteristics. The PE degree, like the switch degree, is the

e

T - =t o Mo izz, T L — - : * - i

-12

number of incident data paths, Most algorithms of interest use PEs of
degree eight or less., Larger degrees are probably not necessary since

they can be achieved either by multiplexing data paths or, with some

loss in PE utilization, by logically coupling processing elements, e.g.

two degree four PEs could be coupled to form a degree six PE where one

NN e

serves only as a buffer. ;
Call the number of data paths that separate two adjacent PEs the

corrtdor width, w. (Sece Figure 2(¢) for a w = 2 lattice.) This is

perhaps the most significant parameter of a lattice since it influences 4
the efficiency of PE utilization, the convenience of interconnection ; i
pattern embeddings, and the overhead required for the polymorphism.

To see the impact of corridor width, let us embrace graph embedding
parlance and say that a switch lattice hosts a PE interconnection pattern,
In theory, even the simplest lattice (like the one in Figure 2(a)) can
host an arbitrary interconnection pattern. But to do so may require the

PEs to be underutilized for two reasons. First PEs may be coupled to

achieve high PE degree as mentioned at the beginning of this section,

Second, and more importantly, adjacent PEs in the (logical) guest inter-

A
b
!

connection pattern may have to be assigned to widely spaced PEs in the
hosting lattice (i.e. separated by unused PEs) in order to provide
sufficiently many data paths for the edges. (Figure 5 shows the embedding
of K4’4 in the lattice of Figure 2(c) where the center column of PEs is
unused.) Increasing corridor width improves processor utilization when
complex interconnection patterns must be embedded since it provides more
data paths per unit area.

How wide should corridors be? It all depends on which interconnection

patterns are likely to be hosted and how economically necessary it is to

maximize PE utilization. For most of the algorithmically specialized

=13~

ey

(b)

Figure 5. Graph K4 4 shown in (a) is embedded into the lattice of
»

Figure 2(c) using a switch with crossover value g = 2.

EY S

S14-

provessors developed tor VIST amplementation, a corridor width of two
sutftfice to achieve optimal o1 near optimal PE utilization. However,
to be sure of hosting all planar interconnection patterns of # nodes with
reasonably complcte processor utilization, o width proportional to 7oa n
sutfices and may be neces-ary |91, 1o host patterns such as the shuffle-
eachange craph with high efficiency wil! require still wider corridors,
on the average 2 must be at least proportional toe »o7og » 101,

selecting a corrider width 15 a difficult decision, especially if
it s o nonconstant width, the benetit is higher PE utilization in some
Savesy the cost s a loss ot some Jocality in all cases, introduction ot
wore area overhead, and increased problems with "pain' limitations.
Proelrminary evidence indroates that 0 & 4 provides a4 reasonable
cost henefrt tradestt, but furrther experimentation and analysis are
roqurred,

Pmbe 11Ty o Cnlopoopoiontion Pretery

in addition to the conventionsl polvmorphism derived trom PE opro-
gramming, we have provided for a second hiad of polvmorphism - the
programaable switches, This requires us to provide for interconnection
pattern propramming, i.c. the specification of a global interconnection
pattern, When viewed #noa prosramming langudare conteat, the "source
program 1s a global antepre mnedtion pattern that & comrrler translates

tnto an Yobhicect code’ ef andivaidial switch settiuygs suitable for loading

into the switches by the (P controller, The gencril programming language

aind compiler issues need not concern us here, however, for we will explore

only one particular interconnection pattern: the complete binary tree,

This example will enable us to illustrate the differences between

)

- - . N

-15-

embedding into the plane and embedding into the CHiP lattice.

The complete binary tree has -1 PE's, one at each node. One
possible layout of this structure in the CHiP lattice is a direct
translation of the "hyper-H" strategy [1] illustrated in Figure 1(d).
Figure 6 illustrates this embedding into the lattice of Figure 2(a) and
it is clear that a significant number (approaching one half) of the PEs
are used in 1~is naive approach. The problem is that although the
hyper-H is an excellent embedding on plain silicon where the placement
of PEs and data paths is arbitrary, CHiP lattice embeddings must conform
to the prespecified PE and data path sites. As we shall see, this
constraint is not onerous.

