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ABSTRACT

We consider nonlinear constrained optimization problems in which the

objective function and constraint functions are sufficiently smooth. We focus

on the programs which consist of both equality and inequality constraints, and

we prove that the global optimum value function is twice continuously

differentiable ilmost everywhere with respect to the parameters.
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SIGNIFICANCE AND EXPLANATION

In the analysis of nonlinear optimization problems which arise in

engineering, management science and economic theory, it is important not to

assume that the relevant objective and constraint functions are convex. In

this paper we give an analysis of such problems under the assumption that

these functions are sufficiently smooth. We show that almost always one can

expect that a nonlinear program will be "well-behaved" and that the global

optimum value changes smoothly with changes in the data.

The responsibility for the wording dnd views expressed in tnis descriptive
summary lies with MRCI and not with the author of this report.
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Morse Programs: A Topological Approach

to Smooth Constrained Optimization II

Okitsugu Fujiwara

Introduction

In this paper, we continue the analysis of smooth nonlinear programming

problems which we began in [4]. There we reduced the nonlinear programs to a

finite family of "well-behaved" nonlinear programs, each of which consists of

minimizing a Morse function on a manifold with boundary, by perturbing the

objective function in a linear fashion and pertrubing the right hand side of

constraints by adding a constant. We also gave the geometrical meaning of

each "well-behaved" program.

Here we consider the nonlinear programs which consist of both equality

and ineuality constraints and, in particular,

(P): minimize if(x) subject to g(x) = b}

and its perturbation

(P(u,v)): minimize {f(x) - x subject to g(x) = b + v}
Ix2c

where f:Rn - R , g:R R ; c > 0; u e Rn, v £ Rm ; n ) m+1. Our main

results are: in the C2 topology, Morse programs are open and dense in the

family of (P), where f c C2 and g e Cn-m at  (Theorem A), and if f c C2

and g c Cn m + 1, then the global optimum value function ;(u,v) for

(P(uv)) is of class C2 with respect to (u,v) on an open and dense set of

R x Rm  (Theorem B).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
is the revised version of Cowles Foundation Discussion Paper No. 539 (Yale
University) supported in part by National Science Foundation Grants ENG-78-
25182 and SOC-77-03277.
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1. Preliminaries and Notation.

A property that holds except on a subset of Rn whose Lebesgue measure is

zero is said to hold at almost every u e Rn. The complement of a measure

zero set in Rr is said to have full measure in Rn.

The Jacobian matrix and the Hessian matrix of f at x are denoted by

Df(x) and D2 f(x) respectively.

Let f:M + R be a map from a k-dimensional C manifold M with

boundary aM in Rn . Let ( ,U) be a local parametrization of M at x

such that x = *(u), u e U c Hk = {x C RkI x 01. The tangent space TxM

k n
of M at x is defined to be the image of DO(u):R + R . A point x C M

k m
is a regular point of f if D(fo)(u):R + R is surjective, otherwise x

is a critical point of f . A critical point x of f:M + R i is

nondegenerate if the k x k matrix D 2(f4)(u) is nonsingular. It is easily

shown that the above definitions do not depend on the choice of local

m
parametrization. A point y e R is a regular value of f, denoted by f A y,

-1
if every x E f (y) is a regular point of f , otherwise y is a

critical value of f . f:M + R is a Morse function if all critical points

of f are nondegenerate.

Let f:M + N be a C" map, A c N be a CY  submanifold of N . f is

-1
transversal to A , denoted by f A A , if for ever x e f (A), ImageDf(x) +

Tf(x)A = Tf(x)N holds, where Df(x):TxM + T f(x)N is the derivative of f.

Two submanifolds A , B of M are transversal denoted by A k B , if i A

B where i:A + M is the inclusion map.

The proofs of the following tr.eorems, which we will use in tnis paper,

can be found in Gillemin and Pollack (5].
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(1.1) Let f:X Y Y be a CY map such that f A Z for a CY submanifold

Z of Y , then f-1(Z) is a CY submanifold of X and dimf 1 (Z) - dim X -

dim Y + dim Z

(1.2) Let f: X * Y be a CY map of a CY manifold X with boundary

aX onto a boundaryless CY manifold Y . If f A Z and f 1ax A Z for a

boundaryless submanifold Z of Y , then f-1(Z) is a C s 8ubmanifold of

X with boundary f- 1(Z) - f- (z) n X and dim f 1 (Z) - dim X - dim Y +

dim Z.

