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ABSTRACT .~ e
It is shown that the Ritz projection onto spaces of piecewise linear

o
finite elements is bounded in the Sobolev space, w;, for 2 < p < ®. This

[+
implies that for functions in W_ N w; the error in approximation behaves

1
P
like 0(h) in w;, for 2 <p <®, and like 0(h?) in L_, for

P
2 <p ¢<», In all these cases the additional logarithmic factor previously

included in error estimates for linear finite elements does not occur.
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V SIGNIFICANCE AND EXPLANATION
This paper concerns error estimates for methods of approximating the
solution of a partial differential equation. The method in question is the
so~called "finite element method,"dyhich was developed by structural engineers
and is now widely used in all branches of engineering. The paper refines
previously derived estimates of the error in “"maximum norm,” i.e. the maximum
error (as opposed to an average error). The paper settles certain technical

questions as to the rate of convergence of the finite element method in this

norme.
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SOME OPTIMAL ERROR ESTIMATES FOR PIECEWISE
LINEAR FINITE ELEMENT APPROXIMATIONS

Rolf Rannacher* and Ridgway Scott**

1. Introduction and Results.

Let  be a convex polygonal domain in n?, and let L {k}, 0 <h < ho <1,
be finite triangulations of @ such that the usual regularity condition is satisfied:

(T) The triangles K e LY only meet in entire common sides or in vertices. Each

triangle K ¢ "h contains a circle of radius clh and is contained in a circle czh,

where the constants c_,c

1 do not depend on K or h.

2

°1

Corresponding to we define the finite dimensional subspace sh CW_ by

h’

-]
== l -
s {vh € W. : v

Y 1S linear on each K e wh) .

Q
and the Ritz projection Rh : w; + S by

h

(1.1) (VRhu,Vvh) = (Vu,Vvh), Y o€ Sh .

Here Lp and wg, l<p<=» meN, are the Lebesgue and Sobolev spaces on

o

Q@ provided with the usual norms H'Hp and ”-\| respectively. w; in the subspace

m,p’
of those functions in w; which vanish on the boundary in the generalized sense. The

inner product of IL_ is denoted by (-,:). Finally, by ¢ we mean a generic positive

2
constant which may vary with the context but is always independent of h.

Under assumption (T), we have the well known mean-square-error estimates

2-k
(1.2) o - muull, 5< el

2,2’ k=0,1, i

and the uniform-error estimates (see [4], (81, [6], [1], |7])
2~k. 1
(1.3) flu - Rh“”k,wi ch® “in = ||u||2’m, k=0,1.

From (1.2) and (1.3) one may conclude by an interpolation arqument that for 2 <p <

the lb error behaves like (see (8])

2 1,1-2
(1.4) o = Rull, < enan 3 /Puunz'p .
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It has been considered as a challenge among the specialists to remove the additional

logarithm in (1.3) and (1.4). This, in particular, since one can show that for higher
than second order finite elements these estimates hold without the logarithm (see (5),
1

0
[(8]). Also, for any function ue wp n w:, 1l <p <=, the natural piecewise linear

interpolant Ihu € sh is well defined and satisfies

2-k
(1.5) Ju - Ihqu'p:_ b’ k=0,1.

lz,pr
For the case of linear finite elements Fried (2] has recently published an example based
on radial symmetry which indicates that (in two and three dimensions) at least the
pointwise estimate

(1.6) llu - 8ull,< eh’1n %Hu"zln

may be of optimal order. However, this leaves the question open whether the Lp
estimate (1.4) is optimal. In the present paper we shall give an answer to this ques-
tion for the model situation considered here which is based on the following stability
result:

Theorem. Under assumption (T) the Ritz projection R, is stable in t;; for

2 <p <®, namely

a.m IRgally < ellully -

The proof of the theorem will be given in the next two sections. One of its consequences
is the following

°
Corollary. Under assumption (T}, for any function u € w; a} w; there holds

1.s) o - Rully , <ehllull, v 2<pc=,

1.9 llo - mpull, < ep’lfull, v 2cp<=.

Proof. We apply (1.7) for u - Ihu and observe that 1“ = id on sh to obtain
||Rhu - Ih“"l,p <cllu - Ih“"l,p' 2<ps=.

