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The Reflection Properties of Conducting Slabs

1. INTRODUCTION

Low frequency pulse ionospheric reflection data recently described by

Rasmussen et al indicate that the daytime lower ionosphere sometimes has a

weak reflecting layer below the solar zenith angle controlled D-region, at an

altitude at which electron-neutral collisions dominate over geomagnetic field

effects. The electromagnetic effect of such a layer is essentially that of an

isotropic faintly conducting one. Attempts to reconstruct the properties of such

layers from the pulse reflection waveforms led the authors to consider the re-

flection properties of an idealized slab of uniform conductivity and finite thickness.

The results of these studies are described in this report. A somewhat analogous

study for the case of reflections from a lossless dielectric slab already appears
2

in the recent literature,
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2. THE PLANE WAVE REFLECTION COEFFICIENTS OF CONDUCTING
SLABS

2.1 The General Problem and Pertinent Definitions

The reflection problem under consideration is illustrated in Figure 1, where

a plane wave of unit amplitude and frequency w is obliquely incident on a conduct-

ing slab of finite thickness, h. The electromagnetic properties of the slab are

characterized by a conductivity _, a propagation constant k, a dielectric constant

E, and a permeability p . It is further assumed that the slab is immersed in free
-0 -12

space which has a dielectric constant c = 8. 854 X 10 F/m, a permeability

90 4ir e< 10 - 7 H/m, and a propagation constant ko. In general there will be a

reflected wave in the space below the slab, and a transmitted wave in the space

above the slab. The ratiu of the reflected and incident plane waves, measured

at the same point, is defined as the reflection coefficient of the slab, R. In the

notation of Figure 1, R = pr/F -. Similarly, a transmission coefficient, T, can

be defined as the ratio F3/F1 at some specified point in space. The main purpose

of this section is to determine the reflection coefficients for conducting slabs of

arbitrary thickness and conductivity.

TRANSMITTED WAVEF3/

FREE SPACE E0 ,...o,k .

SLAB; 0, E,. 0,k h

FREE SPACE E'o,k o

INCIDENT WAVE REFLECTED WAVE

Ftgure 1. Plane Waves Reflected and Transmitted by a Conduct-
ing Slab

In what follows it is assumed that the incident plane wave is travelling up-

wards, in general obliquely, and the direction of the X-axis is chosen so that the

wave normal is in the X-Z plane and is pointing in the positive directions of both

X and Z, at an angle 0 to the Z-axis. Then the X-Z plane is called the "plane-

of-incidence," and two plane wave reflection coefficients can be defined. For the

case when the plane wave has its magnetic field transverse to the plane-of-

incidence, the reflection coefficient will be termed TM- and will be denoted RTl.

10
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Alternately, for the cast' when the plane wave has its electric field transverse to

the plane-of-incidence, the reflection coefficients will be termed TE-, and will
be denoted by iT_

.TE

2.2 TM-Reflection Coefficienis

2. 2. 1 EQUATIONS FOl AN INCIDI.'NT TM-WAVE

The geometry for the case of an obliquely incident plane TMI-wave, in free

space, is illustrated in Figure 2. The magnetic field component of the incident

wave is solely in the direction of the Y-axis and, under the assumption that it is

of unit amplitude, it can be expressed simply as

ik T -i,'t
I I Y ,IY

where MiP represents the down-wave distance, which can be expressed as

x sin 0 + z cos 0, from the geometry shown in Figure 2. Since the whole wave
ik xsin O-iwt

pattern must vary as e o , this factor will be supressed in the develop-

ment that follows.

P(x,y,z)

\ -

WAVE FRONT ,

M

WAVE DIRECTION E

MP MN +\NP
WP = xsinO + zcos6

Figure 2. Obliquely Incident TM-Waves on a
Cartesian Coordinate System

Using familiar free-space plane wave concepts, the components of the inci-

dent plane wave are

ik zcosOII = e o (1)
y

11



ik z cos B
E xZ0 cose 0 e (2)

and

ik zoos 0
E -Z sin B e 0 ($3)

whr o 11 C)1/= k 0/E w, and ko w /c (c 3 X< 10~ 8 11/sec).

2.2.2 EQUATIONS FOR THE TRANSMITTED TM-WAVE

The~ transmitted wave (see Figure 1) has a form similar to the incident wave.

Assuming tile amplitude of the transmitted wave to be T, its comnponentq are

ik z cos 0
H1 To e0 (4)

ik z cos 1
E Zo T cos e o (5~)

and

ik zeosO
E - i 0 ii

2. 2. 3 EQUATIONS FOR TBE REFLECTED TMi-WAVE

Let the amplitude of the reflected wave be 1RTM' This wave is similar in

form to the incident and transmitted waves except for (a) its amplitude R "
(b) its downward direction of travel, and (c) its E xfield component, w hichi is

negative. Thus, ft r the revflected wave,

ik ' cosf

-ik z cos)

and

-ik izcost1

E -R 131 Z sin 0Be o()
7. 0

2. 2. 4 EQUATIONS Foll THE WAVES INSIDE THlE SLAB

Since the plane wave solutions for the waves inside of the conducting slab are

more complicated and less familiar than thle free-space ones, they will be de-

veloped here fromn first principles, using a consistent notation. In doing this thle

following assumptions are made:

12



(a) Hy, Ex, and E z are the only field components,

(b) none of the field components vary with y,
ik xsinO-iwt

(c) the suppressed factor is e 0

(d) the operator 8/ax is equivalent to multiplier ik sin 0, and0

(e) the operator a/at is equivalent to the multiplier -iw.

