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I. INTRODUCTION

Water ice formation on satellite optical surfaces has been suggested as a

possible cause of decreased sensitivity of infrared sensing devices. For op-

timum performance, these devices rely on unattenuated signals in the infrared

wavelength region where H2 0 ice absorption occurs. It has been hypothesized

that the H 20 collects on the cryocooled optical surfaces after outgassing from

materials in close proximity to the surfaces. The most likely sources of H20

are polymeric insulation, such as Kapton, multilayer insulation (11LI), and

aluminized Teflon. The suggestion has been made that replacement of asso-

ciated H20 with D20 in the materials of interest would alleviate the problem

by isotopically shifting the infrared ice absorption band out of the wave-

length region of interest.

In order for the H20 replacement to be considered a feasible solution to

the problem, the following questions should be answered:

I. Is the H20-D20 replacement accomplished easily, and what are the
best methods?

2. Once the replacement is accomplished, how difficult is it to
maintain the D20 level?

3. How important are exchange processes between associated D20 and

ambient atmospheric H20?

The last question is the most critical. In the condensed phase, proton

exchange between H20 and D20 occurs just below the diffusion-controlled limit

and is, thus, very rapid (Refs. I and 2). In addition, the following rapidly

established equilibrium is shifted toward the right at room temperature (Keq

3.94 at 20 0C) (Ref. 3):

H20 + D20 _ 2 HOD

Both H20 and HOD absorb infrared radiation in the wavelength region of inte-

rest. Because of the rapidity of proton exchange, the mixing phenomenon is

expected to be limited by surface adsorption and bulk diffusion of water.
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The D20-H20 replacement phenomenon was investigated for Kapton, and to a

lesser extent Mylar, by TGA and IR spectroscopy. In addition to atmospheric

exposure, N2 and Ar environments were used to determine if gas adsorption

would affect the exchange process significantly.
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II. EXPERIMENTAL

The materials in the investigation were 0.005-in. Kapton and 0.003-in.

Mylar sheets examined by means of IR and TGA, and aluminized-Mylar MLI, exam-

ined by means of TGA.

The TGAs were performed on a Perkin Elmer TGS-1 thermal balance in both

the temperature programmed and isothermal modes of operation. Because of the

restricted sample size, it was necessary to cut up the MLI into small pieces,

which were then piled in the thermal balance weighing pan. The cutting dis-

turbed the layered nature of the MLI and, as a result, the equilibrium H2 0

content might be different from that in the layered configuration. The Kapton

and Mylar sheets were simply cut to the appropriate size. The sample weights

were generally on the order of 1 mg.

Infrared analyses were performed on a Perkin Elmer Model 467 infrared

spectrophotometer. The IR spectra of Mylar and Kapton are shown in Figures 1

and 2. The spectral features in the presence and absence of H 20 and D20 are

included. The Mylar spectrum exhibits a rather small absorption due to H2 0,

and, as a result, only a limited number of experiments were performed. For

Kapton, the amount of associated water is larger and, thus, more easily moni-

tored. Despite the larger equilibrium water content, the spectrum of Kapton

is complex in the wavelength regions of interest. In order to simplify the

spectra, the reference beam of the double-beam spectrophotometer was passed

through a sample of "dry" Kapton, which resulted in esse-tially the spectral

features of H20 and D2 0 without interference from the spectral features of

Kapton. Two approaches to obtaining these "difference" spectra were employed.

In the early stages of the investigation, the "dry" reference sample was

stored in an evacuated vacuum dessicator with phosphorous pentoxide as the

dessicant. When spectra were obtained, the "dry" sample was placed in the

reference beam. In the latter stages of the investigation, a more efficient

method was used. A Kapton sample was mounted in a spectrometer gas cell with

salt (NaCI) windows. The cell was evacuated to dehydrate the sample and was

maintained at low pressure. By means of this approach, the reference sample

7
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Figure 2. IR Spectra of 0.005-in. Kapton Film
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could be kept in the "dry" state for long periods of time. Both approaches

resulted In comparable spectra. Typical spectra obtained by means of the

"difference" method are illustrated in Figure 3.

Two approaches were employed in examining the H20 and D20 contents of the

polymers. In the early experiments in which pre-equilibrium with D20 was re-

quired, the samples were first submerged in D20, then mounted in a "film" sam-

ple holder and exposed to the ambient atmosphere (relative humidity = 45 to

58%) for specified lengths of time. At the end of the exposure, IR spectra

were obtained. It was found that the heating of the samples by the IR beam

caused the samples to dehydrate. The rate of dehydration was measured, and

the process was determined to have a half-life of approximately 7 min. As a

result of this IR stimulated 1120 loss, it was necessary to adjust the experi-

mental procedures to minimize errors. The length of time that the sample was

in the IR beam was limited to approximately 2 min, and each data point fol-

lowed re-equilibration with D 20 and exposure for specified times. By means of

this approach, the spectral intensities were accurate to within 15%.

