AD~A098 940 ROME AIR DEVELOPMENT CENTER GRIFFISS AFB NY
THE REFLECTION PROPERTIES OF CONDUCTING SLABSs{U)
JAN 81 P A KOSSEYs E A LEWIS

UNCLASSIFIED RADC=-TR=80-371

F/6 20/14




m" L0 t i ‘
= w j22 o >
=

Py fl22

e
rr

=

.
L
=

h2s flie pre

MICROCOPY RESOLUTION TEST CHART
NATIONAC BUREAU OF  STANDARDS 1963 A

e







1 SN 3 o




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ‘When Dmu‘r'mered)
. REPORT DOCUMENTATION PAGE | nErSEAD INSTRUCTIONS
7 7‘ 1. REPORT NUMBER ‘ ‘/ 'E GOVT ACCESSION NO[ 3 RECIPIENT'S CATALOG NLUMBER
L |RADC-TR-80-371 | HUD -4 0 17 940
T e 5

TYPEL OF REPORT 8 PERIOD “IOVERED

=

T4 TITLE rand Subtrtie)

7 [ | THE REFLECTION PROPERTIES OF In-House
* ' C()NDUCTING SLABS - 6 PERFORMING D3G, REPORT NuUMBER ;
.~ | AUTHOR(S [ ST CANTRAST SR SRANT NOWMBrE ]
iv 5
/"- i Paul A,/ Kossey
"Edward A. lewis i
9 PERFORMING ORGANIZATION NAME ALD ADDRESS 10 PROGRAM ELEMENT PROJECT TASK — \
Deputy for Electronic Technology (RADC,/ELEP) AREA @ WORK JNIT NUMBERS .. ;
fanscom AFB & 6G1102F . ) T } ?
Massachusetts 01731 J4 23853201 v 0 - T

11 CONTROLLING OFFICE NAME AND ADCORESS WQATE' ]

Deputy for Electronic Technology (RADC/EE(;/} Janvewy~d¥81 | :

f13 NUMBER OF PAGE T T
Hanscom AFB r . 7T oN2]
Massachusetts 01731 2 P
14 MCNITORING AGENCY NAME & ADDRESSAf dilferent from Controtting OH:cei 18 SECURITY CLAS v o report)

Unclassified

B |

ASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT “uf thisn Repoar:y

Approved for public release; distribution unlimited,

17 DISTRIBUTION STATEMENT rof the abstract enterad :n Rlock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necensary and identify by block number)
Lower ionosphere

C-layer
Ionospheric reflectivity

— A 3 TRACT (Continue on reverse side 1f necessary and identify by block numbsr)
The exact monochromatic solution for the plane wave reflection by a flat

omogeneous slab of arbitrary thickness and conductivity is written for both
transverse magnetic (TM) and transverse electric (TE) polarizations. The
reflected waveforms for an incident impulse and for a low frequency pulse
are then written as Fourier integrals and are numerically solved for a num-
ber of special cases of interest for application to studies of the reflection
properties and nature of the lowest regions of the daytime ionosphere.K

DD . on"s 1473  =oimon oF 1 Nov 68 15 OBSOLETE Unclassified N

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)




-

e~ —

;’Ph{

Preftace

The authors gratefully acknowledge the enlightening conversations with
Mr. Edward Cohen of Arcon Corporation, Waltham, Massachusetts, concerning
the numerical integration techniques used to generate results described in this
report, Appreciation is also extended to Mr. Wayne I. Klemetti of the Propaga-

tion Branch, Rome Air Development Center, for his aid in preparing the graphics
shown throughout the report.

FRUCEUING FaQl BLANK=NOT Fllrkl




1. INTRODUCTION

2. THE PLANE WAVE REFLECTION CCEFFICIENTS OF

CONDUCTING SLABS

2.1 The General Problem and Pertinent Definitions

2.2 TM-Reflection Coefficients

2.2.1 Equations for an Incident TM-Wave
2.2,2 Equations for the Transmitted TM-Wave
2.2.3 Equations for the Reflected TM-Wave
2.2.4 Equations for the Waves Inside the Slab
2.2.5
2.2.6

Boundary Conditions

Solution of the Equations to Obtain the
TM-Reflection Coefficient

2.3 TE-Reflection Coefficients

Boundary Conditions

3. GENERAL FEATURES OF THE SLAB TM/TE REFLECTION

COEFFICIENTS

3.1 Limiting Forms of the Reflection Coefficients
3.1,1 Vanishing Conductivity
3.1.2 Arbitrarily Large Conductivity
3.1.3 Vertical Incidence and Grazing Incidence
3.1.4 Arbitrarily Large Slab Thickness
3.1.5 Very Low Conductivity or Sufficiently High

Frequency

3.2 Impulse Response of Very Weakly Conducting Slabs

FRRCEDLNG FaOk BLANKeNOT Flirkb

R

1 Equations for an Incident TE-Wave

2 Equations for the Transmitted TE-Wave
.3 Equations for the Reflected TE-Wave

4 Equations for the Waves Inside the Slab
5
6

Solution of the Equations to Obtain the
TE-Reflection Coefficient

Contents

14
17
17
18
19

21
22

23

23
24
24

24

25
26




Contents

4, SLAB FREQUENCY RESPONSES 28
4,1 TM/TE Slab Frequency Responses, Vertical Incidence 28
4.2 Slab Frequency Response as a Function of Incidence

Angle 29
4,2.1 TM-Polarization 29
4,2,2 TE-Polarization 30
5. SLAB IMPULSE RESPONSES 31
3.1 Slab TM-Impulse Responses 32
.. 1 Very Weakly Conducting Slab, Vertical Incidence 32
. 1.2 Very Weakly Conducting Slab, Varying Incidence
Angle . 32
5.1.3 Vertical Incidence, Varying Conductivity and Slab
Thickness 35
5.2 Slab TE-Impulse Responses 37
6. SLAB REFLECTION OF PULSES 38
7. DISCUSSION 40
lllustrations
Plane Waves Reflected and Transmitted by a Conducting Slab 10
2, Obliquely Incident Th -Waves on a Cartesian Coordinate
Svstem 11
3. Obliquelv Incident TE-Waves on a Cartesian Coordinate
Svstem 18
4, Impulse Responses of Verv Weakly Conducting Slabs 27
5. Illustration of the NMapping Between the Conductivity Profile
of a Verv Weakly Conducting Slab and Its Impulse Response 27
6, Dependence of TAl/TE Frequency Responses on Slab Thick-
ness; Vertical Incidence, o - 2 X 107" mho/m 29
7. TWM Slab Frequency Responses for a Number of Incidence
Angles; h 7.5 km, ando - 2 X 109 mho/m 30
8. TE Slab Frequency Responses; h - 7,5 km, and
g - 2> 107 mho/m 31

