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. ABSTRACT
&
A theorem with a number of equivalent alternatives is proposed as an

extension of the classical Gordan theorem of the alternative. The theorem can
handle nonzero unrestricted variables which cannot be directly treated by
ordinary theorems of the alternative. Like the Gordan theorem, the extended
theorem has the stability feature that small perturbations in the data will
not invalidate an alternative that is in force. The theorem has useful
applications in establishing the boundedness and unicqueness of feasihle points

of polyhedral sets and of solutions to linear programming problems.
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SIGNIFICANCE AND EXPLANATION

In deriving optimality conditions and duality relations of optimization

theory certain theorems, called theorem of the alternative, play a key role.

These theorem characterize the solvability of a certain system of inequalities
by the unsolvability of a related system of inequalities. We extend here one
of the fundamental theorems of the alternative in such a way that it can
handle certain types of variables not easily handled before. As applications
we can give conditions which characterize uniqueness or boundedness of
solution of linear programming problems. Elsewhere the theorem has been used
by chemical engineers to give conditions under which maximum energy recovery

is possible in a heat exchanger network under a certain disturbance range.
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A STABLE THEOREM OF THE ALTERNATIVE:
AN EXTENSION OF THE GORDAN THEOREM

O. L. Mangasarian

1. Introduction

Theorems of the alternative play a key role in mathematical programming
(4, 8, 2, 7). Among the best known and very useful theorems of the
alternative is the Gordan theorem (6, 4, 8] which states that for any m x n
real matrix D the following are equivalent:

(i) Dy > 0 has a solution y in R®

(i1) pTv =10, 0 # v > 0, has no solution v in r®.
Here R"™ denotes the n-dimensional real Euclidean space and the superscript
T denotes the transpose. These two alternatives however are not the only
ones that can be stated for the Gordan theorem. For example it can be easily
shown [5] that (i) and (ii) are also equivalent to the following
(i1i) For each (c,h) in R™" the linear program
max {cTVIDTv = h, v > 0}
veR" =
is either infeasible or has a nonempty bounded optimal
solution set.
It is also elementary to verify that (i) is also equivalent to

(iv) Dy > ¢ has a solution y in R" for each ¢ in R®

and

Spongored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grand No. MCS 7901066.
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(v) Dy >0 has a solution y in R® for each m x n matrix D
such that 1D - DI < § for some § > 0.

Here Hfe«)§ denotes any matrix norm. The existence of these various equivalent
alternatives prompts one to look for a general type of theorem which subsumes
the Gordan alternatives. One such very general extension can be achieved by L
using the general regularity theory of Robinson (12, 13]. Our approach here
employs the more basic framework of the classical theorems of the alternative
(4, 8] to arrive at the desired extension. A key role in the extension is
played by the stability alternative (v) above, namely that 5& >0 has a
solution y in R for all D in R (the space of m x n real
matrices) that are sufficiently close to D. This alternative shows that the i
set of data (matrices in Rmxn) for which alternative (i) holds in an open
set in R™, By contrast it can be shown by means of simple examples that the
set of data satisfying either of the Farkas theorem alternatives (3, 8]:
Ax > 0, bTx ¢ 0 has a solution x in R®, or ATu=b, u 20 has a
solution u in Rm, where A 1is in Rmxn and b 1is in R", is not an
open set in R,

In view of the important role played by the stability alternative (v) we

shall term our extension of the Gordan theorem, Theorem 1 below, a stable

theorem of the alternative. The aptness of this terminology will be more
apparent from Theorem 2 of the next section which shows that if any one of the
alternatives of Theorem 1 holds then they all hold for sufficiently small
perturbations of the data. 1In Section 3 of the paper we exhibit some
applications of the stabiz theorem of the alternative in the form of
characterizations of boundedness and uniqueness of solution of linear

programs., We also mentinn a practical application in engineering.
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In order to be concrete we give now definitions of a theorem of the
alternative and a stable thoerem of the alternative.

