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ABSTRACT
5 The formulation of optical signature features useful in
discrimination studies and decoy design, and a method for evalu-
ating a decoy's effectiveness are presented in this report. These
. features are based on an optical signature model which incorporates

a second-order trend with a sinusoidal-type variation normally

observed in optical signatures. The decoy evaluation procedure

presented here provides the decoy designer with an analysis of
those features and wavebands of the decoy signature which may

need modification to achieve a prescribed match with an RV.
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I. IntroduﬁLion .

The purpqﬁe of this report is to introduce and document
results obtained in the development and use of features derived
from optical signatures. The primary motivation for and appli-
cation of these features has been in the development of discri~ ]

mination algorithms and in the requirements for decoys. The

latter application has resulted in the development of a computer
program which provides an optical decoy designer with an evalua-
tion of a candidate decoy by means of a detailed analysis of
the first- and second-moment statistics of its features.

The formulation of these features and the details of the

decoy evaluation procedure are the subject of this report; a

' subsequent report will provide documentation of the computer

program*. The use of these features in discrimination studies,
as well as in decoy design, together with related topics will

be presented when they become available.

* B. J. Burdick and M. R. Colaneri, "BODE: Bhattacharyya

Optical Decoy Evaluation," M.I.T. Lincoln Laboratory
(to bhe nublished).




Signature Model and Features

As an aid to decoy design, we have developed an optical

signature model which incorporates the major features observable

by a multiband optical sensor. These signature features are

easily calculated and are traceable to the thermal and dynamic '
properties of the targets so that any decoy modifications [
required to achieve a prescribed match with RV signature

statistics can be easily ascertained.

The signature model for a given waveband, A\, is written
in terms of the features as

- ~, ~2 ~
HAA(n) = AAA[I + 0By, + T°Cy, + HAA(nﬂ (1)

n=1,2,...,N
‘i'f=(n-n0)/no ’ n0=(N+1)/2
where n is the observation number, N is the total number of obser-

vations, T is a normalized observation number, and n, is the midpoint

of the obgervation interval. The first three features appear ex-

plicitly in the above equation:

Apy = temporal mean* of HM(n)

BAX linear trend of HAA(n) '

CAA quadratic trend of HAA(n)

The remaining two features are implicitly contained in ﬁAx(n),

which corresponds to the signature after trend removal, and are

* To be precise, AAA is the temporal mean only when C,,=0.
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2 . ~
EAA variance of HAA(n)

p(R)

temporal autocovariance of ﬁAx(n)
2=1,2,...,N-1

The assumption has been made that the temporal autocovariance
function need be calculated for one band only (note that the
subscript A\ is absent from $(2)). This is justified for two
reasons: (1) it has been observed that, within the allowable
statistical sampling errors, P(L) is the same for all bands,
and (2) it reduces the number of features and thus simplifies
the task of decoy design.

These five features, then, are used to describe the

‘major characteristics of optical signatures: the features

LIV BAA' and CAA describe the slowly varying trend and the

features aAk and P(2) describe the remaining, faster varying,

sinusoidal-type variation normally observed in optical signatures.

The trend features are obtained by means of a least-

squares fit to the signature. That is, the residual

N
- 2, 72
R -nz-;. [HAA(n)"aAA-m’AA_ﬁ CAA]

is minimized with respect to a), = AAA' bAA = AAA BAA' and

Cpy = AAA CAA' Defining




N
=2 (2)
n=1

<HXA>=:2=:1 W H,, (), (3)
and noting that

% =N

b =0

<N%) = N(N-1)/3(N+1)

3y =0

vy = N(N-1) (382-7) /15 (n+1) 3

We f£ind that the minimization requirements yield the following

equations

0 1 2 0

Ba,, = a) KN + by (N + ) N = (1
JdR = 1 2 3y _ 1
Hq; aM‘(N ) + bAA<N ) + cAA<N ) = <HA)\>

2 3 4 2
53;;- = a,, (N >+ by, <N >+ cpkND = <H,5> .

