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1. INTRODUCTION

The very nature of pursuit-evasion problems, as continous dynamics and
opposing objectives, invites‘ their formulation as two person zero-sum dif-
ferential games; The atudy of differential games emerged from the
pioneering work of Rufus Isaacs [1l]) in optimal pursuit and evasion applie
to tactical air combat problems. It was hoped thﬁt the innovative concep
of differential gaines (coined by Isaacs himself) would‘ create an insight
into the intriguing problems of aérial "dogfight™ and eventually lead to

improved tactics and better design of aircraft and weapon systems.

During more than a quarter of the century since the first RAND repc
of Isaacs on pursuit games in 1951 (2], numerous investigatibns, dealir
with different aspects of this class of };~z't':b1ems‘1 have appeared in the
lj.tgzature. A considerable'part of these studies, some of them reviewed
other chapters of this Volume [3, 4], was aimed at the soiution of air ¢
air combat problems. Unfortunately, tt:ts extensive reésearch effort has
only had a limited impact on practical applications, This frustrating fi

both for scientists and military experts, can be attributed to the follo

reasons:

In th_e mathematical models used in most analytical studies, im
portant elements of the "real world" situation have been negle
b. Not all air combat problems satisfy the basic requirements ol
pursuit-evasion game formulation,such as fixed roles of the pl

and diagonally opposed (zero-sum) objectives.

NS a s anrh Ve B e
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An obvious example for (b) is the well known "dogfiéht" situation be-
tweex) two fighter airplanes. 'Such an engagement, in which both pilots wish
to assume an agressive role, calls for a mathematical formulation of a two-
target game [5]. Moreover, in many air combat engagements, a "mutual kill,"”
which is an equally disadvantageous outcome for both participante, is a
possible outcome. Consequently, the zero-sum notion is not adequate for

such problems and other concepts such as "preference-ordered gaming” [6]

are required.

A careful elimination process has led to the identification of some
types of air combat problems well suited to the pursuit-evasion game formu-

lation:

a. The missile-aircraft engagement.

b. Interception of an airplane not equipped with an air to air

weapon.

Both problems are described by multidimensional = non-linear dif-
ferential equations, which leave no hope for a closed fom solution. The
numerical solution of the resulting non-linear two point boundary value
problem {7, 8] is nc! only tedious and time consuming, but may scmefimes
be even misleadiné. | Computatiohiofr épizr;rl;;zz;iectories, based on local
necessary conditions, can be meaningless if unidentified singularAsurfaces _

of the game space are crossed.

Important simplifications of the mathematical model can be achieved

by adopting some of the following assumptions: two-dimensional motion,




constant speeds, point-mass approximation, instantaneous response, traject
linearization. However, extreme care has to be taken not to use assmptid

vhich may eradicate salient phe.icmena of the original problem.

This Chapter presents two techniques for solving pursuit-evasion
gameg of degree. cﬁbix:ed with a skillful mathematical modeling, it has
the potential for closed form solutions of near real world air combat prok
lems. In Section II the equations of mction of a general air combat '
oriented pursuit-evasion problem are given and the correspondiﬁg zero-sum
perfect information differential Jame is formulated. 1In Section IIIX thé
validity of several -implifying assumptions is discussed and guidelinés fc

appropriate mathematical modeling are suggested.

In the following sections, two methods are proposed to solve proper.
modeled pursuit-evasion games. In Section IV the formal solution of lines

differential games of terminal cost with bounded control is presented and

.applied to a missile-aircraft end-game. In Section V singular perturbati.

technique is adapted fornon-linear zero~sum differential games and its
effactiveness is demonstrated by the solution of a simple aircraft vs.
aircraft problem. In the concluding sectioﬁ, the relative merits of the
proposed techniques are discussed and the possibility of their combinatior

is indicated.
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II. PROBLEM STATEMENT

In this section a realistic air-combat oriented pursuit-evasion game
is formulated.
Let R be the position vector of the Pursuer (P) in the evader's (E)

coordinate system (See Fig. 1),

P-E (1)

R

Then the relative motion is described by

o

i
R = VP f VE (2)
VP=aP
. (3)
Ve T 3

The forces, which produce the accelerations of the vehicles, are non- |

linear functions of the respective position and velocity. They are also

governed by a set of internal variables "C" (engine r.p.m., angle of attack,

bank angle, etc.),

aP = fP (PP'VP'CP)

(4)

E fE(PE'VE'CE)

4
|

each having its own dynamics expressed by

Cp = Ip(PprVpeCpru)
. (5)
CE = gE (PEIVE'cElV)
. e
4‘“




The vectors u, v ave the controls of the pursuer and the evader respectively
These control variables (e.g., aerodynamic surface deflections, throttle

setting, etc.) are bounded, i.e., they belong to the closed compact sets

u€u
(6)

veEv

Summarizing Egs. (2)-(5), the complete gaﬁe dynamics is expressed by a

non-linear autonomous vector equation of n components

z = F(z,u,v) z(ty) = z n
where F is continuous and differentiable with respect to its arguments
and 2z 1is the state vector

A ’ n
z= (R.VP,Vé,aP,aE,CP,CE) z€R | (8)

uniquely defined in a domain D of RP. In addition to the dynamics, the
differential game formulation requires the determination of (i) the infor-

mation structure; (ii) the criterion for game termination; (iii) the pay-

off function (cost).

In the present work it is assumed that perfect information on all

components of the state vector is available to both players.

The termination of épe game (tf) is determined by a closed subspace

(the target set) given by \

{

w(z(tf)l = 0 (9)

P e v e ke Pe e e i N P P
B R B TR AT R Rt




If the target set cannot be reached in finite time, the game terminates when

the diétance between the players is minimal,

t, = arg min tripy! : (10)

>
t to

The cost function, to be maximized by the evader and minimized by the

pursuer, is generally written as
. te
3 = Glz(t)] + | Liz,u,v,t)dt (11)

t .

0 oL
G and L both are continuous and differentiable of their arguments.
The integral term is of major importance if control penalization is incluced.
The present.investigation focuses on terminal pay-off games (L = 0). The
natural cost in pursuit evasion games is the time of capture ”tf“ defired
by Eq.(9) whenever the target set can be reached. Altermatively, the pay-

off can be the distance cf closest approach (the miss distance) defined by

Eq. (10) as

atey) & min IR0 | - (12)

I
t to

The two game formulations can thus be summarized by

z = F(z,u,v) zlty) = 2,
u€u,veEv
[ {13)
ot 4 arg{Pplz(t)] = 0}
J =t

f /

e e A 1 e




z = F(z,u,v) ‘z(to) =z

u€u,vEy

(14)
t, = arg min Ir(e)d
>
t to
4 - J
i J d(tf)
1 The solution of a differeatial game is a triplet'consisting of an

optimal strategy pair p*(.), ef(-) and'the optimal cost J* (the Value
; . oZ the game). The optimal strateqgy pair has to be selected from a set of
admissible (and playable) pairs. A strategy pair p(e), e(+) is admis~

sible if the controls

u(t) = plz(c),t] u€vu

‘ . (15)
] vit) = e[z(t),t] VEV

S

are Lebesque measureable and generate at least one solution of the state
equation (7). Furthermore, an admissible strategy pair is called playablz

[9] if it guarantees terminatior of the game.