(1.3) Let f: X + R be C map such that f A c for some c C R

Then {xlf(x) 4 c) is a C submanifold of X with boundary f-1(c)

(1.4) Let f:X + Y and g: Y + Z be C7 maps . Suppose g A W for a

C7  submanifold W of Z . Then g o fA W if and only if f A g-l(w).

(1.5) Let X,z be submanifolds of Y such that X I Z. Then X n Z is

again a submanifold of Y , dim(X n Z) - dix X + dim Z - dim Y and

Tx (X A Z) = TXX r; TxZ for any x eX Z

(1.6) Let f:X + R be a C2 map of a C2 manifold X in Rn . Then for

almost every u e Rn , the function f(x) - uTx is a Morse function on X

-3-
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2. Morse Programs: Definition and Properties.

Let us consider a program

(R): minimize (f(x) subject to g(x) 4 b, h(x) - c)

and a perturbation

(R(u,v,w)): minimize {f(x) - uTx subject to g(x) 4 b+v, h(x) = c+w)
1hr fR +R Rn Rmn p

where f:Rn + R 1 g:R + R and h:R n + RP  are of class C 2 , u E Rn,

v £ mR , w £ P n > p

Let I =1,o..,m} and let us denote

M {xlgj(x) - b , gi(x) , b, h(x) -c)

J,i x l gj ( ) -b , g (x) -bi , h(x) -cI

for all J c I and i c I. For notational convenience we denote M := M

if i c J, and X:M,' Xi := Mi if J . Note that if
- 1, i{

i c J then Mj = M = • a Let := [xlg.(x) 4 b.}  and

aX. := {xIg (x) = b.1 for all i c I

Definition

A program (R) is a Morse program if (R) satisfies

(Mi) gi A bi, hIXi A c and h Ixi A c for all i c I, and h f c

) A~1  b Ab and A t b. for all nonempty J c I and i % J.(x).jl ) oadgl

1 1

(M3) f is a Morse function on h-l(c), Mji' and aMJ' i  for all

J I and i c I

(g4) fI; has no critical points on am for all J cI and i % Jj~~iJi -

Remark 1 With the absence of equality or inequality constraints, the above

definition of a Morse program coincides with the one that I defined in [4].

-4-



Remark 2. Xi (or Xi ) is a manifold with boundary DX (or aX ) byXX i ) ab

(Ml) and (1.2) (or (1.3)); and MJi is a manifold with boundary 3Mji by

(T42) and (1.2).

Definition x is a critical point of (R) if x is a feasible point of (R)

(i.e. g(x) 4 b and h(x) = c) and x is a critical point of fij(x) where

J(x) = {jg (x) = bi..

The following results are verified in essentially the same way as Theorem

F and Theorem H in [4].

Proposition 1 If (R) is a Morse program and x is a critical point of

(R) with J J(x), Then we have that

Dgj(x)

(a) (IJI+p) x n matrix Dh(x) has full rank.

(b)" there exists a unique (A,p) C Rm x RP  such that

Df(x)T + Dg(x) TX + Dh(x) TP = 0 , . * 0 iff i C J

(c) £(x) := D2 f(x) + T D2 g i(x) + jD2 h.(x) induces an

-2)isomorphism on T M2)

(d) on TxM , £(x) is positive definite iff x is a local

minimum; negative definite iff x is a local maximum;

indefinite iff x is a saddle point of f on M

2 n 1 -+Proposition 2. If f e C', g c C and h e Cn-p+ , then for almost every

fixed (v,w) £ Rm x RP, (R(u,v,w)) is a Morse program having at most one

nglobal solution for almost every u £ R *

1) > 0 (X < 0) for all j E J if x is a local minimum (maximum) (see

Luenberger ?61, 10.6).
2 )For s E Txi4J, we project £(x)s orthogonally onto TxMJ o We call this
linear homomorphism on TxMJ by induced homomorphism of £(x) on T IJi

L: -5-



3. Equality Constraints and One Regular Inequality Constraint: Generic

Property.