Under these assumptions the pertinent Maxwell's equations are

curl'E = -; a/at = iw ii,

which can be written

Xo Yo Z

a/ax o a/az io0w o ,1. (10)

Ex  0 Ez

and

curl H z Ea + co aE/at =Ea- iwc E

= -iwcE

where

E = (1 + ia/we)

which can be written

x 0 . Z

a/ax 0 a/az -iw'E (1)

0 H 0
Y

Carrying out the operations shown in Eqs. (10) and (11) yield

3E afE
SX iu wlT1 (12)z TX- o y

13



= iweE x  (13)

and

a -iweE z  (14)

ax

Using the operator 3/ax and then consolidating these equations gives

3 E
x ik sin 0 E + i wH(15)

z o o y

a H Y i 4 E--'=iw E x  (16)

z x

and

k sin 0 11 -wEL z  (17)

It can be shown that these equations are satisfied by a plane wave of the form

ikz cos 0 (18)y

k sin ikz os 0
E z Ew

and

k cos ) ikz cos (12-k E e (20)
X 'EW

provided

cos 0 k ± ow - k2 sin2 a (21)
0 0

14



or, after rearranging,

k k + iwi (22)0 °  we cos 2 6

0

If both the real and imaginary parts of k are positive, the wave is an upward going

one with decreasing amplitude, while if both the real and imaginary parts of k are

negative, the wave is a downward going one with decreasing amplitude. In the

development which follows only the positive root will be taken since the negative

sign for the downgoing waves can be appropriately incorporated into the equations.

Generally there are both upgoing and downgoing waves inside the slab. Let-
ting their amplitudes be U and D respectively, the following equations apply:

Upgoing

H y Ue ikzcos 0 (23)

-U k sin co eikz cos 8
Ez w (24)

and

Ukcos 0 ikzcos 0
Ex - e ;(25)

Downgoing

-ikz cos 19 (6
y

-D k sin 0
o -ikz cos (

and

-Dk cos 0 -ikzcosG (28)

2.2..5 BOUNDARY CONDITIONS

The appropriate boundary conditions are that at the two boundaries of the

slab, the tangential H and E fields must be continuous. At the lower boundary

15



(that is, at z = 0) the condition than tangential H is continuous gives, from

Eqs. (1), (7), (23), and (26),

1 + RTM = U + D (29)

Similarly, the condition that tangential T is continuous yields, from Eqs. (2),

(8), (25), and (28),

Z cos 0(1 - R k cos 0 (U - D) (30)

At the upper boundary of the slab, z h, the respective boundary conditions

require, from Eqs. (4), (23), and (26), and Eqs. (5), (25), and (28),

U ikh coso + D e-ikh cos0 T 0e o (31)

and

k cos 0 ueikhcos0 D e- ikhcos T ko e ikhcos (32)
EW -C w

0

2.2.6 SOLUTION OF THE EQUATIONS TO OBTAIN T!E
TM-REFLECTION COEFFICIENT

Equations (29), (30), (31), and (32) permit solutions for the four unknowns,

RTAP T, U, and D. The solution for the TM-reflection coefficient of the slab is

outlined below.

After removing common factors and denominators, the pertinent equations

can be written as

1 + R TM U D ,(33)

(1 - RTA) koc = kE 0 (U - D) , (34)

ikhcos0 -ikhcosfl ik hcos6
U e + D e T e 0 (35)

and

(U e ikh cos 0 -D ikh cos kE k T e ikhIos (36)

I G



Equations (35) and (36) can be combined to eliminate the factor T yielding

U~o _ ~o ikhecos 0 =Dko+ko eikh cos 0
U(k c - kc 0) e - D(ke 0+ k 0 0

or

i2kh cos 0
D -Q Ue (37)

where

k c - k °

0 0

+q icT 1/2 (8
we ° Cos 0

+ + o cos
2  /

After insertion of the expression for D given by Eq. (37) into Eqs. (33) and (34),

they can be combined to eliminate U, leaving

(1 - RTM)ko (l + Q e i2khcs) = (1 + RTM)kco(1 - Q e i k  ) (39)

Finally, Eq. (39) can be solved to find the slab reflection coefficient

RTM  Q( - i2khc~sO)

RT = Q(1 - e i2khcos 0) (40)
TM (I-Q e )~hco

2.3 TE-Reflection Coefficients

2.3.1 EQUATIONS FOR AN INCIDENT TE-WAVE

The geometry for the case of an obliquely incident plane TE-wave in free

space is illustrated in Figure 3. The nonzero components of the wave are now

Ey, Hz, and Hz . and the forms of the incident, transmitted, and reflected waves

can be written from a knowledge of the plane wave free-space solutions. As be-
ik x sin O-iwt

fore, the factor e 0 will be suppressed in the development that follows.