3 The solution of these equations is




<, anty - <, <D \

a =
S ahah-ady?
1
b = <y > (4)
AX P
<, 0> v - (HA§> N
c = -
4 O <ty - ¢n?H? )
so that
By = 2
Byx = Paa/apn ()
C =

Ax = Carn/2pn -

The features related to the sinusoidal-~type variation
" are obtained from the signature after trend removal,

L d ~ ~2
Hpy(n) = {“Ax(“) - AAx[l + DB, + W cax]}/AAx '

and are given by

N
2 _ 1 5 2
Ty = 5§ 2 Hys(n) (6)
n=1
lN-l
Py =53 Hy, ) Hy, (e0) /5,2 (7)
n=1

£=1,2,...,N-1

For the case when ﬁbk(n) is Gaussian, these features provide

a complete description.




To gain a better understanding of these features consider

the following example:

ﬁAx(n) = Ja—UAX sin(nwAt+¥) (example)

where At is the time spacing between observations, ¢ is a random

phase having a probability density

_ J1/2r, 0<¢<2n
p(#) = {O, 6¥herwise

and w is a random frequency having a probability density
p(w). (For a spin-stabilized target which is axially symmetric,
@ would correspond to the precession frequency and SAA would
bé related to the coning angle.) The features for this signature
are then given by
3.2 = 2 i sinz(nmAtH’)
n=1

Oax N

=52 ), sin(eAt+29) - sin[(2N+1)wAt+29]
AX 2Nsinwht
and 2A 2 N=-%
9ax ~ 2
F(2) = —= )" sin(nuAt+#) sin[(n+2)wat+e]/5
N AX
a [ ) - sin[ )
_ _AA)N-2 sin | (2+1)wAt+2¢] - sin| (2N-L+1)wAt+2¢
= 5_7'3 N cosltwAt + 2NsinwAt
AA

(Note that in the limit as N—oo: 3A§"’°A§ and P (L) — coslwAt.)

The ensemble averages of these features are




=)

®© 2T o 2
f f " 3,2 p(e) plw)avde
W ¢

G

and

0 27
E{D(IL)} m=-°°‘/;_o p(R) p(?) plw)dPdw

00
= N%R’j_-_w p(w) cosflwAt dw

- 00 i
= N——NR' xRe[f plw) e”"“At dw]
— o0

That is, the ensemble average of P(%) is the cosine transform
(or the real part of the characteristic function) of the fre-

~ quency distribution p(w). This means that E{B(l)} contains all
the information concerning the frequency distribution of #(n).
For example, if p(w) is Gaussian-completely characterized by

. 2
a mean, m and a variance, Ot

wl

1 e-%(w—mm)z/oi

plw) = V2T o,

then

E{’d‘(z)} N Re[eizmwAt—(!LomAt)z/z]

2
I
=

2
e_(lcht) /2 cosim At

i

which is a damped cosinusoid with frequency equal to the mean

of p(w) and a damping factor proportional to the width of p(w).
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III. Decoy Specification and Evaluation

The method used to levy decoy requirements and evaluate
the effectiveness of a decoy against an RV is based on the
Bhattacharyya distance: This metric provides a measure of the
separability of the RV and decoy in terms of the ensemble
means and covariances of their features. It is particularly
useful in as much as it is directly related to the probability
of error, is additive for independent features and can be ex-
pressed in terms of differences primarily in the means and
variances in each waveband and to the correlation between
wavebands for each feature. That is, if :{a,B,C,?,D) representé
the Bhattacharyya distance for all featﬁres in all wavebands
"then, if it can be assumed that the features are independent,

u(a,B,C,3,8) = u(A) + p(B) + u(C) + u(d) + u(d (8)

where u(+*) is the Bhattacharyya distance for an individual
feature. Further, as will be shown later, each u(*) can be
separated into components which are primarily related tc
differences in the RV and decoy means and variances in each

band and the average correlation between bands

uie) = § iy, ) +§ b, , ) * Hoor () (9)

It is in this manner that it becomes possible to pinpoint not

only which decoy features may be contributing to a large

* K. Fukunaga, Introduction to Statistical Pattern
Recognition (Academic Press, New York and London, 1972).
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Bhattacharyya distance but also whether this is due to the mean,
variance, or band-to-band correlation and further, in which band
it is occurring. The Bhattacharyya formulation also makes it
possible to determine how the decoy requirements should be levied
on the various features and their ensemble means, variances and
correlations in the individual wavebands. This simply becomes

a matter of apportioning the maximum total allowable Bhattacharyya
distance among the features and then among each of the feature's
first and second moment statistics.