9. Impulse Responses of a Very Weakly Conducting Slab;

6 2% 10" mho/m 33

10. TN Impulse Response Characteristics for a Very Weakly

Conducting Slab; o - 2 X 10-% mho/m 34

11, Geometry Illustrating the Plane Wave Difference in Path

l.ength to an Observer for Reflections from Two Levels
in a Slab which are Separated by a Distance h 35




12,

13.

14,
15.

Siab T Impulse Responses as a2 Function of Slab Thickness
and Conductivity

Slab TE Imobulse Responses as a ]?'ungtion of Incidence
Angles h 700 K, and o ~ 2 ¥ 107 inho/m

Stab T Reflections of Single-C vele Square-Wave Pulses

Prefers-od Sounding 1 requencies as o l'unction «f Slab
Conductivity vt Ineidence Angle

~3

Hiustrations

e PR
—

i




PRRCEDLHG FaOb B

The Reflection Properties of Conducting Slabs

1. INTRODUCTION

Low frequency pulse ionospheric reflection data recently described by
Rasmussen et al1 indicate that the daytime lower ionosphere sometimes has a
weak reflecting layer below the solar zenith angle controlled D-region, at an
altitude at which electron-neutral collisions dominate over geomagnetic field
effects, The electromagnetic effect of such a layer is essentially that of an
isotropic faintly conducting one. Attempts to reconstruct the properties of such
layers from the pulse reflection waveforms led the authors to consider the re-
flection properties of an idealized slab of uniform conductivity and finite thickness.
The results of these studies are described in this report. A somewhat analogous
study for the case of reflections from a lossless dielectric slab already appears

in the recent literature. 2

Received for publication 5 January 1981

1. Rasmussen, J.E., Kossey, P.A., and Lewis, E.A. (1980) Evidence of an
ionospheric reflecting layer below the classical D region, J. Geophys. Res.
85:3037.

2, Tabbara, W. (1979) Reconstruction of permittivity profiles from a spectral
analysis of the reflection coefficient, IEEE Trans, on Antennas and Prop.
AP-27:241,
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2. THE PLANE WAVE REFLECTION COEFFICIENTS OF CONDUCTING
SLABS

2.1 The General Problem and Pertinent Definitions

The reflection problem under consideration is illustrated in Figure 1, where

a plane wave of unit amplitude and frequency w is obliquely incident on a conduct-
ing slab of finite thickness, h., The electromagnetic properties of the slab are
characterized by a conductivity o, a propagation constant k, adielectric constant
€, and a permeability B 1t is further assumed that l‘.kllg slab is immersed in free
space which has a dielectric constant €, = 8.854 X 10
[T 47 X 10-7
reflected wave in the space below the slab, and a transmitted wave in the space

F/m, a permeability

H/m, and a propagation constant ko. In general there will be a

above the slab. The rativ of the reflected and incident plane waves, measured

at the same point, is defined as the reflection coefficient of the slab, R. In the
notation of Figure 1, R = F2/F1. Similarly, a transmission coefficient, T, can
be defined as the ratio ﬁ/ﬁ at some specified point in space. The main purpose
of this section is to determine the reflection coefficients for conducting slabs of

arbitrary thickness and conductivity.

TRANSMITTED WAVE
F3

FREE SPACE : €g¢,LLlg, ko

SLAB: O € . LLo.k

M

FREE SPACE €,,[Lq,K,

INCIDENT WAVE
Fi

REFLECTED WAVE
F2

Figure 1. Plane Waves Reflected and Transmitted by a Conduct-
ing Slab

In what follows it is assumed that the incident plane wave is travelling up-
wards, in general obliquely, and the direction of the X-axis is chosen so that the
wave normal is in the X~Z plane and is pointing in the positive directions of both
X and Z, at an angle 8 to the Z-axis. Then the X-Z plane is called the "plane-

of-incidence," and two plane wave reflection coefficients can be defined. For the
case when the plane wave has its magnetic field transverse to the plane-of-

incidence, the reflection coefficient will be termed TM- and will be denoted RTM‘

10




Alternately, for the case when the plane wave has its electric field transverse to
the plane-of-incidence, the reflection coefficients will be termed TE-, and will
be denoted by hTE'

2.2 TM-Reflection Coefficients

2,2.1 EQUATIONS FOR AN INCIDENT TM-WAVE

The geometry for the case of an obliquely incident plane TM-wave, in free
space, is illustrated in Figure 2, The magnetic field component of the incident
wave is solely in the direction of the Y-axis and, under the assumption that it is
of unit amplitude, it can be expressed simply as

ik MP-iwt
I!\. e ¢ ,

where MP represents the down-wave distance, which can be expressed as

x sin 6 + 2 cos 6, from the geometry shown in Figure 2. Since the whole wave

&kox sin -iwt

pattern must vary as e , this factor will be supressed in the develop-

ment that follows.,

\ Pix,y,2)
\ 7 i
z \N 7 {
X i
WAVE FRONT T// \ ]
» \
-~ \ '
") i
\\‘l
X T\Q %X
WAVE DIRECTION £ AN
& | \
® \
A N
MP = MN + NP
MP = xsin§+ zcos @

Figure 2. Obliquely Incident TM-Waves on a
Cartesian Coordinate System

Using familiar free-space plane wave concepts, the components of the inci-
dent plane wave are

ik zcos @
()

11




o P

ik zcos 6
(%]

E_-2Z cosfe s (2)
X [¢]

and

ik zcos 6
Q

E =-Z sinfe (3)
zZ Q

_ 1/2 _ _ _ 8
where Z = (u_/e ) =k /e w, and k =w/c (c=3X10" m/sec),

2,2.2 EQUATIONS FOR THE TRANSMITTED TM-WAVE

The transmitted wave (see Figure 1) has a form similar to the incident wave.