Assuming that the incident wave is of unit amplitude, its components are

17



ik z cos 0
E e (41)

y

ik z cos 0
H x  -(/Z o ) cos Ge 0 (42)

and

ik z cos 0
H z  (1/Z ) sin 0 e 0 (43)

Z

WAVE FRONT

WAVE DIRECTION

Figure 3. obliquely Incident TE-Waves on a
Cartesian Coordinate System

2.3.2 EQUATIONS FOR THE TRANSMITTED TE-WAVE

The transmitted wave has the same form as the incident plane wave, but with i
an amplitude T. Thus

ik z cos 0 (4
E T e U (44)

a t~l -(T/Z o ) co ik e CU145

ik z cosO

H 7 (T/Z ) sin 0 e o (4 6)

18



2.3.3 EQUATI()NS FOR THE REFLECTED TE-WAVE

The reflected wave is similar in form to the incident wave but differs from it

by (a) its amplitude RTE , (b) its downward direction of travel, and (e) its x

component, which is negative. Thus,

E R T E e-ik z Co~s f)(7IC R e (47)

-ik Zcos 0
H (MiZ) cos0e , 1

and

-ik z cos'1

i (11T Z ) sill 0 e oz (49)

2.3.4 EQUATIONS FOR THE WAVES INSIDE TIlE SLAB

Since only E', 1 lx, and 1I exist, and since these are not functions of N, the

Maxwell equation curl L - iw 4Il may be written

7 o

a/ax 0 a/az iw (1 + H 7
X " "0

0 EC 0
Y

Since the operation a/ax is equivalent to multiplying by ik sin 0, this reduces to

two equations,

iw) H,
- M H x  (5 0 )

and

k sin 0 IE' II . (51)
W 0 7

Similarly the Maxwell equation curl i - -iwcE can be written

a ,,x 0 a;7 -iw l- T

II 0 IIx z

19



T

which reduces to

ik° sin 0 H z - (8Hx/8z) iweE y (52)

It can be readily verified that Eqs. (50). (51), and (52) are satisfied by plane

waves of the form

E ikz cos 0 (53)y

H = - kcos 0 eikz cos6 (54)x w5A °

and

k sine0

o=k0sn0e ikz cos (55)z w/j°

where k has the same value as given in the TM-case by Eq. (22). As discussed
previously the positive root for k will be taken since the appropriate signs for the

upgoing and downgoing waves can be easily incorporated into the equations.

Letting the amplitudes of the upgoing and downgoing waves inside the slab be U

and D respectively, the following equations apply:

Upgoing

ikz cos (56)
y

If=-U k cos 0 ikz cos 0(7
t _ Uko e k~SO ,(57)

X Wj4 0

and

U k sin 0ikzcos 

(
11z- e ;(58)

Downgoing
-ikz cos

E y =D e (59)

20



X WIi

and

I) k 0-in s 0-ik, s
II . 1)

1.

' B.- I1 N DA IZ'f ¢ NDI'I'( S

As given earlier, the boundary (onditions are that at the two hIound

the slab, the tan ential L and 11 fields must be continuous. At the Imi t~ ' b u:vi-
aIry, at z 0, the .ondition thai tangontial E is continuouIs gives, frntr Lq.s. (41),

(47), (5;), and (.9),

I + ,

Similarly, the condition that tangential 11 is continuous yields, from E'qs. (42),

(48), (7), and (6;0),

T ,(.rs ( D k co(,,s 03)

0 0 0

At tlhe upper boundary of the slab, . h, the respectivt, hcundar cvondtitli'- re-

quire, fro Eqs. (44), ( rd, and (59), and Eqs. (45), (37), aItd (60),

ikh cos -ikh cos 0 ik hcos.Doe I) +I e ';4)

and

U k cos 0 ikh cos 0 kD k (,s -ikh cos (t T 'os ,,-, e - -- ' -

A ftr rent ,val of constant factors and consolidation of nrms, the iertinmont equa-

tions a re

I I HTV E 1 4 D21
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1 - F (k k )( - D) (G 7)0!
e ikhcos0 4 D ( - ik h c o s 0  T h o 0;8)

and

k cos r ikh os H -ikh c o Tcs O iko h c,,s
o, D v, I T -ZO ( (;

+. L [- z &

:.;. .SO."IN oF THE EQUATIONS TO OBI3TAIN TIlE i
T-HEFlI.'cTION COEFFICIENT

Equations (;66), (67), (68), and (69) can be solved to obtain 1RT E , ' ', and

D. The solution for the desired TE-reflection coefficient tIT is outlined below.

The ractor r can be eliminated by combining Eqs. (68) and (69) yielding

(k - k) U (k + k ) D c-i 2kb (' S f

Or, after rv:irr.l'anlng te(is,

t ~~ - k ih<s

t ~ ~ j 2kh cos5 (70)

