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ABSTRACT

A theorem with a number of equivalent alternatives is proposed as an

extension of the classical Gordan theorem of the alternative. The theorem can

handle nonzero unrestricted variables which cannot be directly treated by

ordinary theorems of the alternative. Like the Gordan theorem, the extended

theorem has the stability feature that small perturbations in the data will

not invalidate an alternative that is in force. The theorem has useful

apDlications in establishing the bouniedness and uniqueness of feasible points

of polyhedral sets and of solutions to linear programming problems.
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SIGNIFICANCE AND EXPLANATION

In deriving optimality conditions and duality relations of optimization

theory certain theorems, called theorem of the alternative, play a key role.

These theorem characterize the solvability of a certain system of inequalities

by the unsolvability of a related system of inequalities. We extend here one

of the fundamental theorems of the alternative in such a way that it can

handle certain types of variables not easily handled before. As applications

we can give conditions which characterize uniqueness or boundedness of

solution of linear programming problems. Elsewhere the theorem has been used

by chemical engineers to give conditions under which maximum energy recovery

is possible in a heat exchanger network under a certain disturbance range.

T"or

*;' ,t ri bvt i r/_-.-

The responsibility for the wording andl views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A STABLE THEOREM OF THE ALTERNATIVE:

AN EXTENSION OF THE GORDAN THEOREM

0. L. Mangasarian

1. Introduction

Theorems of the alternative play a key role in mathematical programming

[4, 8, 2, 7]. Among the best known and very useful theorems of the

alternative is the Gordan theorem (6, 4, 8] which states that for any m x n

real matrix D the following are equivalent:

(i) Dy > 0 has a solution y in Rn

(ii) DTv = 0, 0 # v > 0, has no solution v in le.

Here Rn denotes the n-dimensional real Euclidean space and the superscript

T denotes the transpose. These two alternatives however are not the only

ones that can be stated for the Gordan theorem. For example it can be easily

shown [5] that (i) and (ii) are also equivalent to the following

(iii) For each (c,h) in Rm+ n the linear program

max (C vID Tv h, v > 0}
VE m

is either infeasible or has a nonempty bounded optimal

solution set.

It is also elementary to verify that (i) is also equivalent to

(iv) Dy > c has a solution y in Rn for each c in Rm

and

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under

Grand No. MCS 7901066.



Bv) Dy > 0 has a solution y in Rn  for each m x n matrix B

such that KD - DI < 6 for some 6 > 0.

Here R. denotes any matrix norm. The existence of these various equivalent

alternatives prompts one to look for a general type of theorem which subsumes

the Gordan alternatives. One such very general extension can be achieved by

using the general regularity theory of Robinson (12, 131. Our approach here

employs the more basic framework of the classical theorems of the alternative

[4, 81 to arrive at the desired extension. A key role in the extension is

played by the stability alternative (v) above, namely that Dy > 0 has a

solution y in D for all ( in Rm xn  (the space of m x n real

matrices) that are sufficiently close to D. This alternative shows that the

set of data (matrices in RmXn ) for which alternative i) holds in an open

set in Rn. By contrast it can be shown by means of simple examples that the

set of data satisfying either of the Farkas theorem alternatives [3, 81:

Ax > 0, bTx < 0 has a solution x in Rn, or ATu - b, u > 0 has a

solution u in Rm, where A is in Rmxn and b is in Rn, is not an

open set in Rmn+n.

In view of the important role played by the stability alternative (v) we

shall term our extension of the Gordan theorem, Theorem I below, a stable

theorem of the alternative. The aptness of this terminology will be more

apparent from Theorem 2 of the next section which shows that if any one of the

alternatives of Theorem 1 holds then they all hold for sufficiently small

perturbations of the data. In Section 3 of the paper we exhibit some

applications of the stab> theorem of the alternative in the form of

characterizations of boundedness and uniqueness of solution of linear

orograms. We also mention a practical arplication in engineering.
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In order to be concrete we give now definitions of a theorem of the

alternative and a stable thoerem of the alternative.

Definition 1. A theorem of the alternative Is an equivalence relationship

between the solvability of a system of linear equalities and inequalities and

the unsolvability of a related system of linear equalities and inequalities.

The solvability of the first system and the unsolvability of the second

system will be referred to as equivalent alternatives or more simply

alternatives.

