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1. INTRODU'TION approximately 90% dealt with aircraft wing-strake

configurations rather than actual missile
The addition of forebody strakes to aircraft configurations. It is assumed that a missile wing-

configurations has shown significant improvement strake would respond in the same manner.
in aircraft performance at moderate-to-high
angles-of-attack for subsonic and transonic A. Findings
speeds. The principle reason for improvement is a
significant increase in usable lift due to strake (1) Wing configurations that benefit most by
induced vortex effects on the basic wing lift. The the addition of the strake are those with
strake leading edge vortex interacts with the low-to-moderate sweep angles (<45). Above 450,
boundary layer over the wing upper surface and, the effects of strakes decrease corresponding to loss
consequently. delays separation at high of interference lift. This occurs because wings
angles-of-attack. The delayed separation gives having leading edge sweep angles greater than 45'
higher trim angles-of-attack and thus higher trim develop high levels of vortex lift and, therefore do
lift or maneuverability. Strake geometry is of not require the additional vortex created by a strake
secondary importance but still must be considered (Survey Bibliography 13).
in design because of a possible adverse effect' in
pitch stability at high angles of attack. Several (2) Strakes were found to delay conventional
papers have documented forebody strake effects at stall by increasing maximum usable lift and
subsonic and 1 transonic- speeds, but does this effect decreasing lift-dependent drag at high incidences
carry over to supersonic speeds? for subsonic and transo~iic speeds.

This research project investigates the effect of (3) For the transonic regions, strake
strakes on missile type body-wing-tail addition yielded a decrease in buffet intensity.
configurations at supersonic speeds by (1)
conducting a literature survey of existing data (4) At supersonic Mach numbers, strake
and design methods for strakes applicable to missile applications reduced wave drag and trimmed-
configurations and (2) analyzing a set of wind induced drag.
tunnel data obtained by MICOM on a body-wing-
tail missile with strakes at Mach 2.0. The literature (5) The combined effects of (I, 2, and 3) lead
survey was accomplished using NASA and DOD to a configuration that enhances the high angle-of-
computer search facilities plus any additional attack maneuver aerodynamics and does not, in
known references. Findings from the literature doing so, detract from the low angle-of-attack
survey, as well as any strake design information, are (<8 ° - 100) portion of a mission.
presented. The experimental data used for Mach
2.0 analysis is part of a wind tunnel test conducted (6) Increase in L/D ratios, due to lift increase
by MICOM at AEDC to study advanced at low speed and drag decrease at supersonic speed,
interceptor missile configurations. The primary was also a noticeable effect of strake addition.
question to answer from this research is: Can
strakes be used to improve high angle-of-attack
performance of body-wing-tail missile
configurations at supersonic speeds? B. Strake Design

In designing strakes, their performance is
based on the angle-of-attack at which the vortex
breakdown crosses the wing trailing edge (aBD-

!!. LITERATURE SURVEY TE) and the rate at which the breakdown progresses
forward over the wing once aBD-TE is reached. To

A literature survey was conducted to review increase strake efficiency, the designer wants to
articles and reports dealing with the effects of wing increase 01BD-TE and reduce the rate that the
strakes on a body-wing-tail configuration's vortex breakdown moves forward. aBD-TE is
maneuverability. The literature was gathered by increased by increasing strake area and/or
using a library search routine of both NASA and increasing strake slenderness. The Gothic strake
DOD material based on the key words. strake. and planform was found to be better than the delta
high angle-of-attack. Of the material reviewed, shape because the vortex core breaks up farther
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into the wing pressure field, but strake shape is tail fins are tabulated in Tables 2 through 5.
considered of secondary importance until nearing Nomenclature used for model components are
C1 ,,.,. The primary or most significant geometric presented in Table 6. The analysis in this report is
parameter appears to be the area of the strake. Lift concerned only with W1 (straight wing) and strakes
created by the strake is primarily dependent upon So and S 2 in conjunction with the basic body-tail
the area of the strake-induced vortex, which is (BT ).
defined as the exposed strake area plus the wing
platform area that falls within the projected strake Six-component main balance and three-
exposed area Ami (Figure I and Survey component fin balance data were taken. Since
Bibliography 3). differences between runs are of primary importance

