VLF/LF REFLECTIVITY OF THE POLAR IONOSPHERE, 6 January - 3 May 1980

Robert P. Pagliarulo
John P. Turtle
John E. Rasmussen
Sgt Ralph E. Gifford
Wayne I. Klemetti

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-298 has been reviewed and is approved for publication.

APPROVED: Edward A. Lewis
EDWARD A. LEWIS, Chief
Propagation Branch
Electromagnetic Sciences Division

APPROVED: Allard C. Schell
ALLAN C. SCHELL, Chief
Electromagnetic Sciences Division

FOR THE COMMANDER: John P. Huss
JOHN P. HUSS
Acting Chief, Plans Office

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic in Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of $100,000 under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

If your address has changed or if you wish to be removed from the RADC mailing list, or if the address is no longer employed by your organisation, please notify RADC (KEF) Hanscom AFB MA 01731. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
This report provides a summary of high latitude ionospheric reflectivity as observed by the USAF high resolution VLF/LF ionosounder operating in northern Greenland. Ionospheric reflectivity parameters, including reflection heights and coefficients, are presented as a function of time of day. Radiometer and magnetometer measurements of the polar propagation environment are presented as supplementary data.
Preface

The authors thank in particular Mr. Duane Marshall of Megapulse, Inc., for help with the equipment that made the measurements possible, and Mr. Bjarne Ebbesen of the Danish Meteorological Institute for the outstanding operation at Qanaq, Greenland.

Appreciation is also extended to the Danish Commission for Scientific Research in Greenland for allowing these measurements to be conducted, and to Jorgen Taagholt and V. Nebbe Jensen of the Danish Meteorological Institute's Ionospheric Laboratory for their continued cooperation in this program.
Contents

1. INTRODUCTION 7

2. OBSERVED WAVEFORMS 9
   2.1 Weekly Example of Individual Waveforms 9
   2.2 Three-Dimensional Waveform Presentation 10

3. REFLECTION HEIGHTS 10

4. REFLECTION COEFFICIENTS 11

5. SUPPLEMENTARY INFORMATION 11

6. IONOSPHERIC DISTURBANCE DATA 12

7. ADDITIONAL COMMENTS 13

REFERENCES 23

Illustrations

1. Geometry of the Propagation Path 8

2. Examples of the Observed Waveforms 9

3. VLF/LF Reflectivity Data for the Polar Ionosphere,
   Day 306 (6 Jan) – Day 312 (12 Jan) 1980 14
4. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 013 (13 Jan) – Day 019 (19 Jan) 1980

5. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 020 (20 Jan) – Day 026 (26 Jan) 1980

6. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 027 (27 Jan) – Day 033 (2 Feb) 1980

7. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 034 (3 Feb) – Day 040 (9 Feb) 1980

8. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 041 (10 Feb) – Day 047 (16 Feb) 1980

9. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 048 (17 Feb) – Day 054 (23 Feb) 1980

10. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 055 (24 Feb) – Day 061 (1 Mar) 1980

11. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 062 (2 Mar) – Day 068 (8 Mar) 1980

12. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 069 (9 Mar) – Day 075 (15 Mar) 1980


15. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 090 (30 Mar) – Day 096 (5 Apr) 1980

16. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 097 (6 Apr) – Day 103 (12 Apr) 1980

17. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 104 (13 Apr) – Day 110 (19 Apr) 1980

18. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 111 (20 Apr) – Day 117 (26 Apr) 1980

19. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 118 (27 Apr) – Day 124 (3 May) 1980

20. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 125 (4 May) – Day 131 (10 May) 1980


22. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 139 (18 May) – Day 145 (24 May) 1980

23. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 146 (25 May) – Day 152 (30 May) 1980

24. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 153 (31 May) – Day 159 (6 Jun) 1980

25. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 160 (7 Jun) – Day 166 (13 Jun) 1980


27. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 174 (21 Jun) – Day 180 (27 Jun) 1980


29. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 188 (5 Jul) – Day 194 (11 Jul) 1980

30. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 195 (12 Jul) – Day 201 (18 Jul) 1980


32. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 209 (26 Jul) – Day 215 (1 Aug) 1980

33. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 216 (2 Aug) – Day 222 (8 Aug) 1980

34. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 223 (9 Aug) – Day 229 (15 Aug) 1980


37. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 244 (30 Aug) – Day 250 (5 Sep) 1980

38. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 251 (6 Sep) – Day 257 (12 Sep) 1980

39. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 258 (13 Sep) – Day 264 (19 Sep) 1980

40. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 265 (20 Sep) – Day 271 (26 Sep) 1980

41. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 272 (27 Sep) – Day 278 (3 Oct) 1980


44. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 293 (18 Oct) – Day 299 (24 Oct) 1980

1. INTRODUCTION

This report provides a summary of high latitude ionospheric reflectivity data, as observed by the USAF's high resolution VLF/LF ionosounder operating in northern Greenland.\textsuperscript{1, 2} As shown in Figure 1, the transmitter is located at Thule Air Base, Greenland (76° 33' N latitude, 68° 40' W longitude), and the receiving site is 106 km north at the Danish Meteorological Institute's Ionospheric Observatory in Qaanaq, Greenland (77° 24' N latitude, 69° 20' W longitude, geomagnetic latitude 89° 06' N). The ionosounding transmissions consist of a series of extremely short (approximately 100 μsec) VLF pulses, precisely controlled in time, and radiated from a 130 m vertical antenna. At the receiving site, orthogonal loop antennas are used to separate the two polarization components of the ionospherically reflected skywave signal. One antenna, oriented in the plane of propagation, is used to sense the groundwave and the transmitted or "parallel" polarization component of the skywave. The second loop, nulled on the groundwave, senses the


converted or "perpendicular" polarization skywave component. The signal from each of the antennas is digitally averaged to improve the signal-to-noise ratio of the individual received waveforms before they are recorded on magnetic tape.

An example of the observed waveforms is given in Figure 2, where the parallel waveform (Figure 2a) consists of a groundwave-propagated pulse, a quiet interval containing low-level, off-path groundwave reflections, followed by the firsthop parallel skywave component. The perpendicular waveform is shown in Figure 2b.

Ionospheric reflection parameters are derived by computer processing of the ground and ionospherically reflected waveforms, with allowance made for factors such as ground conductivity and antenna patterns (see Section 4).
Although the data are recorded about once per minute, for this report the waveforms are averaged into 2-hr time blocks, with the exception of the threedimensional waveform presentations (see Section 2.2). The resulting information is presented in a weekly format (Figures 3 through 19), as described below.

2. OBSERVED WAVEFORMS

2.1 Weekly Example of Individual Waveforms

In part A of Figures 3 through 19, a set of averaged parallel and perpendicular waveforms is presented for the time block centered near local noon of the indicated day. Each of these waveforms is comprised of 256 digitally averaged points spaced 2 usec apart. In part B of the figures, the groundwave Fourier amplitudes are shown as a function of frequency. Although the data presented in parts C through 1 of the figures are generally limited to frequencies in the first, or principal, lobe of the spectrum, information at higher frequencies can be used when sufficient signal-to-noise conditions exist. There is, however, a frequency range around each spectral null where insufficient signal exists for measurements.
2.2 Three-Dimensional Waveform Presentation

A three-dimensional display of the recorded parallel waveforms covering each weekly period is shown in Part R of each figure, and the corresponding perpendicular waveforms are shown in Part S. For these plots the data has been averaged into 15-min time blocks.

3. REFLECTION HEIGHTS

The group mirror height (GMII) of reflection was obtained by determining the group delay of the skywave relative to the groundwave and attributing the time difference, by simple geometry (assuming a sharply bounded mirror-like ionosphere), to a difference in propagation distance. As discussed in Lewis et al., the group delay can be defined as the rate of change of phase with frequency. For the GMII data presented in this report, a finite frequency difference of 1.0 kHz was used, and the corresponding phase difference as a function of frequency for the groundwave and both skywave signals was obtained by Fourier analysis of the respective pulses. The GMII calculations took into account ground conductivity (10^-3 mho/m is assumed), and the corrections of Wait and Howe were applied. Group mirror heights, obtained from the parallel and perpendicular waveforms, are plotted as a function of frequency in Parts C and D of Figures 3 through 19. The GMII's are also presented as a function of time-of-day for the average frequency of 16.5 kHz in Figure Parts E and I. The parallel GMII's in Part E are shown along with an average reflection height for reference purposes. Each point of the reference height is a weekly average, by time block, for the 7-day period indicated. The corresponding perpendicular GMII's, Part I of the figures, are also shown with the weekly average for comparison. Part G gives the average, by time block, for the daily parallel GMII data of Part E, and Part K gives the corresponding perpendicular GMII averages from the daily data of Part I.