Then, the approximation estimate (1.5) implies (1.8).
Tc prove (1.9), we use a duality argument. Let p¢€ [2,#), so that

q® p/(p-1) ¢ (1,2]. On the convex polygonal domain @, the Laplacian is a

-2-




-]
homeomorphism from W;' 8} wé onto Lq, l<gs2 (see [3)). Hence there is a

v e ;11 n wz satisfyin
9 q 9

-Av = sgn(u - Fhu)lu - Rhulp"1 in 2,
and
(1.10) Ivll, o < cllavll, = cll - rul®? .
2,9 — q Rh 14

Using now (1.1), Holder's inequality, (1.5), (1.8), and (1.10), we find

s - Rull?

(V(u - Rhu), Vv - Ihv))

IA

o= mully pllv- 1ol o
lla=myully jenllvll, o

2
ch®flull, _livl|
2,p 2,q

(1.11)

IA

Ia

IA

2 -1
n?flull, llu- malE™® . a.e.,

We remark on some extensions of our results. The proof of the theorem and to a
large extent also that of its corollary make use of the fact that the Laplacian con-

sidered as a mapping
1.12) A:W NW »>1L

is a homeomorphism for p € (1,2 + a], where o is some arbitrarily small but
positive number. This is certainly true on a domain with smooth boundary, say a0 ¢ C2,
for all a > 0, and it is known also for convex polygonal domains (see [3]) where a
depends on the size of the maximum inner angle, w < . Our results extend to more
general second-order elliptic operators as long as the corresponding mapping (1.12)

is a homeamorphism. 1Ir the case of a curved boundary the proofs become more involved
due to the approximation of Q by polygonal domains Qh. In the case that 3Q is

smooth one can show that for all p € (1,] the following refined estimate holds:

nt" YRy

(1.3) lrlly id”““l,p,nh ’ Leioa !

From that estimate one can again draw the conclusions (1.8) arn? (1.9), now valid for

all pe (1,»] and pe (1,), respectively. The results for 1 < p < 2 are proved




via a duality argument that makes use of elliptic regularity results that are not
generally valid for non-smooth boundaries.

2. Proof of the Theorem.

Notation and techniques are similar to those used in [1]. However, the key differ-
vnce is in the type of Green's function employed. The basic technique used in several
papers is to reduce to the problem of estimating the Galerkin error g - gh in approx-
imating the solution of

-Ag= 4§ in R
where § is the Dirac §-function or some approximation to it. The difficulty is that,
with piecewise linear approximation, the error g - gh contains a logarithmic factor.
For example, it was noted in [8) that 0 <c, < n21n h-l)-lllg-gh“wl <c, as
h + 0. The reason is that the smoothness of g is such that piecwisellinears fail
to afford optimal approximation (whereas higher degree piecewise polynomials would
yield an approximation rate devoid of the logarithmic factor). The remedy here is to
consider instead a "derivative” Green's function, satisfying

-Ag-?x—- in @
1

(for each { = 1,2). Now g is more singular, and piecewise linears afford optimal
approximation, albeit at a slower rate. We now turn to the details.
]
let ue w;. 2 <p <= begiven. We pick any point z € Q@ contained in the

interior of some triangle xz e and denote by 3 any of the operators a/axi,

h'
i = 1,2, Because of assumption (T) there is a function Gz € C;(Kz) such that

(2.1) [oax=1, | | con™®*, xao,..,

where the constant ¢ does not depend on 2z or h. Then, by construction,

(2.2) Nh(z) - (Nh,Gz), Vy €8

h h*
L
Correspondingly, we define 9, [ w; by
°1
(2.3) (ng,W) - (Gz,w), Vye w2 .

-4~




Clearly, 9, is a regularized derivative of the Green's function of the Laplacian on
Q. Using this notation, we have
(2.4) aRhu(z) = (VRhu,ng) = (Vu,vnhqz)

= (Bu.Gz) - (Vu,V(gz - %gz)) .

We introduce the weight function

(2.5) o (x) = (|x - z|? + nHY?, >1

where the parameter «x will be chosen appropriately large, «k > K,2 1, but independent
of h! We note that from now on the generic constant ¢ is also independent of «x and
z € Q, and of the parameter a € (0,1] introduced below.
Suppose temporarily that p < «. Applying HSlder's inequality to the terms in
(2.4), we obtain for any a € (0,11 that
p=2

I(Vu,V(gz _ thz))I (f0;2-0|vu|de)l/P(f0;2-0dx)2p (fci*i'(xlv(qz _ thz) lzdx)1/2

|A

p-2
-1 -a 2p =2=ao Py \1/P
cla "h ) M.h(foz | 9u dx) '

1A

where
M, = max (fci'mIV(gz - }Hqu) |2dx)l/2 .
z2€Q
FPurthermore,
2 pl
ltou6 0| < (f loulPax)P(f |s [Pt ax) P

K K

2 z

-2

<ch P ([ |vulPax)’P .