The solution triplet has to satisfy the saddle point inequality
J(zoltolp'.:e) < J(zoltolp*le.) e J* (zouto) < J(zoltorpve*) (16)

The necessary conditioans to be satisfied by candidate solutions of an

autonomous zero-sum differential game with terminal cost, can be stated as

. follows (1, 9, 10]:
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Let z*(t) be an optimal trajectory and assume that J*(z,t), the
Value of the game, is smooth along it; then there exists a continuous vector

function A(t) and a Hamiltonian, defined by

- H(z,A,u,v) 4 AT F(z,u,v) (17)

satisfying the adjoint equation

. oH |
Ale) = -(§;> z=z¥ -(18)

and the transversality conditions which, subject to the definition in Eq.(9),

takes the form |
x(tf) =y gradw[z(tf)] ‘ v >0 (19)

For cases where game termination is determined by reaching the distance

of closest approach, which is aiso tlie pay off, the transversality condition

!

is expressed by

A(tf) = grad d(tf) \ ' (20)

Moreover, the Hamiltonian also satisfies

Min H(z*,\,u,v*) = Max H(z*,A,p*,v) = 0 (21)
uevu veEV

The optimality of the candidate strategy pair, obtained from (21),has

to be established by sufficiency conditions, presented in Refs. [9,10].




The necessa.y conditions indicate that in order to attain a candidate

solution of a game, a non-linear two-point boundary value problem of the order
2n has to be solved.

In the original pursuit-evasion game described in this section the number
of state variables (Eqs. (2)-(5)) is very large sinte a,vp, p'dprag are
all three-dimensional vectors and CP'CE may even have more components.

The modelling effort, discussed in the next section, is aimed at reducing
the number of state variables while retaining a2 truthful repreéentation of the

prominent features of the original problem.

IIXI. MODELING CONSIDERATIONS

The kcy to a useful solution of any complex p:obiem is the skillful
choice of the simplest possible model which preserves the salient system prop-

erties under investigation. Guidelines to this effect are suggested by the

following critical discussion of some, frequently used, assumptions,

A. Simplifying Assumptions . e e

1. g!g-dimensional motion

Restricting the motion of the players within a plane,results in a
reduction in the number of the state variables (at least by 5). In many cases
the 2-D analysis provides an initial insight into the problem. However, some
inherent characteristics of the original 3-D problem may be absent in a 2-D

model. Therefore, results of 2-D solutions must bu carefully examined if a
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“real world”-3-D interpretation is required. This point can be well illuctrated
by the example of optimal missile avoidance. The first used 2-D model [11)

led to.discover the "bang-bang" nature of the optimal maneuver, but only a
later 3-D analysis [12] could define its optimal direction, which is perpen-

dicular to the plane of collision.

2. Point-mass approximation

wWith this approximation vehicle dimensions and rotational degrees of
freedom are disregarded. The vehicle is represented by its center of gravity.
The complex noh-linear dynamics of the vectors CP'CE in (5) can be replaced
by linear differential equations and often represented only by first order

time constants as:

. (22)
TE CE + CE - v

The disregard of vehicle dimensions has, however, a serious limitation. If

the distance of closest approach is of the same ord;r of magnitude as the size
of the airplane involved, the very concept of closest approach defined by (12)
may loose its meaning. However, for a case resulting in very small or very large

miss distances, the point mass approximation is a useful and justifizble as-

sumption.

P T

"
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3. Instantaneous control response

- o . S S T - - = — -

This frequently used assumption disregards the time lag in the control
inpats by setting TP = TE = 0 in Eq.(22). This assumption leads to the
conclusion that, for pursuer's speed and maneuver advantages :VP >v_, ap z_aE ;
a “point capture" would be possible {13, 14]. This conclusion is disapproved
by the morebcomplete model. Thus, in problems where miss distance calcuia-
tion is important, rthe assumption of "instantaneous response"” is inadequate.

4. Constant speed

This assumpticn rarely represents physical reality. It can, however,
be justified in problems of short duration, where the erffect of velocity
change is negligible and for vehicles in which the longitudinal component of
the acceleration is much smaller than the lateral ones. 1In such cases constant

speed models give a fairly good description of the main phenomena.

5. Traiectorz linearization

- s o o o T e e o e o e e A e e

In some pursuit-evasion problems there exists a reference trajectory
allowing linearizatioﬁ of the originally non-linear kinematics. Collision
course (see Fig. 2) is an example for such situation. frajectory lineariza -
tion is justified oniy if the total direction change during the engagement

is not too important.

A valid trajectory linearization combined@ with the constant speed as-
sumption allows to describe the relative motion by a set of linear differen-

tial equations. Since in this case ‘he velocity components along the re“erence




- 12‘-
trajectory are almost constant, changes in this direction can be expressed as
a function of the time, resulting in a further reduction in dimensionality.

Moreover, in such problems the capture time "tf' can be determined.

B. -Model Formulation

Any deterministic pursuit-evasion process can be divided into three
phases: the initial "acquiéition" phase, the main "pursuit" phase and theb
"end-game." In the main pursuit phase the distance of separation between the
players is reduced and the state of the game approaches the target Qet. If
the initial conditions of the engagement are unfavourable to such "pure pursuit”,
the "acquisition” phase becomes important. This phase is characterized by |
significant directional changes of the trajectories. As the game nears its
termination, the attention of the "players" is focused ¢n the conditions im-
posed by the terminal constraints. Consequently, the cp£ima1 strategies of the

"end-game"” can be very different from the ones used in other phases of the game.

These observations indicate that the best mathematical model is not neces-
sarily the same for all phases of a pursuit-evasion game. As examples, let
us examine the two air combat problems, well suited for zero-sum differential

game formulation, indicated in the Introduction. \

1. Missile vs. Aircraft Game \
\

The majority of s-ich engagements (excluding the type of &dogfight mis-

siles,"” to be mentioned later) can be characterized by:

e
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a. The pursuer has a definite advantage both in speed , vp > vz

r >
and mneuverahility, ap aE .

b. The launching platform (either airborne or ground based)

provides generally favourable initial conditions for the pursuit.

C. The outcome of the engagement can be measured by the "miss
distance" (distance of closest approach), thus termination of the game is

guaranteed.

In such engagements, the emphasis is obviously on the "end.game" and as
a consequence of (b) the acquisition phase can be neglected. The mathematica |
nodal of this problem can be based on traj?ctory linearization as well as on
constant speed, point mass approximations, but cannot assume instantaneous
control response of the pursuer. This mathematical model, both in a 2-D or
a 3-D version, yields linear time dependent differential equations of motion.
Let u3 remark, however, that the validity of trajéctory linearization and the

assunption neglecting vehicle size has to be verified "a pomsteriori.”

For future dogfight missiles of the ASRAAM type, the acquisition phase
is of major importance. To describe this phase'a non-linear model must be

used.

2., Aircrzft vs. Alrcraft Interception Game

In this engacement the lack of air to air weapon forces cae of the planes
to assume the role of the evader. The pursuing fighter may or may not have

speed or mancuverability advantage relative to his opponent. Initial conditic
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may or may not be favorable for interception. As a consequence, in this
game the acquisition phase is of major importance. The interception will

be successful if the pursuer can reach the evader at ‘a distance

determined by the "firing envelope” of its weapon within a finite time inter-

val. If termination, as defined above, is possible, the natural cost

function of this game is the time of capture.

Since the maximum firing range of modern air to air missiles largely
exceeds the radivs of turn of combut airplanes, the “end-game™ phase in

such engagements is hardly noticed.

In the aircraft interception game there is no requirement for accurate
miss distance calculation. Consequently, the assumptions of instantaneous
control response and point mass approximation can be adopted. Since the
very nature of the acquisition phase does not allow trajectory lineariza-
tion, game dynamics remains non-linear. The validity of constant speed and
2-D models strongly depends on problem parameters and has to be examined
separately. These two assumptions seem to be tied together. In previous
works [15,16], it has been shown that the optimal pursuit evasion game of
constant speed vehicles is confined to a plane. This result may not be
true for variable speed airplanes even if the initial conditions are two-

dimensional.
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C. Selection of Solution Techniques

. Pﬁrsqit-evasion games of valid linear mathematical models can be analyse¢
by the powerful methods of linear differential game theory.. Though attention
in the past has beeﬁ focused on linear games with quadratic pay-off functions
and unbounded controls (17, 18, 19, 20}, éx&mples of terminal cost linear

games V‘*ﬁ hard bounded control were also solved [21, 22).:

In'Section IV such latter version is applied to solve the missile vs.
aircraft end-game with realistic dynamics. In the sequel, implementation

of the results for missile guidance as well as for missile avoidance are
. ;

{

discussed and the validity of the linear model is examined.