To illustrate an optimal embedding (in terms of maximizing the
use of PEs), assume that we have an n x n CHiP lattice where n = Zk
for some integer k., This gives 22k PEs, so a binary tree of depth 2k
fits with only one unused PE, since it has 22k-1 nodes., Call this
unused PE a "spare."

We proceed inductively by pairing two embedded subtrees to form
a new tree one level higher. For the basis of the induction it is
convenient to use a three node binary tree embedded with one spare in
a 2 x 2 portion of the lattice, Pairing square subtree embeddings
produces rectangles with sides in ratio 2:1, Pairing these rectangles

o
yields squares again. In general we pair two subtrees each with ?“k-l

nodes and a spare to produce a new 32k+]-1 node tree in which one of the
subtree's spares becomes the root of the new tree and the other spare

becomes the spare of the new tree. The interesting problem is to place

the spares at the proper sites for the next step in the induction.

-16-

9 Figure 6. The hyper-H tree (Figure 1(d)) embedded into the switch
2 lattice of Figure 2(a}; the switches are not shown.

If we adopt the strategy of the hyper-H embedding and locate the

root at the center of the tree, then it makes sense to place a spare at
the middle of one side so that when this tree is paired to form the next
larger tree, there is a spare at the interface ready to become the new
root. This will be in the center of the new tree as we intend., (Of
course, since the sides always have an even number of PEs, "middle"

here means adjacent to the midpoint of one side.) But we cannot

pair two trecs with their spares in the middle of one side since this
will leave us with either a buricd spare that is useless for forming

the next larger tree or it will leave us with a sparc on the perimeter
at a site lnappropriate for the embedding of the next larger tree,

(See Figure 7.) I

The solution is to pair one subtree with a spare located at the

middie of one side with a subtree whose spare is at the corner. The

spare in the middle becomes the root of the new tree and the corner spare

new spare

N\

new root old root

--,_0‘-.....;1

n - tJj - q
l
l
|

e e e e

Figure 7. Pairing subtrees using spares located at the
midpoint of one side.

can be located (using reflection) to become either a middle spare or a
corner spare of the new tree depending on which is needed for the next
inductive step. Thus, at each step in the induction we must use (and
we can create) two types of embeddings: middles and corners. (See
Figure 8.) Notice that the basis tree, embedded in a 2 x 2 portion of
the lattice, actually serves as both types.

Trees, of course, are planar; that is, they can be embedded in the
plane without crossovers. But if the reader endeavors to follow the
preceding algorithm with the lattice in Figure 2(a), it will appear as
though crossovers are required, at least during the early stages of the

embedding. It is possible, using basis elements of fifteen node trees

"

L Dy <

and » ovector P

(old root a ! "
¥~-' -t ---a R e A
. N
new root .J !
] T A

n---~04-- -0

Figure 8. The formation of '"middles' and "corners'" embeddings
using a middle and corner pair,

embedded in 4 x 4 square regions of the lattice, to achieve a completely

planar embedding., A solution 1s shown in Figure 9.

Solving a Syetem of Linear Equations

In order to illustrate how the CHiP processor can be used to compose

algorithms, we pose the problem of solving a system of linear equations,

1.e. to ~olve Ar =1 for an » x n coefficient matrix 4 of bandwidth w

3

We shall use two algorithmically specialized processors

T

00 0000000000000 O0OD0OO0CO0ODO0OO0OO0OCO0ODODOO0VDLOO0ODO0OOO0OD OO

o 0 0

(o]

-19-

00000 0

o4 —Q o] O

o Q0 0 0O O O

O [O o} O

6 0 0O 0 O O

o—{1] O] O o

009 0 O O v

o—{] O [o] 0

D O O U

o [1 o{}o© O

D OO0) 0

O o<1 0 [}Jo{] o] O] ©

C QO 0 0 ¢ ©Q O~ 0 O O 0O O

oo [J¢ []0 (30 o[]oQ

0O Q0 O 0 Q0 0 0~ O 0 0 O ¢

o[o] ¢ o—~{ Fo—{ o-{}0

O 0O 0 O O OOOmOeoD O=O=0D—=O O~O0—O0=—0 ¢ O 0 O

o O o]