The maximum allowable total Bhattacharyya distance, u '

max

is related to the total probability of error achieved by the

decoy, €, according to the equation

o0 2
€~ ﬁl?r_—‘/__ et /2 gt (10)
2l nax

(which is an exact equation when the RV and decoy covariance
matrices are identical, and a good approximation when they
are not too dissimilar).

For example, if one wanted to design a decoy to achieve
at least a 15% error rate with an RV, then a total Bhattacharyya
distance of 0.5 or less would be required (from the equation
above). If this were to be apportioned equally among the five
features then each feature would have to have a Bhattacharyya
distance of 0.1 or smaller. If this were further apportioned
equally to the first-and second-order statistics of each feature

(i.e. the mean and the combined variance and correlation),




———

then they would each have to achieve a Bhattacharyya distance
of 0.05 or less. If all the individual Bhattacharyya distances
were less than these requirements, then the decoy would be
guaranteed to achieve the desired error rate. However, it may
still be possible for a decoy to achieve the desired error
rate even if some of the Bhattacharyya distances are too
large-all that really counts is the total Bhattacharyya distance
and some components may compensate for others.

Let us now show how the Bhattacharyya distance for a
single feature, u(+), can be written as a sum of components
attributable to differences in the RV and decoy means and

variances in each waveband and the average correlation between

"wavebands. In general, the mean vector and covariance matrix

of a feature, X, measured in K wavebands are given by




|
H

where m,  is the ensemble mean of the kth (waveband) component of

T
x—(xl,xzpooo ’xk".. ,XK)

[

m, = E{xk}

and oig,is the covariance of the ith and jth components of X:

J

2 _ _ ‘
oij = E{(xi~mi)(xj mj)} ]
, 2 ;

= 941 3

The covariance matrix can be written in the following form to

exhibit the explicit correlation between wavebands, p

2 “
%11 P12%11%2 « + + P1x%911%«k
P140++0 c 2 ) ;
T = 12°11%22 22 |
) B
. ¥ . |
P150440 . 0,2 ‘
1K 117KK . . . KK
L -
where
2
Pi3 = %137%1i%;3

(This p should not be confused with the feature P(2).) To

render the remaining calculations tractable, it is necessary to

make the assumption that the correlation between band pairs is

the same for all pairs so that the pijs can be replaced by their

average:




F 02 0,0, pO o.1
1 P9192 P99 :
, 2 ) |
Y =|po,0, 05 . (11)
. . 2
pUlOK . . . OK
- -
where
T 30>
21y 22
p= — Pas
K(K-1) 5574 {3171
We have further simplified the notation by writing oi for oki.

The replacement of the individual band~-to-band correlations by
their average has been found to be a very good approximation

"and is justified on the grounds of simplifying the decoy design ,1

procedure.

The determinant and inverse of a matrix of this form can

be shown to be

Izl = 02 «or o2(1-p) %7 14 (x-1) ] (12)
|ﬁ+(K—2)p]/O§ =p/0105 = = =p/0y0, ]
2
E:-l =_%§ _-p/clc2 @+(K-2)d/02 (13a) ‘
s L] .
i -p/cloK . . . @+(K-2)d/o§

where

s? = (1-p) [1+(x-1) ] (13b)

12




The Bhattacharyya distance for a given feature (under the
Gaussian assumption) is a function of the mean vectors and co-

variance matrices of the RV and decoy (DY)

__l —
w() = o™ Em + 50| EIMER - 1T PY (142)
where AM is the difference in their mean vectors:
amM = MRV - mPY (14b)

and 2: is the average of their covariance matrices:

T=53R, 5y 0¥ (14c)

With the assumption that the correlation between band pairs is

the same for all band pairs ), can be written as

[~ _2 —_— —_—
% P10 * " POk
S —2
2= |00, Ch . (15a)
— _ -2
PO 0k - : © 9%
" _

where Bk is the average of the RV and decoy variances in band k:

RV 2 DY 2

= %(0 + %(0 (15b)

and p is the average band-to-band correlation of the average of

the RV and decoy covariance matrices:

