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ABSTRACT

The formulation of optical signature features useful in

discrimination studies and decoy design, and a method for evalu-

ating a decoy's effectiveness are presented in this report. These

features are based on an optical signature model which incorporates

a second-order trend with a sinusoidal-type variation normally

observed in optical signatures. The decoy evaluation procedure

presented here provides the decoy designer with an analysis of

those features and wavebands of the decoy signature which may

need modification to achieve a prescribed match with an RV.
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IIntrodudion

The purpoe of this report is to introduce and document

results obtained in the development and use of features derived

from optical signatures. The primary motivation for and appli-

cation of these features has been in the development of discri-

mination algorithms and in the requirements for decoys. The

latter application has resulted in the development of a computer

program which provides an optical decoy designer with an evalua-

tion of a candidate decoy by means of a detailed analysis of

the first- and second-moment statistics of its features.

The formulation of these features and the details of the

decoy evaluation procedure are the subject of this report; a

subsequent report will provide documentation of the computer

program*. The use of these features in discrimination studies,

as well as in decoy design, together with related topics will

be presented when they become available.

B. J. Burdick and M. R. Colaneri, "BODE: Bhattacharyya
Optical Decoy Evaluation," M.I.T. Lincoln Laboratory
(to hc nublished).

1



II. Signature Model and Features

As an aid to decoy design, we have developed an optical

signature model which incorporates the major features observable

by a multiband optical sensor. These signature features are

easily calculated and are traceable to the thermal and dynamic

properties of the targets so that any decoy modifications

required to achieve a prescribed match with RV signature

statistics can be easily ascertained.

The signature model for a given waveband, AX, is written

in terms of the features as

HAA(n) = AAA[l + nBAX + CAX+ HAX(n)] ()

n=l,2,...,N

f=(n-n0)/no I n0=(N+l)/2

where n is the observation number, N is the total number of obser-

vations, 'n is a normalized observation number, and n is the midpoint

of the observation interval. The first three features appear ex-

plicitly in the above equation:

A = temporal meanof HA(n)

AB H(n)BAX = linear trend of HAX(n)

CAX = quadratic trend of HAX(n)

The remaining two features are implicitly contained in H A(n),

which corresponds to the signature after trend removal, and are

* To be precise, AAx is the temporal mean only when CAX=0.

2



I2

A = variance of HAX(n)

P(Z) = temporal autocovariance of HA,(n)

The assumption has been made that the temporal autocovariance

function need be calculated for one band only (note that the

subscript AX is absent from j5(Z)). This is justified for two

reasons: (1) it has been observed that, within the allowable

statistical sampling errors, Z() is the same for all bands,

and (2) it reduces the number of features and thus simplifies

the task of decoy design.

These five features, then, are used to describe the

major characteristics of optical signatures: the features

AAX, BA, and CA describe the slowly varying trend and the

features BAX and ^'(Z) describe the remaining, faster varying,

sinusoidal-type variation normally observed in optical signatures.

The trend features are obtained by means of a least-

squares fit to the signature. That is, the residual

N2

R=n_ [HAX(n)-aAx-ft AX- 2 CT5 ]2

is minimized with respect to a = A A, bAx = AAX BAX, and

CAX= AAX CA. Defining

3



N

<Nx > E, Wx (2)
n=l

N
<Hxj>" X HA (n) (3)

n=l

and noting that

<N > = N

<N> = 0

<N 2> = N(N-1)/3(N+1)

<N 3> = 0

<N4> = N(N-1) (3N
2 -7)/15(N+l) 3

We find that the minimization requirements yield the following

equations

aR a ' 0  0 N1

aR aX<N0> + b AX<NI> + cAx<N2> = <HO>

c~ XAX'A AX AX

aR a<NI> + b <N2 > + c N3> =<HA>
aS X aAX<N2> + hAN 3 X

The solution of these equations is

4



<HA°> <N 4 >-<HA2> <N 2>al X <N<4>.< > 2

S(HA4>hA x <N2>

<H 0 > <N 2 > - <H 2>2 1o>
c AX > A>AX <No> <N 4> - <N 2 >2

so that

BAX = bAX/aAx (5)

CAx = cAX/aA -

The features related to the sinusoidal-type variation

are obtained from the signature after trend removal,

HAX(n) {HAX(n) - AAil + nBAX+ i 2 CAKI}/AA,

and are given by

N
2 1 2"Axl E 4 AIN (n) (6)

n=1

N-£
P = E HAX(n) HAX(n+1)/~AX (7)

n=l

-1,2,... ,N-l

For the case when HAX(n) is Gaussian, these features provide

a complete description.

