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On the First and a Related Adiabatic Invariant
With a Force in the Direction of the Velocity

L INTRODUCTION

The adiabatic invariance of p"f 2mB, the first adiabuatic invariant, p_ the com-
ponent of momentum perpendicular to the magnetie field B of a charged particle of
rest mass m, has been known for three decades, Is this quantity an adiabatic
invariant if the - article experiences a force f(v)v, ¥ the prrticle's velocity, for
example, if it is slowing down” No, 1= there a related cuantity that 15?2 Yes. To
the best of the author's knowledge, Dong l,ml wus the first person to point out that
the closely related quantity

.2

¢ - 30w (N

o the piteh angle, is an adiabatic invariant for this casc,  One niay reason intun -

tively that a force in the tv direction will not change o and therefore not ¢, but

will cause the guiding center to move across the field hnes since the radius of

gyration is proportional to v ., l.in") and l)uhs" independently derived the adiabatic
.

invariance of C nonrelativisticalisy for this case by a relst vely simple but not very

. Qo L 4 .
rigorous method, a modification of that by Alfven and Fialtnammar, A rigorous

(Received for publication 24 June 1080)

Because of the large number of references cited above, they will not be listed here,
See References, page 1,
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nonrelativistic method has also been found.3 Is C an adiabatic invariant for
relativistic particles slowing down? Yes. A modification of the method of Alfvén
and Félthammar4 that shows this is presented in the next scction., This is fol-
lowed by a rigorous, longer method that results in the time derivative of C. QOther
adiabatic invariants are then examined briefly. A condensed version of this report

has been submitted to a journal. S

2. SIMPLE DERIVATION

At any time to choose the origin of a cylindrical coordinate system at the
center of gyration of the particle of charge e and rest mass m with the z axis in
the direction of B. Assume a constant magnetic field gradient 3_123 From

v - B = 0, neglecting %31 and -a—aﬁ. BR = - g— g—? v, * v¢; evqs and thus ep are
negative, Let
x= & ()
P=P,+P, (3)
vz — Lt (4)

E = szc4 + pzc2 = m'yc2 = {mzc4 + pﬁc2 + pic2 (5)

2

. p;)c ; 3 . _ . .

E-—-E-—— my vv -v”p”+val (8)

i) = m‘ysvi/ m = m-y3§r. (7)
myv e

The component of force in the z direction is

A LV ev R . v, p A

5. Dubs, C.W. (1980) Adiabatic invariants for a charged particle slowing down,
submitted to Journal of Geophysical Research.




R A v

p
since R nearly = - —l, the radius of gyration. Substituting this into the expression
eB b
for B
2
. v p
Byp . aPrde a3 Ve
my“vv - ST at 5z v ™Y v+v1pl s (§3)]
v - v2 p
a3 0o : 171 ¢
my = v+vl LT =0 . (10)
4
Multiplying by ——:
1Py
2 > .
2 v+ 25 -4 B -
_vv+p| P, BB o . (1D
Substituting p, -y sina:
2
M, 2 dav), 2 dsing 1 dB  _2 dsine 1 dB
v yv o dt sin o dt B dt sin o dt B dt '
(12)
d in> jl
d sin"a | .
a |:1n B -0, (13)
.2
:,mna Cconstant . (14)

3. RIGOROUS DERIVATION

3.1 Simple Magnetic Field

Choose a cylindrical coordinate system as above. Assume a veetor potential

RN O

I.ct bB be the magnetic field. The normalized magnetic field then is

[£%7

o

;1 Y L S L2 R ;
B hv\/\ —€2h»/<1+h+”> . (16)

(}§ is normalized from here through Eq. (63).) The constants b, h, and H are seen

to be the field at the origin and the By doubling distances respectively,




L=—m02J1-v2/c‘2+eK-—\7 , _\;=éR+$R$+5.Z . (17)

% & =g—L-+Q. . (18)
2q; 9 !

Qi represents the generalized component of the drag force f(v)v. (See Section 3.2.)

€E - mydvi =TV = fwv . (19)
So,

() = myS% (20)
(The latter equals i‘), as it must,) Only the R and z Lagrange equations are
needed:

%t-[m‘yl:'(] = m'yRat2 +ebR¢() + m73§/ % (21a)

2 .

g—t- [myz] = E%S_&}_ + m‘ys{/ % , (21b)
which yield

= <2 ebR¢ ¥R

R=R§+ 200+ 5 (22a)

- sz ¢ vz

;. ebR°$ Vi (22b)

2mvyh v
R R
The equations are now partially normalized with € = _hg , E= f , R= Rop,

z = ROK, V= Ro_t;, where Ro is the initial value of R and of the gyroradius. (Note
that E from here to the end of Section 3. 1 means this instead of energy.)