4. REFLECTION COEFFICIENTS

Assuming that the ionosphere acts as a "mirror" at the GMII, plane wave reflection coefficients were obtained by comparing the ratio of the skywave Fourier amplitude at a specific frequency to that of the groundwave, taking into account wave spreading, earth curvature, ground conductivity, path lengths, and antenna patterns including ground image effects.

The reflection coefficient $R_\parallel$ was obtained from analysis of the parallel skywave component and is plotted as a function of frequency in Part C of Figures 3 through 19. The $R_\parallel$ coefficient for 16 kHz is plotted as a function of time-of-day in Part F along with the average of the indicated week for reference purposes. From the perpendicular skywave pulse, the coefficient $R_\perp$ was obtained and appears as a function of frequency in Part L. The 16 kHz $R_\perp$ is shown along with its reference in Part J. Parts H and L present the average, by time block, of the daily $R_\parallel$ and $R_\perp$ data presented in Parts F and J, respectively.

For certain coefficient data points, plotted as asterisks ($*$), the reflection coefficient appears without a corresponding GMH. For these particular data, only the skywave-groundwave ratios could be obtained, as the skywaves were too weak to provide reliable group delay information. The reflection coefficients, therefore, were estimated using a nominal GMH of 80 km in the calculations. These estimated coefficient values are included in the averages presented in Parts H and L, but the assumed heights are not used in the GMH averages shown in Parts G and K.

5. SUPPLEMENTARY INFORMATION

For purposes of comparison and interpretation, certain supplementary data are presented. Part M of the figures shows the magnitude of the horizontal component of the polar magnetic field, as recorded on a three-axis flux-gate magnetometer, and Part N presents 30-MHz riometer data, an indicator of D-region particle precipitation. These supplementary data were recorded at 30-sec intervals by RADC/EEP at Thule Air Base; the curves represent the average of 10-min periods. The solar zenith angle is given in Part O of Figures 3 through 19 for the indicated mid-week data.

6. IONOSPHERIC DISTURBANCE DATA

During the period covered by this report solar activity remained at a low level, despite the recent passage of solar activity maximum. Only two confirmed energetic particle events occurred between 6 Jan (Day 6) and 3 May (Day 124) 1980. The effects of these can be seen in the reflection height and coefficient data on 6 Feb (Day 37), and on 4 Apr (Day 95). Neither of these events was strong enough to produce riometer absorption. The ionosounder data show other disturbances which are probably associated with low-level particle events. These can be seen on 26 Jan (Day 26), 27 Feb (Day 48), and on 31 Mar (Day 91). It is also probable that an event occurred early on 11 Jan. Figure 3 (Parts E through J) indicates that when the ionosounding data began at about 1400 UT the reflection heights and coefficients were already disturbed. The riometer was not sensitive enough to show significant absorption during these events. In addition to the particle events, the effects of Sudden Ionospheric Disturbances (SID) resulting from solar flares can be seen in the 3-D plots of the waveforms. The transient effects of numerous flares can be seen during the week starting 27 Apr (Day 118), Figures 19R and 19S.

During ionospheric disturbances, when enhanced ionization causes a lowering of the reflection heights, the skywave moves closer to the groundwave and can merge with constant off-path groundwave reflections (described in Section 1, Introduction). During these periods the off-path reflections are computer subtracted from the waveforms to avoid contamination of the skywave data. This subtraction technique was used in the parallel and perpendicular waveform data for the weekly periods beginning on Day 34 (Figure 7), Day 90 (Figure 15), and Day 97 (Figure 16).
7. ADDITIONAL COMMENTS

This report is one of a series. Comments and suggestions for improving its usefulness should be addressed to the Propagation Branch (EEP), Electromagnetic Sciences Division, Deputy for Electronic Technology (RADC/EEP), Hanscom AFB, Massachusetts 01731.