to this analysis, a thorough review of tunnel flow
III. EXPERIMENTAL DATA angularity and model aero bias was performed. It

was concluded that flow angularity was small, as
Data used for these analyses were obtained as illustrated in Figures 6 and 7, and thus any non-zero

part of a MICOM sponsored wind tunnel test stability coefficients at zero angle-of-attack would
conducted at AEDC on advanced interceptor be considered as an aero bias. Since the wind tunnel

missile designs. This applied research test program model is intended to be symmetrical, any
investigated missile designs which hopefully would identifiable aero bias was shifted out of the
exhibit improved performance for a typical coefficient data.
ground-to-air interceptor. Three basic designs were
considered, which are modifications of a typical IV. RESULTS AND DISCUSSION
body-tail configuration with tail controls. The three
designs considered (I) planar folding wing, (2) The effect of strakes on wing lift, tail lift, hinge
folding %rap-around wing, and (3) added wing moment, oot bending moment, and body-wing-
strakes. Only the wing strake data is analyzed here. tail stability is examined. Six-component main

balance data is used for the wing and body-wing-
A. Apparatus and Test tail study, and three-component fin balance data is

used for fin-alone study. Body buildup runs were
this test was conducted in the AEDC VKF-A made to enable component analysis. Any bias in the

lacility I unnel A is a continuous flow, closed loop coefficient data was shifted to zero, assuming no
wind tunnel capable of Mach numbers from 1.5 to flow angularity. Flow angularity was examined, as
5.5 1 he test section is 40 by 40 inches. Angles-of- illustrated in Figures 6 and 7, and found to be
attack for this test ranged from -4 to +20, and insignificant.
control deflections were 0, -5, -10, and -15 for
certain configurations; however, the strake runs A. Wings
were made with zero control deflection only and
Mach 2.0 only. Table I presents the nominal test The effect of strakes on wing plus wing-body
conditions. interference lift is illustrated in Figures 8, 9, and 10.

During the wind tunnel test, runs were made with
B. Models and Data body-alone and body-wing as well as body-wing-

strake. Body-alone data is substracted from body-
An existing wind tunnel model was wing and body-wing-strake data to determine the

modified for these tests. Midsection wings and strake effect on wings. These data indicate that the
strakes were added to a basic body-tail strakes tested do not significantly influence the
configuration, as depicted in Figure 2. Geometric basic wing lift for angles-of-attack up to 200.
dimensions for the basic body-tail configurations Perhaps the strake effect would be more
are shown in Figure 3. Strake geometry and pronounced near the stall point; however, test
dimensions are shown in Figure 4. section restrictions limited the maximum angle-of-

attack for this test. Roll angle effects on strakes are
Two geometric parameters were used in also insignificant, as illustrated in Figure 9. The

designing strakes for these tests: (I) the ratio of ratio of wing lift with strakes to that without strakes
strake area to wing area and (2) the strake leading (Figure I0)givesa better picture of the strake effect.
edge sweep-back angle. These two parameters are It is surprising to find that the percent increase in
illustrated in Figure 5. Strake S, was not tested. wing-strake lift is approximately the same for both
Complete geometry of the body, strakes, wings, and strakes (S 1 and 52) near zero angle-of-attack. Strake



S2 has twice the area of Si, but it does not give twice load, indicating good model and component
the increase in lift. At higher angles-of-attack (101 alignments. Consequently, when analyzing 0 0°
to 200), S,. the larger strake, does yield data, only fin 2 or 4 data need be used. For 0 450
approximately twice the effect of strake Si. The analysis, fins I and 2 will be used.
same holds true for both 00 and 450 roll angles.
Another observation from Figure 10 is that the As can be observed in Figures 12, 13, and 14,
strake effect is greatest near zero angle-of-attack the effect of strakes on tail fins is quite small for the
'about 6 to 7 percent)and reduces to about half that conditions tested. The same is generally true for
at 200. This phenomenon seems contrary to the 0=450 as shown in Figure 15. These results indicate
expected strake effect. Again, it should be that the vorticity or downwash field from the wings
remembered that the configuration and test to the tails is not changed significantly with added
conditions here are thin-wing missile type shapes at wing strakes. This is not surprising in light of the
Mach 2.0 and might not be expected to yield the wing-strake analysis.
same results as airplane configurations at subsonic
and transonic speeds. (. Total Configuration