5
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To gain a better understanding of these features consider

the following example:

AX (n) aVTAX sin(nwAt+fl (example)

where A~t is the time spacing between observations, pis a random

phase having a probability density

p(OP) = fl/2ir, OS*'P:2r
O, otherwise

and w is a random frequency having a probability density

p(w1). (For a spin-stabilized target which is axially symmetric,

w~ would correspond to the precession frequency and a Xwould

be related to the coning angle.) The features for this signature

are then given by

2 n=l sn nt9~

2 + sin(wAt+2(P) - sin[(2N+)wxt+2'P]a AX 2Nsincut

and ~ (2.) 2 N- sin (nw~t+iO) sin [(n+U~~t~/ 2

=~

Cr N2NsincoAtfAX

(Note that in the limit as N-co: 'dAX a A and P().oscA.

The ensemble averages of these features are

6



E{A =J=- 0  A p() p(w)d(d

2

and

- 00.J p(w) cos2.wAt dw
N oo

That is, the ensemble average of ?(M) is the cosine transform

(or the real part of the characteristic function) of the fre-

quency distribution p(w). This means that E I(t) contains all

the information concerning the frequency distribution of H(n).

For example, if p(w) is Gaussian-completely characterized by

a mean, m., and a variance, a2:

2 eP ( ()m) /0

then thn 1 } N-P£ [itm At-(£o At) 2 /2]
E (k)) = T x Re[eiW Wt I

_N- e-(£O At) 2/2 cos9mAtN

which is a damped cosinusoid with frequency equal to the mean

of p(w) and a damping factor proportional to the width of p(w).

7



III. Decoy Specification and Evaluation

The method used to levy decoy requirements and evaluate

the effectiveness of a decoy against an RV is based on the

Bhattacharyya distance This metric provides a measure of the

separability of the RV and decoy in terms of the ensemble

means and covariances of their features. It is particularly

useful in as much as it is directly related to the probability

of error, is additive for independent features and can be ex-

pressed in terms of differences primarily in the means and

variances in each waveband and to the correlation between

wavebands for each feature. That is, if I4A,B,C,G,-') represents

the Bhattacharyya distance for all features in all wavebands

then, if it can be assumed that the features are independent,

p(A,B,C,BP) = p(A) + p (B) + V (C) + ji () + p (Z) (8)

where V-() is the Bhattacharyya distance for an individual

feature. Further, as will be shown later, each p(-) can be

separated into components which are primarily related tc

differences in the RV and decoy means and variances in each

band and the average correlation between bands

€' + E 1'VAR + ]COR- (

It is in this manner that it becomes possible to pinpoint not

only which decoy features may be contributing to a large

K. Fukunaga, Introduction to Statistical Pattern
Recognition (Academic Press, New York and London, 1972).

8



Bhattacharyya distance but also whether this is due to the mean,

variance, or band-to-band correlation and further, in which band

it is occurring. The Bhattacharyya formulation also makes it

possible to determine how the decoy requirements should be levied

on the various features and their ensemble means, variances and

correlations in the individual wavebands. This simply becomes

a matter of apportioning the maximum total allowable Bhattacharyya

distance among the features and then among each of the feature's

first and second moment statistics.

The maximum allowable total Bhattacharyya distance, v max'

is related to the total probability of error achieved by the

decoy, e, according to the equation

1 0 et 2/2 da e -  dt (10)
F27 vf ,ma x

(which is an exact equation when the RV and decoy covariance

matrices are identical, and a good approximation when they

are not too dissimilar).

For example, if one wanted to design a decoy to achieve

at least a 15% error rate with an RV, then a total Bhattacharyya

distance of 0.5 or less would be required (from the equation

above). If this were to be apportioned equally among the five

features then each feature would have to have a Bhattacharyya

distance of 0.1 or smaller. If this were further apportioned

equally to the first-and second-order statistics of each feature

(i.e. the mean and the combined variance and correlation),

9



then they would each have to achieve a Bhattacharyya distance

of 0.05 or less. If all the individual Bhattacharyya distances

were less than these requirements, then the decoy would be

guaranteed to achieve the desired error rate. However, it may

still be possible for a decoy to achieve the desired error

rate even if some of the Bhattacharyya distances are too

large-all that really counts is the total Bhattacharyya distance

and some components may compensate for others.