Let us consider a program

(P): minimize {f(x) subject to g(x) = b, Nx1 2 4 c)

and a perturbation of (P)
T2

(P(u,v)): minimize {f(x) - u x subject to g(x) = b+v, 1x 2 4 c}

where f:Rn - R and g:R n + Rm are of class C 2 ; u E R, v e R ; c > 0

2 2
n ; m+1. Let h(x) := 1xl , D := {xI~xi 4 c) and S := aD

2
{xlxg = c} , then h I c for all c > 0 i.e. h is a regular

constraint.

In this section, we study a family of nonlinear programs with some

equality constraints and one fixed regular constraint h(x) 4 c (c > 0 is

fixed). We will show that in C2 topology Morse programs are open and dense

in this family (Theorem A).

Let us recall the definition of a Morse program.

(P) is a Morse program iff (P) satisfies

(MP1) g1D A b , glsA b

(MP2) f is a Morse function on M := g 1 (b) n D and
-1

am := g (b) n S

(MP3) f li has no critical points on A

Remark

(Mi) corresponds to (MP1) since h c . We do not have (R2) since

we have only one inequality. (A3) corresponds to (MP2), and (M4)

corresponds to (MP3).

-6-
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Firstly, by Proposition 2, we have:

2 g n-m+1'
Corollary 3. If f C C and g s Cn  , then for almost every fixed

v e Rm , (P(u,v)) is a Morse program with a unique global solution for almost

n
every u C R

Definition Let C2 (D,Rk) be a set of all C2 functions from D to Rk for

some k ) 1. C2 norm topology N1.12  on C2 (D,Rk) is defined by

I 0 2 := max {00(x)1, KD (x)II, ID 2*(x)I for e C 2(D,R ) where IM is
xED nxk

the Euclidean norm (all n x k matrices are considered to be in Rn).

Lemma 4. If g 1D A b , gIs A b , U9n - g2 + 0 then gniD A b

gnI S + b for sufficiently large n

Proof. First of all we will show that if gID A, b , 1g
n - gi2 + 0 then

gnID A b for sufficiently large n . Suppose it is not true. Then there

-1nn
exists x e g (b) n D such that Dgn(xn) is not of full rank for

infinitely many n's
n.

Since D is compact, there exists a subsequence [x 3} of {xn }  such
n. 0 n mle

that x n + x0 for some x 0 D . However fig n  go2 + 0 implies
n. n. n. n.

g (x ) + g(x ) and Dg i(x j) + Dg(x0 ) 0 Then g(x0 ) = b and sincen, n.

g1D A b , Dg(x0 ) is of full rank. Hence Dg 3(x j) is of full rank for

sufficiently large nj which contradicts the assumption. Similarly we can

show that (g,h) A (b,c) and Ngn - g2 + 0 imply (gn,h) A (b,c) for

sufficiently large n . However by [4] Lemma 14(b), we have (g,h) A (b,c)

iff gjs A b hence we complete the proof. Q..E.D.

Under the same assumption of Lemma 4, by (1.2) we can claim that

:= g (b) A D is (n-m)-dimensional manifold with boundary 3M
£.-i
g (b) A S for sufficiently large X . Then we have

Lemma 5 If fi , fI- are Morse functions and if 11fn - ff1 2 + 0 , then

fnI # ?I are Morse functions for sufficiently large n

-7- _



Proof.
11 i n mn Rm 1

Let us define Fb  R x +R n xR and Gb  R x xR

+ Rn x Rm x R1 by, respectively,

F b(x,X) := (Df(x)
T + Dg(x) T, g(x) - b)

and

T T T
G b(xX,) := (Df(x) + Dg(x) X + Dh(x)Ti , g(x) - b , h(x) - c).