[s) 0 o]

o o L] o

¢} O ¢ o
o L} o
¢ ¢ [OO0 0 O OO0 O O O
0 L o oo [}HoH{r0 o—{ o
OO0 O~ O O O O 0O OO OO0 0
oJo[Fo[Jo{]oO o (Jof]jol]o o []
(o 2 B « N @ T o N & O 00 Q Q00 0 0 Q0 0O O
oo (o [(FoJolJoA] oL] o{] 0O o [
00 O 00 00 0o Qo0 oo O oo o v
o [1 o] o{}o{] 0o [}© 0 (0 (J o [0 o]
O 0 0 Q0000 ¢ 0 Q0 00 ¢ 00 000
0 [0 o—J O oljol}o o—{] o O

0O 000 000 O00CO0DO0DO0CO0ODO0OO0OO0OO0OO0ODO0OO0OO0QDO0OO0OO0

Figure 9. Planar embedding of a 255 node complete binary
tree into the lattice of Figure 2(a).

0 000G

o

o] o Fodtrodlo o

0O 0 O
0O 0 00 00 030 00000000 00O0CO0OO0OO0OCOO0OQOCOoOCCOCOoOCOoOCO0OOODCOCOo

O 0 0 O 0

()
L
o 0 O

{l]o RO

r=

., 0 [0~

re

20~

N

due to H,T. Kung and C.E. Leiserson as described in Mead and Conway [1].
The first is an LU-decomposition systolic array processor that factors 4

into upper and lower traingular matrices U and L.

_ ~ -
a8, a5y 3, 0] 1 N lun Y2 Y3 Y
21 22 3 2 35 I Uz Upz Upg Yps
a.. a a., a a = £ 2 1 ! u,., u u

51 %32 %33 834 335 31 %32 | 35 Yzg Uss
Y1 %42 M3 -, Ya1 Fa2 iz U ..
35y A3 Y50 53

0 0 0

_ - — S

The second systolic processor solves a lower triangular linear system

Zw = L where L is the output from the decomposition step. (We call this
the LTS solver.,) The final result vector x can be found by solving

Jr = p where U/ is the upper triangular matrix from the first step and y
is the vector output of the second step. By rewriting U as a lower
triangular system we can reusc the LTS solver. Qur approach will be to
composc these pieces into a harmonious process to solve the entire
problem,

The first problem we must solve is the embedding of the Kung-lLeiserson
svstolic processors, These algorithmically specialized processors are
defined for n x » arrays of banuawidth wu, (Figure 10 shows the LU-
decomposition processor for a w = 7 system. Figure 11 shows a suitable

i = 4 lower triangular system solver processor,) Since the LU-decomposition

processor is hexagonally connected, it will he convenient to embed the

processors into the lattice shown in Figure 2(b). The obvious strategy

Y

A-« e canen - .- - —_ = ’) 4 -

=21~

is to connect the processors in such a way that the lower triangular
output L of the decomposition step connects directly to the input of
the lower triangular system solver. It is also obvious that these
embeddings should be placed at the perimeter of the CHiP lattice so that
matrix A and vector b can be received from external storage. Figure 12
shows such an embedding* where the PE labellings correspond to those

given in Figures 10 and 11.

Figure 10. The Kung-Leiserson systolic array for LU-decomposition.
Labellings indicate data paths. For timings, see
reference {1].

* Although the data paths are bidirectional, we have used arrows to emphasize
the direction of data movement.

“ SIS S

e, S

Figure 11. The Kung-Leiserson systolic LTS solver for w=4, Labellings
indicate data paths for clements of . and ». Vor timings,
see reference [1],

Figure 12, The embedding ot the Lil-decomposition processor and
the LTS solver in the latrice of Figure 2(b), PE
labellings correspond to Figure 10 and 11,

Several simple transformations have been employed to accomplish
the embedding. The most noticable is that the hexagonal structure has
been slightly deformed to accomodate the rectangular CHiP lattice and
the LU-decomposition processor has been rotated clockwise 120°. The
constant inputs (0's and -1) that appear on the perimeter of the systolic
array have been suppressed since they can be generated internally to the
PEs. The output wires carrying the L matrix result have been assigned
to one of the available ports and roﬁted to the inputs of the LTS solver.
Finally, to embed the double channel between PEs of the LTS solver we
have routed data diagonally out of the North-East port into the South-East
port. Notice th;; since the diagonal elements of L are zll I, thgyare not
explicitly produced.