Substituting this into Eqs. (W;) and (;7) and eliminatinL I Vgives

M1( k.1\ /k ko\ h-

k - k) i2 cos 1

which ,:n be olved to find the desired tactor

(0 - 2k h c s 0)

IF E 0 2 2khcos 0 (71)
(1 - t -2

22



/k 0

t _- ok) (72)

1± j4

WIE tO ((S

:1. (;ENERAIL FEATURES OF TIE SLAB TNI/TF REFLECTION
(:OEFFI(IE:NTS

3.1 limiting Forms of the Refh4-fion Coefficients

In order to aain sone insights into the nature of the slab reflection processes,
it is useful to examine the TM- and TE-slab reflection coefficients for a number

of special lirnitina cases. In doinR this it is convenient to consider first the be-

havior of the propaaation constant k foir three specific limiting cases. This factor

is corimi n to bhth slab rnflection coefficients.
lF vom Eq. ('22) and the discussion that immnediately follows it, the f'actor k

CaTI 1)(' ' A I -itten1 :1S

k k (I i()I  :? A ill (73)

G -o ( o ros 2) (74)

ind A :and P at,. both positive and real. The following limiting forms can be deter-

niinod frt FI Eqs. (73) and (74):

( ) (1, 0, '0' "V -

- k (75a)

h I ,,r o 1, or w ' I,

k .k (I (75b)

\ -t

2 :



and

(c) For (I -v 1, or w~ " 1, (G ~>1)

k~~ ~ k' (IiG ( 1,14 ei(tan (G),/!) z kG1 2*1) l)1

:. 1. 1 VA NISIJING C)DCIV'

Fop the case of vanishingly sm-all (j, or a chit 'api ly %NIce , he aippi icatn

of (75~a) to Eqs. (38) and (72) shows that both Q and P vanish, respectivelv, so tintt

lio H T 0 , a1nd lim 0

-0 .0

:3. 1.2 ARBITIIARI A L ARGEC ('(NIJI('IVVTY

For this case, (y - o and Eq. (7 50 applies. It easily fl\ sthat the( t err:
vi2h co ( ovtozr.Tu, fom inspection of Eqs. C38) and (40I),

R TAI Q - 1, and from Eqs. (71) and (72). R, 13 B 1.

:3. 1. 3 VERTICA L I NCIDENC E A ND G RA ZING 1 N(IDEN( F:'

For vertical incidence, I) 0", and cP05 ' 1, so that it fellows' on' qs. ('4;)

and (72) that 1P -Q, and Further, fromi E-qs. (40) and (710, that 1, - f

For grazing incidence, 0 ~90 and (-,s P 0. For. this case E-q.7
is applicable and e- i2 k-h co~s 0 tends to ier-o. It then follows from inspe('ti~n
Eqs. (38) and (40) and E-qs. (71) and (72) that HI ' -I1, and R -1.

:3. 1.4 A OBTrlA OILY LARGE SLAB THICKNESS

It Follows from Eq. (73) that as It e ,~ k e s becomes vanish inr-Iv sniAlI.
Then, from Eqs. (38) aind (40),

to

24



and from Eqs. (71) and (72).

Iicr

wE '5

RTE / o

1+ .1/1 4t
we cos 00

It can then be shown, after some rearranging of terms, that these equations are

identical to the corresponding classical Fresnel coefficients, such as described

by Stratton.

3. 1. 5 VERY LOW CONDUCTIVITY OR SUFFICIENTLY
IIIC1 FREQUENCY

Under either of these conditions Eq. (75b) applies, and it follows that

-k Gh Cos 0 i2k h cos 0 i2(-)h cos0

Ci2kh Cos "0 4t V 0 C 1) c0 c

Then, from Eqs. (40) and (37)

,M Q L - w 4 Cos 0 )

2 w (h Co
e(c'5 I) -2.5) C (7V - I{7;

2c ('0/i

Inspection of, Eq. (76) shows that the slab M' -reflection coefficient decreases as

the incidence angle increases from O' to 45", and at 45o it becomes zero. Then

as the incidence angle increases, the reflection coefficient increases, with a

change in sign, comipared to the (i U 45" case. Thus, it can be concluded that for

very weakly conducting slabs, there is a Brewster's angle for an incident TM-

wave, which occurs at 4. 5, regardless of the frequency of the wave.

Sil ila r'lv, it follows from Eqs. (71) and (72) that for very weakly conducting

slabs,

3. Stratton, J.A. (1941) Electromagnetic Theor-y, MlcGraw-flill, New York,
pp. 492-494.
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(77)4E C'OS s  0

Inspection of Eq. (77) shows that the TE-reflection coefficient increases with in-

creasing incidence angle 0, and does not exhibit any Brewster's angle effect.