Assuming the amplitude of the transmitted wave to be T, its components are

ik JZcos 6
3

H =Te , (4)
y
ik)z cos 8
E -7 TcosbBe ° , ()
x )
and
ik zcos 6
E, -Z Tsinfe o . (6)

2.2,3 EQUATIONS FOR THE REFLECTED TM-WAVE

[.et the amiplitude of the reflected wave be RTM’ This wave is similar in
form to the incident and transmitted waves except for (a) its amplitude R’I‘\l’
(b) its downward direction of travel, and (¢) its E‘( field component, which is

negative. Thus, for the reflected wave,

ik RANIE 0
”y - RTM o s (7
-ik RANS 2]
. . « «
Ey " "Bpy 4, cos0e : (8)
and
‘ik(\[ cos 0
- i Q
E, Reppg Z0 sin f e . ()

2.2.4 EQUATIONS FOR THE WAVLES INSIDE THE SILAR

Since the plane wave solutions for the waves inside of the conducting slab are
more complicated and less familiar than the free-space ones, thev will be de-
veloped here from first principles, using a consistent notation. In doing this the

following assumptions are made:

12
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(a) H, E_, and E_ are the only field components,

y:

(b) none of the field components vary with y,

ik xsin@-iwt
(¢) the suppressed factor is e s
(d) the operator 3/9x is equivalent to multiplier iko sin 6, and
(e) the operator 3/t is equivalent to the multiplier -iw.

Under these assumptions the pertinent Maxwell's equations are

curl E = B, 8H /ot = iqu}_I

B

which can be written

*o Yo %o
9/ox 0 3/9z| = 1“OwHyy0 , (10)
Ex 0 E,

and
curl § = Eo + €, 9E/dt = Eo - iweOE
= -iweE

where

€ = eo(l + lO/WEO) s

which can be written

X ¥y 3

(¢ O [¢]
alox 0 a/dz : ~iweE . (11 ;
0 H. 0
Y :

Carrying out the operations shown in Egs. (10) and (11) yield

(’)EY 3E7
az ax l“owny ’ (12)

13




oH

Yy . o_
'a—x— = 1W€Ez . (14)

Using the operator 3/9x and then consolidating these equations gives

;Jl ik sin 0 E_ + iyowHy , (15)
T.l' : iweE (16)
9z x '

and
k, sin 6 Hy - -weE, . a7

It can be shown that these equations are satisfied by a plane wave of the form

i ,
[ H - elkz cos 6 ) (18)
y
k sin@ .
) 0 ikz cos O
E, -—m—-¢ . (19)
and
s 1 jks 5 f)
B k cos elk/. cos ’ (20
X €w
provided
cos 0kt afen w? -kisin? 0 (21)
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or, after rearranging,

j [*]
k=tko\/1+l_‘—_—2 . (22)

we cos” 6
o

If both the real and imaginary parts of k are positive, the wave is an upward going
one with decreasing amplitude, while if both the real and imaginary parts of k are
negative, the wave is a downward going one with decreasing amplitude, In the
development which follows only the positive root will be taken since the negative
sign for the downgoing waves can be appropriately incorporated into the equations.

Generally there are both upgoing and downgoing waves inside the slab, Let-
ting their amplitudes be U and D respectively, the following equations apply:

Upgoing
H =U eikz cos 8 ) (23)
y
-Uk_sin8 .
_ o) ikz cos 6
Ez T ew ¢ . (24)
and
_ Uk cos 8 _ikzcos6
Ex = E—W e ; (25)
-i 0
H =De ikz cos ) (26)
y
-Dk_ sin# .
- [} ~ikz cos 8
E, = €w € ' 27
and
_ =Dk cos 8 _-ikzcos 8
Ex T —ew ¢ . (28)

2,2.5 BOUNDARY CONDITIONS

The appropriate boundary conditions are that at the two boundaries of the
slab, the tangential H and E fields must be continuous. At the lower boundary

15
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(that is, at z = 0) the condition than tangential H is continuous gives, from
Egs. (1), (7T), (23), and (26),

1+R =U+D . (29)

TM™M
Similarly, the condition that tangential E is continuous yields, from Egs. (2),
(8), (25), and (28),

Z cos A1 - Ry, ) = X088 ) (30)

TM €W

At the upper boundary of the slab, z = h, the respective boundary conditions

require, from Eqgs. (4), (23), and (26), and Eqgs. (5), (25), and (28), A

ik hcos 8
(o]

eil«:hcosf) +D e-ikhcosﬂ -Te

U (31)

and

ik hcos 6
kocos 8 o (32)

k cos @ [U oikhcos® _ o -ikhcos 6]

€w € W

[¢]

2.2.6 SOLUTION OF THE EQUATIONS TO OBTAIN THE
{ TM-REFLECTION COEFFICIENT
Equations (29), (30), (31), and (32) permit solutions for the four unknowns,
RTM’ T, U, and D. The solution for the TAl-reflection coefficient of the slab is
outlined below.
After removing common factors and denominators, the pertinent equations

can be written as

1+ Rpqy =U+D (33)

(1 - RTM) koe = keo([' - D) , (34)
i 5 i 0 ik hcos #

v elkhcosf) +De ikhcos 0 _ Te © (35)

and

iknh cos 8
ke -k eTe . (36)
o o

( Oikh cos 6 _ D ()ikh cos @




Equations (35) and

(38) can be combined to eliminate the factor T yielding

ikhcos 6 _ -ikhcos 6

Utk e - kco) e = -D(ke  + k e€) e .
or

D--QU ei2khcose ) 37
where

o]
1+w‘°
E()

R PP - S t/2
2
we cos” 0
o

- —

. (38)
1+ )}y [ e—do 1/2
e, weE c052 0,

After insertion of the expression for D given by Eq. (37) into Eqs. (33) and (34),
they can be combined to eliminate U, leaving

i2khcos 8 eiZkh cos 8

(1 - RTM)kOc(l +Qe )= (1 + RTM)keo(l -Q ) . (39)

Finally, Eq. (39) can be solved to find the slab reflection coefficient

Q1 - ei2kh cos 9)

= - . (40)
a- QZ eleh cos 0)

Rem

2.3 TE-Reflection Coefficients
2.3.1 EQUATIONS FOR AN INCIDENT TE-WAVE

The geometry for the case of an obliquely incident plane TE-wave in free
space is illustrated in Figure 3. The nonzero components of the wave are now
Ey, Hz' and H7, and the forms of the incident, transmitted, and reflected waves

can be written from a knowledge of the plane wave free-space solutions. As be-
ik xsin6-iwt
fore, the factor e will be suppressed in the development that follows.