Definition 1. A theorem of the alternative is an equivalence relationship

between the solvability of a system of linear equallties and inequalities and

the unsolvability of a related system of linear equalities and inequalities.

The solvability of the first system and the unsolvability of the second

system will be referred to as equivalent alternatives or more simply

alternatives.

Definition 2. A stable theorem of the alternative is a theorem of the

alternative with more than two equivalent alternatives and such that if one of
its alternatives holds then it, and consequently all the other alternatives,
hold for all sufficiently small but arbitrary perturbations of the (constant)
data constituting the linear equalities and inequalities of the alternatives.

Some of the interesting features of stable theorems of the alternative

‘ are:

{a) T.cy often involve nonzero unrestricted variables that are usually
not handled by ordinary theorems of the alternative. (See
alternative (i') of Thecrem 1 below.)

{b) They give useful existence properties for perturbations of systems
of linear inequalities and equalities. (See alternatives (i), (ii)
and (iv) of Theorem 1 below.)

(c) They give useful boundedness results for certain polyhedral sets and
linear programs. (See alternatives (v') and (vii') of Theorem 1 and
also Theorem 2, below.)

We briefly describe now the notation used. All matrices and vectors are

n
real. For the m x n matrix A we write A € R" ana denote row i by

Ay, column j by A-j and the element in row i and column j by Aij'




For x in the real n-dimensional Euclidean space R", element 3 is denoted
by Xye All vectors are column vectors unless transposed by the superscript
T. For I c {1,se.,m} and J € {1,e00,n}: A; denotes the submatrix of A

with rows Ay, i eI A, denotes the submatrix of A with columns A L,

J
3 €Jr Ay, denotes the submatrix of A with elements Aij' iel, jed

J

and Xy denotes X4 i1 ¢ 3. Ixl will denote an arbitrary but fixed norm

on R™ and the corresponding induced matrix norm max IAx! will be denoted
Hxk=1

by IAl. For brevity we shall often omit mentioning the dimensionality of a
vector or a matrix, it being obvious from the context. The vector e will be

a vector of ones in the appropriate Euclidean space.
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2. A stable theorem of the alternative

We begin with our principal result which subsumes the Gordan theorem and
which gives many useful equivalent alternatives. Some of these equivalences
can also be derived from Robinson's general regularity approach which uses
multifunction theory [13] and some from Rockafellar's convex analysis results
[14]). For example the equivalence between (iii), (i') and (i) of Theorem 1
below can be established after some work by using the equivalence between I,
II and III respectively of Theorem 3 of [13]. Similarly the equivalence
between (i') and (v') of Theorem 1 below can also be established by using
Rockafellar's Theorem 8.4 [14) which states that the boundedness of a nonempty
closed convex set is equivalent to its recession cone containing the origin
only. In keeping with the spirit of theorems of the alternative our proofs
here will rely mainly on these theorems.

Theorem 1 (A stable theorem of the alternative). Let A, B, C and D be

m, xn, m, xn, m, xn, m, xn
fixed matrices in R + R + R and R respectively and let
mq my
a and c¢ be fixed vectors in R and R respectively. The following
are equivalent:
. _ . T T
(i) Ax + By = a + Yb (i') A'u + Cv <O
Cx + Dy > c + vd BTu + DTV =0
X 2> 0 aTu + ch 20
1>y>0 v>0
has solution (x,y,Y) (u,v) # 0
for each (b,d) has no solution (u,v)




Cx + Dy

X

X

(iv) Ax + §y
‘ Cx + Dy

X

rows of

such that:

>
=

>

for each

such that:

>

>

>

O

0

has solution

(A’é'é,D'E’E)