B. Tail Fins Only strake S2 was tested with the full
configuration, due to limited tunnel time. Strake S:

The effect of strakes on tail fin forces and was selected, as opposed to S, ot S., because it was
moments is illustrated in Figures I I through 15. expected to give the greatest change in stability
Three-component fcharacteristics. The results are shown in Figures 16Thre-cmpoentfin balances were used to

measure fin-alone loads plus upwash effects from through 18. Basically, the strakes have a small effect

the body to the fin. Runs were made with body- at W00 ° or 450 for the conditions tested. As with the
wing-tail and body-wing-strake-tail to isolate the wing-alone results, strake effects on total

effect of strakes on tail fins. The strake effect on configuration are more pronounced at small

tails is in the form of a changed downwash flow angles-of-attack and decrease significantly up to

field from the wing to the tails. If the wing lift is 200. The effect on Lift/Drag ratio (L/D) is also

increased, then a stronger downwash field exists, small, as shown in Figure 19. A very slight increase

which results in reduced tail fin stabilizing in L/ D is obtained in the 40 through 100 angle-of-

effectiveness. It should be remembered that these attack range, but not significant enough to warrant

test were made with in-line wings and tails. the increased weight. Figure 20 presents the L/Dat
Mach numbers 2, 3, and 4. without strakes. It is

Fin surface alignment is illustrated in Figure expected that the strake effects will be

1I. As observed, fins I and 3 measure practically no quantitatively the same throughout the Mach 2 to 4

load and fins 2 and 4 measure practically the same range for the configurations tested.

V. CONCLUSIONS

1. The addition of forebody strakes to a missile type body-wing-tail configuration produces only a
slight increase in wing lift (less than 5%) at Mach 2.0 and angies-of-attuc, up to 20u, for the
configurations tested.

2. Tail fin loading is practically unaffected by the addition of strakes for the shapes and conditions
tested.

3. Lift/ Drag ratios show no significant improvement in missile performance, due to added strakes,
at Mach 2.0.

4. Body roll angle does not change the strake effect appreciably.
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TABLE I. NOMINAL TEST CONDITIONS

M PT, psia TT,0 R Q, psia P, psia RE/ft x 10-'

2.0 10.3 560 3.7 1.32 2.5
3.0 16.3 545 2.8 0.44 2.5
4.0 30.1 580 2.2 0.20 2.5

TABLE 2. BODY GEOMETRY (B1)

Nose Bluntness 0.020

Overall Length 48.832

Nose Length (Ogive-Conical Frustrum) 12.573

Reference Diameter 3.75

Reference Area (in.2 ) 11.045

Moment Reference Center 0.0

Tail Fin Pivot Station 45.705

Boat-tail Length 2.110

Base Diameter 3.445

Wing L.E. Station 24.375

NOTES: All stations and lengths are relative to ogive theoretical tip (6.020 forward of actual nose).

All dimensions in inches unless otherwise noted.
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TABLE 3. STRAKE GEOMETRY (S,)
S, $2 S,

Exposed Semi-Span 1.4824 1.336 0.9446

Root Chord 2.028 4.5 3.1819

Tip Chord 0 0 0

Area. Single Panel Exposed (in.2) 1.503 3.006 1.503

L.E. Sweepback Angle (deg) 60 75 75

T.E. Seepback Angle (deg) 20 20 20

Station of 1..E. Root Chord 22.347 19.875 21.193

Aspect Ratio 2.924 1.188 1.188

Taper Ratio 0 0 0

Strake Thickness (in.) 0.100 0.100 0.100

NOTE: All dimensions in inches unless otherwise noted.