(Because of the large number of references cited above, they will not be listed here. See References, Page 83, for References 5 through 20.)
Figure 3. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 006 (6 Jan) - Day 012 (12 Jan) 1980
Figure 3. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 006 (6 Jan) -
Day 012 (12 Jan) 1980 (continued)
Part R. || Waveform Display
Figure 3. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 006 (6 Jan) - Day 012 (12 Jan) 1980 (continued)
Part S. Waveform Display
Figure 4. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 013 (3 Jan) – Day 019 (9 Jan) 1980
Figure 4. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 013 (13 Jan) – Day 019 (19 Jan) 1980 (continued)
Part R. Waveform Display
Figure 4. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 013 (13 Jan) – Day 019 (19 Jan) 1980 (continued)
Part S. Waveform Display
Figure 5. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 020 (20 Jan) - Day 026 (26 Jan) 1980 (continued)
Part R. Waveform Display
Figure 4. ALF/LE Reflectivity Data for the Polar Ionosphere, Day 920 (20 Jan) –
109 (20 Jan) 1980 (continued)
Part B, Waveform Display
Figure 6. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 027 (27 Jan) - Day 033 (2 Feb) 1980
Figure 6. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 027 (27 Jan) - Day 033 (2 Feb) 1980 (continued)
Part S. Waveform Display
Figure 7. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 034 (3 Feb) – Day 040 (9 Feb) 1980
Figure 7. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 034 (9 Feb)
Figure 3. XLF/LF Reflectivity Data for the Polar Ionosphere, Day 041 (10 Feb) - Day 047 (16 Feb) 1980
Figure 9. VLF/IF Reflectivity Data for the Polar Ionosphere, Day 048 (17 Feb) – Day 054 (23 Feb) 1980
Figure 3. VLF/LE Reflectivity Data for the Polar Ionosphere, Day 048 (17 Feb) – Day 049 (18 Feb) 1989 (continued)
Part 2. Waveform Display
Figure 10. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 055 (24 Feb) - Day 061 (1 Mar) 1980
Figure 10. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 055 (24 Feb) – Day 061 (1 Mar) 1980 (continued)
Figure 10. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 055 (21 Feb) – Day 061 (1 Mar) 1980 (continued)
Part B: Waveforms Display.
Figure 10. VLBI/LF Reflectivity Data for the Polar Ionosphere. Day 038 (24 Feb) - Day 061 (1 Mar) 1980 (continued)
Part S. Waveform Display
Figure 11. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 062 (2 Mar) – Day 068 (8 Mar) 1980
Figure 11. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 062 (2 Mar) - Day 068 (8 Mar) 1980 (continued)
Part B. Waveform Display
Figure 11. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 062 (2 Mar) – Day 068 (8 Mar) 1980 (continued)
Part S. | Waveform Display
Figure 12. VLF/LE Reflectivity Data for the Polar Ionosphere, Day 069 (9 Mar) - Day 075 (15 Mar) 1980 (continued)
Part S: Waveform Display
Figure 13. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 076 (16 Mar) – Day 082 (22 Mar) 1980 (continued)
Part B. 11 Waveform Display
Figure 13. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 076 (16 Mar) – Day 082 (22 Mar) 1980 (continued)
Part S. Waveform Display
Figure 14. VLF/ELF Reflectivity Data for the Polar ionosphere, Day 083 (23 Mar) - Day 089 (29 Mar) 1980 (continued)
Figure 14. VLA/LF Reflectivity Data for the Polar Ionosphere, Day 083 (23 Mar) – Day 090 (29 Mar) 1980 (continued)
Part B, || Waveform Display
Figure 11. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 083 (23 Mar) - Day 088 (28 Mar), 1990 (continued)
Port S. "Waveform Display
Figure 15. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 090 (30 Mar) – Day 096 (5 Apr) 1980
Figure 15. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 090 (30 Mar) - Day 096 (5 Apr) 1980 (continued)
Part R. Waveform Display
Figure 15. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 090 (30 Mar) - Day 096 (5 Apr) 1980 (continued)
Part S. Waveform Display
Figure 16. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 097 (5 Apr) – Day 103 (12 Apr) 1980
Figure 16. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 097 (6 Apr) – Day 103 (12 Apr) 1999 (continued)
Figure 17. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 104 (11 Apr) - Day 110 (19 Apr) 1980 (continued)
Part R. Waveform Display
Figure 17. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 104 (13 Apr) – Day 110 (19 Apr) 1980 (continued)
Part S. Waveform Display
Figure 18. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 111 (20 Apr) – Day 117 (26 Apr) 1980
Figure 18. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 114 (29 Apr) – Day 117 (26 Apr) 1980 (continued)
Part R. Waveform Display
Figure 19. VLF/LF Reflectivity Data for the Polar Ionosphere, Day 118 (27 April) - Day 124 (4 May) 1989 (continued)
Part R. Waveform Display
References


MISSION
of
Rome Air Development Center

RADEC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.