K -l
- 2 RV RV RV DY DY DY
P = RTR:ITjgéil gii %(p7"0y oy +p ) /o, °j . (15¢)

13
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The determinant and inverse of 2: are then given by the
same equations derived previously so that the Bhattacharyya

distance becomes

K
u(e) =z; Mg (*) + ﬁu (*) +u (+) (16)
Kot My, & VAR, COR
where Am. \2 A K 4

1 mk _ mk m.
M () = —= 1+4(K-2)D r)-p(—r—) 2(4)} (17)
My 852 { [ % %%/ §=1\ %5

jm=k
-2 , RV_DY

Myag (1) = % ln[ck/ok h ] (18)

— K-1 _
corl®) = % ln{ 15" Orx-15) } (19)
W2-" F L[4 (k-1) o] (20" ¥ 14 (x-1)077)

where Amk is the kth (waveband) component of AM and

2 = 1-p) [+ k-7 . (20)

The individual Bhattacharyya distances uMNk(-) and uVARk(.)
provide information on mismatches between the decoy and the RV

due mainly to the mean and variance, respectively, in band k

while uCOR(’) contains information on mismatches attributable mainly
to the average band-to-band correlation. By "mainly" we mean:

if the only difference between the decoy and the RV is the mean

in band k, then the only nonzero Bhattacharyya distance will

be uMN (¢); if the only difference is the band-to-band correla-~
k

tion, then only uCOR(°) will be nonzero; and if the only difference

14




is the variance in band k, then not only uVARk(-) but also uCOR(-)
will be nonzero. That is, the variance and correlation components

cannot be separated when there are variance differences between ]
the decoy and the RV. An examination of the equation for p shows

how this occurs. Consider the case when the decoy band-to~band

DY_ RV,

correlation is the same as that of one RV (p o} and the

decoy standard deviations are the same as the RV except for one

band (O?Y=O?V for i®k ). Then p becomes
3 = r°pRV
where
_1 RV, DY, ~
r=gz [(K-Z) + (ok +ok )/ok] (2la)
"so that /

(1_rpRV)K'l[l+(K-1)roRV]} . (21b)

Hanp(®) =% 1n { =

V. K-
COR (1-pF) K 1[1+(K_1)DR\7I
From this equation we see that uGOR(-) will be nonzero when the
decoy standard deviation differs from the RV in band k (even
though they have the same band-to-band correlation). Therefore,
in this case, the Bhattacharyya distance due solely to a variance

difference in band k,will be
Hoap () =M () + uiap(*) . (22)
VARk VARk COR
To gain a clearer understanding of the dependencies of these
various Bhattacharyya distances on the statistics of the RV and

decoy features,plots of their variations are shown in Figs. 1-3

for the case of three wavebands.

15




Figure 1 illustrates the variation of the Bhattacharyya

distance due to mean differences in a single band, uMNk(-), with

the mean differences normalized by the average standard deviation,
Amk/Ek, for various values of the average band-to-band correlation,
p. Figure 2 shows the variation of Bhattacharyya distances due

to variance differences in a single band, uVARk(-) and uCOR""

with the ratio of standard deviations, cgy/oiv or its inverse, for

various values of the average band-to-band correlation, p , in

the case of uéOR(-). Figure 3 shows the variation of the

Bhattacharyya distance due to differences in the average band-

to-band correlation, (*), with the RV and decoy average

Hcor
. RV DY . .
band-to-band correlations, p and p °. This is presented as

- a function of a parameter n,

l_pDY

n = —7
l—pRV

so that a single curve (approximately) represents the variation

OR(') with pDY for any value of pRV. Shown at the bottom

DY

of uc

of this figure are various scales of p

some particular values of pRV'

that can be used for

Given the RV feature statistics and the desired error rate
to be achieved by the decoy, it is possible to levy requirements
on the decoy feature statistics using these curves. Consider
the example presented earlier where a total Bhattacharyya

distance of 0.5 was required (corresponding to a total error

16
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e -

0.001
0.01

1.0

Fig. 1. Variation of the Bhattacharyya distance due to a
difference in means in band k for several values of aver-
age band-to-band correlation.
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[4 ’ (4
o) . ) ‘ :" (\
A Y 4' ’ 0:% awe="""d
’ ’ o’ ’ ’ ,’ ,"
4 ’ ’ P ’ ,/ o
L ,’ ’ ,’ ’
" L Y 4 ¢ o’
’ 4 U4 L4 p
’ I4 ,’ / " "
e g ‘ ’ DY, RV
4 ’ ’
A R % /%
0.001 .'A £ 2 .L’IJ.A_LIL' A a | SN lAAl A
1.1 1.5 2 5 10 20
Fig. 2. Variation of Bhattacharyya distances due

to variance differences in band k, with “éOR(')

shown for several values of average band-to-band
correlation.