In later experim~ents in which other than ambient atmospheric exposure was

required, the samples were mounted in a spectrometer cell with KRS-5 windows.

* Appropriate gases were purged throitgh the cell for measured time intervals.

The IR spectra were obtained by closing off the cell and placing it in the

spectrometer only long enough to obtain the appropriate spectrum, 2 to 4

min. Minimizing IR exposure time and sealing off the cell minimized errors

Induced by IR stimulated water loss.

The gases used in the investigation were N2 and Ar. They were both dried

by passage through a drying cartridge containing molecular sieves. After

drying, the gases were either admitted to the sample cell in the "dry" state

or passed over H2 0 or D2 0 liquid prior to passage through the sample cell.

The gas flow rates were approximately 30 mI/mmn for N2 and approximately 40

ml/min for Ar. The D2 0 "3s from Merck and Co. and had a deuterium content of

99.7 at% D.

9
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III. RESULTS

A. THERMAL GRAVIMETRIC ANALYSIS

Mylar, MLI, and Kapton were analyzed in both temperature-programmed and

isothermal modes of operation. The three materials exhibited two weight-loss

processes, the first occurring in the temperature range 300 to 4000 K, and the

second at approximately 600*K. The first process is attributed to H20 loss,

whereas the second is consistent with sample thermal decomposition. The

weight losses resulting from H 20 desorption were determined to be 0.93, 0.37,

and 0.24% for Kapton, Mylar, and MLI, respectively.

Isothermal analysis was useful for the Kapton sample but not for Mylar

and MLI. For the latter two, instrumental limitations on sample size coupled

with low H20 content resulted in isothermal-weight-loss profiles that did not

permit detailed analysis, i.e., the signal-to-noise ratio was very low. For

Kapton, isothermal desorption of water at 370*K resulted in a weight versus

time profile (Figure 4) that could be analyzed. The curve is exponential with

a half-life of 112 sec. The first-order behavior is illustrated in Figure 5.

The observation of first-order kinetics is consistent with both bulk diffusion

limited and surface desorption limited processes (Ref. 4). In addition, expo-

nential behavior is consistent with just water loss; additional concurrent

processes, such as polymer decomposition and outgassing, would result in non-

exponential behavior unless the processes had identical relaxation tines.

B. INFRARED ANALYSIS

The IR absorption maxima for H2 0 associated with Kapton and Mylar occur

at 3550 to 3620 cm- 1 (2.76 to 2.82 Pm) (Ref. 5). The shift to higher energy

for the polymer samples implies that the H2 0 is absorbed into the polymer

matrix rather than being primarily present as physisorbed layers on the sur-

face. Deuterium oxide exhibits a maximum absorption at 2600 to 2700 cm- I

(3.70 to 3.85 Pm) in Kapton.

The analysis of the H20-D 20 exchange for Mylar was limited by the low-

equilibrium H20 content and, thus, small IR signal levels. However, some data
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were obtained for atmospheric H2 0 exchange in a sample that was equilibrated

with D 20. These data are given in Figure 6. The IR absorption that results

from the 0-H stretching of H2 0 and HOD increases with time and reaches approx-

imately 95% of the maximum absorption in 60 tmi of exposure to the ambient

atmosphere.

For Kapton, the larger equilibrium H2 0 content permitted more extensive

analysis. The change in the 0-H and 0-D vibration absorption amplitudes as a

function of time for a sample that was equilibrated in D20 and then exposed to

the ambient atmosphere is shown in Figure 7. The shape of the 0-H vibration

absorption band appears to change with time. In addition, there appears to be

a time-dependent shift in the wavelength of maximum absorption. These changes

can be attributed to differing relative amounts of H2 0 and HOD as the D2 0 is

undergoing exchange. The 0-H absorption reaches 75 to 80% of its maximum

value in approximately 50 min and 90% of the maximum in approximately 90 min,

which is nearly the same as that for Mylar.

The elimination of D 0 from a KApton sample by "dry" N2 gswsivt-

gated. The spectral changes are shown in Figure 8. By purging the sample gas

cell with N2 gas, the D2 0 is eliminated by means of an exponential process

with a half-life of approximately 97 min.

Equilibration of a sample with "dry" gas followed by purging with the

same gas passed over D20 was investigated. The 0-D absorption spectral

changes are shown in Figures 9 and 10 for N2 and Ar, respectively. The D20

band grows in faster In the N2 case, implying that Ar is more difficult to

displace by D2 0 than is N2. The changes in optical density versus time for

the data in Figures 8 through 10 are illustrated in Figure 11.

Equilibration of a Kapton sample in air followed by exposure to D2 0 in N2

gas resulted in isotopic exchange that occurred at essentially the same rate

as equilibration in D2 0 followed by air exposure.