Asgsuming that the incident wave is of unit amplitude, its components are

17
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Figure 3. Obliquely Incident TE-Waves on a
Cartesian Coordinate System

2,3.2 EQUATIONS FOR THE TRANSMITTED TE-WAVE

The transmitted wave has the same form as the incident plane wave, but with

an amplitude T. Thus

ik zcos 6
[

E Te s
v

ik“z cos 0
Hx = -(T/Zo) cos A e
and

ik zcos 8

Hz = (T/Zo) sin 0 e

18
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(46)

TS TR T sy 8 —_— w
A ——— - e T T O G g
ik zcos 6
E =e ° , (41)
y
ik zcos 8
H, = -(1/Z ) cos e (42)
and
ik zcos 6
Hz = (l/Zo) sin B e (43)
z
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2.3.3 EQUATIONS FOR THE REFLECTED TE-WAVE

The reflected wave is similar in form to the incident wave but differs from it
by (a) its amplitude RTE' (b) its downward direction of travel, and (¢) its HX
component, which is negative., Thus,

-ik“Z cos
E\' - RT[" e s 47

-ik zcost
H_ = (R JZ Ycos e Y , )
X 1 O

Th

and

ik zcost

b) y .3 N (8]
H, (R 2,)sin ) (49)

2.3.4 EQUATIONS FOR THE WAVES INSIDE THE SLLAB

Since only Ev’ Il\,, and 1{7 exist, and since these are not functions of y, the
Maxwell equation curl E - Twy )I—I may be written
¢

g z
) e (8]
d/ox 0 d/0z = iwg (H X+ H 7 )
0 |4 0
I ¥

Since the operation 8/9x is equivalent to multiplving bv ik“ sin 6, this reduces to
two equations,

AL
3o s B
EP TWH Hx ' (50)
and
21 () . . x4
k, sin l‘y wu  HooL B ]
Similarly the Maxwell equation curl B - -iwg—E can be written n
x v 7
O S0 )
N/ax 0 a/av S o-iweE N
Vo i
N
le 0 Ilz !

10




which reduces to

lko gin 6 HZ - (8Hx/az) = iweEy . (52)

It can be readily verified that Eqs. (50), (51), and (52) are satisfied by plane

waves of the form

E - e.ikzcose ) (53)
y
Hx . _kcos 8 e1kz cos 6 ) (54)
Wi
and
k siné
__o ikz cos 6
HZ T e s (55)

o]

where k has the same value as given in the TM-case by Eq. (22). As discussed
previously the positive root for k will be taken since the appropriate signs for the
upgoing and downgoing waves can be easily incorporated into the equations.
Letting the amplitudes of the upgoing and downgoing waves inside the slab be U
and D respectively, the following equations apply:

Upgoing
E -U e1l~:z cos f ' (56)
y
. _Ukcos 6 _ikzcos®
Hx = —w“:—— e , (57)
and
Uk sing .
o ikzcos 8 |

H, wa e ; (58)
Downgoing

Ev . p e itkzcos 8 ' (59)

20

R e




DK cos A -tk cosH

& [N AL S , (1))
X W
and
Dk =sind .
-tk os A
i o . tkz cos C

Wy
‘ L()

2,500 BOUNDARY CONDITIONS

As given earlier, the boundary conditions are that at the two bound.. . -
the slab, the tangential E and I fields must be continuous. At the lower boutid-
ary, at z 0, the condition that tangential E is continuous gives, from kas. (41,
(47), (55, and (H9),

1+ H'['Lﬁ [ B (02)

Similarly, the condition that tangential T is continuous vields, from Egs. (42),
(48), (A7), and (10,

. Lo oas O -
cos B B O U Kcosf Dk cos 4 ..
- 5 e 2 .- + . (63)
7 7 Wy Wi
[ O

" O Y

At the upper boundary of the slab, » h, the respective boundary conditi.ns re-

quire, from Egs. (44), (5%), and (59), und Egs. (43), (57, and (60),

. . ik heos t
. L f ik cos f
v elkh cosf D e ikh cos f e © ’ ()

and

. - . e ik s A
Uk cos 0 olkh cosli . Dkcosfr -ikhcost T cos 0 \k“h(
Wi wu ¢ /. '
oy

0

(%))

After removal of constant factors and consolidation of terms, the nertinent equa-

tions are

, (646)




1 - Ropp (kf"k”)(l -, (67)
v eikhcos g ‘D O-ikh cost T Oikoh cos B ' (68)
and

2. 0 SOLUTION OF THE EQUATIONS TO OBTAIN THE
TE-REFLECTION COEFFICIENT

Equations (66), (67), (68), and (69) can be solved to obtain RTF’ T, U, and
D. The solution for the desired TE-reflection coefficient R'I‘F is outlined below.

