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CHAPTER 1
INTRODUCTION

The use of fiber reinforced composite materials for structural compo-
nents affords the designer the flexibility of choosing appropriate layer
orientations to achieve required directional stiffness. These materials
are particularly attractive in applications where high strength to weight
ratios are important. However, this flexibility comes an increased com-
plexity in the analysis of these structures and numerical techniques are
require.l.

T2 goal of the static response portion of the present project is the
nonlinear analysis of thin to moderately thick multilayer composite plate
structures. These structures may include cutouts and/or other free edges;
an important consideration is the possibility of severe stress gradients
near these free edges.

In order to obtain accurate prediction of nonlinear structural response,
accurate finite elements, coupled with an appropriate and accurate nonlinear
analysis scheme will be needed. In terms of the nonlinear analysis, alter-
nate schemes can be examined and compared using problems of elastic-plastic
analysis of single layer plates; the results of such a study should then
guide :the selection of the nonlinear scheme for multilayer plates.

To achieve this goal, four pilot studies are described which will serve
as building blocks for a future static analysis program. The studies in-
clude; (1) the analysis of edge effects in laminates under prescribed uni-
axial inplane strain, (2) the development of a single layer plate element
with a straight traction-free edge, (3) the elastic-plastic analysis of single
layer isotropic plates, and (4) edge singularity analysis. The rationale

for each of these tasks is described in the following.
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The assumed-stress hybrid finite element model is used in the first
three studies. Briefly, this model involves the selection of (1) an
intraelement stress field which satisfies the homogeneous equilibrium
equations, and (2) an intraelement (or element boundary) displacement
field which yields the required interelement boundary displacement con-
tinuity. Elements based on this model are often found to yield improved
convergence and intraelement stress predictions in comparison to corre-
sponding assumed-displacement elements. The hybrid-stress model is
ideally suited for multilayer plate applications since layer stress fields
can be defined which satisfy exactly interlaminar traction continuity and
upper/lower surface traction-free conditions exactly. In addition free-
edge conditions can, inprinciple, be satisfied exactly.

The three studies identified above are described in Chapters 2 through
4 of this report. Each chapter is reasonably self-contained and includes
pertinent literature survey, details of the formulations and developemnts,
example problems, and summary remarks. The following is a brief summary
of each study, including the relevance to the overall analysis objectives,

In order to better understand the nature of stress distributions in the
vicinity of cutouts and other free-edges, it is first necessary to better
understand the free-edge-vicinity stress distributions in a more well-
defined (simple) problem. One such pilot problem which is used by most
investigators is a multilayer strip (symmetrically stacked) of finite
thickness and width which are less than the strip length. This is intended
to simulate a tension test specimen. ~Mathematically, the problem is posed

as a generalized plane strain analysis (in the cross-section of the strip)
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in which the loading corresponds to a prescribed uniform inplane strain
(normal to the plane of analysis). Such a problem is useful in the present
study since relatively efficient 2-D generalized plane strain analysis can
be performed. In any finite-element analysis certain of the elasticity
field equations and boundary conditions are only approximately satisfied.
The purpose of one pilot study, described in Chapter 2, is to assess the
effects of enforcement of (1) traction-free edge or (2) interlayer strain
continuity conditions on the predicted stress distributions near the free-
edge. Although the present study utilizes pseudo 2-D elements, the results
obtained should provide insight into those conditions which should be
incorporated into more general 3-D multilayer plate elements designed for
use near free-edge zones of a structure.

In the analysis of more general multilayer plate structures with free-
edges, special-purpose multilayer plate elements may be required along the
free-edges. One such element currently envisioned is a multilayer plate
element for which the traction-free conditions are exactly satisfied
along one edge of the element, With the hybrid-stress model, this requires
that a layer stress field be defined which exactly satisfies the traction-
free conditions on that edge. Numerous plausible stress fields can be
defined, and numerical experimentation is required to identify the best
stress field. Extensive insight toward identifying the best stress field
can be obtained by considering a single layer pure bending moderately
thick plate element in which all components of stress (bending contributions)
are included. In Chapter 3, an 8-node moderately thick single layer plate
element with a straight traction-free edge is developed. Various stress
fields, each satisfying the free-edge conditions, are defined and compared

for selected example problems. The best stress field (element) is identified,




and can serve as a basis for development of a special-purpose multilayer
plate element including both bending and stretching contributions,

The analysis program envisioned will include material nonlinear
effects. One phase of the present study is to evaluate alternate nonlinear
analysis schemes in terms of accuracy and efficiency, Alternate hybrid-
stress functionals are defined in Chapter 4 for material nonlinear analysis
using the initial-stress procedure, In this procedure, material non-
linearities are accounted for via an equivalent nodal force vector represent-
ing the difference between an assumed elastic stress state and the actual
stress state, The alternate functionals (approaches) are examined for
the elastic-plastic analysis of single layer plates, and the better approach
is identified. To extend the better functional to multilayer plates, the
single layer element can be replaced by a multilayer element, and the
elastic-plastic nonlinear material model replaced by appropriate existing
failure and post-failure nonlinear models for laminated composites,

In addition to the approaches used in Chapters 2 to 4, one could also
introduce a special element at the free edge point to account for the
exact singular nature of the stress there, To this end, the first step is
to determine analytically the order of singularity and the angular distri.
bution of displacements and stresses near the free-edge point, Although
the stress singularity analyses of the free-edge point have been done ex-
tensively for isotropic materials, there are few published works on corre=
sponding analyses for anisotropic materials. One of the difficulties is that
the Airy stress function for isotropic materials is no longer applicable
to anisotropic materials. The other difficulty is the possibility of
multiple eigenvalues for the elasticity constants and/or the order of

singularities, In Chapter S5 we analyse the form of stress singularities near
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the free-edge point of an anisotropic composite wedge. The changes in the
forms of stress singularities due to multiple eigenvalues are presented.
On the dynamic response of composites, the emphasis is placed on the
prediction of transient wave propagation. Although the dynamic response
of a composite subject to harmonic oscillation has been studied and well
understood, there seems to be no reliable way to predict the transient
response of a composite. In this report we consider two problems on

transient wave propagation.

In Chapter 6, we present a theory of viscoelastic analogy for wave
propagstion normal to the layering oé a finite periodically layered bi-
laminate. Each layer of the bilaminate can be elastic or viscoelastic
materials. The composite is modeled as an homogeneous viscoelastic material.
The crux of the problem is the determination of the relaxation function
of this "equivalent" homogeneous viscoelastic material. We obtain the
relaxation function by comparing the solutions to the wave propagation
problem in the finite layered composite and in the homogeneous viscoelastic
medium. Wave propagation in the layered composite is then obtained by
solving the wave propagation in the homogeneous viscoelastic medium.
Numerical examples for an elastic composite show excellent agreementsbetween
the solution obtained by this theory and the exact solution by the ray
theorv.

The asymptotic solution in a semi-infinite bilaminate reported in
the literature shows that the stress response oscillates as time increases
when the bilaminate is elastic, If the bilaminate is viscoelastic, the
stress response is monotonic. This presents a paradox because an elastic
bilaminate is a special case of viscoelastic bilaminates; and yet the
asymptotic solution is oscillatory for the special case of elastic bi-

laminate, not for the general case of viscoelastic bilaminate, This para-




dox is solved in Chapter 7 by considering the interaction between the dis-
persion and dissipation of wave propagation in general viscoelastic bi-
laminates. If the distance traveled by the wave is not too large, the

dispersion effects dominate and the response is oscillatory. As the waves

travel farther, the viscous effects eventually prevail and the response
becomes monotonic. The distance beyond which wave propagation becomes
monotonic is also determined in Chapter 7.

Finally, in Chapter 8 we present a brief concluding remark on this

entire project.




CHAPTER 2
FINITE-ELEMENT STUDY OF EDGE-EFFECTS IN

LAMINATES UNDER INPLANE STRAIN

ABSTRACT

The hybrid-stress finite-element model is used for the analysis of symmetric-
ally-stacked arbitrary angle laminates subjected to a prescribed uniform inplane
strain. The analysis reduces to a 2-D analysis in the plane of the laminate cross-
section. Multilayer 2-D hybrid-stress elements are developed which utilize high-
order through-thickness distribution for displacements and stresses. Three types
of elements are developed: (I) Standard elements in which interlayer displacement
and traction continuity, and upper / lower surface traction-free conditions are
exactly satisfied, (2) Strain continuity elements in which the standard element
is modified to exactly satisfy appropriate interlayer strain continuity, and
(3) A traction-free edge element in which the standard element is modified to
exactly satisfy free-surface conditions on a lateral edge of the element. These
elements are applied to several example problems and results are compared with

existing results to assess the effects of the various elements/strategies used.
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1. Introduction

The cause of laminate failure in multilayer composite structures has been a
source of speculation for some time. It is generally accepted that high interlami-
nar stress gradients exist near the free edge of these laminates which are a cause
or partial cause of laminate failure. Therefore, although classical lamination the-
ory, which does not include the effects of the interlaminar stresses, will provide
accurate stress predictions away from the free edge, it is unacceptable as a means
of solution for this problem near the free edge _1J. Consequently, the problem of
composite laminate failure has been approached by several investigators using a
wide variety of numerical techniques [2-7].

Although numercus stress results have been presented for both cross-ply and an-
gle-ply laminates, not any set of solutions has been accepted as completely correct.
Aany discrepencies between solutions still exist. The effects of approximating known
stress and sfrain condificns which exist along the surface of the laminate and a-
cross interlayer boundaries of the laminate also remain a point of interest when
various solutions are compared.

In this study, a hybrid stress finite element model is used to solve the problem
of a composite laminate under uniform inplane strain (Figure 1). The assumed stress
hybrid formulation is well suited to this type of problem due to the fact that
stresses and displacements can be assumed independently within each layer. There-
fore, continuity of interlaminar stresses and continuity of inplane strains across
interlayer boundaries as well as continuity of displacements need not be approxi-
mated, but can instead be exactly satisfied. In addition, the traction free edge
sondition along. the outer surface of the laminate can be exactly enforced.

A special purpose multilayer element is developed which satisfies continuity of
interlaminar stresses across interlayer boundaries and which also satisfies the

traction free edge condition along the top and bottom of the laminate. A finite
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Z

TRACTION __TRACTION
FREE EDGE™ FREE EDGE

Y

(b) PLANE OF ANALYSIS
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element mesh composed of these multilayer elements comprises the first approach

used to solve the above stated problem. Two additional analysés are also considered.
The first, modifies the multilayer element to include the traction free edge condi-
tion along the lateral side of the laminate. This element is then coupled with the
standard multilayer element to comprise the second approach to the problem. In the
third analysis, the origimal (standard) multilayer element is modified to include
the continuity of inplane strains (computed from stresses) across interlayer boun-
daries. A mesh composed of only these strain continuity elements comprises the third
approach.

In the chapters to follow, the formulation of the special purpose multilayer ele-
ment, including all additional modifications, is presented. Test cases, including
cross-ply and angle-ply examples, are described and stress results are shown. The
differences and similarities between the three approaches are discussed. Observa-
tions between the stress results for different laminate stacking sequences are also

discussed where appropriate.

B P i
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2. Formulation

A. Energy Functional and Element Matrix Definitipns

The general formulation of the hybrid-stress model for cross-ply laminates sub-
ject to uniform inplane strain is given in ([3,9]. That development will be expanded
here to include the more general angle-ply laminate case. The enforcement of cer-
tain displacement and stress/strain continuities will also be incorporated into the
formulation.

The basis of the assumed-stress hybrid formulation is a modified complementary
energy principte. This is a two field principle for which intraelement equilibra-
ting stresses and interelement compatible displacements can be assumed independent-
ly within each element. In the case of multilayer structures which are subdivided
such that a single element is composed of a number of layers, the energy must be
sumned over the numbers of layers within each element as well as the number of ele-
ments. Thus, the hybrid-stress functional for multilayer structures, disregarding

external forces, is given as

— ' T ) -
Tme * ,‘2 ;Z [/z g_"‘ S' ¢t 4v- ! €' dv] (1)
¢ » Vli ~ V.~'. -~
Z = the summation over the number of elements
Ne
;E = the summation over the number of layers
“ h
Va = the volume of the ith layer for the n®" element
‘ h

.t
= the components of the stress vector for the i~ layer

. . .th
the components of the strain vector in the i~ layer based on
displacements

= the material property matrix for the ith layver in the global
X,y.z system

-

W 1 1S
L]
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The effect of the uniform inplane strain,‘Ex, will be incorporated directly

into the complementary energy functional. In order to accomplish this, first con-

sider the expression for the material property matrix, S. A material axis system

is defined such that Xy is in the fiber direction for the layer and Xy is perpen-

dicular to the fibers (inplane). Then the stress-strain relations in this material

.system are [10]:

[ -
é, Sa S Su o o) o) dg;
€, Su Sa S, o ) o g, =
€, - Su S Sy o o ) a,
€ o o ) Sa o o T
€y o ) o o S« o T
€a __ o o ) o 0 Sw T |

In general, fibers are not oriented in the global coordinate direction. The
material property matrix in terms of stress/strain in the global, x,y,z, system

(element coordinate system) can be defined by applying the appropriate transforma-

tion laws, and is given by [103]:

€ Su o

€y 5. Sa SYM. ay (3)
€e | = | S5 Sa Sa T,

€n ° o o See T7e

Eax ° o o Su 3o Tox

€sy L. 3% 3. 3% o o 3. Ty

where the 5's are a function of the original terms in S and the layer fiber orien-

tation. The terms in S are defined in [10]

]
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Imposing the condition that the inplane strain €y calculated from stresses must

equal the prescribed inplane strain -éx permits elimination of Oy according to:
é.t 3’1

G-Eopa-p

In matrix form this can be expressed as:

0?‘-3--'3071 (4)

5.