3.2 Inipulse Response of Very Weakly Conducting Slabs

Inspection of Eqs. (76) and (77) shows that functionally the TM- and TE-slab

reflection coefficients are identical for the case of very weak conductivitv. F'r

this case the slab reflection process can be characterized by considering the

facto r

Itliw) K - e (78)

In linear systems theory it(iw) represents the transfer function of the slab, and

its Fourier inverse, h(t), gives the response of the slab toi a unit-impulse incident

plane wave. Further, Miw) is functionally equivalent to the Fourier transform

of a time function which is rectangular in shape with amplitude K, and width

T - (2h, c) cos 0, as illustrated in Figure 4. For the case of an infinitely thick

slab, the function H (iw) becomes simply (K -iw), and the impulse response is a

step-function of amplitude K, as shown in Figure 4.

It follows from the discussions above that, more generally, the impuse re-

sponse of a very weakly conducting slab is a replica of the slab's conductivity

profile. Specifically, the amplitude A of the response at time t relates directly

to the conductivity a of the slab at height z. For the case of vertical incidence,

this mapping takes the form (see Eq. (77) for example)

[t, A(t) l  [ " , a(z) : 4c A(t)] (7P)

This simple mapping is illustrated in Figurp 5.

The choice of a spinner e t rather than the one used in the derivations in this
Wpapr, e - I wt, would have led to an expression for H (iw) that could be directly

,,tpered to fo rms aiven in most texts on Fourier transforms.
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Figure .5. Illustration of the Mlapping Between the ConductivitY Profile
of a Very Weakly Conducting Slab and its Impulse Response
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The simple mapping relationships described above are only valid as long as

the incident wave penetrates the slab without being significantly altered in any

way. This condition breaks down as the conductivity of the slab increases, or as

the incidence angle becomes nearly grazing. This will be illustrated by specific

numerical examples later in this report.

4. SLAB FREQUENCY RESPONSES

In this section numerical examples are given to illustrate the frequency re-

sponse characteristics of a few selected conducting slabs. Results are shown for

both TM- and TE- incident wave polarizations.

4.1 TM/TE Slab Frequency Responses, Vertical Incidence

As shown by Eqs. (40) and (71), the magnitudes of the TM and TE frequency

responses are the same for the case of a vertically incident plane wave. Figure 6

shows the frequency responses calculated for a number of slab thicknesses, with
the conductivity held constant, at a value of 2 X 10 - 9 mho/m. This corresponds

to a very weakly conducting case so that the frequency response curve for the

example of an infinitely thick slab, in Figure 6, varies as I/w (w = 2frf), as dis-

cussed earlier, with reference to Eqs. (76) and (77). As shown in ,Figure 6, the

response for an infinitely thick slab decreases monotonically with increasing fre-

*quency, but for slabs having a finite thickness, the frequency response curves

show nulls and relative maxima, which occur in a periodic manner. The fre-

quencies at which the nulls occur can be determined analytically by considering

the multiplicative factor [ 1 - eiw( 2hco s 0/c)], which occurs in Eqs. (76) and

(77). It is a simple matter to show that this factor, and hence the magnitude of

the TM/TE reflection coefficient, goes to zero if

S Nc (!0
f2 2hcosl (N = 1,2,3,...) (80)

Thus, for the h = 3 km example shown in Figure 6, the nulls occur at multiples

of 50 kHz, while for the h = 7. 5 km example, they occur at multiples of 20 kIz,

etc.
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number of incidence angles. In all cases the slab was assumed to be 7. 5 kmn thick,
with a conductivity of 2X 10-1 mho/m-. Inspection of the curves in Figure 7 and
the h - 7. 5 kin curve in Figure 6i shows that for a fixed frequency, the slab re-

flectivity generally decreases as the incidence angle varies from 00 (vertical

incidence) to 450, at which point the slab exhibits a Brewster's angle effect.
Then, as the incidence angle increases above 45 0, the slab becomes a better re-

rlertor, and the amplitudes (If the reflected waves become larger, as shown in

F~igure 7. As discussed earlier, the slab becomes an almost perfect reflector at

extremely grazing incidence angles (fl- 900).
Figure 7 also shows that the location of the relative nulls in the slab's fre-

quency response changes as the incidence angle varies. Further, as the incidence

angle increases, the spacing between the nulls also increases. Inspection of the
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Figure 7. TM Slab Frequenyy Responses for a Number of Incidence Angles;
h - 7.5 km, and o 2 X l0- mho/m

curves in Figure 7 show that the null spacings are inversely proportional to cos Q
and follow the relationship given by Eq. (80) earlier.

4.2.2 TE-PO)IAIRIZATION

Calculations of TE-frequency response curves for two incidence angles are
shown in Figure 8, for the same 7. 5 km thick slab which has been described
above. These curves, along with others not shown here, show that for a given
frequency, the slab's TE-reflectivity increases as the incidence angle varies

from 00 to 900. No Brewster's angle occurs, and in general, for the same fre-

quency and incidence angle, the TE reflection amplitude is greater than the TMII-
reflection amplitude. The TE-frequency response curves exhibit the same null
patterns as discussed for the TM-case, with the null pattern again following the
form given by Eq. (80).