The factor T can be eliminated by combining Egs. (68) and (69) vielding
-i2khcos#

(k - k“) U - (k+ k“) De

or, after rearranging terms,

kK - K .
. 0 12Khcos # -
pot <__.——k+k‘> " : (70)
1

Substituting this intc Eqgs. (686) and (67) and eliminating U gives

k-k\N .
. - O ’lzkh cos N _
k(L dt) |1 <———~k : k) ‘ K (1= R
1+ k - k() (‘ilﬂdl cos
k+k
L (83
which can be solved to find the desired factor
(1 - JiZ2khcos 1))
l{- . l) ——_T’L'm_'—_ﬁ;— (71)
Ik (1 - p* 12khcos ) '

ot




- —

where
Lo/l —io
k“ -k weE | cos™ 8
P = raarasvl B _ . (72)
O 1+ 1+ o3

we cos” h
(83

3. GENERAL FEATURES OF THE SLAB TW/TE REFLECTION
COEFFICIENTS

3.1 Limiting Forms of the Reflection Coefficients

In order to gain some insights into the nature of the slab reflection processes,
it is useful to examine the TM- and TE-slab reflection coefficients for a number
of special limiting cases. In doing this it is convenient to consider first the be-
havior of the propagation constant k for three specific limiting cases, This factor
is common to both slab reflection coefficients,

From Eq. (22) and the discussion that immediately follows it, the factor k

can be written s

kK k(o oA (73)
where
)
G = ol(we cos™ 8 (74)

and A and B are both positive and real. The following limiting forms can be deter-

mined from Eas. (73) and (74):

(D Fora « 0, orw - o

k -k s (75a)

(Y T'oro « 1, orw > 1,

G
K - k” (I ct T\ , (75b)

/




and

(¢) Foro>»1 orwe« 1 (G»1)

. -1 . .
itan " G)/2 _ K G1 2(1 Ci 2

0

) 2.1/
koK (1 it s k (1 a4 e

7he)

3.1.1 VANISHING CONDUCTIVITY
For the case of vanishingly small g, or arbitrarily large w, the application

of (73a) to Egs. (38) and (72) shows that both Q and P vanish, respectively, so that

lim R 0 , and lm R.,.. ©
0.0 [IM .0 [E

or or

— W 00 — W s 00

3.1.2 ARBITRARILY 1LARGE CONDUCTIVITY

For this case, 0 + » and Eq. (75¢) applies. It easily follows that the term
i2hecosh . . . .
! hecos goes to zero, Thus, from inspection of Egs. (38) and (40),

RTI\] - Q ~ 1, and from Eqgs, (7T1) and (72), R,”: - P .-l

3.1.3 VERTICAL INCIDENCE AND GRAZING INCIDENC E

For vertical incidence, 0 - 0“, and cos 1 1, so that it follows frorns Eas, (98)
and (72) that P - -Q, and further, from kgs. (40) and (71), that f\’,”\‘ _“']'l"

For grazing incidence, # - .000, and cos A« 0, For this case g, 175¢)

o1 '

is applicable and ol“khmm tends to zero, It then follows from inspection of
Egs. (38) and (40) and kgs. (71) and (72) that R"I‘\l - ~1, and l{.”. . -1,

3.1.4 ARBITRARILY LARGL SI.AB THICKNESS

DI e
it follows from Eq. (73) that as h +« wo, eﬂ"‘l‘hu)b “hvmmws vanishingly small,

Then, from Eqgs. (38) and (40),

LIS IS C AN
we 3
o we cosf)
Ren - Q . -
1+ 294 + 1« _£7_2._
WEU we (NS f
o




and from Eqs. (71) and (72),

1 - 1+ ._ﬁ_,,_
weo cos™ 8

RTE - P = .
1+ 1+ —22

we cos” 8
O

‘It can then be shown, after some rearranging of terms, that these equations are
identical to the corresponding classical Fresnel coefficients, such as described
by Stratton, 3

3.1.5 VERY LOW CONDUCTIVITY OR SUFFICIENTILY
HIGH FREQUENCY

Under either of these conditions Eq, (75b) applies, and it follows that

-k Ghcos 8 i2k hcos 8 i2(Mh cos 8
[¢] ) ~ ¢

o = e .

i2khcos 8 _
e S
Then, from Egs. (40) and (37)

iw (g(}—) cos )

R, Q (l~ec

I

(76)

2 iw(g}lvus )
_aleasT H - 0.5) 1 |- e c
> - )

2e vosT 0
(B
Inspection of Eq. (76) shows that the slab Th-reflection coefficient decreases as
. . . ) -~ LS I -
the incidence angle increases from 0 to 45 ', and at 45" it becomes zero. Then

as the incidence angle increases, the reflection coefficient increases, with a

change in sign, compared to the ¢ < 43" case. Thus, it can be concluded that for

very weakly conducting slabs, there is a Brewster's angle for an incident TN -

. el
wave, which occurs at 457 regardless of the frequency of the wave,

Similarly, it follows from kqgs. (71) and (72) that for very weakly conducting

slabs,

3. Stratton, J, A, (1941) Electromagnetic Theory, AleGraw-Hill, New York,
pp. 402-404,
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-iw
4e cos” B
O
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Inspection of Eq. (77) shows that the TE-reflection coefficient increases with in-

creasing incidence angle 8, and does not exhibit any Brewster's angle effect,

3.2 Impulse Response of Very Weakly Conducting Slabs

Inspection of Egs. (76) and (77) shows that functionally the TM- and TE-slab
reflection coefficients are identical for the case of verv weak conductivity, For
this case the slab reflection process can be characterized bv considering the

factor

' ] 1 { w (%fh(‘os f))] B
H{iw) K <_l—“—> 1 ~-e . (78)
In linear svstems theorv H{iw) represents the transfer function of the slab, and
its Fourier inverse, h(t), gives the response of the slab to a unit-impulse 1ncident
plane wave., Iurther, H(iw) is functionally oqui\'ulont* to the Fourler transform
of a time function which is rectangular in shape with amplitude K, and width

T - (2h:¢) cos 0, as illustrated in Figure 4, For the case of an infinitely thick
slab, the function H {(iw) becomes simplyv (K '-iw), and the impulse response is a
step-function of amplitude K, as shown in Figure 4,

It follows from the discussions above that, more generally, the impuse re-
sponse of a verv weaklv conducting slab is a replica of the slab's conductivity
profile, Specifically, the amplitude A of the response at time t relates directly
to the conductivity o of the slab at height z. For the case of vertical incidence,

this mapping takes the form (see Eq. (77) for example)
LAM] - [7 S5, a2 s 4e A(D] . (79
This simple mapping is illustrated in Figure 5.