Let us now show how the Bhattacharyya distance for a

single feature, p(-), can be written as a sum of components

attributable to differences in the RV and decoy means and

variances in each waveband and the average correlation between

wavebands. In general, the mean vector and covariance matrix

of a feature, X, measured in K wavebands are given by

m2

M=

- 2 2
11 12 1K

2 2X. 12 22

2 2
l1K a KK

10



where mk is the ensemble mean of the kth (waveband) component of

X=(xl,X 21, ... ,Xk.. )T

mk = E{x k }k k

2and a is the covariance of the ith and jth components of X:

Cr.2 =E (xi-mi (xj-mj)

2

The covariance matrix can be written in the following form to

exhibit the explicit correlation between wavebands,p ij:

211l P12 aI1Ia22 •P IK'II'KK

2= 12Oi1022 22

•2
lKallKK KK

where

(This p should not be confused with the feature r(9).) To

render the remaining calculations tractable, it is necessary to

make the assumption that the correlation between band pairs is

the same for all pairs so that the pijs can be replaced by their

average:

11



a 2  POLO2 a ~O

• • 2

1 l K  .

where

K K-i

i P == K-"K -)j= Pij

We have further simplified the notation by writing a2 for a2
fo 0kk*

The replacement of the individual band-to-band correlations by

their average has been found to be a very good approximation

and is justified on the grounds of simplifying the decoy design

procedure.

The determinant and inverse of a matrix of this form can

be shown to be

a2 ... 02 1 [1(K-1) p] (12)

(1+(K-2)p] /a -Pl 1a2 -P/a a

F 1I -P/a a [1+(K-2) p]/o 2

-- 1 12 L. 2 (13a)
s

-p / G 0Y *1 
r (K - 2 ) p / oF2

L1K K

where

= lp[+((1p (13b)j 12



The Bhattacharyya distance for a given feature (under the

Gaussian assumption) is a function of the mean vectors and co-

variance matrices of the RV and decoy (DY)

= AMTI AM + ln II/ERVI• 
* 1 DY1 (I4a)

where AM is the difference in their mean vectors:

AM = MRV - MDY  (14b)

and 2 is the average of their covariance matrices:

= FRV+ EDY (14c)

With the assumption that the correlation between band pairs is

the same for all band pairs can be written as

-2--
a1 PC 1 a 2  alCK

-C1a2a2 (15a)

-2

where U is the average of the RV and decoy variances in band k:

-2 RV 2 (DY
k k  + h (15b)

and T is the average band-to-band correlation of the average of

the RV and decoy covariance matrices:

- 2 -1 R a RRV RV RV DY DY DY - (15c)K(K-I) E t ( i  j + 1J=i+l i=l

13



The determinant and inverse of r are then given by the

same equations derived previously so that the Bhattacharyya

distance becomes

P(') JiMNk(' + VAR () + 1COR ( ' )  (16)

where

€.) -- [1+(K-2) / -P E (17)

jk

"VARk(.) = in[ /a k a Y] (18)

1 COR() ln (1_Pl)K-l1I+(K-l)' (19)
I-p RV ) K-!-[,+ (K-l ) pRV] (,_pDY ) K-I [i+ (K-1.) pY]

where Amk is the kth (waveband) component of AM and

-2 = (1-P)[1+(K-l)T] (20)

The individual Bhattacharyya distances (.) and V ()Hk VARk

provide information on mismatches between the decoy and the RV

due mainly to the mean and variance, respectively, in band k

while VCOR( ) contains information on mismatches attributable mainly

to the average band-to-band correlation. By "mainly" we mean:

if the only difference between the decoy and the RV is the mean

in band k, then the only nonzero Bhattacharyya distance will

be UMNk(.); if the only difference is the band-to-band correla-

tion, then only p COR (.) will be nonzero; and if the only difference

14
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is the variance in band k, then not only VVARk(') but also pCOR ( .)

k
will be nonzero. That is, the variance and correlation components

cannot be separated when there are variance differences between

the decoy and the RV. An examination of the equation for p shows

how this occurs. Consider the case when the decoy band-to-band

correlation is the same as that of one RV (pDY=p RV) and the

decoy standard deviations are the same as the RV except for one

band (a.Y=ORV for ik). Then T becomes

RVp = r.p

where
1 [ RV DY k

r = K (K-2) + (ak +ak )/Fk] (21a)

so that

1 COS(.) = (-rp K-I[+(K-l)rpRV] (21b)
(IpRVK [i+ (K-1) pRV(

From this equation we see that PCOR( .) will be nonzero when the

decoy standard deviation differs from the RV in band k (even

though they have the same band-to-band correlation). Therefore,

in this case, the Bhattacharyya distance due solely to a variance

difference in band k,will be

VAR () = PV () + (22)

VA k VAR k + COR~

To gain a clearer understanding of the dependencies of these

various Bhattacharyya distances on the statistics of the RV and

decoy features, plots of their variations are shown in Figs. 1-3

for the case of three wavebands.