Examination of Eq. (80), which shows how the null patterns vary with inci-
dence angle and/or slab thickness, illustrates that for a fixed incidence angle,
the null spacing will increase with decreasing slab thickness (see for example,
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Figure 8. TE Slab Frequency Responses; h - 7.5 kin, and a 2 X 10-9 mho/m

Figure 6). Alternately, for a fixed slab thickness, the null spacing will increase
with increasing incidence angle. In a sense then, as the incidence angle increases,
the "apparent" thickness of the slab decreases. This aspect of plane-wave slab
reflectivity will be discussed in more detail in a later section of this report.

5. SLAB IMPULI.SE RESPONSES

The reflection properties of conducting slabs are characterized by the reflec-
tion coefficients given in Eqs. (40) and (71). Following well known Fourier trans-
form approaches, these expressions can be used to determine the responses of
the slab to an aggregate of incident plane waves whose sum represents a unit-
impulse. The resulting impulse-response can then be convoluted with any arbi-
trary incident waveform to obtain the resultant slab reflected waveform. In this
section slab impulse responses are shown for a variety of slab conductivities,
thicknesses, and incidence angles. The results were obtained by use of digital
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integrations of the expressions for the impulse responses. In general, since the

responses must be purely real, and identically equal to zero for t < 0, the im-
-iwt

pulse responses can be written, following the e spinner adopted in this report,

as

so go go
2- v R~i e- t- Re R(iw) e dt R e R(w) e

-o 0 0

-iwte dw

where R(w) and O(w) are the magnitude and phase of the slab reflection coefficient,

determined from either Eq. (40) or (71), depending on the polarization of the

incident waves. This can further be reduced to the relatively simple form

go

6(t) f R(w) cos [wt - O(w)] dw (81)

0

which can be numerically integrated, using well established digital techniques.

5.1 Slab TM-impulse Responses

5. 1.1 VERY WEAKLY CONDUCTING SLAB, VERTICAL

INCIDENCE

Figure 9 shows the impulse responses of a slab with conductivity 2 X 10 - 9

mho/m, for three slab thicknesses, h 1. 5 kin, h = 7. 5 kin, and h - o0. For

the infinitely thick case, the impulse response is essentially a step-function with

an amplitude of approximately 56. 5, while for the cases of finite slab thickness,

the impulse responses are rectangular in shape, having the same amplitude of

56. 5, but different widths. For the 7. 5 km example, the pulse-width is 50 /sec,

while for the 1. 5 km example, it is only 10 Msec. These results are in agree-

ment with those expected for very weakly conducting slabs, as discussed earlier

in Section 3. 2 of this report, and the amplitude and pulse widths shown in Figure 9

follow the mapping relationship given in Eq. (79).

5. 1.2 VERY WEAKLY CONDUCTING SLAB, VARYING

INCIDENCE ANGLE

Figure 10 summarizes the impulse responses of a very weakly conducting

slab (a - 2 X 10 - 9 mho/m) under a variety of conditions. In all cases the impulse

responses are rectangular in shape with amplitudes and widths which vary with
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a = 2 X 10 mho/m. (a) Infinitely thick slab, (b) 7. 5 km thick
slab, (c) 1.5 km thick slab

assumed incidence angle and slab thickness. Figure 10(a) shows that for a fixed

incidence angle (0 0 0 ), the width of the impulse response varies linearly with

slab thickness. Figure 10(b) shows the variation of the duration of the impulse

response with incidence angle, for a 7. 5 km thick slab. The duration of the

impulse response is maximum for the case of vertical incidence (0 = 00), and

approaches zero as the incidence angle tends to 90 . The variation of the mag-

nitudes of the impulse responses with incidence angle is shown in Figure 10(c),

for a 7. 5 km thick slab. As the incidence angle increases the amplitudes at first

decrease, but then increase, with a change of sign. The changeover in the ampli-

tude effect occurs at an incidence angle of 450, which is the slab's Brewster

angle. At that angle, the slab's impulse response is negligibly small. In sum-

mary, the amplitudes of the impulse responses follow the form a(2 cos 2 0 - 1)!

(4 cos 2 0), and the widths follow the form (2h/c) cos 0, which are in accord-
ance with the results expected for a very weakly conducting slab, as discussed

earlier in Section 3. 2 of this report.