We apply the above estimates with (2.4), raise to the p-th power and integrate with

respect to z € 2 to obtain




HBRhqu < ctn? /f |vulPax azn) /P +
K

p=2
+ ¢:(cv.-]'l'\-m)2p b%(f}' o;z-a[Vu[pdx dz)l/p .
Thus, by interchanging integration, we find

(2.6) loryull, < clivall  + o Y/20/2

M)

where the constant ¢ is obviously independent of p. Estimate (2.6) is also easily
seen to hold for p = » using the above techniques. Now, to prove the assertion of
the theorem, we have to show that

)1/2 G/2

2+a 2
(2.7 M, = max (f o™ lvig, - Rg,)[ax <cgh
z€Q
for a proper choice of a € (0,1].
To prove (2.7), we need some preparations. From now on, we drop the subscript z
and simply write o,3 for 0,09,

The weight function o satisfies

1-k

(2.8) v, 0] < co <cum™™®, k=0,1,2,... .

Here Vka denotes the tensor of k-th order derivatives of o. Moreover, for « > «

sufficiently large, one has that (see {5))

(2.9) max [max o(x)/min o(x)) < ¢
Kem, x€K x€K
h
o
holds uniformly for 2z ¢ (. For any function v € w; NnNIio wi(x)] the natural piece-
Ken
h

wise linear interpolant Ihv € sh is well defined and satisfies

(2.10) ivew - Ih"’”z;x < ch”Vzv“hK, Kem .

Combining (2.10) and (2.9), one easily sees that the following holds:
2 ]

(2.1 | Blvty - 1w | ax < cen? f oslvzvlzdx .

where the abbreviation used is

-6-
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To prove (2.7), we set y = 02+a(g - Rhg) and we use (1.1) to obtain

2+0

[ **%vig - Phg)lzdx =/ V(g - RV - I,)ax + % [ 86%*%g - R o) %ax .

Thus,
2.12) [ o***|v(g - Rhg)lzdx < vw - nwlax + ¢ [ o®ig - R 9)ax .

From (2.11), we get by a simple calculation that

2+ulv

[ T - ¥ |%ax < en? [ o zglzdx +

+ cx-z(f 02+°[V(g - Rhg)lzdx + f Mg - Rhg)zdx) .

We insert this estimate into (2.12) and find that, for « > « sufficiently large,

2

I 02+CL 2+a

(2.13) lvig - Rhg)|2dx :_chz [ Ivzglzdx +c[o%g - Phg)zdx .

To handle the second term on the right side of (2.13), we employ a duality argument in
o

weighted norms. Por fixed h, let v € wé be the solution of the auxiliary problem

(2.14) -av = o%(g - Rg) in 0.

Since ( 1is convex, it is guaranteed that v € Wg. Moreover, in Section 3 we shall
-]
show that the following weighted a priori estimate holds for all v e w;(n) such that

-]

1
Av € WZ(Q):

(2.15) [ o7 v vl%ax < ca w2 [ 0® | vav|%ax -
Consequently,

2.16) [ 072w v|%ax < ca w2 [ (0% 70g - Rg)|® + 0%y - Rg)Pdax .

Using (2.14), we have

f oa(g - Rhg)zdx f V(g - th)-V(v - Ihv)dx

< (f ¥ veg - Rh9)|zd>t)1/2(f "% vtw - Ihv)lzdx)l/2 .

Then, by (2.11) and (2.16), choosing « > r3 yields

1 Jv 02%‘1

|7(g - th)lzdx .

(2.17) [ o™tg - R@)ax < clax)”




We insert (2.17) into (2.13) and choose again « > K4(a) sufficiently large to obtain

(2.18) | a***oig, - Rhgz)lzdx < en? [ ¥ |v,9)%ax .

Thus, we have reduced the proof of (2.7) to an a priori estimate of the fomm
2+a 2 a-2

(2.19) f o7 v,g]%ax < c,h .

This estimate, however, is an obvious consequence of the a priori estimate

(2.20) [ e®**vg)%ax < e [ ¥ %ax + ca”Hiem 2 [ o7 5%ax

which will be proven in Section 3, for 0 < a < a, sufficiently small.

Q

3. Some Weighted A Priori Estimates.

° ° 2 o
Let functions f € w; and b€ [w;] be given, and let v e w; be such that

(3.1) -4v=f + divb in Q.