15



Figure 1 illustrates the variation of the Bhattacharyya

distance due to mean differences in a single band, VMNk(.), with

the mean differences normalized by the average standard deviation,

Amk/ak , for various values of the average band-to-band correlation,

p. Figure 2 shows the variation of Bhattacharyya distances due

to variance differences in a single band, pVAR( -) and P'OR0)1

with the ratio of standard deviations, aDY lRV or its inverse, fork / korisivrefr

various values of the average band-to-band correlation, p , in

the case of P'(.). Figure 3 shows the variation of theCOR
Bhattacharyya distance due to differences in the average band-

to-band correlation, p COR(-), with the RV and decoy average

RV Dband-to-band correlations, p and pDY. This is presented as

a function of a parameter n,

DY1-p
RV1-p

so that a single curve (approximately) represents the variation

DY RVof 1COR (-) with p for any value of pR. Shown at the bottom

of this figure are various scales of pDY that can be used for

some particular values of pRV.

Given the RV feature statistics and the desired error rate

to be achieved by the decoy, it is possible to levy requirements

on the decoy feature statistics using these curves. Consider

the example presented earlier where a total Bhattacharyya

distance of 0.5 was required (corresponding to a total error

16



1.0

0.1

0.01

pa

IAMN(*)A a/

0.001

*0.01 0.1 1.0

Fig. 1. Variation of the Bhattacharyya distance due to a
difference in means in band k for several values of aver-
age band-to-band correlation.
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1.0

0.1

IACOR(. )

0.01

DY RV

p n ,(1-P

0.001

0.05 0.1 0.2 0.5 1 2 5 10 20
0 " . ' " RV

x 1es .99 0.95 0.9 0.5 0 ( R -09)

fpY I' i R V .. A
0.95 0.9 0.5 0 -0.5 (pRV °'5)

Fig. 3. Variation of Bhattacharyya distance
due to band-to-band correlation differences.
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probability of 15%). If this is split up equally among the five

features, then the Bhattacharyya distance for each feature should

have a value of 0.1 or less. Splitting this up equally between

the first and second moment statistics results in a value of 0.05

for the mean and 0.05 for the variance plus correlation (which

can further be split equally among the variance and the correla-

tion to give 0.025 for each). If there are three wavebands, then

the mean and variance distances should be apportioned equally

among the three bands so that we arrive at:

VIN k(') _5 0.017

PVAR k (-) 0.0083

PCOR ( . )  0.025

If the average correlation between bands is 0.90 for the RV then,

reading from the plots, this means that the decoy feature sta-

tistics must satisfy:

RV -04<JtDY f~RV 0  4
-0mk +14 k

0 .9 1 aRV< ODY_< <1 I0 oRV
k -k k

0. 84_<5 pDY- < 0. 936

These would be the requirements that each of the decoy's features

in each band would have to meet in order for the decoy to be

assured of achieving a 15% error rate. This is an illustrative

20



example only; the precise decoy requirements will, of course,

depend on the RV's average band-to-band correlation for each

feature and on the total error rate desired for the decoy.

These results apply only to the features A A, B A, C A, and

0AX* the Bhattacharyya distance and the decoy requirements for

the temporal autocorrelation feature, (Z),are computed in a

different manner. There are basically two distinct, and comple-

mentary, ways in which the Bhattacharyya distance corresponding

to the RV and decoy Z(Z)s can be calculated.

The first method consists of computing the spectra of the

RV and decoy '(i)s, estimating the mean and standard deviation

of these spectra:

mRV , aRV = RV spectrum mean, standard deviation

DY DYmDY, cY = decoy spectrum mean, standard deviation

and computing the univariate Bhattacharyya distance (which is

again separable into mean and a variance contribution):

110) = PMN( + P VAR(M) (23a)

P =M = )1 (23b)

-2

S= h ln RVDY (23c)

* For the feature oX statistics should be computed for 9.noAX
since it is more likely to be lognormally distributed than normally
distributed (i.e.,negative values are not allowed).