(iii) AXx + By = a

Cx + Dy > ¢

0

has solution

rows of

(o]}

has solution
(a

independent for each

are linearly

are linearly

(A,B,C,D,a,c)

o
+
e ]
<
|
o

alTu + &%y > 0
v>0
has no solution (u,v)

for each (A,B,¢,D,a,c)

such that:

max{ ||A-a||, ||B-B||, [I&-c||, [|5-pll . [|a-a|l , [e-c]|} < & for some e >0

-ATu - CTV

0 # aTu + ch >0
'

BTu + DTV =0

has no solution (u,v) and:

independent
-aTu - Clv
0#| au+olv | >0
v
ETu + BTV =0

has no solution (u,v) and
rows of [R E] are linearly

independent for each (A,B,C,D,a,c)

such that:

max{||3-A||,HE-B||,HE-CII,HB—DII,H5—3||,HE—CII} h § for some § > O




(vii) There exists an

(viii)

(vi')

e >0

for each (a,c) satisfying

lla,e) -~ (a,0)|] £ € and for
each

(g,h) the linear program

a

Ax + By

min ng + hTy Cx + Dy
X, ¥

c

v

X

v

o .

is feasible and either its
objective function is unbounded
below or the set of dual optimal
multipliers is nonempty and bounded.

There exists an € > 0 and

(g,h) such that for each
(a,c) satisfying
| (a,e) (a,c) || < € the linear

program of (vii) has a unique

dual optimal multiplier.

such that (vii')

(viii')

(v') For each (g,h,a) the set
aTu + clv < 9)
BTu + DTv = h
S(g,h,a) = ((u,v) T T
a'u+cv2a
v>0

is empty or bounded

For some (g,h,a) the set

S(g,h,a) of (v') 1is a singleton.

There exists an € > 0 such that for
each (a,c) satisfying
||(5,E) - (a,c)|| £ e and for
each (g,h) the linear program
ATu + CTv |
z?t aTu +cv BTu + DTv =h

|
o)

is either infeasible or has a

v

v

nonempty bounded optimal solution

set.

There exists an € > 0 and (g,h)
such that for each (5,5) satisfying
@, - (a,e) | < € the linear

program of (vii') has a unique

solution.




Proof

(i) <==> (i') : (i1') is equivalent to

T T
ATu+CTv50, BTu+DTv=0, -aTu-chéo, -v <0, “-ru-sv«<ae

m,+n
not having a solution (u,v) for each (r,s) in R 1 1. By Motzkin's

theorem of the alternative [11,8] this is equivalent to

A; + B;'— aE -r=24, C; + D; - cE -8 ; 0, x

v

0, £>0

me+n
RV 1,

having a solution (;.;,E) for each (r,s) in By defining b = r-a

and d

]

s-c this is equivalent to

Ax + By = a(E+1) + b, Cx + Dy 2> c(§+1) + d, x

v

0, &

v
o

m1+n1.

having a solution (;,;,E) for each (b,d) in R This is equivalent

to (i) if we make the identifications x = r Y = _X: and Yy = —l: > 0.
1+§

x
1+E 1+E
(ii) <==> (ii'): By Motzkin's theorem.
(iii) <==> (iii'): By Motzkin's theorem.
(iv) <==> (iv'): By Motzkin's theorem.
(vii) <==> (vii'): By linear programming duality {1].
(viii) <==> (viii'): By linear programming duality.
(i') ==> (ii): If (ii) diqQ not hocld then there exists a sequence
{Ai,Bi,ci,Di,ai,ci}, i=1,2,vs., converging to (A,B,C,D,a,c) such that
for i=1,2,...,
Aix + Biy = ai, Cix + Diy 2 ci, x > 0

has no solution (x,y). By Motzkin's theorem this is equivalent to

el e s




AITu + ClTv < 0, BlTu + DiTv = 0, alTu + clTv >0, v 2 0
=i ui
having a solution (ui,vi) for i =1,2,..+ «+ By letting u = - and
ta™, vl

11’ it follows by the Bolzano-Wieirstrass theorem that the bounded
™ ,v il
sequence {Gi,;i} has an accumulative point (E,;) satisfying
ATu+Clv <o, BTU+DV=0,au+cv20, vy0, 13l =1
which contradicts (i').