, . wt . . . .
I'he choice of a spinner e rather than the one used in the derivations in this
paper, e~ Wl wauld have led to an expression for H(iw) that could be directly
compared to forms given in most texts on Fourier transforms,
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The simple mapping relationships described above are only valid as long as
the incident wave penetrates the slab without being significantly altered in any
way. This condition breaks down as the conductivity of the slab increases, or as
the incidence angle becomes nearly grazing. This will be illustrated by specific

numerical examples later in this report.

4. SLAB FREQUENCY RESPONSES

In this section numerical examples are given to illustrate the frequency re-
sponse characteristics of a few selected conducting slabs. Results are shown for

both TM- and TE- incident wave polarizations.

4.1 TM/TE Slab Frequency Responses, Vertical Incidence

As shown by Egs. (40) and (71), the magnitudes of the TM and TE frequency
responses are the same for the case of a vertically incident plane wave. Figure 6
shows the frequency responses calculated for a number of slab thicknesses, with

9 mho/m. This corresponds

the conductivity held constant, at a value of 2 X 10~
to a very weakly conducting case so that the frequency response curve for the
example of an infinitely thick slab, in Figure 6, varies as 1/w (w = 27f), as dis-
cussed earlier, with reference to Eqs. (76) and (77). As shown in Figure 6, the
response for an infinitely thick slab decreases monotonically with increasing fre-
quency, but for slabs having a finite thickness, the frequency response curves
show nulls and relative maxima, which occur in a periodic manner. The fre-
quencies at which the nulls occur can be determined analytically by considering

iw(2hcos G/C)], which occurs in Egs. (76) and

the multiplicative factor [1 - e
(77). It is a simple matter to show that this factor, and hence the magnitude of

the TM/TE reflection coefficient, goes to zero if

W Ne _
f—ﬁ-m (N—1,2,3,..-) . (80)

Thus, for the h = 3 km example shown in Figure 6, the nulls occur at multiples
of 50 kHz, while for the h = 7,5 km example, they occur at multiples of 20 kHz,
ete.
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4.2 Slab Frequeney Response as a Function of Incidence Angle

4.2.1 TM-POLARIZATION

Figure 7 shows the TM frequency response of a weakly conducting slab for a
number of incidence angles., In all cases the slab was assumed to be 7,5 km thick,
with a conductivity of 2X 107" mho/m. Inspection of the curves in Figure 7 and
the h = 7.5 km curve in Figure i shows that for a fixed frequency, the slab re-
flectivity generally decreases as the incidence angle varies from 0¥ (vertical
incidence) to 45°, at which point the slab exhibits a Brewster's angle effect,

Then, as the incidence angle increases above 450, the slab becomes a better re-
flector, and the amplitudes of the reflected waves become larger, as shown in
Figure 7, As discussed earlier, the slab becomes an almost perfect reflector at
extremely grazing incidence angles (0 - 90°),

Figure 7 also shows that the location of the relative nulls in the slab's fre-
quency response changes as the incidence angle varies, Further, as the incidence

angle increases, the spacing between the nulls also increases. Inspection of the
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curves in Figure 7 show that the null spacings are inversely proportional to cos 6,

and follow the relationship given by Eq. (80) earlier,
4.2.2 TE-POLARIZATION

Calculations of TE-frequency response curves for two incidence angles are
shown in Figure 8, for the same 7.5 km thick slab which has been described
above. These curves, along with others not shown here, show that for a given
frequency, the slab's TE-reflectivity increases as the incidence angle varies
from 0° to 90°, No Brewster's angle occurs, and in general, for the same (re-
quency and incidence angle, the TE reflection amplitude is greater than the TM-
reflection amplitude. The TE-frequency response curves exhibit the same null
patterns as discussed for the TM-case, with the null pattern again following the
form given by Eq. (80),

Examination of kq. (80), which shows how the null patterns vary with inci-
dence angle and/or slab thickness, illustrates that for a fixed incidence angle,
the null spacing will increase with decreasing slab thickness (see for example,
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Figure ), Alternately, for a fixed slab thickness, the null spacing will increase
with increasing incidence angle. In a sense then, as the incidence angle increases,
the "apparent' thickness of the slab decreases, This aspect of plane-wave slab

reflectivity will be discussed in more detail in a later section of this report.

5. SLAB IMPULSE RESPONSES

The reflection properties of conducting slabs are characterized by the reflec-
tion coefficients given in Eqs. (40) and (71). Following well known Fourier trans-
form approaches, these expressions can be used to determine the responses of
the slab to an aggregate of incident plane waves whose sum represents a unit-
impulse. The resulting impulse-response can then be convoluted with any arbi-
trary incident waveform to obtain the resultant slab reflected waveform. In this

section slab impulse responses are shown for a variety of slab conductivities,

thicknesses, and incidence angles. The results were obtained by use of digital
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integrations of the expressions for the impulse responses. In general, since the
responses must be purely real, and identically equal to zero for t <0, the im-
pulse responses can be written, following the e'IWt spinner adopted in this report,

as

L [ «©
50 g% [ Riw o™ at <L e [ Rtw) e at - 1 Re [ Rw ¢
-0 0 0

e-lwt dw
where R(w) and ¢(w) are the magnitude and phase of the slab reflection coefficient,
determined from either Eq., (40) or (71), depending on the polarization of the
incident waves., This can further be reduced to the relatively simple form

Q0
5) = 3 [ Rw) cos [wt - p(w)} aw (81)
0

which can be numerically integrated, using well established digital techniques.