Definition 2. A stable theorem of the alternative is a theorem of the

alternative with more than two equivalent alternatives and such that if one of

its alternatives holds then it, and consequently all the other alternatives,

hold for a21 sufficiently small but arbitrary perturbations of the (constant)

data constituting the linear equalities and inequalities of the alternatives.

Some of the interesting features of stable theorems of the alternative

are:

(a) Thzy often involve nonzero unrestricted variables that are usually

not handled by ordinary theorems of the alternative. (See

alternative (i') of Thecrem 1 below.)

(b) They give useful existence properties for perturbations of systems

of linear inequalities and equalities. (See alternatives (i), (ii)

and (iv) of Theorem 1 below.)

(c) They give useful bour.-edness results for certain polyhedral sets and

linear programs. (See alternatives v') and (vii') of Theorem I and

also Theorem 2, below.)

We briefly describe now the notation used. All matrices and vectors are

real. For the m x n matrix A we write A E Rm xn and denote row i by

Ai, column j by A., and the element in row i and column j by Aij.
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For x in the real n-dimensional Euclidean space Rn, element j is denoted

by xj. All vectors are column vectors unless transposed by the superscript

T. For I c (1,...,m) and J c (1,...,n): AI denotes the submatrix of A

with rows Au, i i I; A j denotes the submatrix of A with columns A.j,

j E J; A1W denotes the submatrix of A with elements Aij, i E I, j C J

and xj denotes xi , i E J. lxi will denote an arbitrary but fixed norm

on Rn  and the corresponding induced matrix norm max lAxI will be denoted
ixIwi

by NAN. For brevity we shall often omit mentioning the dimensionality of a

vector or a matrix, it being obvious from the context. The vector e will be

a vector of ones in the appropriate Euclidean space.

-4-



2. A stable theorem of the alternative

we begin with our principal result which subsumes the Gordan theorem and

which gives many useful equivalent alternatives. Some of these equivalences

can also be derived from Robinson's general regularity approach which uses

multifunction theory [133 and some from Rockafellar's convex analysis results

[14]. For example the equivalence between (iii), (i') and i) of Theorem 1

below can be established after some work by using the equivalence between I,

II and III respectively of Theorem 3 of [13]. Similarly the equivalence

between (i') and (v') of Theorem 1 below can also be established by using

Rockafellar's Theorem 8.4 [14] which states that the boundedness of a nonempty

closed convex set is equivalent to its recession cone containing the origin

only. In keeping with the spirit of theorems of the alternative our proofs

here will rely mainly on these theorems.

Theorem 1 (A stable theorem of the alternative). Let A, B, C and D be
mlxn I  m xn2  m2xnI  m2xn2fixed matrices In R , R1 2 2 and R respectively and let

Im
a and c be fixed vectors in R and R 2 respectively. The following

are equivalent:

(i) Ax + By = a + yb (i) ATu + cTv 0

Cx + Dy > c + yd B Tu + DTv= 0

X > 0 a Tu + cT v 0

l>y>0 v 0

has solution (x,yy) (uv) 3 0

for each (b,d) has no solution (u,v)
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(ii) x + By = a A u + T v < 0

Cx + Dy> C B u + Dv= 0

X > 0 aTu + cv > 0

has solution (x,y) v > 0

for each (ABCDac) has no solution (u,v)

such that: for each (A,B,C,D,a,c)

such that:

max{ilI-Ail,llI-BIIll-Cil,ll-Dil,lla-all,Ilc-cil} < s for some e > 0

(iii) Ax + By = a iii') Cu - cTv

Cx + Dy > c 0 a u + cTv >0

x > 0 V)

has solution (x,y) and: BTu + DTv =0

has no solution (u,v) and:

rows of [A B] are linearly independent

(iv) ix + By = a (iv') _-Tu _ Tv

X+ y >c 0 a ( + -Cv ) 0

x >0 v

has solution (x,y) and BTu + DTv =0

rows of [A B] are linearly has no solution (u,v) and

independent for each (A,B,C,D,a,c) rows of [A BI are linearly

such that: independent for each (A,B,C,D,a,c)

such that:

max{IIA-AII,IIB-BII,IIC-CII,IID-DII,IIa-alI,II -cl} < 6 for some 6 > 0

-6-



(v') For each (g,h,) the set

ATu + C Tv < g

B Tu + D Tv =h

S(g,h,a) = hu,v) T T
a u +c v> a

v > 0

is empty or bounded

(vi') For some (g,h,) the set

S(g,h,a) of (v') is a singleton.