For problehs where trajectory linearization cannot bé justified a non-
linear two-point boundary value problem remains to be solved. Exact solu-
tions in closed form exist only for problems with very 10& dimension [1,
23, 24) using oversimplified mathematical models. For a pt;ctical applica-
tion, however, an approximate solution of a near real uorldimodel seems much
more attzgctive. In recent years several non-linear two pgint boundary
value problems originating in optimal control, including préblems of air-
craft performance optimization, have been solved using the approximationv
technique of singular perturbations (SPT) [25, 26, 27, 28]. Linear dif-
ferential games of high dimensions were also treated by the same method [29,

30, 31]. 1In a recent study [32], it was proposed to apply the method

of singular perturbations to non-linear differential games.

' In Section V the basic notions and principles of SPT are outlined and

the application for non-linear pursuit-evasion games is discussed. The
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merits of the proposed approximation technique is demonstrated by a simple

(2-D, constant speed) example.

The method of SPT has, however, straight-

forward extension for more realistic (variable speed; 3-D) models.

IV. LINEAR DIFFERENTIAL GAMES WITH BOUNDED CONTROLS

Linear differential games (LDG) have been extensively investigated in

the last 15 years on both sides of the iron curtain [17-20, 34-38].

However,

tue potential of LDG technique to solve realistic pursuit problems (i.e.,

games of terminal cost with bounded contxols) was only recently realized

{21, 22, 39-41]. 1In order to demon.“vate its effectiveness as an analyti-

cal tool, the LDG technique will be applied in this section to solve the

missile vs. aircraft engagement described in III.B.l. The solution has a

clear geometric interpretation which enables to discuss the implementation

of the optimal strategies as well as the validity of the linear model.

A. Formulation of the Missile vs, Aircraft Game

Based on the description of such an engagement given in the previous

section

(III.B.1) the following set of assumptions is adopted:

1) Both pursuer and evader are considered as point-mass wvehicles.

2) The spee& of each vehicle is constant, the pursuer being the faster

(VP/VE > 1).

3) The relative motion is three-dimensional (See Fig. 3).

T e e W ot e b A, Kt 7 s Lnien




4)

5)

6)

7)

8)

9)

10)

11)

-17 -

Gravity, having no effect on the relative trajectory, is neglected.
The initial conditions of the puisuit are near to a collosion course
(See Fiy.2).

The relative trajectory can be linearized around the initial

line of sight vector.

The performance index of the problem is the miss distance (distance

"of closest approach).

There exists per’-ct (complete and instantaneous) information on the

state variables :nd the parameters of the problem.

The lateral acceleration commands of both vehicles are bounded by
circular vectograms perpendicular to the respective welocity vectors
(aP/aE > 1). This assumption will be slightly modifiéd in the course

of the solution.

The pursuer's response tb its acceleration command is approximated

by single time constant TP

Evader dynamics can be approximated by a first order time constant

TE -

Assumptions 2, 5, and 6 lead tc a set of linear differential equations.

Moreover, as a consequence of the linearization, the relative motion in the

line of sight direction (the X axis) is of constant speed and the duration

of the game t_ is determined.

£

,—
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The state vector of this problem has eight components

A . .
z = col {Y,Y,YP, E z,z,zp,zE} (23)
where
Y=y -
(24)
z=12, "2,

The dynamics to be considared is perpendicular to the line of sight. In
this coordinate system the circular vectorgram, perpendicular to the respective
velocity vectors (see Ass. 9), becomes eliptic as depicted in Fig. 4. Ac-

cordingly, the admissibie control sets u and v have the form

T 2
u={u: uRu S.ap}

(25)
v={v: vTSv 5,a2}
E
with
2
1/cos XP(O) 0
R =
_ 0 1
and ‘ (26)
2
1/cos XE(O) 0
S =
] 1

The game dynamics can be now describec. by

e g e

L T e O S
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z = Az + Bu + CVv 2(0) = z, . @n
u€y,veEv

with -
"0 1 0 0
A = -..-.oo.. H Al »
: -1/
0 A o o -yT, o
|0 o o -yt |
Y © 0 1 0.0 0 0 ©
'lo o 0o 00 0 1 o_

T 1
C =

E]LO O O O

The pay-off of the game is defined by (see Ass. 7)

g=1Ip z(tf)| (28)

with

It is required to find among all admissible strategies {p(*),e(*)} ,~
such that u(t) = p[z(t),t], and v(t) = e[z(t)t]’- an optimal pair

{p*(*),a* ()} satisfying the saddle point inequality

J(z,t,p*,e) < J(z,t,p*,e*) éJ‘(z,t) L J(z,t,p,e*) (29)




ol
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Equations (27) and (28) can be simplified by using the following transforma-~
tion:

y(t) =D ¢(tf,t)z

B(t) = D 9(t,,t)B | . (30)

C(t) = D &(t ,t)C

where ¢(tf,t) is the transition matrix of the linear system z = Az sat-

isfying

d ‘ .
It ¢(tf.t) = -¢(tf.t)A (31)
By Eq. (30) and (31) the original formulation of Eg.(27) and (28) becomes

y = B(t)u + C(t)v , y(©0) =y (32)
u€Uu veEvV

and.
J = ly(tf)l ‘ (33)

The new 2-D variable y can be interpreted as the vector of the "pre-

dicted miss distance.” In this particular problem

¢1(6) . 0
O(tf,t)=¢(tf-t,0)é¢(6)= .......E...... (24)
0 I¢1(9)

"9" being the normalized "time to go! defined as




-2] ~

f .
3= == (35)
P
and
~ 2 . 2 -1
1 rpe L wp(e) ~Tp WE(S)
0 1 Tp(l-exp[-ﬁl) -Tgtl-exp(-CrP/rE)el)
¢1(6) = (36) .
0 0 exp[-0] 0
0 0 0 exp[-(Tp/TE)el

the functions VbP (6) and WP(O) are given by

wp(e)'-é-e«rexp[-e] -1>0,V0>0
37

A
b (&) =(1,/7,)8 +expk(T,/1)8) - 1>0, YO >0

According to Egs. (29) and (36) the components of the predicted miss distance

are
1 . 2 ve - 2 oo o

[, Y+ T Y+ T, Yp(8) Y, - T, ¥ (0) Yo
y= - | (38)

. 2 oe 2 e

Y, ZH+THZ+T, U0 Z, - T, Vg (®) 2,

e and the 2)Q matrices B(t) ’ C(t) have the_ fom
Ble) = 1, ¥, (0 I,

(39)

Cit) = - Te wE(e) 1,
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B. Solution of the Game

The Hamiltonian of the transformed game is

Hiyohot) = AT7 = AT (Byu + Cle)el (40)
where A(t) has to satisfy
a oM | |
dt = - ay =0 . ) (41)
ylt,)
£ : (42)

\(tf) = grad J = W

Assuning that A(t) is continuous (this hypothesis must be verified)

Eqs. (41) and (42) yield
(t) = = . (43)
IY(tf)'

[ 4
£ bpeing a constant unit vector along each optimal trajectory.