I i /5.~ :“/3'. i S,./ T 0 o Su 3. { Z,

dy o ! o o o o Ty (3)
0z ) = o o ! o o 0 I

Ty ) o o ! 0 R

Tax o o o o I 0 T

Ty . © o) o) . © o — q;, )

r —-._L- - -
3 3. o 0 o o o é
éx _ ‘S_‘.: i g:. g.‘ _ E‘_‘ ,
% o B3 RTTERT o 0 BRE A
1 - 20 T 551
T3 0 Su 3, 2 Sn 3, —O f Su"?:’ \ % (6)
T o o o) Su S« 0o T
c-u 0 o_ o_. - 3.“ -5-“ O_‘ d—‘x
S.“g'n - Sw Su 3'."- .sl-'- T
Txy LO - 3, » 3, 0 o S\ xy
or simplifying:
Loy & & & o d[R]] ™
a— - B
L .é: &
Tye
Tax
Ty
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Using equation (5) and substituting the linear strain displacement relationships,

equation (1) becomes:

Tae = %,){-['/z La, @ G G Gd'BF[ G
] A

» d-t dA
g' . O;i
+E,f L & &l | 3 T
At % da;
3. 4A T @
S
S
A ¢
- " L_CT; Y cr;t Tax q;y.J :Z
e —
3¢ u]
™
oy " »
28
ox
24
Y

where the linear strain-displacement relations are based on a displacement field

corresponding to uniform inplane strain in the x direction [47;
u'lxy,2) = xZc + u' (y,2)

vi(x,y,2) v‘(y,z) )
wi (xy,2) = w(y,2)

Note that the constant terms have been dropped in view of the fact that it is the
variation of Hmc which is ultimately of interest.

The stresses are now expressed within each layer in terms of a set of stress
parameters, §, such that the homogeneous equilibrium equations are exactly satis-
fied. The reduced equilibrium equations, where the stress components are indepen-

dent of the x direction (in view of equations (9)), are:
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51331 + fing = 0
Iy 3z
Q—O—Y + éﬁ" = 0 (10)
ay R
dy ds
The stresses are therefore given as:
v
Ty
a3 (11)
- v ¢
Bl XA
Tax
Tey

where the form of the matrix P is chosen so that equilibrium is satisfied.

The displacements, also defined independently within each layer, are given in

terms of nodal displacements, q:
‘ ¢ (12)
u-Ni
The displacement interpolation, N, is formed such that continuity between elements

is guaranteed. Using the strain displacement relations, the matrix B is defined as:

Y
dy
2
Y L
2’ 2! = t L
oy ' 5 - (13)

£

PN

amm—

ay
Substituting (11) and (13) into (8) leads to:

. T . . . . ;7"
'rr,‘.zé%['/zfé‘f‘rz‘f‘/g_‘iuél ,é?éf
Ne Aw

A
A §

J | dh g
- T M : §:L"
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where P; represents the first, second and fifth rows of pt.

Simplifying this expression by defining the following layer matrices:

. Tl
H‘=f P R P da’ (15a)
. .r .
Axi
i T )" 15
gl 2 (% aso
A S
T dA
A
3.

ieads to:
TR (T R i]
O LR W A R A | R

‘Up to this point, Si and §i are independent from layer to layer. Recalling that
a single element is composed of a number of layers, improved results can be found
by enforcing certain continuity conditions along interlayer surfaces such as con-
tinuity of displacements, continuity of tractions, and continuity of strains from
stresses. Appropriate relationships between the stress parameters, §i, and nodal
displacements, gi, for a layer and stress parameters, §L’ and nodal displacements,
qr for the laminate can be defined in terms of these continuity conditions. For the
present case of prescribed e <’ they can be expressed in the following form:

é"'z.ﬁ" +C3; Z-! (173)

L™ ~
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%" = 11‘ 3.5 (17b)

Substituting (172) and (17b) into (16) and defining the following laminate matrices:

o4 T .
H s Z‘ Ts H T, (18a)
b (2] L haad b d
~ ;1" .
q * Z . § T“ (18b)
Lt g
N .. :
XY NCAFIRE RIS
X (18d)
Z’ * (Y V) ‘é é -‘

leads to:

The = £, ) hAHA L RE A G LR AR j (19)

Recalling that the 8's are independent from element to element, the stationary
condition of I

with respect to SL eliminates the stress parameters on an element
level. Therefore, for an arbitrary 58L # 0:

L-H'G4. -H'E T

~ LS X

(20)
Substituting this back into equation (19) yields:
! T -
am— - - k -
me = % ? /l il. ot #,L ‘g.l. _Q (21)
where:
™ - I
k=g H' G (21a)

"3
»w

/'\
o
4
&

'
by
~’

N

(21b)
e ~~

e et TN TR o 4 S
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define the element stiffness matrix and the element load vector (due to E; ) re-
spectively.

After assembly of all elements, the solution of equation (21) results in the
values of the nodal displacements. Stresses can be found by using (20) to obtain
the laminate B's, (l17a) to obtain the layer B's, and finally using (11) for the
stress field.

B. Displacement Interpolation and Enforced Displacement Continuities

The same high order through thickness displacements assumption used in [82 and
732 for the displacements v and w (in the y and z directions respectively) is util-
ized in this study. Furthermore, the u displacement (in the x direction) is chosen
to be of the same form as the v displacement. The position of the nodal displace-
ments for each layer is shown in figure 2b. Note in figure 2a that the total height
of the laminated element ;s H, and the total length is & . Also shown is the z co-
ordinate for the bottom of layer i which is designated hi, and that for the top as
hi+1' For convenience, a local coordinate, 7, is defined whose origin is at the mid-

surface of each layer. The local system is defined such that:

L |
= h' + he, =22
g hi - hi, y e (22)
where r o= -1 at z = h
> - i
g =1 at z = hi+1

The displacement assumption in terms of the local coordinate §, where the dis-

3 . . 2
placements u and v are of order z~ and the displacement at w is or order z°, is

’

given as:
ri(r)e 7o [("+J’+ 172 .97 ) v e (9-217 - 9742170 ) !

2 (94278 - 97277 ) gt + (-1 =T+ 1%+ 7f')v;‘] (r- Y )

ANoE !
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Fig. 2 Element Geometry and Degrees of Freedom
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where the u displacement, as previously noted, is of the same form as the v dis-
placement.

This displacement interpolation insures compatibility between elements. To en-
force displacement continuity between layers, however, the nodal displacements for
layer 1 must be related to those of layer i+l. As can be seen from figures 2a and

2b, this would require:

¢ col
(g, o, ws) = (u, v, W) (24)
This is the expression which relates the layer degrees of freedom to the laminate
degrees of freedom and it defines the transformation matrix I;- used in (17b). When
the nodal displacements are given the ordering,

gf
¢ . H
# % (25)
:?JM
where Ei represents the displacements at the bottom node of the layer and El+1 Te-
presents the displacements at the upper most node of the layer, the matrix Tﬁ be-
comes a Bcolean matrix. The products defined in (18b) and (18d4) can therefore be
accomplished by the use of assembly pointers which simply position the layer contri-

butions into the appropriate laminate positions within G and Js.



It should be noted that the displacement interpolation is written in terms of
the normalized coordinate, 7,and consequently the matrix P, which is defined by
this interpolation using the strain displacement relations, is also in terms of
Z. In order to perform the integral (15b), a transformation of coordinates must
be defined. Furthermore, since all of the integrals will be evaluated by use of a

Gauss integration scheme, the limits of the integral must be from -1 to 1. There-

fore, an additional local coordinate, S, is defined in the y direction such that

Y= z 2 (26)

The Jacobian of the transformation is then given as:

T e g (hi ~hiy) @n
4

i . . . X
Thus, the B and Tﬁ matrices have been defined. It remains to define the stress
assumption and the continuity requirements placed on stress and strain.

C. Stress Assumption and Enforced Traction Continuities

The basic stress assumption used in [8] and [9] have been employed here where

g, g_, o __ are of order zs, zs and 24 respectively. The additional stress compo-

y: zo yz
nents used here, namely gxy and ze are chosen to be in the same form as cy and

7yz respectively. Although the basic stress assumption is the same, it has been
recast in the following form for reasons which will be discussed subsequently. Also,

recall that the following stress assumption is for a typical layer i:
K - L g4 -
(/4 -A )(l+f)(l-.f)y + 7% (34, 4+ 24, 7’) (28a)
/
(- N(1-87) - T (3L e 24 (1214 1) (1057

Tl B A D A0 20000 2)
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where ?i for convenience is defined as the half thickness of layer i. Also, the

stresses defined above exactly satisfy the equilibrium equations (equations (10)).

PR L LG L o AP R RN . T




24

The special form into which the stress assumption has been cast easily allows
the identification of all the stresses at the interlayer boundaries. This greatly
simplifies the enforcement of given stress/strain continuities along the layer in-
terfaces. The interlaminar transverse shear and normal stresses are only related

to appropriate 8 terms at the interlayer boundaries.

Ar 2%h; oe J=-I . ‘ ’/g */A 7 +/5s
a /54 */gr .
x‘s /Z'b ../g’ 4-/&. Y

. - el — s it
ar 2ehi, ot T=1 7 '/3' “A 7+’£' Y

i "*“
= +
. — s -_— et
%= ‘/" A x*/s
Similarly, the inplane stresses are only related to appropriate § terms at the in-

terlayer boundaries.

i A R Ai . Qi g
o ach e Teet i G A Ay e By ep

a2 AL = .
& 2ohi ok XY=/ A./J‘ 7{77/5’7 (30)
0'.’ A:: +/5NY"')7‘7+/A“'7

In this section, only the enforcement of interlaminar stress continuities and sa-
tisfaction of traction free conditions along the top and bottom of the laminate
will be considered. The purpose for casting oy and cxy in the above form at the
layer interfaces will be discussed later.

The traction free conditions along the top and bottom of the laminate are easi-

ly satisfied as a result of the form of the given stress assumption (28). Referring

to equations (29) these conditions, along the top of the laminate, result in:
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where N is the total number of layers. Enforcing the same condition along the

bottom of the laminate leads to:

— -y -y — — ] b-udi ) ! ! -
FARY Y AV AR ARy RV A 1)
This is accomplished by not assembling the contribution of these 3's into the
H and G matrices by setting the appropriate assembly pointers equal to zero. Thus,
the traction free conditions along the top and bottom of the laminate are exactly
satisfied.

Continuity of tractions across interlayer boundaries (i.e. cz, of axz) can

yz’
be satisfied exactly by again considering equations (29). If the stress parameters

are ordered in the following manner: )
A

0'7- 6(0-1, )

A St A

T2 - - ' (32)
. Txe ;3\(:-1, -16)

d;y -—!

where the form of P is defined by the stress assumption, then the transformation
matrix T: is a Boolean matrix and the matrix C: is zero (see equation (17a)). A-

-~

gain, since the transformation matrix is Boolean, all matcsix multiplications in-

volving the matrix I: can be accomplished, as previously noted, by the use of as-

sembly pointers.

‘.
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Also, as previously discussed, all integrals involving the P matrix will be e-
valuated using a Gauss integration scheme, and therefore use will be made of an
additional local coordinate, s, and the Jacobian of the transformation.

In general, therefore, the complete formulation of a multilayer structure sub-
ject to defined displacement and traction continuities across interlayer boundar-
ies has been described. Besides the conditions already satisfied, however, use
can be made of additional stress/strain conditions which can be imposed on the
structure to perhaps provide a more realistic solution to the problem. Two of
these more specialized conditions are the enforcement of a traction free edge
condition along the right and left edges of the laminate (Figure 1), and the en-
forcement of certain strain continuities across interlayer boundaries. These ideas
will now be discussed in more detail.

D. The Tractjon Free Edge Condition

The traction free edge condition along the lines y=b and y=-b as shown in fig-
ure (3a), is enforced in a manner similar to that of the traction free edge con-
ditions along the top and bottom of the laminate. The stresses to be considered
along y=b and y=-b, however, are not of a special form as was the case along the
top and bottom of the laminate. The y locations of the traction free edges must,
therefore, be substituted into the general stress assumption (28) in order to de-
fine the 8's which must be set equal to zero in order to enforce the conditions.
To facilitate this procedure, a local y coordinate is adopted at the left edge
of the lamimate. Also, due to the symmetry of the laminate about both the y and z
axis, only the upper left hand portion of the laminate need be analyzed. There-
fore, as shown in figure (3b), the line y=0 is the only traction free edge which
need be considered. As a consequence of the translational invariance of the ele-
ment being used, the stress assumptions are written in terms of y and the trac-

tion free edge condition is applied to this set of equations resulting in:
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Ac A
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T (j=0dz0 \ Al =p" =fu=f, =45 =0 (33)
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Thus, if the elements are numbered from left to right (figure 3b), the contribu-
tion of the above 3's (33) into the H and E matrices is not taken into account for
the first element. Again, this is done through the use of assembly pointers. All
other features of the element remain unchanged, therefore this traction free edge
(TFE) element remains compatable with the other elements to be used in the mesh.