The next problem to solve is the rewriting of U as a lower
triangular sys ‘em suitable for input into another embedded LTS solver.

We must wait until U has been entirely produced before performing this
operation. So, rather than writing the elements of U to external storage
as they are produced, we thread them through the lattice (assuming there
is sufficient space to store them all). We also thread the y vector
output from the LTS process along with U. Then in the second phase of
our algorithm, we can process the elements through another embedded LTS
solver.

Perhaps the most elegant way to thread /7 and y through the lattice
is to use a graph embedding due to Aleliunas and Rosenberg [13]. The
scheme has the advantage of not requiring a large '"bundle" of wires along
the perimeter of the lattice when the threads double back. (Figure 13
illustrates the embedding required for doubling back.) As the U/ and y

values are produced, they are passed from PE to PE. (They could be

———
4 L - . -
i ~ 2 ee e - - ‘ * » . e
3
|
-24- |
A
"concentrated' by storing several per PE.) When ! and y are completely }
produced, the first phase is completed. ! i
}
‘
: { i ; T
) S - P %
] e ‘ | 2 i
4 i E
3 H - Y -
‘)
! Lo o i
. < oa } A)
- T — 4
| i 3
; |
| 4 ' } /7
X { o 5
p | ! :' Co :
L | b
- i : .) * 4 4
v { ¥ I
}v_, ! el J'i\ ! ‘ ! ¢ ;
! S . i ; i ,
: lI , | . . R . Ly L ‘
1
. ;
X 1 v ¥ e ' | . [L :
[: J i. :) X . “ IL‘ ix ;
1 (
] M ! ' 4 M
o T i i ! ‘
i ' ’ | ! ! { : |
d - s i i i
4
4 1 1] ¢ ¢ . ~ ,) .
)) ! i i
: ‘ : ' ‘ .
f ‘ ’ ¢ : i
: ot oty) 3 | SR
. \ l t ‘ . . :
) i P . . J Y .
'\ i N N A r !
i | ! ' q l
' i |) ! | i !
| 4 . / |
~ i
! v LY v ~ “{ . \ ‘J
, Bl ! [.4[- ' - - i ~
' ‘ v ' (

Figure 13. The Aleliunias-Rosenherg embedding of the threads
doubling back.

%
!
3
g
i
!

|

-25-

Between the first and second phases we make a minor reconfiguration.
(This reconfiguration would not have been necessary had the phase 1
configuration been somewhat mare clever; but as an example, it would also
have been somewhat more confusing.) The second configuration embeds the

LTS solver into the fourth row of processors as illustrated in Figure 14,

‘; [
| X
il lj]‘,: By D
| 11: i_[';’ ot
AN AL N ! P S
OO e A A
. - - - u', ; + 1 v —
i ! { {0
T U U U O O IO
- b i \ T 4 t i L
I D R T R O N

i

h

'
-
—_
i

PR
—
——
—

oo ‘ . '
S
i LN Ny s .
N B U T A i
r l . /.‘/'\,,,4 . ’, /’ t .L
S U I R A N
[N l}/ . N !
e e o e e T R (it [y

Figure 14, The simple phase 2 embedding

PR GNP

The inputs to this group of processors come from reversing the direction
of flow of the threaded values from phase 1. Notice that this reversal
of flow has the effect of renumbering the matrix U to be in lower
triangular form appropriate for the LTS solver. The appropriate values
of the y vector are also available at the proper locations. The outputs
from the second phase eminate from the western port of processor (4,1).
These are the values solving Ar = b,

To summarize, the system of linear equations Ax = b is solved in two
phases on the CHiP processor. In phase 1 an embedded LU-decomposition
processor takes 4 as input and produces matrices L and U as output. The
Z output is immediately input to an LTS solver that also takes b as input
and solves Ly = b. The vector y and the matrix U are threaded through the
lattice. Phase 1 complétes when 4 has been decomposed. In phase 2

another embedded LTS solver takes the threaded output from phase 1 (by

reversing its flow) and solves Ux = y.