(vii) There exists an E > 0 such that (vii') There exists an c > 0 such that for

for each (a,c) satisfying each (a,c) satisfying

fl (a,c) - (a,c)If < c and for (a,c) - (a,c)1 < e and for

each (g,h) the linear program each (g,h) the linear program

Ax + By a Tu + Cv < g

min g x + h y Cx + Dy> max u + c v BTu + DTv =h
x,y =u,v

x > v > 0

is feasible and either its is either infeasible or has a

objective function is unbounded nonempty bounded optimal solution

below or the set of dual optimal set.

multipliers is nonempty and bounded.

(viii) There exists an e > 0 and (viii') There exists an c > 0 and (g,h)

(g,h) such that for each such that for each (a,c) satisfying

(a,c) satisfying (a,c) - (a,c) < s the linear

I (a,c) - (a,c) < F the linear program of (vii') has a unique

program of (vii) has a unique solution.

dual optimal multiplier.
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Proof

(i) <==> (1') (i) is equivalent to
T TT TT T T T

A u + C Tv < 0, B u + DTv = 0, -a u - c v < 0, -v < 0, -r u - s v < 0

not having a solution (u,v) for each (r,s) in R + n  By Motzkin's

theorem of the alternative [11,8] this is equivalent to

Ax + By - a - r = 0, Cx + 1y - S > 0, x > 0, > 0

having a solution (x,y,E) for each (r,s) in R * By defining b = r-a

and d = s-c this is equivalent to

Ax + By =a(T+1) + b, Cx + Dy > c(T+) + d, x > 0, > 0

having a solution (x,y,T) for each (b,d) in R 1 This is equivalent

to (i) if we make the identifications x = , y = and Y = > 0.
1+ 1+ 1+T

(ii) <==> (ii'): By Motzkin's theorem.

(iii) <==> (iii'): By Motzkin's theorem.

(iv) <==> (iv'): By Motzkin's theorem.

(vii) <==> (vii'): By linear programming duality (1].

(viii) <==> (viii'): By linear programming duality.

(i') ==> (ii): If (ii) did not hold then there exists a sequence

(Ai,B ,Ci,D ,a ,c }, i = 1,2,..., converging to (A,B,C,D,a,c) such that

for i = 1,2,...,

i i i i i iAx+By=a, Cx+Dy >c , x> 0

has no solution (x,y). By Motzkin's theorem this is equivalent to

: - m 1 u U ! - . .... ..-. .-



iT iT !T iT iT iT
A u + C y < 0, Biu + Dv =0, a u + v> 0, v > 0

i
having a solution (u ) for i - 1,2,... . By letting u - andiitl 1ui , v f i

-j vi-l-i V
v = , it follows by the Bolzano-Wieirstrass theorem that the bounded

sequence ui ,vi } has an accumulative point (u,v) satisfying

T- T- T- T- T- T-
A u + C v < 0, B u + D v= 0, a u + c v > 0, v > 0, IIu,vI = 1

which contradicts (i').

(ii) -> (Iii): Since Ax + By = a has a solution (x,y) for each a such

that Ua-aI < e for some £ > 0, it follows that the rows of (A B] are
Ae- A nd

linearly independent. Setting A A, B = B, C = C, D D, a = a - --- and
= - + e where k > 2 max{IIAeI1, ICelI} we get from (ii) that there

k "Z 2UeII

exists (x,y) satifying

Ae - - Cec ee -
Ax B a - , Cx + Dy c - + x> 0

Hence it follows that x = x + 2- > 0 and y = y satisfy the conditions of
k

(iii).

(iii') ==> (iv): Since the set of matrices with full row rank is an open set

it follows that [A B] is of full row rank for sufficiently small 6> 0.

Now if (iv) does not hold there must exist a sequence {Ai,B ,C ,D ,a ,c

i = 1,2,..., converging to (A,B,C,D,a,c) such that for i = 1,2,...,

Aix + Biy = a , cix + Diy > ci , x > 0

has no solution (x,y). By Motzkin's theorem this is equivalent to

iT iT

0 (:aiT: iT > 0 BiT + DT = 0

V)
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u i , i -i u
having a solution (u ,yi) for i - 1,2,... . Letting u

lu i ,vil
i

- , it follows by the Bolzano-Wieirstrass theorem that there
lu i .-- i

exists anaclumulation point (u,v) of {(u ,vt)) satisfying

-A -

T-T-

a u > 0 and B u - 0, and again we contradict (iii'). Finally if v - 0

and -A u = 0, then B u - 0, and tu| = 1 which contradicts the linear

independence of the rows of (A B].