One additional consideration is of importance when using the TFE element. The

work done by the tractions is given by:

T . (34)
A Gi.
as it appears in equation (19). For the case of the TFE element, where no work is

done along the left edge, (34) takes on the special form:

T !
B Lo a.] bA (35)
3
3
where ii and qf represent the displacements of nodes 1 and 2 respectively. Substi-

tuting the above form of the G matrix into the expressions for the element stiff-

ness matrix and the element load vector leads to:

0 8- (o (36)

R &

o ©

Recalling that the first element is taken to be the TFE element, the general form

of the system of equations after assembly is:
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i
0 - {0 |
~ ‘1'", (37)

2
o k'dlg Q |

where K*, q*, and Q* represent the assembled stiffness matrix, displacement vec- ‘
tor, and load vector after the contributions due to node 1 are removed.
In practice, this system of equations can be solved in the conventional manner l

by setting the displacements at node 1 equal to zero and setting the diagonal stiff-

ness terms equal to unity. This results in the system of non-singular squations:

l
;., 9.. Q = Q. (38)
o xJLlg 9

As can be seen from equation (20), the stress parameters will also be independent

of the displacements at node 1:

Ex

&N

(39}

- 1 -t

go-Lo Ael)y -5
<
3;

The calculation of the stresses (11) which are the quantities of interest,
will not be affected by artificially constraining the degrees of freedom at node
1. Thus, the singularity which occurs in the assembled stiffness matrix, as a re-
sult of the enforcement of the traction free edge condition, can be eliminated in

this way., Solutions for qt can subsequently be obtained, but they are not calcu-

lated or used in this analysis.

E. The Strain Continuity Condition

In addition to the stress continuities previously defined across layer inter-
faces, certain strain continuities which are known to exist, can also be exactly
enforced. The layers of the laminate are assumed to be perfectly bonded and there-

fore, the u and v displacements along any xy plane (see Figure 1) are smooth con-

2y

R L bt
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“tinuous functions. If this is the case, their derivatives with respect to x and y

are also continuous. Applying this to the linear strain-displacement relations,

based on the displacement field given in (9), shows that both sy_and Yiy are con-

tinuous across interlayer boundaries.

Using equations (3) and (4), and the definition of the matrix R given in (6) and

(7), leads to the following expressions for: sy and Yiy (from stresses):

A
ér*k"q-r +kud; +£I$’¢;y+ _z_ ex (40)
Se -
‘3‘,,=€,,0‘;+?n<73*£“d‘+ ‘S"Te!
Continuity requires (see Figure 2a):
éy (z-/u)-e, (z2=h ) -0 | (41)

by la-h) - ¥ (2 ki)=0

Substituting (40) into (41) and recalling that c, is continuous across interlayer
boundaries (i.e. c; = c:-l = 0,) leads to:

Ral.d'; - ) &7 ‘-'07 ! + t;;bd' - 6{ X)' - "'(Pui ‘f::“‘ )0';

a.-l

4-( ~ 4 S-H ) éx 20
(42)

‘. ‘: L'-( ‘ b‘ - -
Rﬂd; ‘f;, d;‘q*sz xy ‘er.f Txy '*(fa ‘f,—;‘.)G;
& Ib.-'
*'( K éx =0
where all stresses are evaluated at 2z = hi
Further, substituting (30) into (42), and collecting coefficients in y, results

in four sets of two simultaneous equations in @'s and B8's. Solving each set of e-

: . : s I =
quations, eight of the @'s are expressed in terms of the remaining 8's and 3's
This results in the following relationships between betas of layer i and i-l

required to satisfy the strain continuity condition:

Al A i A it =
‘/Z = kF /5; *‘eév‘/g:s *RH /34 * 8T &y
’Z‘; - ”/é:,‘-‘ +la,/2,,m +Kﬂ/i;.

(43)
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The laminate betas correspond to the set of stress parameters remaining after the
interlayer traction and strain continuity conditions have been satisfied. Equa-
tions (43) define the transformation matrices Ii and gi shown in (17a). Again,
the calculations given in (18) are accomplished both by use of the transforma-
tion matrices and by the use of assembly pointers. All displacement calculations

are now done with respect to a complete set of laminate betas.

Recall that stresses however are assumed independently within each layer and,
therefore, must be calculated independently for each layer. This requires that the
original set. of layer betas (for each layer where stresses are calculated) must be
calculated using (17a) where all quantities on the right hand side are known.

.
Prior to the consideration of the strain continuity condition, the transformation
matrixtji is a Boolean matrix and all terms in Ei are zero. When this is the case,
the actual values of the layer betas remain unchangad, and it is only a matter of
identifying those betas in the laminate set of betas which correspond to each sub-
sequent layer by use of the assembly pointers. In the case where strain continutiy

is enforced, however, 8 and 89_12 have been redefined in terms of the set of

1-4
laminate betas. The relationship given in (17a) must, therefore, be used in con-
junction with the assembly pointers to recalculate the layer betas to be used in
the stress calculation. After the layer betas have been identified, the calcula-

tion of stresses is identical to that previously described (11).
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3. Examnle Problems and Numerical Results

Three basic approaches can be defined for the analysis of cross-ply and angle-
ply laminates. Each approach exactly satisfies traction free edge conditions along
the top and bottom of the laminate and continuity of displacement and interlami-
nar stresses across lﬁyer interfaces. The element which satisfies these conditions
will be termed the standard element. Other special stress and strain conditions
are then imposed in addition to the above continuities and traction free conditions.
The three analysis used are: 1) NO SPECIAL ELEMENT (NSE) analysis where the stan-
dard element 1s used throughout the mesh, 2) TRACTION FREE EDGE (TFE) analysis
where one special element exactly satisfying free edge conditions along the side
nf the laminate is used in cdnjunction with the standard element throughout the re-
nainder of the mesh, and 3) STRAIN CONTINUITY (SC) analysis where the continuity
of inplane strains across interlayer bocundaries is exactly satisfied for all ele-
ments.

Five test cases have been chosen to illustrate the effects of exactly satisfy-
ing different stress and strain conditions. Due to the symmetry of the plane of
analysis, only one quarter of the cross section need be modeled. As previously
stated, the upper léft hand plane is analyzed in order to facilitate imposing the
traction free edge condition. To be consistent with available results on this top-
ic, results corresponding to the upper right hand portion of the cross section are
plotted. Thus, the center line is along y=0 and the traction free edge is along
the line y=b (Figure 3a). The test cases, shown in figure 4, are the 4-layer cross-
plys E90/0]s and [0/90]5, the 4-layer angle-plys [45/-45]s and the 8-layer lami-
nates C90/o/-45/45]s and [45/-45/0/90]5.

The finite element model is shown in figure 3b. The plane of analysis is broken
into two regions. More elements of a smaller size are placed in region one near the

traction free edge where the stress distributions are of the greatest interest.
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In the 4-layer cases considered, region one, where 21 = .25 b, is subdivided
into 25 equal elements, and region two, where 22 = .75 b, is subdivided into 5 egual
elements: This mesh was chosen on the basis of convergence studies which illus-
trated that the use of additional elements showed no appreciable change in the
predicted stresses [9]. In analyzing the 8-layer cases, the use of 30 elements
is computationally prohibative. In order to retain accurate stress predictions
near the free edge, the size of region one is reduced such that 21 = ,1b and 22 =
.9b. Region one is then subdivided into 5 equal elements and region two is sub-
divided into 6 equal elements. Additional convergence results, based on a 4-layer
laminate, show that only slight changes occur in the stress predictions when a
more refined mesh is utilized. No subdivisions are needed in the z direction, be-
cause the element is developed to be multilayered.

The total width of the ply is 2b while the height of each layer is h. The ratio
of width to height for both the 4-layer and 8-layer laminates considered is 4.

The boundary conditions are also shown in figure 3b. Symmetry conditions along
?Eb (all u and v=0) and along z=0 (all w=0) are imposed. The elastic constants

with respect to the principal material axes of each ply for all cases considered

are:
E,. = 20.0 x 10° psi
11 = 20. P
- 6 .
Eyp = 2.1 x 107 psi
v =V =y = 0.21

12~ 731 23
= Gy = Gyq = 0.85 x 10° psi

The first case considered is that of the cross-ply laminates, C90/0]s and [0/
90]5-For the crees-ply case, the u displacement is a function of x only. Conse-
quently, referring to the expressions for the v and w displacement given in (9),
the inplane stresses vanish (i.e. cxz = ny = 0). Distributions of all stresses
(i.e. Jx (90o layer), Jx (Oc layer), Oy (90o layer)}, dy (0o layer), s= and cyz)

versus v along the 0/90 interface are shown in figures 5 and 6 for NO SPECIAL ele-

u M,
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ment, the TFE element and the SC element. Also shown as a basis of comparison, is
a solution by Wang based on a singularity eigenfunction expansion with boundary
point collocation (11].

For both the E90/0]s and [0/90]s cases all three approaches agree with lamina-
tion theory away from the free edge which is expected. The differences between the
solutions become apparent’as the free edge is approached. For the [0/90]s case
(Figures 5a through 5c), the solutions for Sy in the 90° and 0° layers agree for
the 3 analyses. The solution for a, essentially agrees, although 9, for the TFE
element deviates slightly from the other two approaches after approximately ylb =
.9. Solutiocns for cy and Gyz are nearly identical for the NSE and the SC approaches.
In the TFE analysis, these stresses are forced to zero. In the other two cases,
both cy in the 90° layer and gyz tend toward zero despite the fact that this
condition is not exactly enforced. The value of o, in the 0° layer, however, stays
near its constant value near the free edge for the NSE and the SC approaches and
does not tend toward zero.

Similar results are observed for the [90/0]s cases shown in figures 6a through
6c. Again the results for g, are similar for all three approaches, and the results
for g, are similar although slightly different after approximately y/b = .9. Also,
cy in the 0° layer and Uyz for the NSE and SC element again tend toward zero, al-
though they are not forced to do so as in the TFE element case, whereas cy in the
0° layer does not.

Notable differences between the [:90/0]s and CO/QO]s cases occur in the results

for o, and o __. For the stacking sequence [0/9035, cy, is predominantly negative

Yz
and rises to around the zero point near the free edge, while for the [:90/0]s case,
the opposite occurs; however the two curves are not mirror images. o, for the E0/90:s
case dips negative between about y/b = .6 and y/b = .9 and then rises up from y/b =

.9 to the free edge. For the stacking sequence CQO/OZS, 3. is positive up to about

y/b = .8 and then dips negative, rising again to about zero at the free edge.
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The important differences between the two different stacking sequences, and the
three different approaches is illustrated by looking at through thickness stress
distributions. 9, cy and cyz are plotted through the thickness in Figures 7 and
8. Delamination of these multilayer structures is believed to be caused by a combi-
nation of stresses near the free edge. Consequently these distributions are of
interest.

For the [0/90]s laminate, the distribution of o, shows about the same shape for
all three cases. The maximum positive value is larger for the NSE and SC analyses
than for the TFE case, where as the maximum negative value is larger for the SC
and TFE approaches. The NSE analysis remains negative within the second layer, while
the other two cases become positive and then become zero at the top of the laminate
along with the NSE approach. The stresses GY and cyz shown in Figures 7b and 7c¢
respectively are forced to zero in the TFE element case. cy agrees very closely
for the other two approaches, tending toward a large negative value in the 90° lay-
er at the interface, and a large positive value in the 0° layer. The distribution
of cy’ oscillates about the zero point. The agreement between the two approaches,

r4

NSE and SC, appears poor, but note that gyz is an order of magnitude less than the
other stresses in question.

The EQO/O]s laminate shows a much different distribution of g, Again, however,
the three approaches show the same general distribution with some disagreement in
the first layer. The distribution, however, is predominantly compressive, whereas
the distribution of 9, for the E0/90]s laminate is predominantly tensile. The shape
of I, for the EQO/O]s laminate is the reverse of that for the EO/QO]s laminate.

The two appraches, NSE and SC, agree well. Recall that cy and cyz for the TFE case
are set equal to zero along the free edge. The distribution of cyz again oscillates
about zero, and is an order of magnitude smaller than the other stresses.

Recall that high order through thickness stress distributions have been assumed

within each layer; dy is of order 23, I, is of order zs and Gyz is of order 24. 1f
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lower order assumed stress distributions could accurately predict the actual stress
distributions, computation time could be reduced without effecting the results of
the analysis. If it is possible to reduce the order of the stress assumptions, from
equilibrium considerations, each stress component must be reduced by the same order.
It is evident from Figures 7b and 8b that the order of cy can not be reduced with-
out loss of accuracy. Therefore, the high order stress distibutions which have

been used are in fact necessary.

The high order displacement interpolations might also be lowered to save on com-
putation time. Through thickness distributions of v and w displacements along the
free edge and away from the free edge for the NSE and SC approaches are shown in Fig-
ures 9a through 9c. In this analysis the v displacement is of order :3 and the
w displacement is of order 22. The v displacement is chosen one order higher than
the w displacement so that their rebkative through thickness contributions to Y}z
will be of the same order. Away from the traction free edge (Figure 9¢) the w dis-
placement is only of order z. To be consistent, therefore, the v displacement would
be of order :2 although it appears almost constant in Figure 9c. At the traction
free edge, however, it appears that both the v and w displacement could be reduced
by one order of z without appreciably effecting the accuracy of the displacement
and stress distributions.