The candidate optimal strategy pair can be ncw determined by

win ETB(t)u = E£B(t)p*
vw€u | : (44)

max ETC(t)v = ETC(t)e*
vEeEv

yielding
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ik
T P
p*(y,t) = -a
PMP 'MPE' ,
. (45)
ot
e*(y,t) = -a
" P IMEEI
with
cos xp(O) (o] [-cos xE(O) 0
= H = (46)
ki 0 1 ME L o 1 :

Since E is a constant unit vector, trajectory equations can be directly
integrated leading to determine the cptimal coat J* (the Value) as

well as the direction of the vector E by

J*(y,?) = sup {ETy - a(e)inpel + B(e)luE;I} (47)
with
8
;| 2[5 - v
a(d) = a T, wp(n)dn N wp< ) (48)
0
and
° 2 TP 2 62
B(A) = aETETP J wa(n)dn n ’ETE [(-{,-;) 5 - wE(e)] (49)
0

In order to verify :hat the candidate solution in Eqs. (45)-(49) is
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indeed optimal, suffiriency conditionsh&vealso to be satisfied. 1In previous
studies [9, 10] it was proven that the existence of smooth isocost surfaces
("tubes") generated by tane candidate solution, guarantees saddle point

optimality.

Analysis of the present solution has shown [39], that in some subregions
of the game space the isocost surfaces are only piece-wise smooth, A
detailed analysis of such singular phenomena, induced by the eliptic vecto-
grams [40), is out of the Qcope of the present discussion. Moreover, the
singularity can be avoided by a slight modification of the admissible control

set. Let us replace Egqs. (25) and (26) by

G ={u: uTu'S,“z}
(50)
$={u: viv <32
E
with
- - > A = .
a, = a, cos xP(O) 2a =a, (51)

resulting in circular vectograms for both players. This formulation is an
exact one for "head on" or "tail chase" engagements, where cos XP(O) =1,
and represents a slightly pessimistic assumption for the pursuer for other
initial geometries. Adopting this modification, the solution of the game

becomes

B*(y,0) = -ak

" (52)
é*(y,0) = -aEE
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with
Ea..lx___r(e) '¥Ye>0 | . (53)
y (8) = :
and
J*(y,0) = Iyl - a(@) + B(6) (54)

The isocost surfaces of the gAme have circular cross sections for all
68 and they are smooth unless they intersect the 6(y=0) axis. This observa-
tion leads to define a "minimal tube,” [10, 37, 35]. This is the isocost
surface of Sf(y,é) =c wvhich is tangent to y = 0 . The point of

tangency 6 = 68 can be determined by solving

alyl _ . 2 . -
T aptp wp(e) aETE‘rP wE(e) 0 (55)

which leads to

BTp ¥p(0)) = 25Ty V(8 (56)
or more explicitly
)4
6 = -:.—P- U)P (es) + T—E (l-exp[T—' SSD . ) (57)
S > P E '
This transcendental equation has a positive root (SS > 0) only if
a T
;E < ?E (58)
E E

If this inequality is satisfied, there exists a "minimal tube" of
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4\* e i
Jm(Yl ) = c, v th
~ 2 A
, T 6T ,a
c = a 12 [.al w (e ) (1 - --E-) - _E. (——’; - 1)] (59)
m EP ag P s : TP 2 ap

A cross sectionof such "minimal tube" is shown in Fig., S. The values

of 8 and ¢ -A-c/a‘l'z
s m

/3Ty are depicted in Figs, 6 and 7 as the function

A

of the maneuver ratio SE/aP and the time constant ratio TE/TP o

If inequality (58) is satisfied, the (y,0) game space can be de-

composed to ° ana by defining:

Uo Q the interior of the "minimal tube” for 6 > 98 and

1 as its complement.

The solution of the game (the optimal strategy pair and the Value)
are given in 01 by Egqs. (52)-(54). 1In Uo any arbitrary admissible

strategy pair is optimal zad the Value is constant, given by (59).

If inequality (58) is not satisfied, point capture can be guaranteed
by the pursuer in a part of the state space. For such cass the decomposi-

[ ]
tion of the state space is slightly modified by defining 170 as

2" £ {iy,0) : ly@1 < ly_@! =&® - 8@} (60)

The optimal strategies in this domain are arbitrary and the Value is zero.
Outside this region ('y(9)| > |ys(6)|) the optimal solution, expressed

by Eas. (52)-(54), remains valid.

e 1 s R iR e S b e
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C. Implementation and Validity

The closed form solution of the missile vs. alrcraft game obtained

in the previous subsection is based on perfect information (Ass. No. 8)

ig@lving :hat all state variables can be instantaneously and accurately
‘measured by both players. Validity of this assumption has a major impact

on the implementation of the optimal strategies. B

The comporents of the "predi ‘ted miss distance”™ vector y in BEq. (38)

are composed of 3 parts of different origin. The first two terms form the

respective components of the "zero effort miss,” proportional to

the turning rate of the line of sight, g .

3 2 .
Y + rpev - vc(rpe) ay
{61)

° 2 .
2z + Tpez = ve(rpe) oz

- X ’
f v‘= baing the closing speed of the interception defined by (see Fig.2),

Vv, =V, cos xP(O) = Vg cos xz(o) = const. (62)
: The other two terms of Eq. (38) are the properly weighted lateral

accelerations of the players. Acceleration can be easily measured onboard

a flying vehicle but its estimation from another moving platform is a very

complicated and tedious task. Based on this preliminary observation, the
implementation of the analytical results of the previous subscction will

be separately discussed for applications in optimal missile gquidance and

missile avoidance.
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1. Optimal Missile Guidance

Measurements of the line of sight rate & ., as well as the
missile's own lateral accelerations.has been of common practice in almost
every quidance system. Estimation of target acceleration by Xalman filters
has been also contemplated for some modern weapon systems in order to im-
prove their performance. A recent study [43), however, indicated that such
*optimal” guidance schemes are very sensitive to parameter variations and

may not be cost effective.

Renouncing measurement (or estimation) of target acceleration by the
pursuer is equivalent to assume instantaneous evader dynamics. Substituting

T, = 0 into Eqs. (57) and (58) yields [41)

E
0 E 0
2 %
z[‘p ’o(‘p )] |
c =a Tt |l—¢p 08 )~———={—=1 , (64) \
mo aB P aE P s0 2 aB

These results represent the "worst case"” analysis for the pursuer.
The proposed strategies can serve, however, as directive for the optimal
guidance law synthesis. The existence of a "minimal tube” and consequent
decomposition of the (y,0) state space are of major signi;icance. The
region Do , which is dominated by the pursuer, is characterized by small
deviations from collision geometry and not too short pursuit times (6 > 9s ).

0
Most trajectories start in this region (see Ass. No. 5) and for all of them

e e e o <y
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the predicted miss distance can be reduced to zero at 6 = 68 , against

. 0
any admissible evasive maneuver, using an arbitrary admissible pursuer

strategy. Thus, the optimal guidance law can be selected according to

some other practical design considerations (as minimal control effort

for example) and not by miss distance minimization. A time-varying linear
feedback control lahuproposed in a previous 2-D' study [225 can be'an.at-
tractive choice. (Note that the computation of the “time»to_qo,"which
requires méasurements or estimation of range and range rate, 1s.a rela-
tively simple task for many guided missile systems.) The guafanteed'misa
distance <. in Eq. (64) can be réduced by increasing missile maneuver-
ability and decreasing its time of résponse. The final value of cm’ shoulc¢

serve as a guideline for warhead design.

2. Missile Avoidance

The conclusions of the analysis for missile avoidan%e are not
encouraging. In cases which involve well designed missiles,inequality (58)
is generally not satisfied. If thé guidance gystem is capable qflméasuring
or estimating the accelerations of the evader with adequate precision, zero
miss distances are predicted for mcst initial conditions against all evasiw
maneuvers. (In such cases aircraft survivability can be enhanced only by

denying information from the missile).