(iv) -=> (iii): Set A - A, B - B, C - C, D = D, a = a and c = c.

(iii) => (i): Let (b,d) be in R ml+m2 Because the rows of [A B]

are linearly independent there exists (x,y) such that Ax + By = b. Let

(x,y) satisfy Ax + By - a, Cx + Dy > c, x > 0. Then for sufficiently large

positive X we have X > 1 and

A(x+;)x) + B(y+Xy) = b + Xa, C(x+X) + D(y +y) > d + Xc, Z + )x > 0

1 Z+ x w otin()
Hence dividing by X and defining y = x we obtain (i).

Ci') > (vi'): Take g = 0, h = 0 and a = 0 in (vi') then by (i')

S(o,o,0) = (0).

(vi') -=> (iii'): Suppose not, then either the rows of [A B] are linearly

dependent or there exist (u,v) satisfying

-
-A _ - C

T- +T- T- T-
o# au c >0 B Bu+ D vO

-10-



in the former case there exists a u 0 0 such that A u -0, B u -0 and

au> 0, and hence the set S(g,h,a) is empty or unbounded for each

n1 +n2+ 1
Cg,h,a) in R because S~g,h,a) + X~u,0) c S(g,h,ct) for A > 0.

Similarly in the latter case the set S~g,h,ca) is empty or unbounded for each

Cg,h,ci) inRbecause S~g,h,a) + XCu,v) c S(g,h,a) for X. > 0.

Hence in both cases we contradict (vi').

Ci') =-> Cv'): Suppose, not, then for some (q,hcs%) in R nn21the set

S(g,h,cz) is nonempty and unbounded. Hence there exists a sequence

i i i i i i
((u ,v (1 u , v ) ~0, 1 - 1,2,.... such that {Iu , v 11. and for

A u + Cv E 1 Bu +-Dv h

flu i,v I flu 'v i flu i,v I flu i,v iI

aT ui +cT vi avi
au + v > >__ V 0
i i M '

flu 'v I flu ,vi I lu ,vI

Hence by the Bolzano-Wieirstrass theorem there exists a (u,v) such that

AT- + T- 0 T- +T- . ,T- T-
Au+Cv ,Bu+Dv =0 a u+c v > 0, v > 0, Iu'v) I - 1

which contradicts Wi).

Wv) W i):- If not, then there exist Cu,v )satisfying

T- T- T- T - T
A u + C v < 0, B u + DT v = 0, au + cT v > 0, -v > 0, (u,v) Ai 0

and hence for Cg,h,a) =(0,0,0), SC0,0,0) is nonempty and unbounded because

X(u,v) c S(0,0,0) for X~ > 0. This contradicts (v1).

Ci') ==> Cvii'): Suppose not, then for each c > 0 there exists ac) such

that H~~)-(a,chl < e and some Cg,h) such that the linear proqram of

Cvii') is feasible and either has an unbounded optimal solution set or no

optimal solution. Hence for each F- > 0 there exists an a (a being the



maximum of the linear Program of (vii') if it has a solution, else a is any

real number) and a sequence (u i,v )}, (u i,v) 0, i - 1,2,..., such that

i i(fu ,v i} + - for i - 1,2,..., and

Tui Tvi Ti T i T i
A U+Cv u+Dv h v a u +cv > ai < i' ii ii ii _ ii, i
u I,v I Eu i,v I u i,v I u i,vI lui,vil Eui ,v lu ,v I

It follows bv the Holzano-Wieirstrass theory that for each c > 0 there

exists a (u,v) such that

AT; + CT- < 0, BTu + D T- , > , a, u + c v > 0, u,v, - 1.

Now by letting c approach zero and noting that lu,vl - Iu(c), v(c)I - 1

and E(a,c) - (a,c) < c we obtain once again by the Bolzano-Wieirstrass

theorem that [(u(), ;(c))} + (u,;4 and that

Aou + C v < 0, B U + D v = 0, v > 0, a Tu + c Tv 0, iu,vI1

which contradicts (i').

(vii) ==> Mi): Evident. Take y min{, 1}1.