(ii) ==> (iii): Since Ax + By = ; has a solution (x,y) for each ; such

that ﬂ;~an £ € for some € > 0, it follows that the rows of (A B] are

linearly independent. Setting A= A, B = B, C = c, D = D, a=a-~ ﬂ%ﬁ and
~ Cet et L
¢ =c- =+ where k > 2 max{lAell, lICel} we get from (ii) that there

exists (;,;) satiLfying

- - Aet - - Cee et -
= - — - —— .
Ax + By X’ Cx + Dy > ¢ X T x 20

eE

Hence it follows that x = x + * >0 and y = ; satisfy the conditions of

(iii).

(iii') ==> (iv): Since the set of matrices with full row rank is an open set

it follows that (A B] is of full row rank for sufficiently small & > 0.
; . i1 1 4 i i
Now if (iv) does not hold there must exist a sequence {A ,B ,C ,D ,a ,c },

i=12,..., converging to (A,B,C,D,a,c) such that for i = 1,2,¢4.,

alx + Bly = al, clx + Dly > cl, x>0

has no solution (x,y). By Motzkin's theorem this is equivalent to
iT iT
-A u-~-C v

iT i T i i T
0 # al u + c1 v > o , BlTu + D1 v=20

v




i

having a solution (ui,vi) for i = 1,2,... . Letting Gi = : 1
u’,v1
-i vi
v = 1 it follows by the Bolzano-Wieirstrass theorem that there

existsngn'gcéumulation point (u,v) of {(Ei,;i)} satisfying
L

aly + o'y >0 , BTG + D'V =0, lu,v0 =1 .

v

If v#O0 we contradict (iii'). If v =0 and 0 # -A"w 3 0, then
™ T~ -
u>0 and B u =0, and again we contradict (iii'). Finally if v = 0

and -A"u = 0, then B'G = 0, and ful = 1 which contradicts the linear

a

v

independence of the rows of ([A BJ).

(iv) ==> (iii): Set A=A, B=B, C=¢C, D=D, a=a and c = c.

(iii) ==> (i): Let (b,d) be in RP1+m2. Because the rows of (A  B]

are linearly independent there exisgts (;,;) such that ax + B; = b, Let
(;,;) satisfy Ax + B; =a, Cx + D; > ¢, x> 0. Then for sufficiently large

positive A we have ) > 1 and

A(x+Ax) + B(y+ly) = b + \a, C{x+Xx) + D(y+iy) > d + \c, x + Ax > 0 .

~+ — ~+ -—
Hence dividing by A and defining y = -1;‘ x = "x"", y = Y—Xxl we obtain (i).

(i*) ==> (vi'): Take g =0, h=0 and a =0 in (vi') then by (i')
s(0,0,0) = {0}.
(vi') ==> (1ii'): Suppose not, then either the rows of (A B] are linearly

dependent or there exist (5,3) satisfying

T~ T~
~-Au - C v\\\

~ T~

0 # aTu +cv 20, BTJ + DT; =0 .

V.




In the former case there exists a u # 0 such that ATE = 0, BTE = (0 and

aTﬁ 2 0, and hence the set S(g,h,a) is empty or unbounded for each
n1+n2+1

(g,h,a) in R because S(g,h,a) + A(G,O) c s(g,h,a) for 2 2 0.

Similarly in the latter case the set S(g,h,a) is empty or unbounded for each

n’+n2+1 ~
(g/h,a) in R because S(g,h,a) + A(u,v) c S{g,h,a) for 2 2 0.