The decreases in response times that are seen in Figure 10(b) as the incidence

angle is changed, are similar to those that occur when the thickness or the slab is

decreased, while the incidence angle is fixed. In effect then, Figure 10(b) illus-

trates that the "apparent" thickness of the slab is reduced as the incidence angle

increases. In the limit, as the incidence angle becomes almost grazing, the

"apparent" slab thickness approaches zero. This result suggests that for any

incident waveform described by plane waves, the geometry of the slab reflection

process itself will cause the reflected waveform to be extended in time by an

amount LT that will be related to the incidence angle. For vertical incidence, LT

will be a maximum, while for very nearly grazing angles, it will be practically

zero. The geometry which illustrates that is shown in Figure 11.
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Figure 10. TM Impulse Re ponse Characteristics for a Very Weakly
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sponse as a function of slab thickness, (b) duration of slab impulse
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Figure 11. Geometry Illustrating the Plane Wave Dif-
ference in Path Length to an Observer for Reflections
from Two Levels in a Slab which are Separated by a
Distanoe h

The construction shown in Figure 11 shows that an observer in the space be-

low the slab would sense the reflected energy from a level h above the bottom of

the slab, at a time LT later than that reflected from the bottom of the slab. The

time AT is simply related to the distance 2d shown in the figure, and can be ex-

pressed as LhT = (2h/c) cos 0.

5.1.3 VERTICAL INCIDENCE, VARYING CONDUCTIVITY

AND SLAB THICKNESS

Figure 12 shows slab impulses for a wide range of conductivities and slab
thicknesses. In all cases, vertical incidence is assumed. In Figure 12(a) the

assumed conductivity is 2 X 10 - 9 mho/m, and the curves include those already

discussed with reference to Figure 9. As noted earlier, for this very weakly

conducting slab example, the impulse responses are replicas of the slab conduc-

tivity pro~files, with the mapping f,'om one to the other given by Eq. (79).

Figure 12(b) shows the impulse responses for an assumed conductivity of
2 X 10 - 7 mho/m. In this case, the response for an infinitely thick slab no longer

is a step-function, but rather, drops off gradually with increasing time. Although

the approximations and mapping relationships which were developed for very

weakly conducting slabs do not apply for this case, the effects of changing the

thickness of the slab are still very noticeable in the way in which the responses

drop off. For example, for the 1. 5 and 7. 5 km examples, the responses drop oft

almost instantaneously at times given by 2h/c. As the slab thickness increases

however, the drop-offs become more gradual and sluggish until, for very large

thicknesses (for example, h = 90 kmn), the responses cannot be distinguished very

well from the response of the infinitely thick slab.
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Figure 12(c) shows c'orresponding impulse responses for an assumed con-

ductivity of 2!m1-.,mon. Fran ifntlthcslab, the response is im-

pulsive, rising verY sharply and then rapidlY dropping off. In the example shown

in Figure 12(c), the impulse responses for the various slab thicknesses assumed

cannot be distinguished from the infinitely thick case. This indicates that because

of the relatively high conductivity assumed, the reflection process is very nearlY

a F resnel-li ke sharp boundaryv one.

5.2 Slab 'rE-liipilse Reqxrnses

'FE-imipulse response studies weIre conducted similar, to those described with

r'efer'ence to lFigu res 10 to 12. 'The r'esults of one such study are shown in Fig-

urec 1:3, w ,here FE-i atpulse responses are given everi a w ide range of incidence

angles, for the caso of t 7. 3- kmi thic k slab having a cenducti vitv' of 2 X 10-! mih, in.

('emparisons of thc results for this veery weakly" conduct in ' slab c-ase, with th''so of

100000-

10000-

0

w

(A

2 00

w -
a- s2 xl10mho/mn

L-
0 h -7'.5km

w
10-

0 10 20 30 40 50 60 70 80 90 100

INCIDENCE ANGLE ,DEG.

I iaure 1'. Slab Fl- Inimilse Responses ais a Function or In-
-idenct' Anal': IT 7. - kmi aod 11 2 V 10- i who i

37



F-igure 10(c) show that there are no Brewster's angle effects ass iated with the

FE-responses, and that the TE-amplitudes are larger than the crr-sponding

TIM-amplitudes. It follows from Eqs. (7;) and (77) that for very weakly conduct-

ing slabs, the TM to TE amplitude ratio can be expressed simply as (I - 2 coo s).

This shows that the two amplitudes are of opposite sign for incidence angles les

than 45 . The TM Brewster's angle is at 45", and F',r incidence angles greate.r

than 4-( the two responses have the same sign. The relationship als(i shows that

the, two amplitudes are equal only for incidence angles of zero or 90'.

The results of other TY-impulse response studiea, not show n here, were

very similar to those already discussed in conjunction with the TAI-examples of

Figure-s 10(a, b) and 12.