“coa(')
0.01
[ o = 1-n(1-pRY) 1
.
0.001 L1 1 N S I A NP S |
0.05 0.1 0.2 0.5 1 2 S 10 20
L _ ' 2 b a2 a2 aald re a ™ | ey | RV
=0.9
ex %e. 0.99 0.95 9;? . 0.5 o (P )
of I L i Py a2 a4 a2 2 ' RV
0.95 0.9 0.5 0 -0.5 (P =0.5)

Fig. 3. Variation of Bhattacharyya distance
due to band-to-band correlation differences.
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probability of 15%). If this is split up equally among the five

features, then the Bhattacharyya distance for each feature should
have a value of 0.1 or less. Splitting this up equally between
the first and second moment statistics results in a value of 0.05
for the mean and 0.05 for the variance plus correlation (which
can further be split equally among the variance and the correla-
3 tion to give 0.025 for each). If there are three wavebands, then

the mean and variance distances should be apportioned equally

among the three bands so that we arxive at:
HvN () € 0.017
k

o) £
“VARk( )£ 0.0083

) £
uCOR( ) £ 0.025

If the average correlation between bands is 0.90 for the RV then,
reading from the plots, this means that the decoy feature sta-

tistics must satisfy:

RV - DY RV -
- <
my 0.14ok_ m.k Sm.k +0..'L4c7k

DY

RV
X < 1.100k

i 0.9108'< o

0.84 <pP¥< 0.936 )

These would be the requirements that each of the decoy's features

in each band would have to meet in order for the decoy to be

assured of achieving a 15% error rate. This is an illustrative




example only; the precise decoy requirements will, of course,
depend on the RV's average band-to-band correlation for each
feature and on the total error rate desired for the decoy.

C

and

These results apply only to the features AAA’ BAA' AXY

oAiﬁ the Bhattacharyya distance and the decoy requirements for
the temporal autocorrelation feature,p (%), are computed in a
different manner. There are basically two distinct, and comple-
mentary, ways in which tﬁe Bhattacharyya distance corresponding
to the RV and decoy P(L)s can be calculated.

The first method consists of computing the spectra of the

RV and decoy P(f)s, estimating the mean and standard deviation

of these spectra:

SV’ ogv = RV spectrum mean, standard deviation ‘
DY DY s .
m,r 9, = decoy spectrum mean, standard deviation

and computing the univariate Bhattacharyya distance (which is

again separable into mean and a variance contribution):

H(B) = upp (w) + Hyag (@) (23a)
1 Amw 2
uMN(w) = 5(—3-;—) (23b)
5
uVAR(m) = % 1n ;ﬁﬁ;ﬁ? (23c)
® (]

* For the feature o0,, statistics should be computed for 2nopj
since it is more likely to be lognormally distributed than normally
distributed (i.e.,negative values are not allowed).

21
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where

RV DY
Am, = m ~-mg (2349)
=2 _ RV, 2 DY, 2 o
o, = %(om )< + %(Om ) (23e)
DY DY

The levying of decoy requirements on m,~ and 0, ~ can be achieved
in the same manner as described for the other features using the
plots of Figs. 1 and 2 (with P=0). This method is useful since
it provides statistics on the frequency of the sinusoidal-like

variation of the signature. However, it assumes that the frequency ;

distributions are unimodal and can thus be characterized by a

single mean and standard deviation.