Hence in both cases we contradict (vi').

n1+n2+1

(i') ==> (v'): Suppose, not, then for some (g,h,a) in R the sgset

S{g,h,a) 1is nonempty and unbounded. Hence there exists a sequence
{(ui,vi)}, (ui,vi) #0, {i=1,2,..., such that {Iui,vil} + » and for

i= 1,2,..0'

ATui + CTvi < g, BTui + DTvi - h

= ’ r
Rui,viﬂ Hui,vil Iui,vil Iui,vil

T i T i i
au +cv N [} v > 0
= ’ *

Hui,viu uui,vil Iui,vin =

-

Hence by the Bolzano-Wieirstrass theorem there exists a (G,;) such that
AU+ V<0, BTu+D V=0, au+cv20, v>0, Iav)il=1
which contradicts (i').

(v') ==> (i'): 1If not, then there exist (u,v ) satisfying

AT +cv<o, Bu+Dv=o0, aTG+cT\-r;0,Tr_3_0, (u,v) # 0

and hence for (g,h,a) = (0,0,0), S(0,0,0) is nonempty and unbounded because
A(u,v) <s(0,0,0) for i > 0. This contradicts (v').

(i') ==> (vii'): Suppose not, then for each € > 0 there exists (a,c) such

that (a,c) - (a,c)t ¢ € and some (g,h) such that the linear program of

(vii') is feasible and either has an unbounded optimal solution set or no

optimal solution. Hence for each € > 0 there exists an a (a being the

-11-
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maximum of the linear nrogram of (vii’) if it has a solution, else o is any

real number) and a sequence {(ui.vi)}, (ui,vi) #0,1i=1,2,..., such that

i

{ta ,vin} + o for 1= 1,2,s0., and

ATui+CTvi q BTui+DTvi - h vi >0 ;'ruiﬂ;’rvi 5 [+]
A . ’ r’ = ’ = .
lui,vll = lui,vll uui,vil nui,vil Iui,vil Iui,vil Iui,vil )

It follows by the Bolzano-Wieirstrass theory that for each ¢ > 0 there
exists a (u,v) such that

ATG'+CTG'$0, BTE+DTG'-0,330, :rﬁ'+8'r§7‘>_n, fa,vl = 1 .
Now by letting e approach zero and noting that a,vl = (e), vieg)n = 1 i
and t(a,c) - (a,c)d & €& we obtain once again by the Bolzano-Wieirstrass
theorem that {(u(e), v(e))} + (u,vd and that !

T—

T; +cv> 0, I;,;I = 1

AT_u+ch_r§0, BTG+DT\7=0,V;O,a
which contradicts (i').
(vii) ==> (i): Evident. Take <y = min{-—s——, 1} .
ib,d1
(viii') ==> (vi'): Take a = a, ¢ = ¢ and define a to equal the maximum of
the linear program of (vii') which by assumption has a unique solution. The
set S(g,h,a) of (vi') now consists precisely of this unique point.

(i*) ==> (viii'): From (i') we have that the origin is the unique solution of

the linear proqram

ATu + CTV

< 0

~T
max ya u + ETV BTu + DTv = 0
u,v > 0

v
-

~

for n(;,G) - (a,c) <€ and any ¢ > 0 because its feasibhle reaion contains

the origin only. Hence (viii') holds for (g,h) = (0,0).




We note in Theorem 1 above that condition (iv) is a reproduction of the

openness condition (iii) with K, E, E, 5, ;, E replacing A, B, C, D, a, ¢
respectively. From this we can immediately draw the following renlication
result.

Theorem 2 (Replication theorem)., If any of the alternatives of Theorem 1
hold, then all of them hold with K, 5, E, 5, ;, c replacing A, B, C, D, a,

c respectively where

max{1A-Al, 1B-B, IC-CK, WD-DI, la-al, Ic-ci} < § for some &> 0 .
Remark 1. The classical Gordan theorem of the alternative is the equivalence
between the alternatives (i') and (iii) of Theorem 1 with all data suppressed
except the matrix D. i

Remark 2. Some classical existence, stability and perturbation results for

linear systems of equations follow from Theorem 1 by suppressing everything

except the matrix B and the vector a.