Nevertheless, if it is known that the missile guidance law does not
rely on estimation of evader acceleration, the analytical solution of IV B

provides some clue for a practical evasjon strategy. The proposed strategy

o2 B T R A N T AU e B 0 g, n. Ay T e . 0 A Yer SIS e % S s e

/ ; | v 1 o/
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consists of a well timed "hard" maneuver in an optimal direction and does

not require any elaborate measurement. According to the concept of the

"minimal tube,” maneuvering at 6 > 8 in ?° does not contribute to the

final outcome, because the pursuexr can guarantee zero predicted miss

distance at 6 = es . At that point (y =0, 68 = Bs ) , however, evader
0 0o
maneuvers become effective. The optimal direction of the maneuver can

be determined by inspection of Eq.(47) and the original elliptical vecto-

grams in Fig. 4. It can be directly concluded that the miss distance is

maximized by

£*T < (0, *1) (65)

indicating that the optimal maneuver direction is perpendicular to the

plane of collision (see FPig. 2) which is determined by the initial condi-

tions.

The timing of this terminal maneuver need not be very accurate. It

is sufficient to start the "hard" turn at some 0 2.65 in order to

c given by Eq. (64).
™o
the proposed very simple avoidance strategy is optimal.

0
guarantee a miss distance of In this sense,

3. validity of the Linearization

The main limitations of the analytical solution presented in
IV B lie in the assumptions of perfect information and trajectory lineariza-
The implications of partial information were considered in the

tion.
previous subsections dealing with implementation of the optimal strategies.

- - e i
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Other aspects of information imperfections are discussed in some detail
. in a recent paper [39]. Ih the following, the validity of trajectory

linearization, which is essential to apply LDG techniques, is examined.

Linearization is based on the hypothesis (see II.A.5) that the
directional changes during the engagement are not importint. This assump-

tion is valid {41] if two conditions are satisfied:

a. The direaction change of the evader during the period of one time
constant of the pursuer, defined also as the "dynamic similarity pazapeter'

[(44]) of the pursuit-evasion problem

(66)

<1
"

o e
(o]

is small.

b. The optimal solution does not predict excessively long maneuvers |

any direction.

The first condition can be observed before the linearization is adopte

The second one, however, requires an "a posteriori" verification.

For trajectories starting ocutside the "minimal tube” the second condi-~
tion is generélly not fulfilled. 1In this region (01) o constant direc
tion naneuver? are optimal (see Eqs. (45) or (52)), leading to significant
changes in interception geometry, unless the duration of the engagement is
very short. F\ initial conditions in Dp the validity of the lineariza-

tion depends on|the actual strategy selected by the evader. Either a passi
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evader behavior, based on minimum control effort consideration, or periodical
~evasive maneuvers [45] will maintain the initial geometry and consequently
justify linearization. The short terminal maneuver initiated at 6 = es

(see IV.C.2) induces only minor direction changes.

It can be thus summarized that the linearized kinematic model provides
a Qalid description of the missile vs. aircraft "end game" and engagements
starting (and remaining) near to the initial collision course. For other
initial conditions the original non-linear trajectory equations have to be

solved.

V. SINGULAR PERTURBATION TECHNIQUE FOR NON-LINEAR PURSUIT-EVASION
GAMES.

A. Preliminaries

The technique of singular perturbations (SPT) has been successfully
used in aéproximate solutions ofnon-linearoptimél control problems [25-27].
The first attempt to apply the same technique in.non-lineaz-zefo-sum dif-
ferential games is a very recent one [32]. In this sectién the basic
principles of the method and its application for non-linear pursuit-evasion

games are briefly summarized and illustrated by an example.

A dynamic system has a singularly perturbed structure if it involves
a small parameter € in such a way that the state vector z € R" can be

decomposed to subvectors x € R® and y € BT ™ and state equation

e
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z = Flz,u,v,€) 5 z(ty) =z, (67)
can be written as
x = £y, uvE) 5 x(t) = 2 (68)
(69)

€§ = g(X,¥,u,V,E) ; Y(to) = Yo

The existence of the éinqnlar perturbation parameter € is always
linked to the time scale separation of the state variables. If the
functions £(*) and g(*) have the same order of magnitud- it is clear
that the rate of change of y is much faster, than the variations of x.
There are however many non-linear dynamic cystems of well known time
scale separation between "fast"™ and "slow" variables, for which the
direct identification of the small parameter is a complex task. In
such problems {e.g.: aircraft performance optimization {25-26]) the
singular perturbation parameter can be introduced artificially. The

technique used in such "forced” singular perturbation (FSPT) problems

is similar to the genuine SPT.

1f the singular perturbation problem is "well posed”, the solution
of the reduced order system (where € = 0) is a goqd approximation of
the exact solution of the 6riginal problem, however, it generally -
cannot satisfy the end conditions of the fast variable. This discrep-

ancy can be bridged by "boundary layer” solutions obtained using a

stretched time scale
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T=—2 0

For a uniformly valid apptoxim;tion, the boundary layer solution
must be asymptot?gally stable and should match the reduced order solu-
tion. If this condition is satisfied, a uniformly valid additive com-
posite solution cap be synthetized and serve as a zero-order approxima-
tion. 1If more accuracy is required, the Qariables can'be expanded into
asymptotic power series and higher order terms can also be taken to

account.

The most attractive feature of SPT is that,if the original problem
can be decomposed (assuming complete time scale separation) to succes-
sive boundary layers with a single active state variable in each, the

solution is obtained in a feedback form. Moreover, in such a scheme

genuine SPT and FSPT yield identical zero-order_results.

|

Such feedbackgsolutions have a great potential for real time air-
borne applicationsé The method of complete time separation is very
effective for probiems of initial boundary layers. Recent studies
{46, 47) identified difficulties in oktaining feedback solutions for sin-
gular perturﬁation problems of terminal boundary layer. Structures of

mathematical models for which SPT fails were also observed [48].

The application of SPT to differential games is more than a mere

extension. Singularly perturbed linear differential games were

investigated in the past [29 -31], revealing the problem of "ill posedness"”.

Though it has been shown [29], that singularly perturbed zero-sum linear
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-differential games are well posed, no such proof has been given for non-
linear games. Application of SPT to non-linear zero-suﬁ ditferential
games is discussed in detail in a recent study {321, 1In the following
subsections the main results of the investigation are outlined and

implemented for a non-linear pursuit«evasion game.

B. Singqularly Perturbed Non-Linear Differential Game

1. oOriginal Game

Consider a singularly perturbed autonomous non-linear dynamic

system, controlled by two competing players (P, E), described by

x = £06,y,u,v,E) 5 x(E) = x, (71)

€7 = g(X,7,u,v,€)  ; ylt) =y, ' (72)

€ being a small parameter, x € & , v € , Xty € R .

It is required to find an optimal strategy pair p*(',ege'(',e),

selected from the set of admissible and playable pairs p(+,e) ,e(*,¢),

such that

u(t,e) = p{x(t),y(t),e} u€u
(73)

vit,e) = e{x(t),y(t),e} vVEV

transfers the system from the given initial conditions to a terminal
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manifold

PIx(t,),€] = 0 (74)

optimizing [P is the minimizer and E is the maximizer] the terminal

cost function

J = G[x(tf).el (75)

Note that in this game both the terminal manifold and the coat

depend only on the "slow" components of the state variable.

Assumption 1l: The singularly perturbed differential game defined by
Eqs;(71)—(75) has a saddle point solution characterized by the triplet

fp*(*,€),e*(*,€),J3*(*,€)] in a closed domain D of the state space R"

(J* being of the class cl).