The second method is based directly on the first-and second-
moment statistics of the sinusoidal-like signature remaining
after trend removal, ﬁAk(n)' and makes no assumptions about the
nature of the frequency distribution. 1If, after trend removal,
the signature is normalized to unit variance (by extracting the
feature EAA) then it is completely characterized (for Gaussian
statistics) by its ensemble mean vector and covariance matrix,

which are given by:

=x
|
L] L] * o

o

22
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1 E{F(1)} . . . E{';?(L)}T

~ E{P(1)} 1 . .
8 1= . . . . (24)
' . . . E{7(1)}
. i E{D(L)} . . . E{p((1)} 1

where L is the number of lags (which is less than or equal to

N-1, where N is the number of observations). The mean vector is zero
because the trend has been removed and the covariance matrix

has the form that it does because of the definition of B ().

That is, an element of Siis defined as

2 ~ ~ 2
Tan = ElHy, (mHy, (n) /T, 1,

and, if we can assume stationarity, G is a function only of the

mn
difference %=|m-n| so that

2 _ .2 _1 ~ o 2
Emn =%, =3 pa E{HAA(2+n)HAA(n)/3AA} .

Interchanging the summation and expectation yields

| N-2
| _ =l ey ~ 2
| “ | ¥, = E’ﬁ ;=; H,, (2+n)H,, (n) /35,

E{g(2)} .

It should be noted here that we are using a biased estimate for

ahn and §(2) since the sums are divided by N and not by N-%

(which is the actual number of terms in the sum). This is done




fad

to ensure that the covariance matrix, Z:, is positive definite.

The Bhattacharyya distance corresponding to the feature
(L) is then given by (only the variance term contributes since

the means are zero):

W@ = % 1n |5 IMERY). £ (25a)

4 where

Y- n TRV, $DY (25b)




Subscripts
i, 3, k
K
AA

£, m, n

Superscripts

DY

RV

Overscripts

Indices
(%)
L

(n)

=1

NOTATION

waveband

.total number of wavebands

waveband

observation

frequency

decoy

reentry vehicle

normalized or based on normalized signature

average (over wavebands or of RV and DY)

lag

total number of lags
observation

total number of observations
midpoint of observation interval

normalized observation number

st i

‘}
!

[ SN O




Operations, Functions

<>
E(-}

p()

Variables

Apa

A

Baa

bax

Cax

Cax

A

HAA(n)

CHR,D

NOTATION (cont.)

summation over observations (temporal sum)
ensemble average
transpose

determinant

_inverse

probability density

temporal mean feature (of HAA(n))

=B

linear trend feature (of HAk(n))

=RaaBaa

quadratic trend feature (of HAA(n))

=AarCan
probability of error

optical signature

normalized optical signature (zero mean,
unit variance)

xth temporal moment of H,, (n)

ensemble mean vector of a feature




NOTATION (cont.)

Variables (cont.)

AM difference in RV and decoy ensemble means
M ensemble mean of EAA(n)
m, kth waveband component of M
th
Amk k waveband component of AM
m .mean of spectrum of p(R)
Am(n difference in RV and decoy spectral means
u(e) Bhattacharyya distance
uMN(°) Bhattacharyya distance due to mean
differences
uVAR(') Bhattacharyya distance due mainly to )
variance differences
uCOR(') Bhattacharyya distance due mainly to
correlation differences
uéOR(') Bhattacharyya distance due to variance
differences reflected in y ()
COR
¥yar(*) = Uyart®) *+ ugor(*)
Mrax maximum allowable total Bhattacharyya
distance i
D
n = (1-p"%)/(1-p%)
<N*D sum of X" ?
14 random phase §
R residual in mean-square minimization
P() temporal autocovariance feature (of EAA(n))
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NOTATION (cont.)

Variables (cont.)

pij correlation between wavebands i and j

p average band-to-band correlation
? average of RV and decoy average band-to-

band correlations

3 ensemble covariance matrix of a feature
ff "average of RV and decoy covariance matrices
5 ensemble covariance matrix of ﬁ'M‘(n)

cij i,5™® element of &

02 simplified notation for o 2

k kk
-2 2

Oy average of RV and decoy Oy S
Eil temporal variance feature (of ﬁAl(n))
F;n m,nt? element of &
32 = Ein , i=|m-n|

2 . ~

S, variance of spectrum of pP(R)
Bz average of RV and decoy spectral variances
GAA standard deviation of example ;
At time spacing between observations %

3

@ frequency 1
X arbitrary feature

Xy kth waveband component of X
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