14
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Figure 8. IR Spectra versus Time for D20 Removal from 0.005-in. Kapton
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Figure 9. IR Spectra versus Time for D)20 Uptake by 0.005-in. Kapton
Film. Nitrogen gas passed over D2 0 at 30 mi/min flow rate.
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IV. DISCUSSION

The TGA and IR data indicate that H2 0 is easily removed from the materi-

als of interest. In addition, once the material is dehydrated, D 20 can be

readily introduced. The major problem that must be overcome is exchange be'-

tween adsorbed D 0 and H 0 from the ambient atmosphere.

The exchtainge data indicate that exposure of D20 eqiirtdmaterial to I
H20conainngatmospheres must be strictly avoided. The reaction between D20

an 2 oyedHOD occurs rapidly and results iamxtrofH0D2,and

HOD. hereshould not be a significant isotope effect on diffusion and de-

sorption. As a result, these three species would be expected to outgas from

polymers with essentially the same rate. Oxygen-hydrogen bonds in H20 and HOD

contribute to the interferences in the infrared region of interest. Thus, ice

formation with significant amounts of HOD on optical surfaces would cause IR

signal attenuation.

It would be necessary to keep a constant D 20-saturated atmosphere to

maintain the D. levels in the materials in the prelaunch environment. A more

reasonable approach would be to purge the materials with "dry" air or some

inert gas. Our data on the thin sheet polymer samples indicate that purging

of the materials with dry gas will result in dehydration in a relatively short

time, i.e., on the order of several hours. Extrapolation of these data to

*bulk materials cannot be readily achieved. However, purging bulk materials

.with dry gas cver a 24 -to 48-hour period should result in significant removal

of H120. The materials could be maintained in the dehydrated state, or at the

latest possible time, the system could be flushed with D20-containing gas to

equilibrate the materials with D2 0. Maintaining the materials at elevated

temperatures, i.e., 50*C, during prelaunch would also dehydrate the materials.

* As in the "dry" air purging, equilibration with D2 0 prior to launch or main-

tenance of the dehydrated condition would be required.

19



V. CONCLUSION

Because of the rapidity of proton exchange reactions between H 20 and D20,

it would be very difficult to maintain equilibrium D2 0 levels in Kapton and

Mylar without employing very stringent controls pertaining to the exclusion of1

H20 fromn the materials. The alternative methods of maintaining the materials

in a "dehydrated" state by mild heating or purging the system with "dry" air

would appear to be more feasible than maintaining D2 0 equilibrium levels.

These latter choices require either launching the system in a dehydrated state

ot equilibrating the material with D2 0 immediately prior to launch. Water ex-

clusion measures would also be important for these methods. Although these

me..hods appear to be reasonable a priori, the rigorous exclusion of water from

cril.ical spacecraft surfaces would be extremely difficult, if not impossible.
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LABORATORY OPERATIONS

Tht, lahoratory operations of The Aerospace Corporation is conducting

experimental and theoretical investigations necessary for the evaluation and

application of scientific advances to new military concepts and systems. Ver-

satility and flexibility have been developed to a high degree by the laborato-

ry personnel in dealing with the many problems encountered in the Nation's

rapidly developing space systems. Expertise in the latest scientific develop-

merits is vital to the accomplishment of tasks related to these problems. The

laboratories that contribute to this research are:

Aerophysics Laboratory: Aerodynamics; fluid dynamics; plasmadynamics;
chemical kinetics; engineering mechanics; flight dynamics; heat transfer;
high-power gas lasers, continuous and pulsed, IR, visible, UV; laser physics;
laser resonator optics; laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric reactions and optical back-
grounds; radiative transfer and atmospheric transmission; thermal and state-
specific reaction rates in rocket plumes; chemical thermodynamics and propul-
sion chemistry; laser isotope separation; chemistry and physics of particles;
space environmental and contamination effects on spacecraft materials; lubrica-

tion; surface chemistry of insulators and conductors; cathode materials; sen-
sor materials and sensor optics; applied laser spectroscopy; atomic frequency

standards; pollution and toxic materials monitoring.

Electronics Research Laboratory: Electromagnetic theory and propagation
phenomena; microwave and semiconductor devices and integrated circuits; quan-
tum electronics, lasers, and electro-optics; communication sciences, applied
electronics, superconducting and electronic device physics; millimeter-wavc

and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; composite
materials; graphite and ceramics; polymeric materials; weapons effects and
hardened materials; materials for electronic devices; dimensionally stable
materials; chemical and structural analyses; stress corrosion; fatigue of
metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, x-ray astronomy; the effects
of nuclear explosions, magnetic storms, and solar activity on the earth's
atmosphere, ionosphere, and magnetosphere; the effects of optical, electromag-
netic, and particulate radiations in space on space systems.

I | 11 I II I M I I I . . . . ..



I

we