By the same argument as in [4] Theorem B, we have that

fj- is a Morse function iff Fb 0
M DxR m

and

f lai is a Morse function iff Gb O 0 •

2.~ ~ (f(xT I g2 (xT 2.2Xs os
Let Fb(XA) (f(x) + Dg ), g (x) - b), then f is a Morse

function iff F A 0 . Now we will show that if f I- is a Morse
bl oxRm

function and Of2 - fK 2 + 0 , then f is a Morse function for

sufficiently large X . Suppose, to the contrary, there exists {x} such

22 (x ) Dg (x

that Fb(x ,X ) = 0 and DF (X , ) = £ ) is singular,
Dg (x) 0

where

2. 2. 2. 2. 1 2. 2. 2. T
(3.1) -(Dg (x )Dg (x )T)-Dg (x )Df (x

and

£22 22. 2.i MX2 2.
(x ) D f (x ) + D g (x

Since x E D and D is compact, there exists a converging subsequence of

X 2 * 
{x • For notational convenience, let x + x for some x e D . Since

gX(x) = b and hg - gil2 +0 we have g(x ) = b , and since gl Db we

have that Dg(x) has full rank.

-8-



Moreover x + x Of - fi 2 0 and ig - gl2 + 0 , so that we have
• *~ * )

I + -(Dg(x*)Dg(x*) ) Dg(x )Df(x*) by (3.1). Hence, we obtain

F(X,A) = 0 and because fi- is a Morse function, DFb(x A ) is

nonsingular. However we have DF b (x DFb(X,A) . Hence DFb,(XA

is nonsingular for sufficiently large £ and this contradicts the choice of

[x I. By a similar argument, we prove that if flai is a Morse function and

if of - 2f 0 , then f'J is a Morse function for sufficiently large
am

X. Q.E.D.

Lemma 6. Under the same assumptions of Lemma 5, if fjI has no critical

point on aM then fn1  has no critical point on 2 n for sufficiently

large n.

n -Mn suhta n
Proof. Suppose it is not true, then there exists x ne M such that x is

a critical point of fn i for infinitely many n's. Then there exists a-n
M

unique A e R such that

Dfn(xn)T + Dgn(xn)T n = 0
n.

Since D is compact, there exists a subsequence {x 3} of {xn } such that
n. 00
x + x0  for some x0  D . Since if - fil 2 + 0 , 1ig - gl!2 + 0 and

iixn = c, we have itx0 = c , g(x0) = b and Df(x0)T + Dg(x0)TX0 = 0( x)0  gx

where A := X ) (see (3.1)). This shows x 0 cM is a critical point of

fIR which contradicts our assumption. Q.E.D.

Combining Corollary 3, Lemmas 4,5,6 we obtain

Theorem A

In the C2 topology, Morse programs are open and dense in the family of

programs

minimize {f(x) subject to g(x) = b}

f:Rn 1 n m 2 n-m+1

where , g:R + R f E C , g e C ; n ) m+1

-9-
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4. Equality Constraints and One Regular Constraint: Sensitivity Analysis

Now we will discuss the global optimum value function

T
W(uv) := minimum {f(x) - u x subject to g(x) = b + v}

2

for (P(u,v)). The basic ideas are essentailly the same as those in Theorem E

of Fujiwara [4), where I discussed the optimum value function

T
w(u,v) := minimum (f(x) - u x subject to g(x) = b + u}

i XER n

and I assumed g : R+ Rm  is proper (i.e. if NxH + -, then Ig(x)I + ).

Here we do not assume that g is a proper function, and the argument is more

delicate.

First, let us denote

Z := {(U,V) e Rn x RmI(P(u,v)) is a Morse program}

and

-' C R n Rm (P(u,v)) is a Morse program
Z" (u,v) n

X 'with a unique global solution

Lemma 7 is an open set of Rn x Rm .

Proof. Suppose Z is not open at (u,v) c Z . Then there exists a sequence

{(u ,v )} such that (u£,v ) (u,v) and (P(u ,v )) does not satisfy

(MP1) or (MP2) or (MP3). Suppose (P(u ,v )) does not satisfy (MP1)

-T £
infinitely often. Let f(x) = f(x) - ux, (x) f(x) - u x

-2.) 2.x£2.,--
g(x) g(x) - ; g(x) = g(x) - v • Then (u ,v ) (u,v) implies

it- - 2  0 and 11- g 2  0 Hence, by Lemma 4 , (P(u ,v ))

satisfies (MP1) for sufficiently large X and this contradicts the

assumption. Similarly if (P(u ,v )) does not satisfy (MP2) (or (14P3)), then

by Lemma 5 (or Lemma 6) we have a contradiction. Therefore Z is an open set

n m
of R x R • Q.E.D.