The next case considered is the angle ply [45/—45]s case. In this case, results
by Wang and Crossman [4] are presented as a basis of comparison where available. In
that analysis, constant strain triangles were used to model the problem. Later re-
sults by Herakovich, Nagarker, and O'Brien (7] , also using constant strain tri-
angles, show results which differ somewhat from Wang and Crossman when a more
refined mesh is used. The results for this case are presented in Figures 10a through

10f. Included are distributions of o _, Gy~' g__ and cty along the 45/-45 interface

- -

and through thickness distributions of S and c, along the free edge.

Figure 10a shows the distribution of s, along the 45/-45 interface. Results
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for the three analyses are very similar. At the traction free edge all the solutions
reach a large negative value. The TFE element reaches the greatest value while the
NSE and SC analyses give similar results at the traction free edge. It is of in-
terest to note that the Wang and Crossman results tend to a large positive value
while all of the results presented here show a large negative value at the traction
free edge.

The three approaches also show very similar results for the distributions of

Tyas Tyms and c‘v along the 45/-45 interface. Small discrepancies appear near the

’ N\

traction free edge for the distribution of ¢ . The TFE element is forced to have
a value of zero at this point, while the NSE analysis shows a small positive value
and the SC analysis shows a small negative value. The results for gxz show that
the TFE approach again gives the largest value at the free edge, while the results
for the other two.analyses are smaller and in better agreement. Note also that the
results for the SC analysis are slightly lower than the other approaches from
about y/b = .6 to the traction free edge. The differences observed in the distribu-
tion of ny between the three approaches 1is also near the traction free edge.
Here the TFE analysis is again forced to be zero. It also shows lower values from
about y/b = .85 to the traction free edge when compared to the other two analysis.
The NSE and SC analyses give essentially the same results but do not reach zero

at the traction free edge.

The three approaches again show similar results for the through thickness dis-
tributions of Oz and g, at the free edge. The values of Oz through the thickness
(Figure 10c) are all positive. The TFE element reaches a greater value at the 45/
-45 interface than either the NSE or SC analyses, but the relative shapes of the
distribution for the three appraches is the same. Again, some dissimilarities are
observed between the three analysis for the distribution of g, (Figure 10f). They
do agree well at the midsurface, where the maximum positive value of g, occurs. The

maximum negative value occurs at the 45/-45 interface, where the TFE element again
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reaches the greatest value while the NSE and SC approaches tend to have smaller
negative values.

The final cases analy:zed are the [45/-45/0/90]s and [90/0/-45/45]s laminates.
Again, Wang and Crossman results are included on the graphs where available. Fig-
ures lla through 11f show the results for the [45/-45/0/90]s case. The distribu-
tion of g, along the 0/90 interface and along the midsurface are plotted in Figures
l1la and 11b respectively. The three approaches give essentially the same results
up to the traction free edge where the NSE analysis drops off slightly. The results
for the distributions of-:v: along the 0/90 interface (Figure llc) and the distri-
bution of On along the 45/-45 interface (Figure 11d), again show that the thrse
analysis agree wéll up to the traction free edge. The distribution of cyz shows
the NSE approach dropping off again at the free edge. The TFE element drops down,
but then is forced back up to zero at the traction free edge, whereas the SC approach |
rises smoothly to zero. All the results for Tz rise smoothly at the free edge. The J
TFE element rises to the highest value while the NSE and SC approaches rise to smal-
ler vali ec which are again in better agreement.

Through thickness distributions of ¢, and o for the E45/-45/0/90]s laminate
are shown in Figures 1le and 11£. The TFE and SC approaches show tensile strass Zor
3: in the 90° and 0° layers, and primarily compressive values of c, in the -45° and
43° layers. The NSE analysis gives smaller tensile values in the 90° layer, but re-
mains tensile up to the top of the 45° layer. Agreement between the three approaches
is slightly better for Tzt Here only the value at the 0/-45 interface, where the
TFE analysis shows a larger negative value, and the value at the 45/-45 interface,
where the TFE analysis shows a much higher positive value, differ significantly be-
tween the three analysis.

Results for c, along the 0/90 interface, and g, along the midsurface are shown in

Figures 12a and 12b for the ':90/0/-45/453s laminate. Again the three analysis agree

well up the traction free edge. The NSE approach drops off to give a negative value




oreurmer “[06/0/sk-/Sb] 103 siInsay ssemg 1 ‘B4

%(06/0/5v-/S¥) HOJ IDVAUIINI 06/0 ONOTY A SNSHIA 20 (e)
—0€-

X
D 4 1 c—l

0L 60 80 L0qgq 90 G0 v¥0 €0 ¢0 Vo

q/k _.|||_V¢LQ‘_|I_|_II|I._.I||_|\\||\ ||||| e .9|||_.|u€u—|lll._bl|ll..i = 00

d o1
g X oz
NYNSSOHD ‘'ONVYM X 0t
ALNNIINOD NIVHLS © -
INGWI13 341 O
INIWTII MIO3IIS ON O .
00z | X —0°F

X3q9-0x% 0




(ponutiug))

Y 4
*(06/0/S¥-/S¥) HO4 JOVAUNSAIN THL DNOTV A SNSHIA “O(a) -
X X
l
X X
X -
. X
L0160 x%m\mmﬂum.o!émnm-awmn.-mm.namb. __¥0g
£_|Inql\ﬂ_ | _ ] V1 T
o
° —
Q
Q
NYWNSSOUD ‘ONVM X
X AUNNIINOD NIVHIS ©
ININ3I3 341 0 ]
N3NNI MD3ds oN O
o.R«x |

1t 314

ot-

Oc¢-

ot

0o

01l

0¢

ot

ov

0'S

Z
g_OLX O

X3




64

(panurjuo)) 11 "3ty

ZA
$(06/0/S¥-/SP) HO4 IOVAHIINI 06/0 DNOTW A SNSHIA “"O (9)

NVINSSOUD 'ONVM %
_X ALNNILNOD NIVHIS ¥
¥ g IN3IW313 341 O
Q N LN3WT13 ™D34ds ON O
|} [ // x
~
~
-- d/l

— G-
—ot-
Q
<
N
el
0.
N
ol
—{s0- *
00




_ O
| (ponuriuoy) 11 "Iy
—0't-
mam\o\mv-\mz HO4 IOVIUIINI Sp-/GF DNOTV A snsHIn 2% 0(p)
! ol 60 g0 L0 c.c GO y0o €0 c0 0] .
: VAT T T g Frok RO —F-90 @00
w e ai
| %ﬁ«
]
w Q
, —0't X
\_ X
| <
| \ N
~ % x3_
w ! NVINSSOHD ‘ONYM ¥ .
4 m ALNNILINOD NIVHLS © Lo ¢
4 ANIN313 341 0
IN3INTT13 WD3ds onN O
—loe
e A, F - -

e e
o wa g

o i

SR

R B

. Ao




o o —— e = . e S g At e e A

66

(penutiuo)) 11

S(06/0/Sb-/S¥) HO4 a=A 1V Z sSNSHIA 20O (o)

¥3g.0xZ0
ot 0c¢c ol 00 0-
_ ¥ m. | |
& %
\
%, o,
L N
l,g’
",
,gv, .
C/ /o?’b.ul 0¢
o M
Q ak
R N,
S
f -\v
ALNNILNOD NIVHIS ¥ A sum.ﬂ
INIWTI3 3410
INIWI3 TVID3JS ONO

‘314




67

s
(06/0/GV-/Sv) HOd4 qQ=A 1V Z SNSHIA
xMc-Qx:O

o€ 02 0l 00

(papnrouoj) 11

L4

o

0t-

_ ] ] ' ]

ALNNILNOD NIVULS ©7
AININ3IN 341 0
ANINTNI3 ™O3ds ON O 0¢ —

- . s mp e -

‘314

PR ek

e




68

sreuymey “[Sb/SY-/0/06] 103 sIInsex sselis 7l 314

S(gy/gp-/0706) HO4 IDV4HILNI 06/0 DNOTV A SNSHIAA 20y (e)
— mol

h@
%x,
] X o
L 0460 w80 10 90 S0 ¥O €0 %O 10O o
q/ _ﬁvﬂ | 0 IVAII—VrMVImN_\.‘\UQH\lIl* II*IIQ*!!II—..T

X34.01x%0

4
X

NVWSSOUD 'IONVM X
ALNNILNOOD NIVHLS V
X INIWIN3 341 O

ININT13 ™MO3dSs ON O




69

(panuyiuo))

S(SP/SP-/0/06) HO4 FOVHNSAIN IHL ONOW A SNSHIA "O(@)  —

A GRS AT

0'S-

—0t-

NYHSSOHD 'ONVYM ¥ —0¢-
7o) ALNNILNOD NIVHLS ¥
® ININ313 341 0
- IN3NTN3 ™O3ds ON O

§ o

i

oL 60~ 80 L0 90 SO ¥O0 €0 <20 10
VAT ™

,x.{_.m-- Y et ks il Rt 00

Z
9-0‘! Q

X3



70

for I, along the 0/90 interface while the TFE and SC analysis rise to positive val-
ues. Along the midsurface, the TFE and SC approaches reach larger negative values
than the NSE anlaysis at the free edge.

Distributions of I, and oxz through the thickness at the traction free edge for
the E90/0/-45/4S]s case are shown in Figures 12¢ and 12d. The NSE analysis again
shows smaller values throughout the laminate for g, Just as in the C4S/-45/0/90]s
case it does not show the more definite peaks which are found in the distributions
for the TFE and SC approaches. The results for the TFE and SC analysis show that
s, is compressive throughout the first three layers and becomes tensile in the 90°
layer. The NSE analysis remains compressive up to the top of the 90° layer, but its
value remains small. The distribution for Oz demonstrates the same behavior as that
of the [45/-45/0/90]S case between the three approaches. Large negative values, a-
jain for which the TFE analysis shows the largest occur at the 45/-45 interface.
The TFE approach also shows the largest positive value at the 0/-45 interface where
all three approaches reach the maximm positive value through the thickness.

The differences in results observed between the [45/-45/0/90]s and the [90/0/
-45/45]s laminates are best illustrated by considering the through thickness dis-

tributions of S

-

and o, The laminate stacking sequence where the 90° layer is

on the outside shows predominantly compressive behavior and the most significant
peaks in stress are compressive. The stacking sequence where the 90° layer is on
the inside, however, shows predominently tensile stresses and all significant peaks
are tensile, These are very important observations considering that the interlami-
nar stresses near the free edge are believed to be the cause of delaminati#dn in

these types of laminates,
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4.

Summary and Concluding Remarks

An assumed stress hybrid formulation has been presented for the problem of com-
posite laminates under uniform inplane strain. A special purpose multilayer ele-
ment has been developed which satisfies varicus stress and strain conditions ex-
actly. The multilayer element has been used in conjunction with three basic ap-
proaches to the problem; 1) NSE: a mesh of so called standard elements which satis-
fy continuity of interlaminar stresses across interlayer boundaries and traction
free edge conditions along the top and bottom of the laminate are used thoughout
the mesh, 2) TFE: the first element in the mesh is modified to satisfy the trac-
tion free edge condition while the remainder of the mesh consists of the standard
element, and 3) SC: the standard element is modified to satisfy continuity of in-
plane strain along interlayer boundaries and the entire mesh is comprised of these
elements. .

Stress results for five laminate test cases, [90/0]5, EO/QO]S, [45/—45]5,
E90/0/-4S/45]s and E45/—45/O/90]s, have been presented and discussed. Basically
the three approaches show consistent results, The stress contributions which are
forced to zero in the TFE analysis in most cases also ténd toward zero in the NSE
and SC analysis even though they have not been forced to zero. Exceptions to this
are o, (0° layer) for the [0/90]5, [90/0]s laminates and Oy for the [45/-45]s
laminate. In general, the TFE analysis displays the most severe distributionms,
exhibiting the highest peaks in both the negative and positive directions. The NSE
approach behaves well except in the analysis of the [90/0/45/-45]s and [45/-45/0/
90]; laminates where the results for the NSE approach drop off at the traction free
edge and therefore do not agree with the TFE and SC approaches. Looking at the
through thickness plots of c, and Tz along the traction free edge, also for the
[90/0/45/-45]s and C4S/—4S/0/90]s laminates, it is apparent that the peaks in stress

exhibited by the TFE and SC approaches are smoothed out by the NSE anlaysis. This
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suggests that in the analysis of more complicated laminate stacking sequences,
some special conditions must be exactly satisfied in order to obtain con-
clusive stress distributions.

Some general observations can also be made concerning the differences
between laminate stacking sequences. It is observed when the 90° layer is
on the outside (i.e., both for [90/0]S and [90/0/45/-45]S laminates) the
through thickness distributions for cz and Oz (for the angle-ply only)
show predominantly compressive stress values. Conversely, when the 90°
layer is on the inside the distributions for these stresses are predominant-
ly tensile. This suggests that a laminate stacking sequence with a 90°
layer on the outside will be less likely to delaminate under an inplane
tensile load than one which has a 90° layer on the inside.