()I(l+%+%>=(l+e§+h‘p) (23)

™Y o (24a)

g e e g

e e e Ty —— e




" -
;. €ebpTo ul o
R T T 24b)

2 .nD :
D= b dCd ){1_ -cosT a d L e 1’ 1 ) b

iy . L L
Jt ot L 15 dt B u BS J

B -RE 2y 24) o

o

i
9 9 EN
BT () 4+ iqi

112
e -
¥ S—

0 Rpte,s rat (28)
ol ot -Sph . (29) R
4 [ . 2 2l . S, 2 o273 ‘
o1l 2T o o ] |
o ]
N PPN I I . . ¥
-*§[()(e§+hp)+§4—pp} -—2—§[§()—%pp] :
B u B }
i
: . . .2 "
[g()*§(€§+l‘lp)-.§(p +pp)] ’q
2 2 2
20 [ € - 3 3 - ¥ _ € .
+ - §()-:—pp} + r[’:()-.—pp] [()(c(+hp)+—-pp}
o Bj 2 uzBJ 2 4 4
(30)
Let M be u2 B3 times the middle two of these four terms, Use the two equations of
motion to eliminate 5 and §.
2. . !
5 | ¢ € - €eb Tu 2 v €2 € 242
M:-Z[C()-’z‘pp] [’T,;%i()i-?()*‘c’; +Ep§-§p 50T e ﬂ
'1
_eebgzg()_eeeu_ﬁ()+eet>u (31a)
2m~ny 2u u 2u
¥
= [&()-%pb} [e(uz-Ss'z)-ZEbC] . (31b) )




N e that all of the relativistio terms and all of the terms containing the chunge in
tie particle!s spead caneel, S, D is the same with or without slowing down and

with or without being derived relativistically,  The result then is:

L -——‘;4‘ 0 [;)(u”) + §'))(1 +el + L-?p)') +€ep §3(1 +el+ Ep)

D - —
u” B’

&1

2

2
a8
4 P

22 .2 2.2 3
ST+ Ep [~ T +p "¢ M1 +el + Ep)

2, ..
S 2epptltel+ Ep) 4 6—4‘p2(2p2 0282 231+ et + Ep)

3 3. -
+§4—p5§ . (32)

Note that, for E = 0 (H = ), D contains terms only in 52, 63, and 54 divided
by u2 BS, and, for € = 0 (h = »), D contains terms only in E, Ez, 153, and 154

- 2.5 . R 2 o S
divided by u” B". Alternatively, D = 0 (¢e" E") + 0 (¢ L).

3.2 General Magnetic Field

Which of these results hold for any magnetic field? Kepeat the last section,
but with

bR

K:75+eb§’(R,¢,z) , a=a +vUr (33)

where a' is an arbitrary function of R, ¢, and 2 except that T X 3' vanishes at
R =z =0, Then bB - T X A is completelv arbitrary, regardless of what function is
chosen for the scalar U, To simplify the algebra, choose

U= - fah dR (34)

holding ¢ and z constant, Then ap * 0, and the normalized field is

- da da, da 3(Ra )
sl o x ~_ 2 L 7z 9 Pl —2z ), L ¢
B hV\A-Z+€V><fl*Z+ER<R‘a¢ aZ>+q&< 8R>+Z

= f?ednw“@sﬁ +£(1+e,z7) . (35)

¢




2 v _‘ - .(_Q (36)

aaz
3¢ : - 35 - (37
a(Ra )
.1 ¢ .
B, * R 3R . (38)

< |-

’

+$5V9+2-‘27>-'\7 Y-RR+éRé+22 . (39

From mechanics (for example, Goldsteins), the generalized drag force is

Q -T2 . s
aq,

3 ¥R (40)

d’ , (41)
. 3z

Q, = my® &2 . (42)