-10-



Proposition 8. The number of critical points of (F(u,v)) is finite for

any (u,v) e Z , and it is locally constant on the open set Z

Proof.

n m n m
Let us define F :R x R x R7 x Rm 

+ R7 x R7 and G R x R x

1 n x m n Rm x  by

A (f)T DgxT

F(x,A,u,v) := (Df(x) - u + Dg(,x)T, g(x) - b - v)

and

AT T T
G(x,X,v,u,v) (Df(x) - u + Dg(x) X + Dh(x)TV , g(x) - b - v, h(x) - c).

-- - -1 -1

Let (u,v) e Z and let M g (b + v) n D and 3M g (b + v) n

S. Then x is a critical point of (P(u,v)) if and only if x is a

critical point of either f(x) - uTxjI or f(x) - uTxlai . By (MP3), we have

that no critical points of f(x) - u xl- are on 3M. Therefore, x is a

critical point of (P(u,v)) if and only if x satisfies either

(4.1) F(x,A,u,v) = 0 for some A c Rm  and h(x) < c

or

(4.2) G(x,A,v,u,v) = 0 for some S Rm  and ; > 0.
-T--

By (MP2) f(x) - u x is a Morse function on M and on 5M , hence critical

points of f(x) - u xl- and critical points of f(x) - u xl,; are

isolated. Since M and 3M are compact, the number of critical points of

-1 -k
(P(u,v)) is finite. Let x ,...,x be distinct critical points of

-T -k+1 -k+£

f(x) u xl and let x ,---,x be distinct critical points of

-Tx-l- -k+1 -+ n
f(x) - uxI3  Then we have that {, , kn x 0

the number of critical points of (P(u,v)) is k+k • Let A1,...Ak be the

-1 -k , )k+,'-k+
associated Lagrange multipliers of x ,0..X . Let (k v )too*#

Tk+X-k+Xk+l -k+
(A+,v+) be the associated Lagrange multipliers of x ,..O,x

-11-



By (MP2) we have that F-- DxR A 0 and G-(-,;) gxexR 1

0, where F (uv)(x,A) = F(x,A,u,v) and G (uv)(x,A,V) = G(x,A,V,u,v) (see

the beginning of the proof of Lemma 5). In particular, therefore we have that
,A•A j•

DF (- )- Cx,) and DG (,)(x AJJv ) are nonsingular for i = 1,.-.,k and

for j = k+l,..-,k+t. Hence, by the implicit function theorem (Edwards [1],

p. 417), there exist neighborhoods Ui(u), v), Xix), Ai(X), and C'

functions x i(, - ) and I(.,o) from 2 x i to, respectively,

i and Ai such that xi(u,v) = x , Xi(u,;) = Ti

(4.3) c D - S

and

(4.4) F(xsu,v) = 0 <> x = xi(u,v), X = Xi(u,v) on Ri x A i x i

for i = 1,-°°,k; and there exist neighborhoods UJ(u), vj(-),

N(V) and C1 functions xJ(.,.), XJC.,.), V C.,°) from uj x to,

respectively, J, X3, such that xJ(u,) x (u,v) - TJ, (,v -

and

(4.5) G(x,X,V,u,v) = 0 <-> (x,A,v) = (x (uv), A J(uv), v (uv))

on x T x N x 5j x

for j = k+1,-..,k+t .

Since Z is open (Lemma 7), we can choose U(u) and V(v) such that
k+£t k+Y
n U , and U x V £ Z , and such that

i=1 i=1

xk+2 ,V) are pairwise disjoint. Now (4.1) - (4.5) imply that the number of

critical points of (P(u,v)) is no less that k + X for (u,v)

e U x V, because x (u,v), *,x k+(u,v) are distinct critical points of

(P(u,v)) for (u,v) C U x V . We claim that, in actual fact, it is exactly

a ak + X. Suppose, to the contrary, there exists {(u ,v )} such that
(u av) E - x U ,v ) + (, and the number of critical points of

-12-



(PuciVc,)) is greater than k + £. Firstly, assume that there exist

a a x I aca k ai a
infinitely many {(Xci,Ac)I such that x l {x1(u ,v ),*O',x (u ,v

F(x ,X,u ,v ) = 0, and h(xa) < c * Since {xi) S A and M is compact,

there exists a converging subsequence of (xa). For notational convenience,

alet us denote x + x for some x e M4 . Since

:= A(x) (Dg(x a)Dg(x a ) -Dg(x )(Df(xa) T  u a

ac+ - a a, a, ci cicic
and u + u , we obtain X + A A(x ) * Then we have (x A ,u ,v

* *~ - ;( * -

+ (x A ,u,v), hence by the continuity of F , F(xA ,u,v) = 0.