Three approaches have been used to solve the problem of composite
laminates under uniform inplane strain. All three analysis show basically
the same results. Observed differences do occur in the vicinity of the
free edge. It is not possible at this time to claim that one or the other
of the analysis provides the correct detailed stress distributions for the
problem in question. Conclusions of this nature must await an independent

analytical solution to the problem which, thus far, does not exist.
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CHAPTER 3
A STUDY OF 8-NODE SINGLE LAYER PLATE

ELEMENTS WITH A STRAIGHT TRACTION-FREE EDGE

ABSTRACT

The elements developed and tested in the last chapter were based on a
plane 2-D theory. For general multilayer plate problems involving free edges,
a multilayer plate element is required which satisfies the traction-free
conditions along one of its edges. The present chapter describes a study
which is needed to establish the basis for development of such a multilayer
element. Here eight-node single layer pure bending plate elements are
developed for which the traction-free conditions are exactly satisfied
along one straight edge. Transverse shear deformation and transverse shear
and normal stresses are included so that the elements are applicable to both
thin and moderately-thick single layer plates. Various plausible stress
fields are defined, and the best stress field (element) is identified by
comparison of results for selected example problems. The results obtained
in the computationally efficient pure bending study can then guide the de-
velopment of a multilayer element, where stresses and displacements are
assumed independent within each layer. In such an element, the present
stress/displacement fields must be extended to include stretching contri-

butions.
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1. Introduction

In the analysis of multi-layer, laminated, composite plate structures, it has
been observed [1,2] that near the traction-free edges of such structures severe
gradients in the interlaminar stresses may exist. These gradieﬁts can lead to de-
lamination as well as other forms of laminate failure. Therefore, it is necessary
that accurate representation of the stress fields near traction-free edges be ob-
tained. In employing the finite element method to solve this class of problems, ac-
curate analysis in the vicinity of traction-free edges appears to require the de-
velopement of a special purpose, multi-layer, plate element which exactly satisfies
the traction-free conditions along at ‘least one edge. (i.e. normal and shear stresses
are zero along one edge of the element.)

Historically, plate elements have been based on the assumed-displacement formula-
tion. In this approach, displacement boundary conditions are exactly satisfied while
stress conditions are satisfied only in an approximate (weighted, integral) sense.
Alternatively, in the assumed-stress hybrid formulation both stress and displace-
ment boundary conditions can be satisfied exactly. The hybrid-stress model is a two-
field principle in which equilibriating intraelement stress fields and compatible
displacement fields are assumed independently. The stress parameters are eliminated
on the element level and a conventional stiffness matrix results [3]. In view of
the independent assumption of stresses within each element, it is possible to ex-
actly satisfy traction-free conditions by appropriate choice of the stresse fields.
This feature establishes the assumed-stress hybrid formulation as a viable approach
for developing such special purpose elements. In many cases [4,5], ,hybrid-stress
elements have been found to yield improved convergence and intraelement stress pre-
dictions in comparison with analagous assumed-displacment elements.

The hybrid-stress model is also well suited to the development of multi-layer,

laminated, composite, plate elements. Stresses and displacements may be assumed in-
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dependently within each layer and appropriate interlayer displacment and stress
continuity conditions satisfied exactly [6,7]. Such elements have been shown to be
applicable for up to moderately thick laminates [8]. Transverse shear effects can
also be included in a less general manner (i.e. on the laminate level [9]). These
hybrid-stress elements have been found to be more accurate than comparable assumed-
displacment elements [10,11].

Based on these observations, the hybrid-stress model appears to be the ideal choice
for the development of a special purpose, multi-layer, traction-free edge, plate
element. However, before this element can be developed, it is necessary to examine
the possible stress fields assumed in the element interior which satisfy the trac-
tion-free conditions along an edge. This is best accomplished by first considering
single-layer, isotropic, plate elements. Once the best stress fields are identified
for single-layer plates; the results can then be extended to multi-layer plates.

In general, the elements cited earlier in this discussion have beeﬁ based on 4-
node bilinear displacement fields. But, in a recent series of articles [12,13,14]

a family of single-layer, isotropic, plate elements based on the hybrid-stress mod-
el have been developed and tested. These elements use displacement distributions
based on Mindlin plate theory [15] and include all components of stress. Their ad-
vantage over analagous assumed-displacement elements is that the element stiffness
matrix exhibits correct rank and accurate solutions can be obtained for arbitrarily
thin to moderately thick plates. That is, difficulties regarding -excessive stiffen-
ing (i.e. locking) observed in Mindlin-type assumed-displacment elements are avoided
in the hybrid-stress elements. Similar advantages should be expected if multi-layer
versions.of these elements are developed for the analysis of laminated, composite
plates.

In the present study a single-layer, isotropic plate element is developed for which
traction-free conditions are exactly satisfied along one edge. After choosing an ap-

propriate displacement field, various plausible intraelement stress fields are de-

e o o e <o



" e ———— s e

79

fined. The resulting special purpose elements are coupled with the compatible stan-
dard element to perform the analysis of several plate problems which include a trac-
tion-free edge. The performance of the special purpose elements is evaluated and
their potential value is assessed for the development of a special purpose, multi-

layer, plate element.
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2. Formulation, Displacement and

Stress Interpolations

A. Basic Equations

To establish a basis for the present work, the assumed-stress hybrid formulation

for plate [12] will be summarized here. The hybrid-stress functional can be writ-

ten as:
NE N TR
n n n
where: g . ... stress vector
g. + - « » strain vector calculated from displacements, u.
8 . ... displacement vector
T prescribed tractions
S . . .. material property matrix
Vn . « » volume of the nth element
Scn. . « boundary of the nth element over which tractions

prescribed

Based on Mindlin plate theory [15], the through-thickness displacement distri-

butions are assumed in the form (pure bending only):

u(x,y,z) = zey(x.y) )
v(x,y,z) = -28 (x,y)

w(x,y,z) = w(x,y)

-where positive sign conventions for displacements and rotations are shown in Figure
1.

From (2), the generalized displacements ey(x.y), ex(x.y). and w(x,y) can be ex-
pressed in terms of a set of nodal degrees of freedom eyi’ exi’ and wy by construc-
ting a set of c® contimuous shape functions to use as displacement interpolatioms.

Applying the linear strain-displacement relations yields:

TPy R A e
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Figure 1. Orientation and Sign Convention for Plates
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where a is the vector of nodal degrees of freedom for an element, and the sub-
scripts "' and "s" refer, respectively, to flexural and transverse shear con-
tributions.

The stresses are expressed polynomial form in terms of a set of stress para-
meters, 8. The stress assumption is required to satisfy the'S-D homogenious
equilibrium equations. Moreover, for a plate loaded transversely at z=h (see
Figure 1). the free-surface conditions can be expressed as\

gz (XsY,*h) = 0
(x,.y.‘h) =0 (4)
g (X,th) = 0

Based on the equilibrium equations and the free-surface conditions of (4), the
through-thickness distribution of stresses is assumed in the form (corresponding

to pure bending contributions only))

Q'x L] i‘(xOY)

cy'ﬁy(xp}')
o= Z_(xY)
xy xy - .
2 2\[30, ,30 | . /n2.22
o (252) [ T3+ T ] - (P

2 2
9y = (A5 )[151 1"] (B2 )7 e
= e sn“zn) B o 332]-- i r A

e o s -

- ‘e -

From (5), it is observed that first the pelynomials for T, c'y, Exy are defined,
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after which &'xz, Fyz, o‘z are calculated from the last half of (5). Note that this

guarantees satisfaction of the 3-D homogeneous equilibrium equations. The stress

assumption can then be cast in the form:

.l S
qy F‘t i
-} g ~f
7 oal-zf e [EeE| B B
- 7, °xy § | P, B (6)
Xz
yz
t -

Substituting (3) and (6) into (1) and manipulating the result (described in de-

tail in [12] ) yields the stiffness matrix for the plate element:

Dl T T
k= BG, + 6070+ F-BY T (G ¢ 8 ™
where: - . o L
N I -r ! g - -T -
§ '[fsff“. : He fff-fgf‘n
A An (8)
n - - ™ : m———
. - "”-— . . .T"
T o= 2wy TR R A
G, " I P, 3 dA ~$ E An.
- An — e e e e
2 N (9
v Zh -
- v 1 "B o
Sg » 1/E ‘2 2 4
s vzZzh® v Zh S2 h 0
5 3 0%
- 0 0 0 2(1+v) Jd,

-~ < -t N — -
- - - - ~—— - . -

and An is the area of the midsurface of the nth element.

To implement this mumerically, it is common practice to combine the flexural and

transverse shear parts such that: G =G £ Gs

=g 35—~ (10)
Zh Zh
B @ T 8
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where: ° -
G = F‘r E dA
e e (11a)
_ ‘jriéni_ ,
N Hq' F
sod - STa (11b)
uAhl,
Then, the stiffness matrix is simply:
ko= e’rile (12)

The integrals in (11) are mapped from the x-y plane into the §-n plane and numer-
ically integrated by Gauss quadrature. .

With this information as a basis, we will next look into the formulation of the
displacement interpolation (; = Eg) and the stress assumption Q? = Eg) necessary
to yield a single-layer, traction-free edge, plate element.

B. Displacement Interpolation

In the work presented in references [12,13,14], a family of isoparametric plate
elements based on the assumed-stress hybrid formulation and using the Serendipity
family of displacement interpolations was developed and teste&. Comparison of the
elements in the family shows the 8-node and 12-node elements to be more accurate
per degree of freedom than the 4-node element C14]. However, 12-node elements are
generally perceived as too complex for practical applications and in applications
such as nonlinear analysis where computation time is strongly dependent on element-
level operations. In light of this, the 8-node element (element QHl [13] ) was cho-
sen to interface with the special purpose element.

In order to insure that displacements are continuous between elements, the dis-
placement interpolation of the special purpose element must be identical to the
displacement interpolation of the 8-node element; that is, éhe quadratic, Serendip-

ity shape functions. In the §-n plane, they are in the form:
WE,N) = ] N (E,m)w,
is1 * .
o (13)
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where Ni are the shape functions and eyi’ exi, w; are the degrees of freedm (gen-

eralized displacements) at node i.

For isoparametric elements, the coordinate mapping is of the same form as (13)
(i.e. quadratic); but, for the special purpose element, only bilinear mapping is
allowed. This permits it to take on a general, quadrilateral shape, but insures that
its sides remain straight. (This is a requirement of the stress assumption, and will

be explained shortly). So, the mapping is given by the bilinear shape functioms:

4
X, ’-ilei (E,n)xi
- - — T (14)

’ 4
y .1§1Nics 'n)yi

where (xi, yi) are the coordinates ¢of node i.

Recasting (3) into the §-n plane results in:

~ 3y 3 _3y 3\
° ° (& &-# &)
ax 9 ax 3
° ( B 0
(15)
0 0
" —IT v 3 3y 3 3x 3 ’ 3x 3 w(&.n)
v X X
0 - ( n sz- - Si- Fﬂ-> (FE ﬁ - rn' FE) ex(E-“)
S .  eamceccaeeccnees ceccocaa eeeamane ay(E.n)
? 3
(F =% &) 0 3]
Iz 3 ax 3
( o ;-g) -la| 0
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where |-J| is the Jacobian of the coordinate transformation.
Substituting (13) into (15) yields the B matrix (é-- Bg) which is used in the in-
tegral of (lla).

C. Stress Assumption

The choice of a stress assumptian for the special purpose element is not obvicus.
In this section, several plausible stress fields are developed. Subsequently, they
will be subject to nmumerical tests in order to identify the better stress fields,

First, consider a rectangular element with sides parallel to the x and y axes as
shown in Figure 2a. Letting x=0 be the tractién-free edge leads to the requirement

that:

0,(0,y,2) = 0
cxy(O,Y,Z) =0 (16)
°x_z__E°'Y"z)‘ = 0

Since these conditions must hold for all values of z, the relations in (5) can be

used to specifically require that:

-————

O (0,y) = 0 o (17a).
Oxy (0:¥) = 0 (17b)
T (007 = 0 (17¢)

Notice, that these conditions simply require that Ex’ Exy’ and sz be zero along
the line x=0 for all y. For all other x and y the stresses can vary according to
the polynomials which represent them in the stress assumption. In fact, for an ele-
ment of general, quadrilateral shape, it is possible, in a finite-element analysis,
tc; define a local coordinate system for that element such that its traction-free
edge is on the line x=0 (see Figure 2b). Then the conditions of (17) can be applied
(replacing x by x and y by ¥) in the local system and _15 can be formed in that sys-
tem. Finally, 3 can be transformed into the global system by the standard transfor-
z

mation of displacements [16]. Furthermore, equation (17) requires Ex, o-xy’ and Ex

to be zero on the line x = 0 (x=0) which is a straight line. Therefore, the sides of
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the element must remain straight in order for these conditions to apply. This ex-
plains why the coordinate mapping was defined to be bilinear: to allow the element
to take on a8 general, quadrilateral shape, but insure that its sides remdin straight.

Another criterion which the special purpose element is subject to is: the mumber
of stress parameters, ng, must be greater:than or equal to the mumber of degrees

of freedom, nq, minus the mmber of rigid body modes, n., i.e.:

2 n, - n (18)

g q T

This relation is a necessary but not sufficient codition to guarantee an element

stiffness matrix of correct rank [17].
To summarize, the stress assumption for the special purpose element is defined by

first defining the interpolations for 3;, E}, and E;Y as functions of in-plane co-

ordinates, x and y, such that the conditions specified by (17) and (18) are met. The
forms of the remaining stress components, E;z’ 3;2, and 5;, are then determined fram
the last three equations of (5). This guarantees that the equilibrium equations and

the free-surface conditions of (4) are satisfied exactly.