2. Reduced Game

- - - -

Let the reduced order game be defined by

= £0°,y°, %%, 00 x(tg) = xg (76)
0 = g(x®,y°,u°,v",0 | (1M

with xo € RF. The terminal manifold is
vixlie,01 =0 (78)

The cost function is given by




i
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J = g[xo(tf).Ol (79)

The set of admissible and playable strategy pairs for this game

Po(‘,O) and eo(‘,O) are such that

o

w(t,0) = p°Ix°(t,0),0) u €u

(80)
e°[x°(t,0),0] vC €y

"

vo(t,O)

transfer the system to the terminal manifold.

Assumption 2: The reduced order game cefined by Egs. (76)-(80) has a
sad-lle point solution, characterized by the triplet [p*°(°,0),e'°(',0)

. \ 1
J*o(xO,O)] in a closed domain e Rm . (J*obelng c’).

If both assumptions (1 and 2) hold, it can be asserted that for
€ + 0 optimal trajectoriecs of both games approach each other

everywhere, except for the fast variables near to to . In other words:

For each point x*o(t,o) on the optimal trajectory of the reduced
game, there exists a point x*(t,£) on the projection of optimal trajectory

of the original game to Rm, such that

x*(t,€) = x*(£,0) + O(€) VtE€ [t,,t] (81)
The fast variable in the reduced game is computed from Eq.(77)

v+ (6,05 = oix*(£,0),u*®(£,0)v*° (¢,0) ] (82)
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and generally,
o
]
y (to,O) * Yo (83)
As a consequence, a relation similar to Eq.(81)
y*(t,€) = y*°(£,0) + o(€) (84)

~an hold only on an interval not including t. . The disagreement of

0
Eq. (83) can be overcame by introduction of an initial "boundary layer”

game.

3. Boundary Layer Game

The zero order initial boundary layer game can be defined by

the dynamics

dy
i i 4 i
dTi- q(xo.y 2 ,v,0) 3y (0) = Yo (85)

where yi € R®™™ and t is the stretched time scale given in Eq.(70).

The cost function of the game is \

- \

\
i i
g o= I A:(O)f[xo,yi(T,O)ui(T,O)vi(T,ON]dT (86)
0

A: being the gradient of the optimal cost in the reduced game. The

admissible strategy pairs are pi(°,0)ei(-,o) such that

RS e wvient ol v © el e M S TR e s
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“1(Tv°) - pi[xo.yi('l‘,O) pO] ’ ui [ ]
| (87)

i, = eyt vew

generate a solution of Eq. (85).

Playability of the boundary layer game is defined to guaranteae
asymptotic matching. A pair [pi(',O)ei(°.0)] is playable if it leads
a trajectory startingy at Yo to the isolated equilibrium point yo(xo)

obtained from the solution of

glx,ry° (x ) u”,v°] = 0 (88)

Moreover, the optimal trajectory has to satisfy

lim y*(1,0) = ¥° (x,) (89)

T o’

Assumption 3: The boundary layer game has an optimal strategy pair

[P'i('.O),e*i(’.O)l satisfying (89).

4. Composite Strategy Pair

Supposing that Assumptions 1, 2 and 3 are all satisfied, the
following zero-order cdmposite strategy pair is proposed as a candidate

for the original singularly perturbed differential game?

G(tlo) = slx'Y0°1
(90)

‘\;(t,O) - ;[errol
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such that the composite control funrtions u,v satisfy

3(t,0) =~ ur®(t,0) + wrd (5, o) - CP
€ u
(91)
~ o i/t
v(t,0) = v* (t,0) + v+ (e . o) - cp,
for all t € [to,tfl.

CPu and CPv are the common parts of the reduced order and boundary

layer controls cancelling out by the matching process.

The proposed strategy pair is obviously playable and can serve as

a suboptimal approximation.

5. Extended Value

Let us define the outcome of the original game played with the
composite strategy pair proposed in Eq.(90) as the Extended Value of the
game,
5(e,€),8(+,8)] = GIR(E),€] & T (x,y.€) (92)
14 ’ 14 ’ X f ’ e ol 0 B

,J[xo.yo

The relationship between this suboptimal ocutcome and the exact optimal
cost, i.e., the "Value" of the game J'(xo,yo,E) is determined by the

following theorem.

THEOREM 1. Suppose that Assumptions 1, 2 and 3, hold. Then the

Extended Value of a singularly perturbed zero-sum differential game,
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obtained by using the candidade strateqy pair of Eq. (90), is bounded

in both sides.’

J'(xo.yo,e) - wE(e) < Je(xo.yo,e) L J'(xo,yo,e) + !pP(e)_ (93)

Vg (€), and Vp(€) are correction terms which satisfy

lim lPE(E) = 1lim wp(e) = 0 (94)
€E+0 €E+0

This theorem, proven in Ref. {32], and illustrated in Fig. 8, has two

direct consequences,
;

' COROLLARY 1. The ExtendedValue of asingdlarly perturbed zero-sum

differential game satisfies a weak saddle jinequality expressed by

-~ b ~ " A ~ -
J(xo.yop,e,e) - le(e) < J(xo.yo,p,e,‘e) = qe(xo,yo.e) S_J(xo,yo,p,e,e)
i

+ lbp (e) (95)

which is a combination of Eqs.(93) and (16).
Substituting Eq. (94) into Eq.(93) leads to

COROLLARY 2. ‘The Extended Value oi a singularly perturbed zero-sum

differential game tends as a limit towards the Value of the game as

€ approaches zero

lm J_(x.,y.,€) = lm J*(x.,y.,€) (96)
ero € 070 e»0 0%
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C. Application to Pursuit-Evasion Games

l. Game Characteristicé

acterized by the following:

by the players.

C.

ones.

d.

the players.

The dynamic equations of such game are
x(5) = %o

i = fP (xvypru) + fE(x'YEvV)

. yp(to) - YPO

Yp = 9plypew)

’ Yg(to) = YEO

Yg ™ qE(yE.v)

x € "2 yPERl . yEenl , wEucr ,

A Rt s

A class of frequently used pursuit-evasion games are char-

a.
the slow relative guometry and the fast variations of vehicle dynamics.

b. The dynamics of the slow variables are separately controlled

The dynamics of the fast variables are independent of the slow

The terminal surface is defined by the slow variables only.

vEVCR

There is a time scale separation between the variables describing

The fast variables are scalars and independently controlled by

L

97)

(98)

(99)
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Termination of the game (capture) is defined by

w(x(tf)l =0 ’ (100)

Let the pay-off of the game be the time of capture tf .

The Hamiltonian of the game is

T -
H=1+ Ax(fp + fE) + ;\Pqp + &gx (101)

.where Ax’ AP' AE are the respective gradients of the optimal cost de-

termined by the adjoint equations

of of : :

. aH v [%p E]

A‘A- - §;~u Xx [3;— + 3;—] 3 Ag(tf) = V grad ¥ v>90 (102)
of og :

* oH T P P

AP - - Wp- = - Ax fp - AP E;' H AP (tf) = 0 (103)
of 9g

2 oH T E E

A’ " - FE - - Ax s-y-; - AE -;E H Az(tf) = 0 (104)

The optimal control function u*, v* have to satisfy

min max H = 0 (105)

u€u veE€y
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2. Transformation to a Singularly rerturbed Game

-y ——— v - -

in‘many cases an appropriate transformation will lead to

define a small parémeter € multiplying the left sides of Egs.(9%) and

{99). If, however, the time scale separation is obvioug) €

inserted artificially. We shall pursue this forced singular perturba-

tion technique (FSPT), transforming Egs.(97)~-(99) and (102)-(104) to

Y= fp(x'YP:u) + fE(x:YE:")

€y, = qp(yp,u)

ey, = gE(yE,v)

and
: oH
Ax = - 3% ; Ax(tf) =
* oH
-€>‘P = - 3:’— H )\P(tf) =
. oH
EAE = - 5;; ;. XE(tf) =

x(to) = xo
y (t) =y
PO PO
yE(to) =Yg
0
V grad ¥ v >0

(106)

(107)

(108)

(109)

(110)

(111)

"Equations (190) (101) and (105) dd not change by the insertion of the

perturbation parameter.
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3. Reduced Game

Taking € = 0  the equations of the reduced order game are

obtained

= £,%yg®) + £.00y0 v, e = x, (112)

0 = g, lygsu’) (113)

0 = g5 lyg,u”) (114}

i: - - sgg : x:(tf) =Vvgrad Y, v > 0 (115

o= - A | - (e
P

0= - %g. | (v
E .