2 v2 > -

L = -mc 1-7+eA v

C
2 2.2 .2 2
- < mc? \/1 5—"“_52—‘&—*7—'+ob <RT+eRa¢>é+eay'z ) (43)
- _

6. Goldstein, H. (1950) Classical Mechanics, Addison-Wesley Press, Inc.,
p. 22,




d . 5 ; . "(H“_Q) s rvIA/ i “ ! P l'{
gt (myRY M~ Re™ » ¢b ‘ Re - € ‘\\7’—]?“ ST '//) ' Ty (4:)
L J
- 3o .2 . . . v R
my R + nn“ YX R myRé™ Feb[Re+e (RS -7 Mooy \—; . (44)
2 2 ¢ A8
¢
s L2 ebpe N o |t -
R - Ro~ + m~:[1\0 e(Ro., /.O)l - (47
In general, the equation for K6 is needed.
/ 9] [
Jdl. al. "
ol — — + C . 18)
i) 5 |
2 da du o 2
d L2 R R™ . B ( o . pa 7\ .3 vR7o
a my R o+cb<2 +ER:30.> = ehe \—o,— Rérao z/*m, - -
(49)
- .. NP [ d(Ra )
myR%¢ + 2myRRoé + my’ —2—R o+ebKRR+e Et——p—
¢
da Ja e 02
Ceob| 2 A 3vR 9
~eeb 3 R + 50 z> + my v . (50)
/)a‘ da d(Ra ) oo
5 ope+ 2 iR+ 2 w_z-\___i YR¢ 5
RS -~ -2R6 + = R+ 5 \f’o Ro+ 53 7 @ + (51)
. ops i._h o ‘s _ SN i'R‘O 59
Ro - -2Ro + o [-R+e (73 - R SO = (52)
d [ o8l al. -
it <.E;/_> = + Q'/. . (53)
aa da ..
. . y 3 vz -
%(m‘yz+obe:1_}) vbc<ﬁ;9 Ré +577-1> + my L‘i . (54)
. . da da da o
5 3 vy A oy .2 3 vz o s
my z + my (‘2 7 +eeb dar € eb< 37 R¢ + 37 2> +my” o {(55)

e




da da da da ada ot
- g_b‘ _Q . _Z'___Z_'_J'__Z_' \L_z_
z e 7(82 Re+352 23R R "3 ¢ 52 Z>+v (56)
;e SR (-RpB, +RB)+ LE . (57)
my R ¢ v

B2 -ty g +1rep)®. V- B-zteRBy+ROB,+2B) . (58)

o

-4 {(szrl/z - [+ BBy + RIBY+ 28,02 v72 <Bz)‘3/2}

(14 eB) B, + e BBy + BB 2l letRBg + Rop, + Rbj, + 25)

2L {20+ eB) + e RBy + € REB} (1241
] s - I3
v¢B v B

L1 es) eB, + g g + 8,8

szs

. (59)

where [ ] is 2 + e(RBy + R§B, + 28,). Using Egs. (47), (52), and (57), % v2B3
times the third and fourth terms is

i l{e S RéBR+RBYU +eB)+ LZ(1+eB) + R By

v

+e€ :n_l;(R:bBR+€Ra’BRBz 'E.ZBRB¢)+€ YVEBR 'ZGR&B,»

b, . VR ¢
te g ((RBy+ekBpp, -eRA B +e LR g
vz VR irRQ' vz
-T-E(TBR+ v B¢+TBZ)}
= o[ ]e{R&zsR-zﬁ&B¢} ) (60)

13

. Y

e —
LIVESE SR, .

: oA e




Note two things: First, the v terms cancel, so D is unchanged by forees i the
+V" direction and thus of any processes producing only slowing down, Seccond, the
terms containing 7 cancel, so D is the same with a relativistic derivation as 1t s
with a nonrelativistic one. So
(Lted)en +e2(3y Ry +a,8,)
Z 2, R"R ¢

D= -
BS

e . R . .. 2 .. LN ..
2(z Fe(RB, + R +zﬁz]c{Rn + R¢ ,iR-Ro,souco,vow.s,}

- ¢ R 7
2..3
vT B
{; ; ¢ 2 l‘) ; 2050y )
PN S N 3 ) .2 - ) ] S ) )
X 3z + el At RS, + 23, {1+ e,)?_)c.xz tc ("H"R Py, } .
T Y
vT B
R, Re Rod. + Ro
. 3, FReT 3, - 3 0.3 ,
D -2¢x i R = e ¢ ;0 ((.2) . (52)

Thus, in general, D is of first order in e,
Perhaps the simplest way to see that D is independent of slowing down process-

es s as follows,

D

2
Vot | s
o)
]
S
I~
F )
—
o
o
“>
\___/
o~
e
—
ool il
~
¢
te
TN
—t
i
—
o
<
\/
3
=
ST
—
it loel}
£~
—
“>

B dy
4 Bl 5 a (13)

Since B (unnormalized from here on) is a function only of R, ¢, and z, the only

. : . : . . . odv
thing in this expression which could depend on slowing down is ar

(ﬂ)- . d_; N (l(]V) - R = i

fm myv gt om o vV evXB+tv o, (UF ]
Dotting v into this:

poom 3GV (55)

dt '