As a start1ng g point, consider the follow1ng stress £1e1d .

Cmmemea L ———— -

- e T 2
cx = 31 + 32x + 33y +- E4x + asxy + Bg ~‘¢ B7x3 + BBXZV + ngyz + Bloys +

4
1% ¢ Bypxiy ¢ f15%Y Y * 314x7 815’ :
- Ty _ 2 3 (49
Txy T Bre * B1rX * Brgy * Bigx” ¢+ Bypxy ¢ Ezf{_"*_BZZX * 8ypxly +

O .

Y

2 3 4 3 22 3 a4
BagXy * Bacy  * BogX + BogX 'y + BagX'y” * BogXy  + B4y

. —_ J— e E—— . - - -

- ' 2 2 3 2
9 *® B'1 + 6szx + B33Y * e34xy + B35x " Bssy + 337xy_‘* B3g% Y

‘Note that 5; and 6;7 are full quartic polynomials, while 3; is identical to that

used in element QH1 [13] (a reasonable starting point since 5} is not constrained

by (17)).
Applying equations (17a), (17b), and (17c) (after calculation of 5;2) yields, re-
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spectively:

B1=85=86™B10%815 = O -
e e e e - (20a)
516'318'8"1'525'3'0 o (20b)

P ———— —

T (20¢)
: 32..3-5-59-?15_ -- 0
After imposing equations (20) and remmbering the 8 i the stress field becomes:

-

- 5 \ 33" .
O’xta_lx OBZX)’+83X}' +54x #Ssxyo-ﬁ

= B aR.w 2 3 2 2

o 2

Xy B.,x + lesy + Bgxy™ + Blo®r + Bux + By X y + Byaxyt o 814x3-+ Blsxsy . 816x4

=, 2 (21).
.yz g, +Bsy+89y +Boy~+28 x4-282xy+283xy +SB x 4-3815xy¢"

4816:: ‘Bl +B X+282y+285xy+82£'

- 2
czazs +282y+283y +6Bx0685xy+128x +28 +469y+6810y 4-48 2x4-

885x7+68 xz+28 +28

o e mamam - —— ---.-..--- —-

LY

= . 2“"" 2
°y 31 +818x+89y¢80xy0821 *Bzy +Bsxy+ 824xy

¢ et — — m—— .

-x:-28x¢ 282xy4»22_ty 4-38x +SBxy+4Bx +Bx¢289xy+380xyz¢'

2
Blzx + -813x y ’ B 3 . - . . - - . i

- The 8-q relation of equation (18) for the 8-node plate elements is:

naznq-nr-24-3-21 (22)

Therefore, with 24 stress parameters, the stress assumption given by (21) satis-
fies the criteria established in equation (17) and (18) for the special purpose ele-
ment. Equation (21) can be cast in the form of (6) to yield tne f matrix which is
used in the integrals of (11).

The single-layer, traction-free edge plate element based on fhe 24-8 field of (21)

- - Cm ————— e
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will be denoted as element PL24.

In any finite-element formulation, a necessary first test of an element is to
check its rank by calculating the eigenvalues of the element stiffness matrix, k.
The number of zero eigenvalues should equal the number of rigid body modes in the
element. Any additional zero eigenvalues correspond to spurious zero energy modes
(i.e. additional kinematic modes, AKM) which must be eliminated or constrained be-
fore the element can be safely used in a general finite-element analysis [18].

Eigenanalysis of k for element PL24 shows 5 zero eigenvalues. With 3 rigid body
nodes, this indicates the presence of 2 AKM. Inspection of k reveals that the ro-
tational degreas of freedom at the center node along the traction-free edge (i.e.
node 8 in Figure 2) receive no stiffness contributions. This result is more appar-
ent by considering the more conventional expression for § (equation (1la)) calcu-
lated as an integral of tractions (from stresses) times displacements along the ele-
ment surfaces. All tractions (traction-free edge and upper/lower surfaces) which
multiply Gy‘ and ex‘ (rotational degrees of freedom at node 8) are zero. Hence, the
columns in G corresponding to ey‘ and ex’are zero, and the corresponding rows/col-
umns in } will be zero. Since these 2 degrees of freedom have no stiffness associ-
ated with them, they can be eliminated fram 3. Numerically, this is done by artifi-
cially constraining these degrees of freedom to be zero. Note that this operation
is equivalent to redefining the interpolations for By and ex to be linear along the
traction-free edge. This resulting stiffness matrix essentially has two fewer de-
grees of freedom so that, in this case, nq 2 24 - 2 = 22, This changes the require-
ment on mmber of stress parameters given by (22) to:

mgo2mg - n o= 22 -3 =19 (23)

A subsequent eigenanalysis of k for element PL24 with ey' and ex. constrained yielded
3 zero eigenvalues corresponding to the 3 rigid body modes. With the 2 AKM elimi-

nated through the constraint of ey.and Sx., element PL24 is a viable candidate for
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use as a single-layer, traction-free edge, plate element.

Numerical experience of several authors [19,20] suggests that the "optimum" num-
ber of Bi is near the minimum. Since ng 2 19 and ng = 24 in elcment PL24, it seems
reasonable to gxplore ways to reduce the number of Bi' Eliminating certain Bi can
result in the introduction of AKM, however. To determine which Bi can be safely elim-
inated, one must investigate the equation:

Ga= 0 (24)

where 9 is given in (11a) and a is a vector of generalized displacement parameters
(coefficients of the polynomial interpolations for displacement which can be unique-
ly related to the actual degrees of freedom) for an element. The solution a= 0
corresponds to the rigid body modes; any other non-trivial solution corresponds to
AkM [21].

Equation (24) was evaluated for element PL24 using a square of side length 2 (this
is a sufficiently critical geometry for investigating AKM). Based on the result,
the following observations were made:

1) Bg and B8, are_redundant; B;, can be eliminated since it represents a higher

or i .
der temm in OXX~

2) 2 of the following Bi can be eliminated: B., B., 84, 86’ B,y B 2,815. By ar-
guments of completeness, only_consider eli&ina%ing two of %he ﬁ1ghest order
terms: 63, 86 in Tes 815 in oxyf

3) 2 of the following B. can be eliminated: Bg, 813
™

, 814, 816. Again, only consi-
der eliminating two 3f the highest order térms: 8

13° P14> B1e 1 gy
With no further information, the iask of eliminating Bi from (21) and identifying
the 'best" traction-free eleement is one of trial and error. Numerous candidate
stress fields can be defined by elmination of combinations of stress parameters
(while preserving correct stiffness rank); however, certain of these fields have
been eliminated on the basis of preliminary numerical experimentation. The observa-
tions made in these preliminary tests will be briefly summarized.

First, from 1), setting 810 = 0 in (21) yields a 23-B element which behaves al-

most identically to element PL24. This is ewpected since 810 represents a redundant
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equation in the solution of equation (24). (For this reason, 810 will not be con-
sidered in any subsequent elements.) Second, removing all the quartic terms from
cxy (i.e. 810-813-815-816 = 0) results in a 20-8 element. This element has correct
rank as expected; but yielded poor moment distributions in the preliminary tests.

It therefore seems advisable to have some quartic temrms in E;Y. Based on these

observations, the candidate stress assumptions are reduced to the following few
which will be described and assessed in more detail:

ELEMENT PL21: Remove the highest order terms present in equation (21) (x4 in E;

and ny) by setting 863816 = 0. (Also, B 0)

10 ©
ELEMENT PL19: Since the traction-free edge condition of (17) removes the constant

and linear temms in x from 3; and only the constant terms in x from

o_.,, it seems reasonable to expect 5; to be one order higher in x than

xy
cxy' Therefore, by removing 86 from o, to make it cubic in x, cxy

should be reduced to a quadratic form in x by removing 314, 815, and
Big- S0, set B =B, =B, =B, = 0 and B,, =_?.

ELEMENT PL20: The traction free-edge condition forces g%i. as well as 5; to be zero
along the free edge. With these strict constraints, 3; may have to be
of thehighest order possible in x in order to accurately predict the
stress field. So, referring to equation (21}, retain all terms in E;
and remove 8,,, 8,., and 8, from 3;y as in element PL19; i.e.: B ,=
615'816- 0 and 810 = 0,

Though several other stress assumptions were considered, the elements described
above are the best candidates to use as single-layer, traction-free edge plate ele-
ments.

In closing, it should be mentioned that attempts were made to develop traction-
free elements witﬁ arbitrary curved traction-free edges. In this approach, the ele-

nents were mapped into £-n space where the stress assumptions were to be applied.

However, the stress assumptions are required to satisfy the 3-D equilibrium equa-
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tions; which, in this case, had to be written in a non-orthogonal system, since the
elements had arbitrarily curved edges. Using a tenser analysis approach, it was
found that writing a stress assumption which satisfied the equilibrium equations in
a non-orthogonal space was not only an extremely long and difficult task, but, could
not guarantee greatly improved results for the additional effort. In fact, as will
be seen in the next chapter, approximating curved edges with straight segments yields

good results in most cases.
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3. Example Problems and Numerical Results

In the last section, several plausible single-layer, traction-free edge, plate
elements were developed. (Summarized in Table 1). All the elements satisfy the trac-
tion-free edge conditions of (17) as well as the B-q relation of (18). Alsc, the
stiffness matrix of each element, 5, is of correct rank. (i.e., three zero eigen-
values corresponding to rigid body motion after elimination of the two AKM associated
with GYS and exE).

In order to determine the better elements, it is necessary to assess their per-
formance in the numerical solution of a few, selected, example problems. This will
not only identify the better special purpose elements, but, determine whether a need
exists for such elements in the analysis of single-layer, isotropic plates. More-
over, this may provide insight as to the potential value of these elements in subse-
quent development of multi-layer, traction-free edge, plate elements.

In this section, two example problems are considered. The performance of the
special purpose elements of Table 1 is compared with exact solutions as well as with
the non-traction-free edge element, QHl. (Note, that element PL24 is not considered
since, as mentioned earlier, it has too many stress parameters).

The first example problem is shown in Figure 3. It is a square plate (length,
L; thickness, 2h) with two opposite edges simply-supported and the other two free,
subject to a transverse uniform load, p[21]. By symmetry, it is possible to model a
quarter of the plate in the FEM analysis uging an NxN mesh of elements. The special
purpose elements are situated along line AC. Results are presented for the case:
L=10.0 in, h=0.05 in, p°=5.0 psi, E=3.0x107 psi, and v=0.3.

In Table 2 deflections at the center and left edge (free edge) of the plate are
compared. Notice, that even for the coarsest mesh, deflections are within 4% of the
exact solution, and as the mesh is refined the deflections converge to less than 1% erro:

Also, in the coarser meshes, the special purpose elements predict displacements slight-




ELEMENT ZEROED f3'S

NUMBER OF f's

PL19 |p6,810,814,815,816
PL20 | B10,B14, B15,616

PL21 6,310,516

PL24

19

20

21

24

NOTE: 'S BASED ON EQUATIONS (21)

Table 1. Single-Layer, Traction-Free Edge, Plate Elements
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1x1 MESH
ELEMENT 2o %ERAOR e o ERROFJ
EXACT FEM [ exact FEM
QH1 0.23824 0.2407 |-1.033| 0.27464 0.2848 -3.699
PL19 0.2403 |-0.865 0.2826 -2.898
PL20 0.2372 | 0.437 0.2783 -0.240
PL21 0.2373 | 0.395 0.2753 -0.240
2x2 MESH
ELEMENT [~—gxacT - Fem | *ERRORI™gxact . FeM  |° E”RO"J
QH1 0.23824 0.2386 |-0.151] 0.27464 02776 [-1.078
PL19 0.2384 |.0.067 0.2772 |-0.932
PL20 0.2383 |-0.025 0.2750 [{-0.131
PL21 0.2383 |-0.025 0.2750 [-0.131
4x4 MESH
ELEMENT il % snaoap T erROR
EXACT FEM EXACT FEM
QH1 0.23824 | 0.2384 |-0.067| 0.27464 0.2753 |-0.240
PL19 0.2384 |-0.067 0.2753 |-0.240
PL20 0.2384 |-0.067 0.2743 (0.124
PL21

NOTE: %ERROR=(1- FEM /EXACT)X 100%

Table 2. Problem 1. Deflection Comparisons

. . I o e S 1 e <
e o o et SRR =
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ly better than element QHl; but, in general, all of the elements converge quite
well and the special purpose elements show no particular advantage at this point.

The largest moments and stresses in Problem 1 occur along 1ine CD. (Note: See
Figure 1 for sign convention for moments and stresses). To further assess the ele-
ments, Problem 1 was run with a 2x2 mesh and the moments, My and Mx’ along line CD
were plotted (Graphs 1 and 2, respectively). My along CD is a maximum at the free
edge and decreases to a normalized value at the plate center. Notice, that all the
special purpose elements show some deficiency: either they over estimate the moment
at the free edge or underestimate the moment at the interface of the special pur-
pose elements and regular elements.O0f the special purpose elements, PL19 provides
the best solution; however, the standard element, QHl, also yields a reasonable pre-
diction.