Phase 2 makes scant use of parallelism - it runs in the same time as
phase 1 and the data are already in the CHiP processor. And as noted, the
interphase reconfiguration was not essential., But, there are algorithms
to solve the phase 2 problem that do make essential use of configurability
to make effective use of parallelism [14]. A complete development of the
approach is not possible here, but the essential idea due to Chen, Kuck
and Sameh [11]) is straightforward: A transformantion on U enables us to
decompose the matrix into blocks Bl""’Bk whose product yields the result.
Because the product operation is associative, the whole product can be
formed by taking paiiwise products in parallel, then pairwise products

of the results, etc. By reconfiguring the threaded portion of the lattice

using one of several rather complicated interconnection patterns that

——————

-27-

either implicitly or explicitly embed a tree, we can perform these pairwise

products in parallel. The result is a faster parallel algorithm made

possible by configurability.

Discussion
Several characteristics of the CHiP approach should be mentioned.
J First, the algorithmically specialized processors translate mutatis
mutandis to programs for the CHiP computer. Thus, we have a ready
supply of algorithms that can effectively use the parallel processor.
Of course, all of these algorithms use one interconnection structure, 2
and it is possible that improved algorithms might be found that exploit
the availability of multiple interconnection structures.

Second, configurability provides both interphase and intraphase
flexibility. This distinction, though not very clear-cut, tends to
correlate with whether or not pipelining is being used. If a problem is
solved by a sequence of phases that each complete before the next one

begins, we tend to use regular configurations that change at the completion

of a phase (interphase). The whole lattice is in a mesh or tree pattern.

For a series of pipelined algorithms that can be coupled together, as in

S e RS T L Y

the last section , we tend to form regions of the lattice dedicated to each
algorithm with data paths interconnecting the regions. We refer to this as
intraphase configurability because within one phase we interconnect
several regular structures. Clearly, we need not change configurations
to exploit the advantage of configurability.

Both kinds of configurability are useful in adapting to changes in
problem size. For example, two different small problems might operate

concurrently on different regions of the CHiP processor using entirely

different interconnection schemes, One pattern could change while the

other remarned tixed by loading switches of the fixed region with two
copies of the same configuration setting., Pipelined processors, whose
size 1% usually a function of the input width, can be tailored to the
right size at loading time,

Another consequence of configurability is that it is quite fault

tolerant. Supposing than an error is detected in a processor, data path

or switch, we can simply route around the offending device. For convenience,

we might choose to leave other processors unused to "square up'" the
fattice when matching dimensions are important.

Perhaps the most intriguing conscquence of configurability's fault
tulerance 15 the possibility of "warfer level" fubrication., That is,
instead of dicing a water and discurding the faulty processor chips, we
can leave a VLSI wafer whole and simply route around the unusable
processors. (We could use the dicing corridors for data paths, and
switches.,) For example 1f a watfer contains 100 processor chips and

vield characteristice indicate that roughly one third are faulty, then

a4 wafer ts acceptahle if we can find a1 8 x 8 sublattice that is functional.

-

The mapping of the switches tu host the € x 8 in the 100 could be doune
on the wafer by special circuitry designed for that purpose. Although the
number of pins required for the wafer would be large, their number is only

proportional to the perimeter rather than the area. This actually reduces

the number of wires honded.