5.1 Slab TM-Impulse Responses

! 5.1.1 VERY WEAKLY CONDUCTING SLAB, VERTICAL
INCIDENCE
Figure 9 shows the impulse responses of a slab with conductivity 2 X 10'9
mho/m, for three slab thicknesses, h = 1.5 km, h=7.5km, andh - ». For
the infinitely thick case, the impulse response is essentially a step-function with
an amplitude of approximately 56. 5, while for the cases of finite slab thickness,
the impulse responses are rectangular in shape, having the same amplitude of
56.5, but different widths, For the 7.5 km example, the pulse-width is 50 ysec,
while for the 1.5 km example, it is only 10 ysec. These results are in agree-
ment with those expected for very weakly conducting slabs, as discussed earlier
in Section 3. 2 of this report, and the amplitude and pulse widths shown in Figure 9
follow the mapping relationship given in Eq. (79).
5.1.2 VERY WEAKLY CONDUCTING SLAB, VARYING
INCIDENCE ANGLE
Figure 10 summarizes the impulse responses of a very weakly conducting
slab (0 = 2 X 10'9 mho/m) under a variety of conditions., In all cases the impulse
responses are rectangular in shape with amplitudes and widths which vary with
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Figure 9. émpulse Responses of a Very Weakly Conducting Slab;
o = 2X107° mho/m. (a) Infinitely thick slab, (b) 7.5 km thick
slab, (¢} 1.5 km thick slab

assumed incidence angle and slab thickness. Figure 10(a) shows that for a fixed
incidence angle (6 = 00), the width of the impulse response varies linearly with
slab thickness. Figure 10(b) shows the variation of the duration of the impulse
response with incidence angle, for a 7.5 km thick slab, The duration of the
impulse response is maximum for the case of vertical incidence (8 = 00), and
approaches zero as the incidence angle tends to 90°. The variation of the mag-
nitudes of the impulse responses with incidence angle is shown in Figure 10(c),
for a 7.5 km thick slab. As the incidence angle increases the amplitudes at first
decrease, but then increase, with a change of sign. The changeover in the ampli-
tude effect occurs at an incidence angle of 45°, which is the slab's Brewster
angle, At that angle, the slab's impulse response is negligibly small. In sum-
mary, the amplitudes of the impulse responses follow the form o(2 0052 8- 1)/
(450 c<)52 9), and the widths follow the form (2h/c¢) cos 6, which are in accord-
ance with the results expected for a very weakly conducting slab, as discussed
earlier in Section 3, 2 of this report,

The decreases in response times that are seen in Figure 10(b) as the incidence
angle is changed, are similar to those that occur when the thickness of the slab is
decreased, while the incidence angle is fixed, In effect then, Figure 10(b) illus-
trates that the "apparent” thickness of the slab is reduced as the incidence angle
increases. In the limit, as the incidence angle becomes almost grazing, the
“apparent” slab thickness approaches zero. This result suggests that for any
incident waveform described by plane waves, the geometry of the slab reflection
process itself will cause the reflected waveform to be extended in time by an
amount AT that will be related to the incidence angle, For vertical incidence, AT
will be a maximum, while for very nearly grazing angles, it will be practically
zero. The geometry which illustrates that is shown in Figure 11,
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d=hcos8 4

Figure 11. Geometry Illustrating the Plane Wave Dif-
ference in Path Length to an Observer for Reflections
from Two Levels in a Slab which are Separated by a
Distance h

The construction shown in Figure 11 shows that an observer in the space be-
low the slab would sense the reflected energy from a level h above the bottom of
the slab, at a time AT later than that reflected from the bottom of the slab. The
time AT is simply related to the distance 2d shown in the figure, and can be ex-
pressed as AT = (2h/c) cos 6.

5.1.3 VERTICAL INCIDENCE, VARYING CONDUCTIVITY

AND SLAB THICKNESS

Figure 12 shows slab impulses for a wide range of conductivities and slab
thicknesses. In all cases, vertical incidence is assumed. In Figure 12(a) the
assumed conductivity is 2 X 10-9 mho/m, and the curves include those already
discussed with reference to Figure 9. As noted earlier, for this very weakly
conducting slab example, the impulse responses are replicas of the slab conduc-
tivity profiles, with the mapping from one to the other given by Eq. (79).

Figure 12(b) shows the impulse responses for an assumed conductivity of
2 X 10-7 mho/m, In this case, the response for an infinitely thick slab no longer
is a step-function, but rather, drops off gradually with increasing time. Although
the approximations and mapping relationships which were developed for very
weakly conducting slabs do not apply for this case, the effects of changing the
thickness of the slab are still very noticeable in the way in which the responses
drop off. For example, for the 1.5 and 7. 5 km examples, the responses drop off
almost instantaneously at times given by 2h/c. As the slab thickness increases
however, the drop-offs become more gradual and sluggish until, for very large
thicknesses (for example, h = 90 km), the responses cannot be distinguished very
well from the response of the infinitely thick slab.
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Figure 12(c) shows corresponding impulse responses for an assumed con-

ductivity of 2 X 10”7 mho/m, For an infinitely thick slab, the response is im-
pulsive, rising very sharply and then rapidly dropping off, In the example shown
in Figure 12(¢), the impulse vesponses for the various slab thicknesses assumed
cannot be distinguished from the infinitely thick case. This indicates that because
of the relatively high conductivity assumed, the reflection process is very nearly

a Fresnel-like sharp boundary one.

5.2 Slab TE-lmpulse Responses

TE-impulse response studies were conducted similar to those described with
reference to Figures 10 to 12, The results of one such study are shown in Fig-
ure 13, where TE-umpulse responses are given over a wide range of incidence
angles, for the case of a 7.5 km thick slab having a conductivity of 2 X 10_'(. mho m.

Comparisons of the results for this very weakly conducting slab case with those of

|OOOOO'§

s

¥ 10000

5 3

° .

4 ]

; 1

b 4

4

& 10004

@ 3

w 3

x ]

m -

[7:3

« ]

=}

a

2 100

w ] o =2 x10 2 mho/m
-] ] h =7.5km
W

S 10+

e ;

5 3

z b

b 1 -

( -

) T

O 10 20 30 40 50 60 70 80 90 100
INCIDENCE ANGLE , DEG.