Inspection of Eqs.(113), (114), (116) and (117) indicates that yg T

y: have become additional (but not independent) control variables of

the reduced game.

Let the solution of the game yield the feedback controls u*o(xo
v*o(xo) and consequéntly y:[u*o(xo)] - y;o(xo) and ygolv'o(xo) P
- y§°(x°) . Generally these functions do not satisfy the initial cond*
tions of the original game. For this purpose the solution of the houn‘

ary layer game is required.

SUBARR B s S L e gd s p N e T
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4. Boundary Layer Game

Using the stretching transformation of Eq.(70) and taking

€ = 0 the equations of this game are

i
dx i
et oD x = const = xo . (119)
i
dy . '
P i i i
3{_—- = gp(yp,u ) YP(O) YPG (119)
i
dy,
E S O SR
el QE(YEoV ) yE(O) yEo : (120)
ﬁ-o-’xi; nst = 2°%(x ) = A° (121)
dt x  cons x 0 x5
at o€ —
p o e %p .1 %p
— e — e | cmem o AT e (122)
dart 3 i x ay]. P ayi
Yp P P
al Y 3q
E_oH T E i °E
T oL i ey, (123)
g dyg YE

It can be seen that since X: is constant, determined in the reduced
game, the boundary layer equations of each player can be solved indepen-
dently. From Egs. (119) and (122) using Eq. (105) a feedback solution

for u*i is obtained

i o

ut = u*i(y;.lx X)) '(124)

0 0

TR N v sad + o e e+ ¥ B N . 3 T g T 2 I s et S s e
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This solution has to satisfy also the condition of asymptotic stabilivy

[ ]
S N
Yo * I 9p (¥pr 0t )T = y2° bx) (125)
0 <

Similarly, the optimal control of the evader is also given in a feed-

back form
v o= w2 e (126)
S}
satisfying
o
i i - v#°®
YBO+ f qg(yz.v )ar Yp (xo) _ (127)

0

5. Composite Stratecies

Let us consider the following candidate strategy pair as

an approximation of the optimal pair of the game for all t € [to,tf]

u(t) = S(x.yp)

(128)
vit) = E(x.yp)
such that
ae) = ul(xe)l + “'1[‘0"’» -:-)] - wO) = Ty
(129)
-~ o i t o ~
vit) = v* [x(t)] + v* [xolyz (E)] -yt (’D) - V(X.Y!)
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in this particular case the composite control is identical to the bound-
ary layer control replacing the constant xo to the actual value of
slow variable x .
ulx,y ) = u*i(x y,)
*p i

i . {130)
G(x.yp) = v (x,yp)

Using this uniformly valid feedback strategy pair in the original game
(e = 1) it is observed that the termination of the independent boundary
layers may not coincide. The pursuer's boundary layer terminates at

t = tp determined by .

t
P .
~ o
Ypo + I gplyP.u(x.yp)]dt_- yp(x) (131)
%

~ where y:(x) is the solution of
g, lyg (x),u° )] = 0 (132)

Similarly, tE is given by

t
E .
———— v » o
yEo + I qE[yE.v(x,yE)]dt yE(x) (133)7
%
with
gglyg(x),vo(x)l =0 (134)

The effectiveness of FSPT in non-linear pursuit-evasion games is

demonstrated by the following simple example.

[PPSR A At LI Drpian #ON Tom et Fe B T < AaD A S b o e rnomet S e 2 s e e e
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D. Example of Aircraft vs hircraft Interception Game

1. Original Problem Formulation

The problem of interception of an unoffensive airplane by
an offensive one, described in some detail in subsection III B 2, can be

characterized by

(i) The initial iange of separation is large enough to allow a

"pure pursuit" phace.

(ii) The pursuer airplane is generally equipped with a missile of
larger "rcapture range" than the turning radius of the air-

planes. Consequently, the "end—game* phase disappears.

These features make this problem to be a specially suitatle example
for SPT application. For the sake of simplicity, a constant speed two-
dimensinpal interception will be considered. The method, however, is

equally applicable for variable speed and three-dimensional engagements.

The geometry of the pursuit in a plane is shown in Fig. 9 defining

the four state variables (R.O.XP.XE) .

The equationé of motion are

R = V_ cos (xE-G) -V, cos (xp-o) ; R(to) = R, (135)
. 1 .

o=z [VE sin (XE—q) -V, sin (xE—o)] : o(to) =0, (136)
ip = wu lu] 1 xp(to) =% (137)

o




T
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Xg = WV vl <1 Xg (tg) =XEO (138)

w. o, w are the maximal turning rates of the pursuer and evader respecti-

P E
vely.

The game terminates when the range beiween the players becomes equal

to the capture radius %
R(tf) = £ H R(tf) <0 (139)

The pay-off to be optimized is the time of “"capture"™ defined by

Eq. (139)
J=t (140)

S > = {4 > .
Capture is guaranteed if vp VE and a, “'pvp pd ag = mEVE

We assume that these conditions are satisfied. The Hamiltonian of the

problem is
H=1+ AR[VE cos (xE-o) -V cos (XP-G)] +

A
ag . .
+ = [vE sin ()(E-d) - VP sm(xp-o)] + prpu + AEwEv (141)

This problem belongs to the class of pursuit-evasion games analvzed
in the previous subsection. Its exact solution was obtained by Simakova,
more than a decade ago [49] and will ke used for comparison. In Ref. [32]
the system equations were transformed to a genuine singularly perturbed

structure with

i . . N . f
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L : (142)

In this subsection the FSPT version will be solved demonstrating the

equivalence of the two techniques for the zero-order approximation.

2. Forced Singular Perturbation Model

Since the rate of turn of the line of sight G is much slower
than the turning rates of the participating airplanes, xp and XE can

be considered as "fast"” variables.

The equations of this forced singularly perturbed dynamic system are

R = V. co§ (Xg=0) - V, cos (x,-0) R(t)) = Ry (143)
o_l . . _
o = ¢ [V sin (x.-0) -V, sin (xp=a)1 olty) = a (144)
Cip = wyu . Xp(t) = Xp (145)
. 0
EXg = WgV ' Xg (tg) = ¥g (146)
. 0
The set of the adjoint equations have the form
A
s _ _ 9 _Ta . o .
AR =" 3R R2 [VE sin (XE o) V, sin (XP'U) (147)
fo=-Mto v osin (x.-0) - v si
g 30 R P sin XP g Sin (XE—O) +
+ Y [ VE cos (XE-O) - VP cos (xp—o)l ; Ao(tf)= 0 (148)
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ei - - éﬂ. = - A_V_ sin (X.-0) + ig‘v cos (X ~0)
P axp 'R P xp R P XP
Aplt,) =0 (149)
EX ;-?_H_--A v in (-0 -io—‘v -0
E % R E sin (Xg=0) = 3" Vg 08 0=0)
' Xz(tf) = 0 (150)

The conditions of optimality which require Min Max H = 0

u v
yield
u* = - sign AP AP ¥ 0 (151)
v* = sign AE AE ¥ 0 (152)
Hx = 0 (153)

. The missing condition for XR(tf) can be cbtained from Egs.(14l) and

(153)
AR(tf) = 1/[VP cos (xP-O)f - VE cos (XE—G)f] (154)
3. Reduced Game
In the reduced game ( setting € = 0) we have from Egs, (145)
and (146)
w® =0 {155)
vl <o ‘ (156)