Surpmary
By integrating programmable switches with the processing elements,
the CHiP computer achieves a polymorphism of interconnection structure

that also preserves locality. This enables us to compose algorithms that

exploit different interconnection patterns. In addition to responding

to different problem sizes and characteristics, the flexibility of

integrated switches provides substantial fault tolerance and permits

wafer level fabrication,

Acknowledgements

It is a great pleasure to thank Dennis Gannon for his encouragement
and his assistance with the linear systems solving example. Janice Cuny's
critical reading has lead to a simplification of the switch - the insight
is much appreciated. Thanks are due Paul McNabb who developed programs
to produce the embedding of Figure 9. Finally, Robert Grafton, Leonard
Haynes and Richard Lau have provided encouragement and support that is

greatly appreciated.

tq | ’ . e et . . Rl ' ’ e i_'
-30- | Y

References

[1] Carver Mcad and Lynn Conway :
Iwtpoduction to VIST syatems :

Addison Wesley, 1980

—
[
—

tH.l'. Kung and C.E. Leiserson

Systolic arravs (for VLSI)

Tech. Report (5-79-103, Carnegie-Mellon University, April 1979
(Alse in {1])

3] D.B. Gannon
On pipelining a mesh connected multiprocessor for finite element
problems by nested dissection
Prou., Int'l Conf. on Parallel Processing, pp. 197-204, 1980

Ry Sally Browning
The trece machine: a highly concurrent programming cenvironment
Ph.D. Thesis, California Institute of Technology, Jan. 1980

[5] Jon L. Rentley and H.T. Kung

A tree machine for searching problems

In Proc. of the Int'l Cont. on Paralle! Processing, pp. 257-2066
: IEEE, 1979

[o] L. Snvder
ree-organized processor structure
Technical Report, Yale University, March 1980

ot
—_—
~1J
—

L.J. Guibas, H.T, Kung and C.D. Thompson

Direct VLST implementation of combinatorial algori‘hms

In Cal. Tech. Conf. OnVLST, California Institute of Technology
January 1979

bt S

i

[8] S.W. Song
A highly concurrent tree machine for data base applications
Proc. Int'l Conf. on Parallel Processing pp. 259-268, 1980

[9] L.G. Valiant
University considerations in VLSI circuits
IEEE Trans. Computers, 198l

{10] C.D. Thompson ;
A complexity theory for VLSI
Ph.D. Thesis, Carnegie-Mellon University, 1980

[11] S.C. Chen, D.J. Kuck and H.H. Samech
Practical Parallel Based Triangular System Solvers
ACM TOMS (Sept. 78) pp. 270-277.

[12] L. Sayder
A comparison of the CHiP processor with other parallel architectures
(in preparation)

(13]

(14}

-31-

Romas Aleliunas and A.L. Rosenberg
On embedding rectangular grids into square grids
IBM Tech. Report RC 8404 1980

D.B. Gannon and L. Snyder

Linear Recurrence Algorithms for VLSI: The
Configurable, Highly Parallel Approach

(in preparation)

Official Distribution List

befense Documentatjon Center Detfense Advanced Research
Cameron Station Projects Agency
Alexandria, VA 22311 Attn: IPTO

1400 Wilson Boulevard
Office of Naval Research Arlington, CA 22209

Arlington, VA 22217

ONR Resident Representati ‘¢

Ohio State University
Rescarch Center

1311 Kinnear Rd.

Columbus, Ohio 13210

Information Systems Program {137)
Code 200
Code 455
Code 458

Oftice of Naval Research
lastern/Central Regtonal Otftiee
Bldg. 114 Section D

9 GO6O Summer St

Roston, MA 02210

Ofti1ee of Naval Research

. Branch Oftice, Chicago

| 530 South Clark St

L Chicago, LI 60605
Ottice of Naval Rescarch

y Western Regional Office

t 1030 Past Green St

Pasadena, CA 9lloo

Naval Rescearch Laboratory
Technical Information Division, Code 2627
Washington, DC 20375

Dr. AL, Slafkosky

Scientific Advisor

Commandant of the Marine Corps (RD-1)
Washington, DC 20380

Navial Ocean Systems Center

Advanced Software Technology Division :
Code 5200 . |
San Diego, CA 92152

Mr. k. ll. Gleissner .
Naval Ship Resesrch § bDevelopment Center

Computiation and Mathematics Department

Bethesda, MD 20084

Capt. Grace M. Hopper (U08)
Naval Data Automation Command
Washington Navy Yard f
Bidg. 166
Washington, DC 20374