Figure 17, Slab TE Impulse Responses as a Funetion of In-
cidence Angle; b 7,5 km, and o 2~ 107" mho m

37




Figure 10{(c) show that there are no Brewster's angle effects associated with the
TE-responses, and that the TE-amplitudes are larger than the corresponding
TM-amplitudes, It follows from Egs. (76) and (77) that for very weakly conduct-
ing slabs, the TM to TE amplitude ratio can be expressed simply as (1 - 2 cos A),
This shows that the two amplitudes are of opposite sign for incidence angies less
than 45”. The TM Brewster's angle is at 4:’:”, and for incidence angles greater
than 45"

. . (]
the two amplitudes are equal only for incidence angles of zero or 907,

, the two responses have the same sign. The relationship also shows that
The results of other T -impulse response studies, not shown here, were
very similar to those already discussed in conjunction with the TM-exambples of

Figures 10(a, b) and 12,

6. SLAB REFLECTION OF PULSES

Using well established Fourier transform methods, it is a relatively simple
matter to determine the waveforms of pulses that have been reflected from con-
ducting slabs. Specifically, if the Fourier transform of the incident pulse is
C(iw), and the transfer function of the slab is defined by R(iw), then the reflected
pulse v(t) can be found from the Fourier inverse F'I[C(iw)R(iw)]. For purely
real functions, defined for t > 0, it follows that in the notations adopted earlicr

in this report

o
Vi) - 1 Re-f ClwRw) o Whaw |
0
an
: %f CR cos (wt - y)dw , (82)
0
where

Cliw) = C ol

Riw)

i}

Re

and

Vot ¢
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Pulses. (a) Incident pulses, (b) reflected pulses, o = 2 mho/
m, (¢) reflected pulse, o - 2 X 1072 mho/m, (d) reflected q
pulse, 0 - 2 X 10~/ mho/m, (e} reflected pulse, o = 2 X 107"
mho ‘'m. In all cases the incidence angle is 60¢ and the slab
thickness is 6t km

30




Y i

Figure 14 illustrates the results of the application of Eq. (82) to determine
TM-pulse reflections from a 6 km thick slab. In the examples shown, the inci-
dent pulse was a single-cycle square-wave of unit amplitude, as shown in Fig-
ure 14(a), and the incidence angle was 60°, In Eq. (82), R(iw) is given by
Eq. (40) and

cliw = (k) [1(0.000018w) _, i(0.000038w) +i(0. 000058w))

For a conductivity of 2 mho/m the reflected pulse, shown in Figure 14(b) is
practically identical to the incident pulse, but for the much weaker conductivity
example shown in Figure 14(c), for whicho = 2 X 10_5 mho /m, the reflected pulse
is significantly altered, both in amplitude and in pulse width. Figure 14(d) shows
that for a conductivity of 2 X 10-7 mho/m, the polarity of the reflected pulse is
opposite to that of the incident pulse, indicating that the 60° incidence angle is
beyond the 9Brewster's angle of the slab. For a very weakly conducting slab,
g=2X10

of the incident pulse, as shown in Figure 14(e). This is in accordance with

mho/m, the reflected pulse is directly proportional to the integral

Eq. (78). Further, for this example the incidence angle is beyond the slab's
Brewster's angle of 450, and the reflected pulse is 20 ysec longer than the inci-
dent pulse, as expected from the AT = (2h/c) cos 6 relationship discussed earlier

in Section 5.

7. DISCUSSION

Equations (40) and (71) can be used to predict the reflection coefficients and
impulse responses of conducting slabs; and, in conjunction with Fourier transform
methods, they also provide the means for computing the waveform of a slab-re-
flected pulse if the waveform of the incident pulse is specified. In experimental
programs, however, questions naturally arise as to what polarization, wave fre-
quencies, and incidence angles should be used for remote sensing or "sounding"
of a slab's thickness and conductivity.

The optimum polarization for sounding purposes is the Transverse Electric
(TE), because TE-waves reflect more strongly than Transverse Magnetic (TM)
waves from conducting slabs. Also, the TE-polarization is free of Brewster's
angle effects, which can make the interpretation of TM reflection data more com-
plex and ambiguous,

Vertical or nearly vertical incidence angles are preferred over very oblique

(grazing) ones, For example, TM reflection amplitudes decrease with increasing
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incidence angle until the Brewster's angle is reached, and, except for grazing
angles, they are largest at vertical incidence. Conversely, TE reflection ampli-
tudes increase with increasing incidence angle, so that there may be practical
advantages to TE-sounding at oblique angles, but grazing angles should be avoided.
At such angles the slab reflection process approaches that of a sharp boundary
(for both TM and TE waves), resulting in a loss of information on the thickness

of the conducting slab,

The preferred frequencies for sounding with pulses are intimately linked to
the conductivity of the slab and the incidence angle which is used. However, as
described earlier, if the inequality (Eq. (75b)) is satisfied, the determination of
a slab's thickness and conductivity from observations of its pulse reflections
becomes particularly simple. Specifically, Eq. (78) holds so that the incident
pulse becomes integrated upon reflection, and has amplitudes that are directly
proportional to the conductivity of the slab. Furthermore, the dispersion of the
incident pulse, upon reflection, is directly proportional to the thickness of the
slab, as described earlier in conjunction with Figure 14(e).

Inequality Eq. (75b) can be rewritten as

7
f > 1—i;—l—(-)— o . (83)

kHz cos™ @
Thus, for example, for a conductivity of 2 X 10_7 mho/m and vertical incidence,
the preferred sounding frequencies would satisfy kaz » 3.6 = 360 kHz, while
for a conductivity of 2 X 10_9 mho/m, the preferred frequencies would be greater
than only 3.6 kHz., For an incidence angle of 60" however, the preferred fre-
guencies are greater than 1.44 MHz and 14. 4 kH2, respectively, for these exam-
ples. Figure 15 summaries the application of inequality Eq. (83) for estimating
preferred sounding frequencies.

In some instances the "preferred" sounding frequencies determined from
inequality Eq. (83) may not be practical from an experimental point of view., For
example, the authors have conducted studies of the C-laver of the lower daytime

7 mho/m.l The

lower ionosphere which has conductivities in the order of 2 X 10~
preferred sounding frequencies for such a conductivity would be in the 360 kHz
range or greater, but at such high frequencies the amplitudes of the reflections
would be too low to be measured, particularly in the presence of noise. Using
pulse sounding in the 10 to 50 kHz range, however, in conjunction with digital
processing, it was possible to deduce that the thickness of the C-layer being
observed was about 6 km. This was done by use of an iterative technique involv~
ing Egs. (82) and (40). It has been the authors' experience that good estimates of
slab conductivity and thickness can be achieved within a few iterations via this

technique,
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Figure 15. Preferred Sounding Frequencies as a Function
of Slab Conductivity and Incidence Angle