Note that h(x*) < c, because if h(x*) c , then we obtain

G(x ,A ,0,u,v) = 0 and this implies that x is a critical point of

f(x) - uT x1  with V = 0 , which contradicts the fact that (,) Z 

Therefore x is a critical point of f(x) u ;xl , and hence (x*,X*)

S= (xi, ) for some i = 1,*.*,k. But this contradicts (4.4), because then

for sufficiently large a , we have that

(xa , u , v ) C i x x

F(xiA ,U ,v ) = 0

and x O {x1 (uc,vc),.0,x (u,v)}

Similarly if we assume that there exist infinitely many {(x XX,vc)}

such that x a {x k+1(u ,v ),°,°,x (u ,v )) and G(x ,X,v,u ,v ) - 0,

then we can arrive at a contradiction. Hence, the number of critical points

of (P(u,v)) is k+9 in a small neighborhood of (uv). Q.E.D.

Corollary 9. Z is an open set of Rn x Rm .

2 n-m+1 -!

If f C C and g C C , then by Corollary 3, Z and Z are dense

n m
sets of R x R , hence we obtain

-13-
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Theorem B. If f c C2  and g E C n- m+ 1 , then the global optimum value

function w(u,v) for (P(u,v)) is of class C2 with respect to (uv) on

the open and dense set Z of Rn x RI.

Proof. Using the same notation as in Proposition 8, we have
w(u,v) - mm (fcxi(u,v)) - uTxi(u,))

1<i~k+L

Hence w(u,v) - f(x (u,v)) - uTx (u,v) for some i . It is easily shown

(see, for example, Luenberger [6], 10.5), that

D (u,v) - -(xi(u,v), i(u,v))

and

2-- Dx (uvD w(u',v) " ( ~ - •

DA 2

Therefore w is in C2  The rest of the proof is derived by Lemma 7,

Proposition 8, and Corollary 9. Q.E.D.

Remark

The differentiability of the local optimum value function was given by

Fiacco/McCormick [2] and Fiacco [31, using the implicit function theorem. Our

result presented here is not for the local, but the global optimum value

function. (See also [4] Proposition 6, and Theorem E).

-14-



. .

5. Fixed and Variable Constraints.

As a natural extension of Section 3, we consider a smooth nonlinear

program defined by a set of variable constraints (which we are allowed to

perturb) and fixed constraints (which we are not allowed to perturb). Namely

we consider a program

(S): minimize {f(x) subject to g(x) f b, h(x) - c)
G(x)40
H(x)=O

and a perturbation of (S)

(S(u,v,w)): minimize {f(x) - u Tx subject to g(x) 4 b+v, h(x) - c+w}
G(x)(O

H(x)-O

where fghGH are of class C2  from Rn respectively to R1 , t Rp, Rr,

R; uER n  .R w p
R V E •k W w C

We impose a condition (cO) to G and H

(cO) (G ,H) (0 a0) for every a c{1,2,...,r}.

For example, if we take Gk(x) - -xk for k - 1, --*,n, then G satisfies

(cO), and (Si becomes

minimize tf(x) subject to g(x) 4 b, h(x) - c).
x) 0

Moeoer i GE n Cn-s+1
Moreover, if G E C n H E C , then we can assume that, generically,

(cO) is satisfied (cf. [4], Lemma 11).