(viii') ==> (vi'): Take a - a, c = c and define a to equal the maximum of

the linear program of (vii') which by assumption has a unique solution. The

set S(g,h,a) of (vi') now consists precisely of this unique point.

Ci') ==> (viii'): From Ci') we have that the origin is the unique solution of

the linear proqram

kT U+CTV<0
-T -T T TI

max u + c Tu + DTv

for E(a,c) - (a,c)l < c and any c > 0 because its feasible reqion contains

the origin only. Hence (viii') holds for (q,h) - (0,0).

1
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We note in Theorem 1 above that condition (iv) is a reproduction of the

openness condition (iii) with A, i, C, D, a, c replacing A, B, C, D, a, c

respectively. From this we can immediately draw the following reolication

result.

Theorem 2 (Replication theorem). If any of the alternatives of Theorem I

hold, then all of them hold with A, B, C, D, a, c replacing A, 8, C, D, a,

c respectively where

max(PA-AI, IB-BI, ,C-Cl, ID-D , Aa-al, Ic-cu) < 6 for some 6 > 0

Remark 1. The classical Gordan theorem of the alternative is the equivalence

between the alternatives (i') and (iii) of Theorem 1 with all data suppressed

except the matrix D.

Remark 2. Some classical existence, stability and perturbation results for

linear systems of equations follow from Theorem I by suppressing everything

except the matrix B and the vector a.
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3. Some applications of the stable theorem of the alternative

Theorem I can be used to obtain some interesting characterizations of

boundedness and uniqueness of linear programming solutions. In particular we

will show (see the equivalence (ii) <--> v) of Theorem 3 below) that the

solution set of a linear program is bounded if and only the linear program

remains solvable for all arbitrary but sufficiently small perturbations of the

objective function coefficients. It is interesting to contrast this with the

uniqueness characterization (see the equivalence (ii) <- (v) of Theorem 4

below) which states that a linear programming solution is unique if it remains

a solution to all linear programs obtained by arbitrary but sufficiently small

perturbations of the objective function coefficients.

We state and prove now a boundedness characterization theorem for linear

programming. A special case of the equivalence below between (i and (ii)

follows from Goldman's results [5, Corollary IB] and has been given by

williams [15, Theorem 3]. However, Williams' theorem is incorrect without the

additional unstated assumption that the primal feasible region is nonempty in

the first part of the theorem, and that the dual feasible region is nonempty

in the second part. The equivalence below between i) and (iii) can also be

derived from [13, Theorem 31.

Theorem 3 (Boundedness of linear proqramming solutions)
n +n2

Let (g,h) E R and let

S -(u,v)IA Tu + C T V < q, B Tu + DT v - h, v > 0

S(a,c) = {(u,v)I(u,v) solves: max a Tu + - v s.t. (u,v) c S}
u,v

-14-



The following are equivalent:

(i) S is nonempty and
T T TT T

A Tu + C Tv < 0, Tu + D Tv - 0, a u + c v > 0, v > 0, (uv) 0 0

has no solution (u,v).

(ii) S(a,c) is nonempty and bounded.

(iii) S is nonempty and the followinq constraint qualification is satisfied:

The rows of [A 8] are linearly independent, and

Ax + By - a, Cx + Dy > c, x > 0

has solution (x,y).

(iv) There exists c > 0 such that S(a,c) is nonempty and bounded for all

(ac) such that I(a,c) - (a,c)I < E.

(v) There exists c > 0 such that S(a,c) is nonempty for all (a,c)

such that I(a,c) - (a,c)k < E.

Proof

(i) --> (iv): Follows from the implication i') --> (vii') of Theorem I with

the extra condition that S 0 5 imposed on both (i') and (vii').

(ii) --> (i): Obviously S # 1. If there exists (u,v) stich that

ATu + CTv ( 0, Tu + DTv - 0, aTu + cTv > 0, V 0, (uv) 0 0

then for any (u,v) f S(a,c) we have (u + Yu, V + yv) E S(a,c) for y > 0,

and hence S(a,c) is unbounded which is a contraeiction.

(i) > (ii): If (ii) does not hold then S(a,c) is empty or unhounded. In

i i
either case, since S is nonempty, there exist {(u ,v )1, i - l,2,..., with

i i
Nu ,v I * I such that

Ti cTi T Tii T i T i

Au+Cv RTui+Dv h V > , a u +c v

Nu ,v I lu ,v I Eu vv lu ,v I Nu ,v I lu ,v I Eu ,v I

-15-



where B - max a u + c v if S(ac) is nonempty, while if S(ac! is
(u'v)CS T i T i

empty then since S is nonempty, a u + c v . - and hence B can be any

fixed real number. By the Bolzano-Wieirstrass theorem then, there exists

(u,v) satisfying the conditions of i).

i) > iii): Follows from the equivalence (i') <-> (iii) of Theorem 1.