TABLE 4. WING GEOMETRY (W,)

W2
W, Projected

Exposed Semi-Span 4.5 2.794

Root Chord 7.5 7.5

Tip Chord 5.862 6.483

Area, Single Panel Exposed (in. 2) 30.065 19.572

Leading Edge Sweepback Angle (deg) 20 20

Trailing Edge Sweepback Angle (deg) 0 0

Station of Leading Edge Root Chord 24.375 24.375

Aspect Ratio 1.347 0.80

Taper Ratio 0.782 0.864

Poot Chord Thickness Ratio 0.050 0.040

lip Chord Thickness Ratio 0.050 0.040
NOTE: All dimensions in inches unless otherwise noted.
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TABLE 5. TAIL GEOMETRY (T)

Exposed Scmi-Span 2.079

Root Chord 6.791

Exposed Semi-Span (Includes 0.036-in. Gap) 2.115

Root Chord (Includes 0.036-in. Gap Extension to Surface) 6.861

Tip Chord 2.716

Area, Single Panel Exposed (in. 2) 9.883

Leading Edge Sweepback Angle (deg) 62.964

Trailing Edge Sweepback Angle (deg) 0

Station of L.E. Root Chord (Theoretical Extension to Surface) 41.704

Taper Ratio 0.40

Root Chord Thickness Ratio 0.069

Tip Chord Thickness Ration 0.076

Station of Pivot Point 45.705

Reference Area 11.045

Reference Length 3.75

Reference Hinge Line 1/4 MAC

Aspect Ratio 0.875

NOTE: All dimensions in inches unless otherwise noted.
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TABLE 6. CONFIGURATION NOMENCLATURE

Body Alone (B,)

Tail Fins (Ti)

Straight Wing (W,)

Curved Wing (W 2)

Simulated Straight Wing Folded (Fi)

Simulated Curved Wing Folded (F 2)

Strakes I. 2 or 3 (S )

REFERENCES

Killough, T. L. and W.D. Washington, "Pretest Report for an Improved Army Interceptor Design."
MICOM Internal Technical Note T-79-16, April 1979.

2. Chafin. J. M. and J. C. Sung, "User's Guide for Advanced Interceptor Design (ADVINT)
Aerodynamic Data Base." New Technology. Inc., TRI020. September 1979.

3. Best. J. T., Jr., "Static Force Test on an Improved Army Interceptor Design at Mach Numbers 2.0 to
4.0." AEDC-TSR-79-V41, August 1979.
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°0

S2 Wl

(NOT TESTED) S

Area Span Leading RootRatio Ratio Edge Chord
to to Sweepback Ratio

Wing Wing Angle Wing
(%) (%) (deg) (.)

1 5 32.9 60 27.0
2 10 29.7 75 60.0

3 5 21.0 75 42.4

t.tur' 5 Strakc :.c relatrc if, wmgv~ Ih,1
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NONMEN('LATIIRE

A Reference area, body cross section

Am Ared allected by sirake-induced vortex

AV Fin relerence area, body cross section

AL PT Total angle-of-attack, missile axes-l)FG

CBF2 Fin 2 bending-moment coefficient, bending moment, Q AF I)

CHF2 Fin 2 hinge-moment coefficient, hinge moment Q AF 1)

Cimax Maximum lift coefficient

CN Normal force coefficient, missile axes, normal force Q A

CNB Normal force coefficient, body axes, normal force'Q A

CNFX Fin normal force coefficient for fin X, fin axes, normal force,'Q AF

ACN Incremental normal force coefficient

D Reference diameter, cylinder

L/D Lift/drag ratio

M. Free-stream Mach number

P Free-stream static pressure, psia

PHI,0 Roll angle, deg

PT Tunnel stilling chamber pressure, psia

Q Free-stream dynamic pressure, psia

RE Free-stream unit Reynolds number, ft-i

TT Tunnel stilling chamber temperature, OR

WI Wing plus interference

WS] Wing plus strake plus interference

XCP Center-of-pressure location, from model nose

0 BD-TE Angle-of-attack at which strake vortex breakdown crosses the wing trailing edge
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