2
If o = (Ix - z|2 + G )]'/2 is the weight function introduced in Section 2, then we

have the following

Lemma. For any convex polygonal domain Q, there exists an GQ € (0,1} such that

for all parameter values a € (O,GQ] the following a priori estimates hold,

(1) if £=0:

(3.2) | 02+a|V2v|2dx <ec | 02+a|div b|2dx + ca—lc-z J cz+a|b|2dx .
(ii) if b= 0:
(3.3) f 0-2-a|V2V|2dx < ca_lz-z f 02-u|Vf|2dx .
Proof. (i) To prove (3.2), we estimate
/ 02+a|V2v|2dx < |V2[01+m/2v]|2dx +c | {calel2 + % %0 ax .

Since ( is convex, we have the standard L a priori estimate

2

01 2
“w||2,2 iCHA"'sz we W nwz .

l+u/2v

Applying this to o , we find by a simple calculation that

-8-




I 2+a 2+a w2 2
o} v

(3.4) lvv1%ax s c [ o®**|aiv b]%ax + ¢ | (e + o Jax .

Furthermore,

f OQIVvlzdx = [ wv(o®viax + % ) ao%2ax

and hence, using (3.1),

(3.5) I oalelzdx <cJ c2+a|div b]zdx +c | a®2y%ax .
Combining (3.5) with (3.4), we arrive at
(3.8) ) 02+°‘|V2v|2dx <cf 02+a|div blzdx +c | o® 2vPax .
Next, we apply HOlder's inequality to obtain
(3.7) [ 0% 2 ax < (f o7 ax) T IV 1L, )

< c(a_l;'a) (2-a)/ (2+a) HV”?zw)/a

°1
We have already noted that the Laplacian is a homeomorphism from wq al w; onto L
°l 2

for all q € (1,2). Hence, there is a w ¢ w(2+a)/2 al W(2+m)/2 satisfying
-Aw = sgn(v)lvlz/a in @,

and

(3-8) lwllz, avar sz < N8N aagy 2 -

Then, we have via Hélder's inequality, Sobolev's inequality, and (3.8) that

(2+a)/a _ ~
vl orayye™ v = .00 < Bl o a0y 1y (as20) 7 (2ma)

2/a

cljbll (4+20) / (243q) lvl (2+a)/a °

< ellpl (4+2a)/ (2+3a) HWHZ. (2¢0)/2 =

Thus, we obtain

(3.9) I'Vll(2+a)/a :'Cllbl|(4+2&)/(2+3a)

Now, again by HGlder's inequality,

2
2 2 1/2 =12 2 (2+a)
1ol gray/ caegay < (07 0 Ib12ax) /2 (f o7 1200) /2ogy o/ (20

(3.10) 2
< cc—(4+a Y/ (4+2a) U G2+(x

Ib|%ax) 22 .




Combining the estimates (3.10)-(3.7), we obtain that for a € (0,1]

(3.11) [ 6®2%ax < ca”lc7? [ 0% (b|%ax .
This together with (3.6) proves the estimate (3.2) for the choice ag = 1,

(ii) To prove (3.3), we apply HOlder's inequality as follows:

-2-a 2 -(2+a)/a,. ya 2
(3.12) [o [v,v]"ax < (fo dx) ”Vz"nz/(l-u)
a2 2
et vl 2 ey
N o1 2
N

Above, we have noted that the Laplacian is a homeomorphism from w2/(1-a) "2/(1-0)
onto Lz/(l-a) for a € (O,GQ], where 1 > an > 0 is determined by the maximum

inner angle of Q. Thus, for a € (o,uﬂl, we have that

(3.13) c|lavil

vlly, 2/ -0y £ 2/ (1-a)

L]
By Sobolev's inequality combined with Poincare's inequality (notice that Av e w;).

(3.14) |lav | c||vav]|

2/ (1-a) = 2/(2-a) *
We apply again HSlder's inequality to obtain

”VAV” U' c‘(Z-G)/(l—G)dx) (1-a)/2 U 02-0|VAv|zdx) 1/72

| A

2/(2-a)
(3.15)
< cu-l/zc-u/z(f oz-aIVAvlzdx)l/z .

Combining the estimates (3.15) - (3.12), we finally reach the desired estimate
f 0-2-u[V2v|2dx < ca”lg72 / OZ-GIVAvlzdx ,

valid for a € (O,GQ]. g.e.d.

-10-
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