(iv) M- (v): Obvious.

(v) > i): Obviously S is nonempty. Since S(ac) is nonempty for

t(a,c) - (a,c)l < e it follows that by linear programming duality that

Ax + By a, cx + Dy Z c, x > 0 has solution (x,y) for

l(a,c) - (a,c)l < e. It follows by the equivalence i) <--> (i') of Theorem

1 that Ci) of this thoerem holds.

0

We turn now to characterizing uniqueness of linear programming

solutions. In 191 uniqueness-characterizing theorems similar to Theorem 3

above were obalned by using theorems of the alternative subsumed by Thedrem I

above. We give below a slightly more general -esult than that of (9) with a

considerably simpler proof.

Theorem 4 (Uniqueness of linear programming solution)

Let g, h, S and S(a,c) be defined as in Theorem 3. Let

(u,) E S(a,c) ani let

3 A i I + cTV)i - gi) , H - {ifv i - a0), T - {ii > 0}

The following are equivalent:

T) CTu + CTV) < 0 B Tu + D Tv - 0, a u + c Tv > 0, v ! 0, 0.v) 0 0

has no solution (u,v).

-16-



(ii) S(a,c) is a singleton.

(iii) The following constraint qualification is satisfied: The rows ofIare linearly independent and

A j + By - a, C x + D y c + Dy>c xj > 0X HJxJ OH cH'

HJ H H

has solution (xj,y).

(iv) There exists c > 0 such that (u,v) is the only element in S(a,c)

for all (a,c) such that I(a,c) - (a,c)t < e.

(v) There exists e > 0 such that (u,v) is in S(a,c) for all (a,c)

such that I(a,c) - (a,c) < eo

Proof

i) -- > (ii): By the second order sufficient optimality conditions of

nonlinear programminq (7, Theorem 3.21.

(i) < > iii): By the equivalence Ci') <--> (iii) of Theorem 1 above.

(iv) (-> v): Obvious.

i i
(ii) -> (iv): Suppose not, then there exists a sequence (a ,c )

converginq to (a,c) such that the linear programs max a u + c v have
CUV)ES

i isolutions (u ,v ), i - 1,2,..., (this follows by the implication (ii) --

(v) of Theorem 3 ahove) which are distinct from (u,v). Hence the sequence

i i[(u ,v )) satisfies for i = 1,2,...,

iT (ui- iT iv-( T (ui-U T (vi-v)ailui-) + ciCvi-v) > 0, CATlui-u) + cTCvi-v) i< 0,

(ui-U) + D (v -V) - 0, (v -) ) 0.
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Dividing by lui-u, v -vl and using the Rolzano-Wieirstrass theorem gives a

(u,v) satisfying the conditions of (i) and hence for sufficiently small

X > 0, (u + Au, v + Xv) is in S(a,c) which contradicts (ii).

(v) --> (i): Suppose not, then there exists Cuv) such that
T+CT)T - DT T. T

(Au+ v) + 0, D v - 0, a u+cv 0, 0, Cu,v)

Consider now the linear program min (a + 6u)u + (c + v) v. For all
(u~v)ES

sufficiently small 6 > 0 we have that (u + -, V + 6v) E S and

(a + 6a)T(U + Qu) + (c + T(- + 6;)

T - T; T-) 62(G~T+ -T-)
( (a + du)"u + (c + 6v) v + M{a u + cv) + d2Cu u + v v)

> Ca + 8Ci) "u + Cc + 6i)" .

This shows that for all 6 > 0 sufficiently small, (u,v) is not in

S(a + 6u, c + 6v), which contradicts (v).

0

It is interesting to note the similarities between the five conditions

i) to (v) of Theorem 3 and 4 and also to note the replication of the

boundedness or uniqueness conditions of (ii) in the nerturhed problem of (iv).

Finally we mention that an interesting practical application of the

Theorem I has been made in the design and control of a heat exchanger network

[101. In particular the theorem is used to give conditions under which

maximum energy recovery is possil ' in a heat exchanqer network under a

certain disturbance range.
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