14

B vl e e




. dv . A
since T+ must be perpendicular to v. So

- -
dv . cvXB

dt  mayv ’ (t6)

the same as it would without slowing down. Since this is the only term in I) con-

taining y but it contributes nothing to D, the latter is seen again to be independent

of whether or not it is derived relativistically,
If there be a component of drag force perpendicular to V, write the drag force

as [ = fvfr + fnﬁ, n. v=0, Carrying out the same procedure,

- eVX§+fnﬁ
at ST myv (67

and

é-—: ﬁ-n (68)

instead of zero in the expression for D,

4. OTHER ADIABATIC INVARIANTS
More generally, consider a purely field-geometric quantity, g(B,u), u = cos a.

dg _9g dB , g [dB ., 5 av
at at ta|a VTB &

By the same reasoning (p. 14, last paragraph), g is seen to be independent of
slowing down and of relativity. Further, consider

s!
m

G - f g(B,u) ds |

]
m

where s is the distance along a field line quite close to the locus of guiding centers,

. . 1 -

' S m— m
and s and s'_ are mirror point values. For C Bm const., B__ the mirror
point value of B, s__ and s'_ are constant. Then

15
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|

—— A

RN AETRARN PR B PR - ot I e v N :
e Nt oo oot e - <,
%
by
)
. AN . . - 1
B S T B ¥
H
Al T ~ the ot e K
b I
ceh s ST T RS B RS 7 D [ . " ot bun " AT i
Lot o, the theo 0 a0 e,
“ LR
-3 -
, f [‘_ B .
r
Phus, % hear Quant e e e it At 0 s T e e s e L
Shioa = thes 0 e v tant 8ttt S e e ’

Note thdts o gener o N e 2ny b e B b b LR

aath o sloamg Ao B exooole s sapge

’
o e———

2
A Q .—J; I ';—_,‘ J s B R ERT IRt
-

the particle 1s slow enough toonegloor cobatovistie ot b that C = bt oy

invariant,  hen:




- 2
1 = Rz - z
v B '“’F"["z]

A treatment hike that 1n Section 3.1 leads to

9.
ebR 7z 7
mh *
Suppose that att  0: v vz 0, 7 - ’1,“, and R R,
dv
r moaE v,
S0
v Voot it
Y ¢ 2
" v _eB nz' e mCv;’
B ’ m ¢ ¢ e
Therefore,
h( 2
v
. L2
;e K™ -ltl [ kz ,,“

I ove e I perod '

2
J f proods f oA 'nf K
1

the radius of gyration,

Cy—————re



[.et
-t
. _k_“ o V! )y .
v
Then
mkz‘ ‘2
’ 2 k -1t
J - k() f 1 - ) cos™ ¢ de vy l—(l-*")-” s
«[/1
Gy R ey v
& I
Integrating:
.2
mnmz
-t . 2k =1t
J m {‘ ! ‘l’—k sin [T_ (1 -« )]} .
2 2
3l mv - 5
i O -t
M 2mB 2 ) )
J

K

2./ 2mM 2Kkv ‘

All three of these quantities are seen foovaey with titne, Sa, cven thoueh thev are

adiabatic invariants with pacatle!l coonponenta of foece, they are not wath slow e
o . -1

down, K wil be cssentially invavant foc t-o 0 0 hut incrcdses exponentiallv wath

tat large times unless ks o hal antegaer Sanes

5. CONCLE SIONS

The frest adiabatye anvacoant, o0 2 B0 s a0 mvacant a1 the particle as shoaimnge
)
. s
doan,  The closely related quantitsy o T P v s an adhabar e vt
for anv energy particle moany taapnetie tield, cven soth g additionad force of the

form F(v)v, This vs not surprising simee g foce o the sy  diecoton should oo

change o oand thus net O, although ot would cause the ceonter o pyration o o

across the field (toward the particle of 1t s beang sfowed downd sinee the pyveor adoas

13 proportional to v 0 C s oot aavariant with o paralfel coraponent of olectine freld




aC
at ’
ing down for &l magnetic fields, It i, also shown to be the saiie whethor derived

present, D= b b a consta, ig shown to be independent f Fand thus of slow -
P »

reladivistically co noty In moierid, DS Zzero oo the Fiest oeder G the seadient -,
. R . . N . b
Tor the simplest hegnetic field with a parall ! gradient of l’,?, e and . perpen-
. . . b 2.0 O i .
dicular gradient of B3_, e D-0{("ET)+ 0 (¢ ), where e R 'h, E RN,

R is the initial gyroradius, and B - bz at the origin,

The adiabatic invariance of C with a force on the particle in the tv direction,
among other cases, is applicable to trapped and auroral protons between nonfor-
ward scatterings. Examples of processes which may cause charged particles to
slow down without large angle scattering are elastic and inelastic scattering, ioni-
zation, Bremsstrahlung, and Cerenkov radiation,

In general, field geometric quantities: C, half bounce path length, I, and &

remain adiabatically invariant with slowing down, but M, J, and K do not.
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