Spingarn ([7],[8],(9]) considered a more general fixed constraint set,

named "cyrtohedron" which contains degenerate points and he showed that the

problem is reduced to solving at most a countable number of programs of type

(S) ([9], (3.7)). In our framework, we consider a program (S) and we impose

the condition (cO) on G and H so that we do not have degenerate

points. The basic idea is the same as that shown in [4) Theorem HI namely, we

perturb the right hand side so that the feasible region becomes a union of a

-15-



finite family of manifolds with boundary. We then perturb the objective

function so that it becomes a Morse function on each manifold and it has no

critical points on the boundary (hence strict complementarity holds). Then,

we derive the necessary conditions for the optimality of this type of problem,

which is a special case of Spingarn ([9J,(3.9)).

Let N :- {xIG (x) - 0, H(x) - 01 for a c {1,.*o,r), then N is a

manifold of dimension n - lal - a by (cO) and (1.1). Let us consider all

(b,c) E R7 x Rp  that satisfy the following conditions (cl)-(c3);

(ci): (gj,h) ih (bj,c) for all J C_ 1,o.o,m}

(c2): (g Jh)l N A (b ,c) for all J and a

(c3 gi,1 i bi for all J, a, and i J,

where ii (xlgo(x) - bJ , h(x) - cl

Note that if g c Cn hE np+l then the set of all (b,c) satisfying

(cl) - (c3) has full measure in R x RP  by Sard's theorem and Fubini's

theorem (cf. [41, Lemma 11). By (ci) and (1.1), Mj is (n - IJI -

dimensional manifold for all J I by (c2), (1.1), (1.4), and (1.5), MJ n Na

is (n- IJ -p - Jai - s)-dimensional manifold; by (c3) and (1.2),

Mj N gn1(-,bi] is (n - IJI - p - jai - a) -dimensional manifold with

n1Nn
boundary Na nN g-(bi). Then by (1.6), for almost every u C R

f(x) - u Txl- N is a Morse function for all J and a . By [4]J a

g- U-T I has no
Pro -i

critical points on M Na n gi (bi) for all J, a, and i 0 J

Now, let us fix u C Rn and (b + v, c + w) C Rm x RP  satisfying the

above conditions. Let x E R be a feasible point of (S(u,v,w)) and a

critical point of f(x) - uTxlM where J -ilg(x) - b + v 1

a- klGk( ) 0l and = (xlgJ(x) - bJ + vJ, h(x) - c + w}. Then by
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(c2), (1.1), (1.4) and (1.5), we have T l n N a T 14' A T N and
I x x

T (M N) = Ker Dgj(x ) n Ker Dh(x ) n Ker DGCx ) n Ker DH(x )o
i Ot 01

x
Hence, by [4] Lemma 1, there exist unique X e Rm, P e RP , F C Rr and

n Rs , such that

Df(x*)T - u + Dg(x*) TA + Dh(xe) T - (DG(x*) + DH(x*) Tr) £ T *NC,
x

Xc c

where jc - (1, ...,m) - J and ac - (1,a,r} - .* Moreover, using the same

argument as that of the proof of [4] Theorem G, we have

A. $ 0 iff i C J

Hence, we obtain a special case of Spingarn ([9],(3.9)),

Proposition 10

Suppose g z Cn and h C n -p + l. Then for almost every fixed (v,w) e

n
Rm x RP , (S(u,v,w)) has the following properties for almost every u e R

If x is a feasible point of (S(u,v,w)) and a critical point of f(x) -

uTx on M n N, where J (iIgi (x) bi + vi), a - (kIGk(x) - 0),

-1 -1 -1 -1
MI = g (b + v) nh Cc + W), N - G (0 ) n H (0), then

T T T T
(a) (Dgj(x)T , Dh(x) , DG (x) , DH(x) ) has full rank.

(b) there exist unique X £ Rm, M C Rp , & e Rr, l £ Ns such that

Df(x) T  u + Dg(x)T X + Dh(x) T - -(DG(x) T + DHlx) T n) £ T N O

Xi $ 0 iff i £ J; Ck = 0 for k 0 ai

(c) £(x) - D 2f(x) + A 1iD2gi(x) 
+  j i D 2hj(x) +  R 2 G ix)

i j jk

+ D 2 D2 H lx) induces an isomorphism on TxCM n N ).

£
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(d) on T Cml nl N ) Cx) is positive definite if x is a localx J (I

minimum; negative definite if x is a local maximum, indefinite

iff x Is a saddle point on n nNa
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