F . - . ::H o EE B M - S T — ——— U umac gl

These results}combined with the consequences of Eqs.(149) and (150)

with € =0
(o]
axp
H_ .0 ' : (158)
(o]
3xE :

indicate that in this aw:iliary game the active controls are xg and

x: . Eqgs.(157) and (158) lead to -

o
tg (x°-0°) = tg (xo—oo) P M. tg a® ‘ (159)
P E 0,0
R
R
resulting in
Xg = X: =a®+o° (160)

Substituting Eq. (160) into Egs. (147) and (148) yields

o Ag o
XR = ;2- (Vg-V,) sin @ (161)
AO
: X: - (V=Vy) [A; sin o° - ;—f—)’- cos a°] (162)

The brackets in Eq. (162) are zero due to Eq.(157) and (149), resulting in
° o '
AO = const = Ao(tf) =0 (163)

and consequently, using Egs. (154) and (160)

Y s b s 4+ 5 AR gk 5 Nt M L s




z° ol
g " const =

l/(VP-VE)
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(164)

Moreover, substitution of Eq.(163) into Eq.(159) determines

a*® = 0

and the optimal control functions of the players are

o

x*P = x§° = o°(t)

(165)

(166)

Substitution of Eq.(166) into the equations of motion allow their

integration

oo(t) = const

o
R(t) = Ro

- (VP-VE) (t-to)

4. Initial Boundary lLayer Game

(167)

(168)

The set of equations for the initial boundary layer yields

i
dr i
at ‘f O-)-ﬁw
i
do i
at = O 30

s

—— IR ui .
dart wP v

i
e o
drt E

e

e e ot p et 4

f const = Ro

= const

x; (0)

44444 R S A A bt 15 i

(169)

(170)

(171)

(172)
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i
R i .
" oV AR = const o _ (173)
al s
T " Oéka = const (174)
i i .
a i A
P aH i i %g i d
Fr_.-.a.).(;.-ARVP,in (xp-qi)-pavpcos (xP-fJ) (175)
i i
ax i A
E ot i i g i
-dTr- - - TX-E- - AR VE sin (XE-&) - "-'R VE Cos (XE d‘.) . (176)

The optimal control functions of the boundary layer are obtained
from Eqs.(151) and (152) )
u‘i = - gign X; (177)

vl = sign A; ' ) (178)

Matching of the constants of integration with reduced order game leads

to

(179)

Substitutionof these constants and the optimal control§ into Egs.(171),
(172), (175) and (176) results in two sets of indepgndent equations,

one for each player (as predicted previously).

The pursuer's equations are

i
X sign A} . 1) = - (180)
art P xP <+ XP XPO

e e ET— e R N PRSP htia et
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d v

daTt VP-VE

sin (x;-oo)

Similarly, the evader has

i

EZE = sign Ai ) xi(O) -

at o “e E . - Xg Xzo
i

EEE = ’ sin (xi-Oo)

dt VP°VE E

It is easy to see [32] that stable solutions raquire that

. i i_o
sign AP = sign (xP g

. i . i o
sign AE sign (XE-O )

The asymptotically stable equilibrium points are (See Fig. 10)

p S
i o i_
in =g ; AE 0

(181)

(182)

(183)

(184)

(i85)

(186)

(187)

These equilibria are reached in some finite time determined respecti-

vely by

(o]
3= lovexg |70y

After this time

(188)

(139)
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A; (218 =0 (190)
s =0 | (191)
E - B

satisfying the requirements of matching with the reduced game.

The optimal boundary layer controls can thus be expressed by substi-

tution of Eqs. (184) and (185) into Eqs.(177) and (178) in a feedback

form
u:i.('r) = u* [X:] = -gign (X;"Uo) o (192)

vel(r) = v (x:l = -sign (x;-c") (193)

S. 2Zero Order Composite Strategies

According to previous discussion in subsection V C, we propose
the following uniformly valid strategy pair {p(*),e(*)} as a suboptimal

candidate for the original game

u(t) = - sign Xp=0) Xp # O

P1. - (194)
\ u({t) = u, xp = Qg
\ v(t) = - sign (Xg=9) Xg ¥ O

- ) (195)
vit) = Vg Xg = c

e singulaxr controls i.'i’ and \78 are such that

(xp)s = (xE)B =g {196)

e i 12 L 2 st s
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yielding
u = o= sin (XE-O) . (197)
-vp ]
V = — gin (XP'U) (198)

s RmE
This zero-order compoéite FSPT strategy, expressed by Egs. (194)-

(198) in a feedback form, is identical to the solution obtained using

a genuine singular perturbation model [32],

This strategy consists for each player of three subarcs: (i) "hard"

turn until the velocity vector is aligned with the line of sight;
(ii) line of sight guidance, if the other player is still in phase (i);.
(iii) a straight line dash until capture. The resulting trajectories

for different initial conditions are shown in Figs. 11 and 1l2.

6. Comparison to the Exact Solution

In the exact solution of Simakova [49], shown in broken lines
in Figs. 11 and 12, the direction of the final dash is the common tangent
of the players turning circles, determined by the initial conditions. The
optimal strategy for each player is to align the velocity vector with

this common tangent.

If the initial conditions are such that both players finish their
hard turns simultaneously, the trajectories of the optimal and the SPT

solutions, and consequently the outcomes of the game, are identicel.
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For any other initial conditions one of thé players completes its "hard”
turn earlier and following the suboptimal strategy of phase (ii) de-
viates from the optimal one. If it is the pursuer, the time of capture
will be slightly longer than in the optimal game (see Fig. ll). If the
evader reaches first the line of sight direction (see Fig. 12), the
capture time of the SPT solution wiil be shorter than its value predicted
by Simakova [49]. Tﬁe differences are, however, very small. A quantita-
tive comparison [32] has shown that for large initial ranges, relative

to the radius of turn 6f the airplanes (ep in Eq. (142) less than 0.3),

the differences are negligible (less than 1%).

The usefulness of the SPT can be appreciated by this excellent ac-
curacy, in addition to the simple method of solution yielding feedback
control laws. Moreover, the suboptimal SPT strategies can be easily‘
implemented. They are based only on line of sight measurements (direction
or rate) but do not require range information or the knowledge of the
opponents flight direction. Note also that in this example the validity

of Assumptions 1-3 can be directly verified.

s e e < et RN
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VI CONCLUDING REMARKS

In this Chapter two anaiytical approaches, aimed to solve perfect
information zero-sum differential games, were presented and applied to
suitably formulated simple.pursuit-evasion examples. It was shown that
both methods — (i) a linear one (LDG) and (ii) a technique based on
the concept of singular perturbations (SPT) ~ have a definite potential
to yield élosed form solutions for ptoperly modelled “near real worldf’
air combat problems. For sake of illustrativé clarity the selected
examples were of simplified nature (constant speed, first order time
constant or, in one case, even two~dimensional gecmetry). However, the
extension{of these methods for more complex problems, such as variable

speed, high order transfer functions, three-~-dimensional motion, éurrently

under invéstigation [50), does not seem to present any difficulty.

It h@s to be admitted that each of the solution techniques exhibit
sameinhe%entlimitation. A linear mathematical model cannot validly
describe gursuit-evasion problems involving large changes of the inter-
ception g;ometry, which frequently occur in the initial phase. At the
other endL ghe singular perturbation approach is unable to pfovide a

"feedback"” solution for engagements cf rapidly varying terminal phase.

In order to solve pursuit-evasion problems, in which the initial
acquisition and the "end-~game" are of equal importance, an appropriate
combinaticn of both methods has to be investigated. It is hoped that
the successful application of the individual solution techniques demon-

strated in this Chapter will encourage such endeavour.
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