-13-




3. Some applications of the stable theorem of the alternative

Theorem 1 can be used to obtain some interesting characterizations of
boundedness and uniqueness of linear programming solutions. In particular we
will show (see the equivalence (ii) <==> (v) of Theorem 3 below) that the
solution set of a linear program is bounded if and only the linear program
remains solvable for all arbitrary but sufficiently small perturbations of the
objective function coefficients. It is interesting to contrast this with the
uniqueness characterization (see the equivalence (ii) <¢==3 (v) of Theorem 4
below) which states that a linear programming solution is unique if it remains
a solution to all linear programs obtained by arbitrary but sufficiently small
perturbations of the objective function coefficients.

We state and prove now a boundedness characterization theorem for linear
programming. A special case of the equivalence below between (i) and (ii)
follows from Goldman's results [5, Corollary 1B] and has been given by
Williams [15, Theorem 3]. However, Williams' theorem is incorrect without the
additional unstated assumption that the primal feasible region is nonempty in
the first part of the theorem, and that the Aual feasible region is nonempty
in the second part. The equivalence below between (i) and (iii) can also be
derived from [13, Theorem 13}.

Theorem 3 (Boundedness of linear programming solutions)

n,+n
Let (g,h) ¢ R and let

T T T
s = {(u,vifA'u+Cv<ag Bus+ DTv =h, v 0}

Sfa,c) = {(u,v)|(u,v) solves: max aTu + ch s.t. (u,v) ¢ S} .
u,v

-14=-




The following are equivalent:
{i) S is nonempty and
ATu + ch <0, BTu + DTv = 0, aTu + ch 20, v20, (uv) ¥ 0
has no solution (u,v).
(i1) S(a,c) is nonempty and bounded.
(1ii) S 1is nonempty and the following constraint qualification is satisfied:
The rows of [A B] are linearly independent, and
Ax + By = a, Cx + Dy > ¢, x > 0
has solution (x,y).
(iv) There exists ¢ > 0 such that E(;,E) is nonempty and bounded for all
(a,c) such that 1(a,c) - (a,c) S €.

(v) There exists ¢ > 0 such that 5(:,2) is nonempty for all (;,E)

such that K(a,c) - (a,c)t $ €.
Proof
(i) ==> (iv): Follows from the implication (i') ==> (vii') of Theorem ! with
the extra condition that S ¥ § imposed on both (i') and (vii').
(ii) ==> (i): Obviously S ¥ §. If there exists (u,v) such that

ATu + CTv < 0, BTu + DTv = 0, aTu + ch 2 0, v > 0, (u,v) ¥ 0

then for any (G,;) € §(a,c) we have (u + vu, v+ W) € §(a,c) for vy 2 0,
and hence S(a,c) is unbounded which is a contradiction.
(i) ==> (ii): 1f (ii) Aoes not hold then g(a,c) is empty or unhounded. In

either case, since S 1is nonempty, there exist ((ui,vi)}, 1i=1,2,.¢., with

lui,vil + » guch that

T i T 1
ATui+CTvi q Brui+n v h vi aTui#c v R
< ' = R 2N, >

T R T wh vl et vl T

-15-
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where 8 = max aTu + ch if S(a,c) is nonempty, while {f S(a,c! is

(u,v)es T T
empty then since S is nonempty, au” ¢+ cv + o and hence 8 can be any
fixed real number. By the Bolzano-Wieirstrass theorem then, there exists
(u,v) satisfying the conditions of (i).
(i) <==> (iii{): Follows from the equivalence (i') <==> (iii) of Theorem 1.
(iv) ==> (v): Obvious.

(v) ==> (i): Obviously S is nonempty. Since 5(3,3) is nonempty for

1(a,c) - (a,e)l < ¢ it follows that by linear programming duality that

Ax + By = a, Cx + oy 2 c, x 2 0 has solution (x,y) for
1(a,c) ~ (a,e) & €. It follows by the equivalence (1) <==> (i') of Theorem

1 that (i) of this thoerem holds.