6. SLA REFLE(TION OF I';IISES

t sing well established Fourier transform methods, it is a relatively simple

matter to determine the waveforms of pulses that have been reflected from con-

ducting slabs. Specifically, if the Fourier transform of the incident pulse is

C(iw), and the transfer function of the slab is defined by R(iw), then the reflcted

pulse v(t) (.a-,n be found from the Fourier inverse F [C(iw)R(iw)] . For purely

real functions, defined for t - 0, it follows that in the notations adopted earlier

in this report

0,CV(t) I e C(iw)R(iw) - iwt dw

0

CH cos (wt -) dw (82)

0

where

C(Ow) M C e io

H(iw) =  i

and
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Figure 14 illustrates the results of the application of Eq. (82) to determine

TM-pulse reflections from a 6 km thick slab. In the examples shown, the inci-

dent pulse was a single-cycle square-wave of unit amplitude, as shown in Fig-

ure 14(a), and the incidence angle was 600. In Eq. (82), R(iw) is given by

Eq. (40) and

C(iw) = (---) [ei(. 000018w) -2 ei(O. 000038w) 4 ei(0. 000058w]

For a conductivity of 2 mho/m the reflected pulse, shown in Figure 14(b) is

practically identical to the incident pulse, but for the much weaker conductivity

example shown in Figure 14(c), for which a = 2 X 10- 5 mho/m, the reflected pulse

is significantly altered, both in amplitude and in pulse width. Figure 14(d) shows
-7that for a conductivity of 2 X 10- mho/m, the polarity of the reflected pulse is

opposite to that of the incident pulse, indicating that the 60 incidence angle is

beyond the Brewster's angle of the slab. For a very weakly conducting slab,

o = 2 X 10- mho/m, the reflected pulse is directly proportional to the integral

of the incident pulse, as shown in Figure 14(e). This is in accordance with

Eq. (78). Further, for this example the incidence angle is beyond the slab's

Brewster's angle of 450, and the reflected pulse is 20 Msec longer than the inci-

dent pulse, as expected from the LT = (2h/c) cos 0 relationship discussed earlier

in Section 5.

7. DISCUSSION

Equations (40) and (71) can be used to predict the reflection coefficients and

impulse responses of conducting slabs; and, in conjunction with Fourier transform

methods, they also provide the means for computing the waveform of a slab-re-

flected pulse if the waveform of the incident pulse is specified. In experimental

programs, however, questions naturally arise as to what polarization, wave fre-

quencies, and incidence angles should be used for remote sensing or "sounding"

of a slab's thickness and conductivity.

The optimum polarization for sounding purposes is the Transverse Electric

(TE), because TE-waves reflect more strongly than Transverse Magnetic (TM)

waves from conducting slabs. Also, the TE-polarization is free of Brewster's

angle effects, which can make the interpretation of TM reflection data more com-

plex and ambiguous.

Vertical or nearly vertical incidence angles are preferred over very oblique

(grazing) ones. For example, TM reflection amplitudes decrease with increasing
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incidence angle until the Brewster's angle is reached, and, except for grazing

angles, they are largest at vertical incidence. Conversely, TE reflection ampli-

tudes increase with increasing incidence angle, so that there may be practical

advantages to TE-sounding at oblique angles, but grazing angles should be avoided.

At such angles the slab reflection process approaches that of a sharp boundary

(for both TMI and TE waves), resulting in a loss of information on the thickness

of the conducting slab.

The preferred frequencies for sounding with pulses are intimately linked to

the conductivity of the slab and the incidence angle which is used. However, as

described earlier, if the inequality (Eq. (75b)) is satisfied, the determination of

a slab's thickness and conductivity from observations of its pulse reflections

becomes particularly simple. Specifically, Eq. (78) holds so that the incident

pulse becomes integrated upon reflection, and has amplitudes that are directly

proportional to the conductivity of the slab. Furthermore, the dispersion of the

incident pulse, upon reflection, is directly proportional to the thickness of the

slab, as described earlier in conjunction with Figure 14(e).

Inequality Eq. (75b) can be rewritten as

1. 8 X 107fkHz > cs a .(83)

Thus, for examplu, for a conductivity of 2 X 10 - 7 mho/m and vertical incidence,
the preferred sounding frequencies would satisfy fkHz >> 3.6 G 360 kHz, while

for a conductivity of 2 X 10 - mho/m, the preferred frequencies would be greater

than only 3. 6 kHz. For an incidence angle of 600 however, the preferred fre-

quencies are greater than 1.44 MHz and 14.4 kHz, respectively, for these exam-

ples. Figure 15 summaries the application of inequality Eq. (83) for estimating

preferred sounding frequencies.

In some instances the "preferred" sounding frequencies determined from

inequality Eq. (83) may not be practical from an experimental point of view. For

example, the authors have conducted studies of the C-layer of the lower daytime

lower ionosphere which has conductivities in the order of 2 X 10 - 7 mho!m. 1 The

preferred sounding frequencies for such a conductivity would be in the 360 kHz

range or greater, but at such high frequencies {he amplitudes of the reflections

would be too low to be measured, particularly in the presence of noise. 'Using

pulse sounding in the 10 to 50 kHz range, however, in conjunction with digital

processing, it was possible to deduce that the thickness of the C -layer being

observed was about 6 km. This was done by use of an iterative technique involv-

ing Eqs. (82) and (40). It has been the authors' experience that good estimates of

slab conductivity and thickness can be achieved within a few iterations via this

technique.
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