Mx is calculated from oy and so is zero at the free edge. Along line CD, it goes
from zero at the free edge to a normalized value at the center of the plate (Graph
2). Here, the first clear advantage of the special purpose elements manifests it-
self. Element QHl only approximates the traction-free edges condition (20% error)
while all the special prupose elements exactly satisfy this condition. Among the
traction-free elements, PL20 follows the exact solution very well, while PL21 tails
off at the special element/regular element interface and the curve for PL19 has in-
creasing slope rather than decreasing slope as in the exact solution.

With no further quantities of interest in Problem 1 and too small a basis for
making any broad observations, a second example problem will be considered.

Shown in Figure 4 is a ctrcular, annular plate (inner radius, b; outer radius,a;
thickness, 2h) with the inner edge free and the outer edge clamped. It is subject
to a transverse load of magnitude P distributed as a line load along the inner edge
such that: P=2mbQ, C21]. Again, by symmetry, it is possible to model a quarter of
the plate in an FEM analysis. Only one mesh size is necessary (since displacements

were shown to converge in Problem 1): 4 elements in the radial direction and 6 ele-
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Graph 1. Problem 1. My Along CD (Normalized)
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ANALYTIC SOLUTION
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Graph 2. Problem 1. My Along CD (Normalized)
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ments in the circumferential direction. The traction-free edge elements are placed
along the inner edge ACGE. Note, this problem also tests the performance of the
elements as general quadrilaterals which approximate the circular edge with straight
line segments. All results are presented for the case: a=12.0 in, b=4.0 in, Qo=
1.0, E=1.0 x 107 psi, h = 0.5 in and v = 0.3.

Since this problem is axisymmetric, a closed form solution can be readily ob-
tained, and various quantities of interest can be compared with numerical solutions.

In Graph 3, the deflections along line AB are plotted. As before, all the elements
predict this quantity well. Furthermore, along any other radial line (e.g., CD, GH),
the curves should not change and this is verified in the numerical results. The ro-
tation about the y-axis, ey, along line AB is shown in Graph 4. Notice, that traction-
free elements PL19 and PL20 underpredict the rotations at the free edge. This is un-
desirable in itself and may affect the predictions of moments and stresses subse-
quently. .

Graph 5 shows the variation of My along line AB. My starts as a positive quanti-
ty, passes through zero, and is negative at the clamped edge. Observe that PL19 and
PL20 behave poorly in terms of predicting the moment at the free edge and at the
special element/regular element interface. Element PL21 does well at the free edge
but shows slight difficulty at the special element/reguiar element interface. On
the other hand, the non-traction-free element, QHl, follows the analytic curve very
closely at all points.

The other moment of interest, Mx along line AB, is plotted in Graph 6. This
moment is zero at the free edge and increases to a maximum negative value at the
clamped edge. Here, all the elements predict the moment well at the free edge, but
at the special element/regular element interface all the special purpose elements
are poor. PLI9 and PL20 grossly overestimate the moments (over 300% error) while
PL21 exhibits an error of about 50% at the interface. Also, PL19 and PL20 cause

the regular eiement at the interface to predict the moment poorly. Finally, at the
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ANALYTIC SOLUTION
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ANALYTIC SOLUTION
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ANALYTIC SOLUTION
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clamped edge (where element QHl is always used), the moment, Mx’ is underestimated
in all cases. More will be said on this shortly.

In assumed-displacement elements, much work has been done to determine those lo-
cations within an element at which the stress (and moment) predictions are best
[23,24,16]. These points are called "optimal sampling" points and depend on the or-
der of the polynomials used in the displacement interpolations for the elements.
Though such points have not been rigorously defined for hybrid-stress elements, it
is at least reasonable to assume that these points will not lie on the edges of . -
these elements. Therefore, in Problem 2, line AB (Figure 4) is not expected to be
a line of "optimal sampling'. Moreover, if the '"optimal sampling" behavior of hy-
brid-stress elements is like that in assumed-displacement elements, then for 8-node
elements, the "optimal sampling" points are the points used for 2x2 Gauss Quadra-
ture.

Referring to Figure 4, line CD is a typical radial line which contains the 2x2°
Gauss points. In Graphs 7 and 8, the normal and targential moments, respectively,
along line CD are plotted. Notice that even along a line of "optimal sampling' trac-
tion-free elements PL19 and PL20 are unable to predict moments well. The large mo-

ment at the free edge in Graph 7 is largely underestimated by PL19 and PL20, while

S

at the special element/regular element interface both moments are predicted poorly.
On the other hand, special purpose element PL21 and regular element QH1 both follow
the analytic solutions remarkably well along this line; though QHl still only approx-
imates the traction-free condition since the tangential moment is not exactly zero
at the free edge (Graph 8).

Recall, that in Graph 6, the tangential moment was underestimated at the clamped
edge. Along a line of "optimal sampling" this discrepancy vanishes; as shown in
Graph 8 this moment is predicted adequately at the clamped edge in all cases. This

gives further credibility to the idea of evaluating stresses at ''optimal sampling"

RSV g

points rather than arbitrary or convenient points in an element.
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Based on these observations, element PL21 seems the best candidate to use as a
single-layer, traction-free edge plate element. Unlike PL19 and PL20, it predicts
both rotations and displacements well. Though it predicts moments better than PL19
and PL20 in general; along a line of "optimal sampling" it predicts moments ex-
tremely well and shows a clear advantage over those elements. As far as element
QHl1 is concerned, ignoring its inherent deficiency of approximating the traction-

free edge condition, it performs extremely well in all cases.
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4. Summary and Concluding Remarks

In this study, a single-layer, isotropic plate element with a straight traction-
free edge has been developed based on the hybrid-stress model. It can be coupled
with the regular version of this element (element QHl1 [13]) to perform the numer-
ical analysis of isotropic, arbitrary thin to moderately thick plates with trac-
tion-free edges.

The element assumes a Mindlin-type displacement behavior which not only results
in displacement interpolations that are only required to be c® continuous but fa-
cilitates satisfying the 3-D equilibrium equations and the free-surface conditions
of the element. By including all components of stress, the transverse shear stresses
are present for the analysis of moderately thick plates where their contributions
are significant. The stress assumption for the element is chosen so that along one
of its edges the tractions (i.e. appropriate stresses) are zero; and, the 8-q re-
lation, a necessary condition in the assumed-stress hybrid formulation, is satis-
fied. The element mapping is such that it can take on a general, quadrilateral
shape.

Though the number of stress fields which satisfy these conditions is theoreti-
cally limitless, arguements of minimizing the number of stress parameters quickly
narrows the choices. Extensive numerical experimentation and testing results in
the conclusion that, of the numerous stress fields considered, the 21-B stress
field of element PL21 is the best for the applications considered.

Element PL21 yields a stiffness matrix which exhibits correct rank, avoids "lock-
ing" in the thin plate limit, and yields displacements which converge as the num-
ber of degrees of freedom increases. Moreover, in a numerical analysis, element
PL21 predicts displacements, rotations, and stresses (moments) quite well in gen-
eral, and especially well along lines containing the 2x2 Gauss points which appear

to be "optimal sampling'" points from which to obtainor extrapolate stress (moment)

~ e o AP R s e e




information.

However, it is important o realize that in all cases element QHl performs well
in predicting displacements and stresses; and, its only shortcoming is its inher-
ent inability to satisfy the traction-free condition exactly along an edge. This
seems to indicate that in single-layer, isotropic plates, the traction-free edge
condition is not crucial when trying to obtain a numerical solution and that the
extra effort to develop and:use special elements to better model this condition
may not be necessary.

On the other hand, the stresses which dominate the solution of multi-layer, lam-
inated, composite plates (i.e. Gz’dxz'cyz) have minimal effects in single-layer,
isotropic plates. In fact, these stresses have not even been considered in any
great length in this study. For this reason, the advantages of the traction-free
edge elements over element QHI may not be evident in single-layer plates.

Therefore, a multi-layer, traction-free edge, plate element based on element
PL21 should be developed and tested. This element when compared to the multi-layer
version of QHl should prove to perform better and exhibit obvious advantages when

analyzing laminated, composite plate structures with traction-free edges.
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CHAPTER 4

ELASTIC-PLASTIC ANALYSIS OF

SINGLE-LAYER PLATES

ABSTRACT

Two alternate hybrid-stress-based functionals are examined for the incremental
elastic-plastic static analysis of single layer plates. Material nonlinear effects
are incorporated via the initial-stress approach so that an equivalent nodal force
vector is defined and the stiffness remains constant throughout the incremental
loading. The alternate functionals differ in the incremental stress which is assumed
to satisfy equilibrium; in the first, it is the actual stress increment, and in the
second it is the elastic stress increment. Results are presented for two example
problems, and comparisons of the alternate functionals and plausible iteration
schemes are given. The effects of variation of pertinent solution parameters are
also shown. A 4-node hybrid-stress plate element based on a Mindlin-type displace-
ment field is used for most cases; however, limited results are also presented
using an 8-node plate element, thus permitting comparisons of the relative effi-

ciences of the wwo elements.
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1. Introduction

In the elastic-plastic analysis of structures by the finite-element method, three
incremental procedures are most commonly used; the tangent stiffness, initial-strain,
and initial-stress methods. In the first, nonlinear effects are incorporated via an
updated stiffness, whereas in the latter two methods, the structure stiffness re-
mains constant and plasticity effects are included as equivalent nodal loads. In
most cases, the analyses are based on assumed-displacement formulations; textbook
accounts and appropriate references may be found, for example, in References 1 and
2.

A viable alternative to the assumed-displacement model for both linear and non-
linear analyses is the hybrid-stress nodel. This model is based on a modified com-
plementary energy principle. Compatible boundary displacements and equilibrating
intraelement stresses are independently interpolated; the stress parameters are
eliminated on the element level resulting in a conventional element stiffness matrix.
Elastic-plastic analyses based on the hybrid-stress model [3-10] have been reported by
Yamanda et al [3], Luk [4], Spilker and Pian [5,7], Horrigmoe and Eidsheim [8],
and Barnard and Sharman [9]; these include applications Jf all three elastic-plastic
procedures. A survey of incremental hybrid-stress formulations for nonlinear prob-
lems has been presented by Pian [10].

The initial-stress procedure was first used in conjunction with the assumed-dis-
placement model by Zienkiewicz et al [11]. In this approach, the effects of mater-
ial nonlinearity are accounted for by a fictitious initia] stress, gf, equal to the
difference between an assumed elastic stress increment, Ag‘, and the actual stress
increment, Agep (see Figure 1). The equivalent load vector is calculated by a weighted
integral of gf, and therefore the accuracy of the numerical scheme will be dependent
on the accuracy of intraelement stress distributions. Since the hybrid-stress model
vields improved intraelement stress predictions compared with analagous assumed-
displacement elements in many cases [e.g. 12,132, this model appears to be ideally

suited for use in conjunction with the initial-stress approach.




UNIAXIAL STRESS, O

Figure 1.

'

UNIAXIAL STRAIN, €

Schematic representation and definition of stress and strain
quantities for the initial-stress approach for a 1-D problem.
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Alternate hybrid-stress functionals using the initial-stress approach have been
derived in References 5 and 7. These functionals, denoted by H;c and H;é , differ
in the stress increment assumed to satisfy equilibrium; in H;C, it is the (approx-
imate) actual stress increment (Ag in Figure 1), while in H;g, it is the elastic
stress increment, Ag'. Extensive nmumerical studies for axisymmetric structures,
also including equilibrium imbalance corrections, suggest that H;g is the more

accurate and efficient approach [5, 7].

I

However, a potential disadvantage of H;c

is the need for intraelemment compatible
displacement interpolations (not required in H;c). For plate elements based on
classical thin plate theory, the required Cl continuity intraelement displacement
fields are not easily constructed and a H;é approach would therefore be intractable.
Applications of the hybrid-stress model to elastic-plastic plate bending, using
classical plate theory elements, have been reported in References 8 and 9. In these
approaches, as in H;c , displacements are interpolated only on the element boundar-
ies and thus no difficulties are encountered in defining the C1 continuity inter-
polations.

Recently, a family of hybrid-stress plate elements have been developed for which
independent transverse displacement and rotations are assumed, and in which all com-
ponents of stress are included [ 14-16_; the elements are thus applicable for thin
and moderately thick plates. Because only c® displacement continuity is required,
intraelement displacements/rotation interpolations are easily constructed, and
thus the H;é approach is possible. The family of elements are based on 4-node,
8-node, and 12-node Serendipity shape functions. In each case, the element stiff-
ness is of correct rank, and the plate thickness may be taken arbitrarily small
without inducing solution 'locking'. In numerical comparisons, these elements, in
general, yield superior displacement and intraelement stresses in comparison with
analagous reduced or selectively reduced integration assumed-displacement Mindlin
plate elements. Because the hybrid-stress plate elements do not require a formal

separation of flexural and transverse shear stiffness contributions, the
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application of these elements to nonlinear problems will be straightforward and
no special modifications will be required in order to analyze plates from moderate

to arbitrarily small thickness.

II

In the present study, the plate elements of [14,15] are used with E;C and Imc

for elastic-plastic analysis. Equilibrium imbalance corrections are included in
all cases, and the effects of solution refinement and integration sampling points
are explored, primarily using H;g and a 4-node plate element. Comparisons of H;i
and H;c {using alternate iteration schemes) are presented which again show H;é to
be the better approach. Also, limited comparisons of the 4-node and 8-node elements

are presented to assess the relative efficiency and accuracy of these elements in

nonlinear analysis.