21



where
RV DYAm( = m W-m (23d)

= RV)2 + (GDY 2
a (~aa))(2 e

The levying of decoy requirements on m DY and DY can be achieved

in the same manner as described for the other features using the

plots of Figs. 1 and 2 (with P=O). This method is useful since

it provides statistics on the frequency of the sinusoidal-like

variation of the signature. However, it assumes that the frequency

distributions are unimodal and can thus be characterized by a

single mean and standard deviation.

The second method is based directly on the first-and second-

moment statistics of the sinusoidal-like signature remaining

after trend removal, HAX (n), and makes no assumptions about the

nature of the frequency distribution. If, after trend removal,

the signature is normalized to unit variance (by extracting the

feature -AX) then it is completely characterized (for Gaussian

statistics) by its ensemble mean vector and covariance matrix,

which are given by:

I.'

M2

22



1 E(1) 1

(24)

• .{•( E{ 1i
Ef-p(L) E .r . (1) 1 1

where L is the number of lags (which is less than or equal to

N-l, where N is the number of observations). The mean vector is zero

because the trend has been removed and the covariance matrix

has the form that it does because of the definition of -(L).

That is, an element of E is defined as
2 2

dmn = E AX(m)H AX (n)/ X}

and, if we can assume stationarity, Fmn is a function only of the

difference L=lm-nj so that

mn N (L+nfX

Interchanging the summation and expectation yields

2= E N-1 /2mn N H., (X+n) HA (n)/AX

- E{ (£) }.

It should be noted here that we are using a biased estimate for

B'n and '(P) since the sums are divided by N and not by N-i

(which is the actual number of terms in the sum). This is done

23
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to ensure that the covariance matrix, 2, is positive definite.
The Bhattacharyya distance corresponding to the feature

(L) is then given by (only the variance term contributes since

the means are zero):

P = in (25a)

where

4(25b)

24



NOTATION

Subscripts

i, j, k waveband

K total number of wavebands

AX waveband

1, m, n observation

(frequency

Superscripts

DY decoy

RV reentry vehicle

Overscripts

normalized or based on normalized signature

average (over wavebands or of RV and DY)

Indices

(t) lag

L total number of lags

(n) observation

N total number of observations

no 0midpoint of observation interval

nnormalized observation number

25



NOTATION (cont.)

Operations, Functions

< > summation over observations (temporal sum)

Ef-} ensemble average

(.)T transpose

*'1 determinant

()-1 inverse

p(.) probability density

Variables

A AX temporal mean feature (of HAX(n))

a Ax =AAx

BAX linear trend feature (of HAx(n))

b AX =AAX BA

C AX quadratic trend feature (of HAX(n))

cAX =A xCx
c Ax =AAX CAX

£ probability of error

HAX(n) optical signature

HAX(n) normalized optical signature (zero mean,

unit variance)

<Hx > xth temporal moment of HAX(n)

M ensemble mean vector of a feature

26



NOTATION (cont.)

Variables (cont.)

AM difference in RV and decoy ensemble means

M ensemble mean of HAj(n)
mk k th waveband component of M

Amk kth waveband component of AM

m Wmean of spectrum of (Z)

Am difference in RV and decoy spectral means

Bhattacharyya distance

IMN (.) Bhattacharyya distance due to mean
differences

1VAR ( -  Bhattacharyya distance due mainly to
variance differences

COR (-)  Bhattacharyya distance due mainly to
correlation differences

Bhattacharyya distance due to variance
differences reflected in pCOR(.

1VAR() = 'VAR (  + 1CORR()

Pmax maximum allowable total Bhattacharyyamax distance

= (I-PDY)/(I-PRV)

<Nx> sum of n

random phase

R residual in mean-square minimization

temporal autocovariance feature (of H AX(n))
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NOTATION (cont.)

Variables (cont.)

Pij. correlation between wavebands i and j

p average band-to-band correlation

p average of RV and decoy average band-to-
band correlations

ensemble covariance matrix of a feature

average of RV and decoy covariance matrices

ensemble covariance matrix of HAX(n)
a?2.. th
a 2i,j element ofij

2 2
a 2 simplified notation for akk

-2 2
a k  average of RV and decoy ak s

a2 AXtemporal variance feature (of AX(n))

..2 tha m,n element of

n= 0mn ,

~2

* variance of spectrum of '(L)

' 2 average of RV and decoy spectral variances

standard deviation of example

At time spacing between observations
frequency

X arbitrary feature

xk kth waveband component of X
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