We turn now to characterizing uniqueness of linear programming
solutions. In [9) uniqueness-characterizing theorems similar to Theorem 3
above were obained by using theorems of the alternative subsumed by Thedrem 1
above. We give below a slightly more general .esult than that of (9] with a
considerably simpler proof.

Theorem 4 (Uniqueness of linear programming solution)
Let g, h, S and S(a,c) be defined as in Theorem 3. Let
(u,v) € S(a,c) ani let
I = (lATG + CTV), =g b M= {41, =0}, A = (117, > 0} .
The following are equivalent:

T >0, (n,v) 40

(1) (ATu + CTv) <0 , Bu+ DTV = 0, aTu + ch >0, v
J - =

H

has no solution (u,v).




(i1) S(a,c) is a singleton.

(1iii) The following constraint qualification is satisfied: The rows of

A'J B
are linearly independent and
C~ n
HT H
+ + - +
A.J xJ By = a, C~ xJ DNy c_ CHJxJ Dﬂy > cH, xJ >0

HJ H H

has solution (xJ,y).

(iv) There exists ¢ > 0 such that (E,;) is the only element in S(a,c)
for all (a,c) such that H&(a,c) - (a,c)t S €.

(v) There exists ¢ > 0 such that (u,v) is in S(a,c) for all (a,c)

such that 0I(a,c) - (a,c)h S e
Proof

(i) ==> (ii): By the second order sufficient optimality conditions of
nonlinear programming (7, Theorem 3.2].

(1) <==> (iii): By the equivalence (i') <==> (iii) of Theorem 1 above.
(iv) ==> (v): Obvious.
(ii) ==> (iv): Suppose not, then there exists a sequence {(ai,ci)}

T
converging to (a,c) such that the linear programs max aiTu + c1 v have
{u,v)eSs

solutions (ul,vl), £ = 1,2,..., (this follows by the implication (ii) ==>
(v) of Theorem 3 ahove) which are distinct from (G,;). Hence the sequence
{(ui,vl)} gatiafies for { = 1,2,...,
iT, 1 - i

a" (u=-u) + ¢ T(vi-;) >0, (AT(ul-;) + CT(vl-;))J < 0,

aT(ul-g) + b (vi-7) = 0, (vi—;)H > 0.
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Dividing by Iui-;, vi-;l and using the Bolzano-Wieirstrass theorem gives a
{(u,v) satisfying the conditions of (i) and hence for sufficiently small

A>0, (U+ Au, v+ 2Av) is in §(a,c) which contradicts (ii).

(v) ==> (i): Suppose not, then there exists (G.\;) such that

(AT + c™9) ¢ 0, BTG+ DV =0, aTd 4 ™0 30, G20, (6,0 A0 . ‘
Congsider now the linear program min {a + Gﬁ)Tu + (c + GG)Tv. For all
{u,v)es

sufficiently small &5 > 0 we have that (u + &u, v + 6v) € S and

(a + 60)T(a + 80) + (c + 6VT(V + &)

- (a+ )70 + (c+ 50TV + 8(aTh + cT9) + &2(aT4 + vT%)

> (a+ 83)T8 + (c + 617y

This shows that for all § > 0 sufficiently small, (G,;) is not in

§(a + 66, c + 8v), which contradicts (v).

O
It is interesting to note the similarities between the five conditions
(i) to (v) of Theorem 3 and 4 and also to note the replication of the
boundedness or uniqueness conditions of (ii) in the perturbed problem of (iv).
Finally we mentinn that an interesting practical application of the
Theorem 1 has been made in the design and control of a heat exchanger network ﬂ

[10]. 1In particular the thenrem is used to give conditions under which

maximum enerqy recovery is pnsszi>le in a heat exchanqger netwnrk under a

certain disturbance range, .
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