2. Hybrid-Stress Functionals and Matrix Formulation

Details of the derivation of the alternate hybrid functionals from the incremen-
tal virtual work expression are found in Reference 5; only the final forms and ele-
ment matrix definitions will be given here for the sake of completeness. In vector

form, HI and HII may be expressed as:
mec © Tme

£ £ Tacav
1 Ag + 0°) dV - fAU z
=z{12f(AG+°)S( g ~ =
Tpe (0g:0w) = Rg/2 4 (Gg =20 2 0% Va (1)
. n
. f AT! tu ds+R;}
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n
II - f - 4 ~ 2
Tpe (4030u) = £ ;1/2 86" Ts Ac'dV-f(Ao o5 Tae av @
v - v o~ = -
n n
. fA?TAudS+R’z
S ~ o~ n
where On

v, = volume of the nth element.
Sg = portion of the boundary of the nth element over which tractions
n

are prescribed.
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S = material elastic compliance matrix ( € =Sc).

c” = elastic stress vector

£ e s e . .
0 = fictitious initial stress vector (a prescribed quantity).
£

0 = actual stress vector (i.e. Ao = A0 - 97).
u = displacement vector
' € = "strains' calculated from displacements, u, via the linear strain-

displacement relations,

3 prescribed tractions.

l...“

A( ) = increment in the quantity ( ).

( )o = total value of the quantity ( ).
The term R; appearing in both functionals corresponds to the equilibrium imbalance
correction{5] and is given by (for no body forces):

R*=-/c°TA’e\dV+fT°TAuds
n - U= -~ - -
v Sop 3)

n
If the total stress at the beginning of an increment satisfies equilibrium, and
the total tractions satisfy the mechanical boundary conditionms, R; vanishes.

In H;c, the actual stress increment, Ac, must satisfy the equilibrium equation;

RN

E 0 = E(A0” - %) = 0

(4)

where E is the differential operator matrix corresponding to the homogeneous equili-

brium equations. In H;i , the elastic stress increment, Ac”, must satisfy equilibrium:

E 80" = E(40, +of)=p
-t TR (3)

where Agep is the actual elastic-plastic stress increment (see Figure 1). In view
of equations (4) and (5), H;c appears to be the more '"consistent' hybrid-stress
approach, and H;z may be viewed as a modified Hellinger-Reissner approach since only
a portion of the actual stress increment satisfies equilibrium. It should aiso be

noted that the second integral in H;c appears as a surface integral over the ele-
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ment boundary in the original formulation [5,7] (by applying the Divergence theor-
om to this term, with equation (4)), so that displacements need be defined only on
the element boundary (if R; is elminated). However, for the present application
where intraelement displacements are easily interpolated, the present form is pre-

ferred. Note also that an intraelement displacement field is always required when

I

. I w s ; . I
using Hmc , and when Rn is retained in Hmc'

In the element formulations, stresses are expressed in terms of stress parameters,

8 (usually in polynomial form);

0 = P48 for I ea)
~ -~ o~ mc
s’ = p A3 for Ti!
~ ~ -~ mc (6b)

such that the appropriate equilibrium equations (equations (4) and (5)) are exactly
satisfied. The intraelement displacements, u, are interpolated in terms of nodal

displacements, q, such that appropriate interelement continuity is guaranteed;

: AB:E{AQ (7)

The linear strain-displacement relations are applied to equation (7) to give

4

L
g

=B A

(8)
Equations (6) through (8) are substituted into equations (1) and (2), and the

following element matrices are defined

H = / PTSP av (9a)

n
' 9b
G = / PTs av : (%)
v b d -~
n
I (9¢)
; / Plsot av v
-
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(9d)

(9e)

(9£)

(9¢)

Foliowing [5,7] , the stress parameters are eliminated on the element level from

the resulting functionals according to;

88 = 3G aq - wIE! for M1
~ ~ ~ < - mc

. -1 II
) 4? = ? AS for Hmc

when equations (10) are substituted back into the functionals, both H;c

be put in the form;

I,II T QT £, R0 ]
LIt . %[1/2VA31<A3 Ag (8Q + @ + RY)

where

T

k = Gy!

G = element elastic stiffness matrix.
AQ = incremental element extermal load vector.

R =

-~ -~

0 0

the equilibrium imbalance correction.

-F” = equivalent element load vector corresponding to

(10a)

(10b)

II

and nmc may
(11)
(12a)

(12b)

(12¢)

The vector Qf is the equivalent element load vector corresponding to the fictitious




initial stress and differs for the two functionals:

of = cTwlFl  fornl (13a)

f II II
9 = F for nmc (13b)

Following the usual assembly operations, the stationary condition of nmc yields
the following system of equations, written.for the ith increment (from applied load
i-1 to applied load i):

f* o*
= R
5 Aﬂ; AQE * gi Y2

(14)
where the starred ( }* quantitites refer to the assembed system and‘§ is the global
elastic stiffness matrix.

To solve ,equations (14),‘5 is factored prior to the first load increment, after
which 43; can be calculated at each increment by the forward/backward substitution
operations. Note thattgf* is not known for the ith increment, but can be extrapo-
lated or estimated from data at the previous increment. In the present applications
o’

*
i = Q§_1 is used in conjunction with iteration within a load increment. The equi-

ey . . o* .
librium correction vector, Ri , is calculated from the total stresses and total

external load at the beginning of an increment, which are known.

3. Elastic-Plastic Material Relations

The effects of material nonlinearity are incorporated in the fictitious initial
f . . :
stress, cf. In order to calculate g, the correct "elastic-plastic' stress incre-
ment, Acep, corresponding to an increment in total strain, A e, is required (Figure

1). This relation is given by

80ep = Dep € (15)

e v

where Dep is termed the elastic-plastic material matrix.
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The matrix Dep is determined from the flow theory of plasticity, assuming a

yield surface F(g',xc) = 0 and an associated flow rule. It can be shown that Ee.g. s,

T T
P _[3F oF
> L [Et *(3?) D<_0>.j
~ ~/ - (16)

where D is the elasticity matrix (0 =D¢) and Ez is the slope of the equivalent

11]

-~

stress versus equivalent plastic strain curve. Dep is symmetric and positive def-
inite and equation (16) is valid also for elastic, perfectly-plastic materials
(i.e. Ei = 0). Note also that Pep is stress-history dependent and must therefore
be evaluated for each sampling station at each incremental step.
In the present analysis, the Huber-Mises-Hencky initial yield criterion is adopted.

For 3-D stress states (as in the plate elements to be used here), the yield surface

is:
1 2 2 2
F(o,k) = — [(o -0 )+ (0. -0 + (o -0
o T [Cx m o O - 0" e oy - ) an
1/2
+ 602 + 602 + 602 ] -g =0
Xy xs Yz o
and therefore
— —_
1 -372 -1/2 0 0 0
-1/2 1 -1/2 0 0 o0
1 -1/2 -1/2 1 0 0 0 (18)
%75, 0 0 o 3 o ol ¢
0 0 0 0 3 0
0 0 0 0o o0 3
— -

where c—o is the uniaxial yield stress.
The examples considered herein assume elastic, perfectly-plastic material behavior.
For strain hardening materials, various mathematical models [e.g. 17-19_ could be

incorporated.




4. Calculation of Equivalent Element Lloads

The expressicns for the equivalent element loads, Qf and F°, require the dis-

E-J
tributions of g‘ and 3° which, in the plastic range, can only be determined nuna-

: ) . . . .
erically. Thus, Qf and F~ are evaluated using a numerical integraticn rule (Gauss

£

quadrature in the present case) so that 0~ and a° (and appropriate matrices) are

evaluated at numerical integration stations. A flow chart indicating the steps're-

II

ac 1S givem in Figure 2.

quired for‘gf and f° for an element and for both H;c and I
Note that steps unique to H;C or H;ﬁ have been prefaced by "I'" or "II", respectively;
otherwise the steps are identical for both functionals.

A comparison of the two precedures shows that H;c requires more core storage

1

(both‘y'lG and g- must be stored for each element) and more operations. As a Tough

benchmark estimate of the relative computation times required for the evaluation
of‘gf andf° for H;c and I;i (for one element), the number of multiplications

required for the matrix #perations in Figure 2 can be determined. Table 1 gives the
multiplication counts for each of the operations in Figure 2; note that it has been
assumed that all matrix operations are done in full without accounting for symmetry

or zeroes. Summing the contributions, and ignoring the equilibrium correction, the

total multiplications (for one element), MI and MII, for,H;c and I;ﬁ , respectively,
are:
MI = 3n,n_ +nnnn n_+n, + a(Sn2 +3n_ + n,)
37q Xyzs $ 3 ] s 3 (1%a)
MII =n,n_+nnnn n_ +n, + a(Snz +2n_ +n )}
37q Xyzs s 3 s s q (19b)

where a is the ratio of the number of integration stations per element at which

yielding occurs to the total number of integration stations per element, The

remaining parameters have been defined in Table 1. These expressions will be used

later to compare various solution strategies. Further discussion of the alternate :

functionals and solution procedures is found in Reference ([3].
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an element.
quantity.

: = -1 A - -1 I M A = -1
I: 48, = H™Geq, -HE/ II: 28, = H™Gaqq
. m n fn . m n
I: 4g; =P A8, +g, II: 4g; = P A8
At = sagi”
~1 -~
* n
of _ g% vaeh
<i “i-1 °=
b
n_ of m
9 = 951789
on n n
g; g, |~ No — F(g .,%) 20
'[ Loop Over
Yes Gauss Stations
‘ *n = n+l
. |
n n,n
Agepi * erAgi
13
n
g - ag!™- "
1
n n
O 2 g% +ad”
~1 ~i-1 T~ep
i
1
TR ¢n
i: ff = ff e sof 1: Flepihg o of
~i ~ i ~i o o~ 0~ =i
n
0 o " on
> Ei = El #wna gl -
. of 2 cTy-te! o f 1T
I: Q; =GHE, I: Q= F;
) o .o
B =4k
Figure 2. Flow chart for the calculation of equivalent loads for

Note that subscript t implies a temporary




Benchmark multiplication counts per element for the

Table 1.
evaluation of the equivalent load vector correspon-
ding to material nonlinearity.
. I II
Computations Hmc Hmc
a8 Znsna ngn,
— —S—
Ac”
§ o~ !'!sl'l3 nsn§
S
= Ae n? 2
Pz - : :
o (=} 3 - 3
o— :g_;; Pep (1) Sns Jns
I
D0 2 2
3 AEQP (1) n ng
Lol
< I,II 2 n_n
F (1) n_ +nng s'q
Qf n n
e q s

(1) These computations are necessary only if yielding occurs at
that station.

Legend:
number

=]
]

“ X N 0 a D

= number
= number
= number

= number

4 83 O3 3

= number

of 3's per element.

of degrees of freedom per element.
of stress components.

of z integration stations.

of x (or §) integration stations.

of y (or n) integration stations.

T bl Al SRR A DY vo0r T e

.




128

Finally it should be noted that the operations and computation time when using
the assumed-displacement model with the initial-stress approach "11] is roughly

equivalent to that required for H;é rso.

5. Iteration Schemes

Typically, nonlinear schemes make use of a combination of load increments with
iteration within each load increment cycle. In the present study, two alternate
iteration schemes are used. In both, equation (14) is first solved for A3; cor-
responding to an applied increment in external load and including any fictitious
forces,.gf*, remaining from the previous step and, if desired, the load correspon-
ding to equilibrium imbalance. In the first iteration scheme, a series of itera-
tions, governed by the equation (for the kth iteration within the ith external
loading increment).

N
f*

Kagg = %
(20)

are performed until the equivalent load corresponding to the fictitious initial
stress is sufficiently small; ie. until

f'h
[9k-1/

]Q?;/— < RCONV (21)

~0
where RCONV is a small parameter (e.g. 0.01), !( )| denotes the magnitude (squared)
of the vector ( ), and 9§* corresponds to the equivalent load vector prior to the
first iteration (computed for the applied external load increment). This scheme
is terﬁed iteration scheme A, and is depicted. for a one-dimensional stress-strain
curve in Figure 3a. Note that displacments, stresses, and strains are continually
updated during the iteration cycle. When equation (21) is satisfied, the solution
proceeds with equation (14) for the next increment in external loading.

. I | 3 S re 77*%
Scheme A has been applied to both Hmc and Hmc in Reference [5,7. .

* Note that equation (36) in Reference [11] is incorrectly stated and
should correspond to the present equation (21).




However, it is believed that scheme A is best suited for Iéi , as verified in
4

the studies of [5,7_. In those studies, the use of H;C and scheme A yielded poor
predictions of strain. From Figure 3a, it is apparent that, with H;é , 3f must van-
ish i order for the assumed stress increment, Agf to be equal to the actual stress
increment, Agep' In addition, from equation (5), gf = 0 is required if Agep is to
satisfy equilibrium. In contrast, from Figure 1 and equation (4) for H;c, it is observed
that Ef = 0 is not required in order for the interpolated stress Ag to be equal to
the actual stress, Agep’ and therefore Agep to satisfy equilibrium.

An alternate iteration scheme, termed scheme B 75,7, would thersfore appear to
be more appropriate for H;c. In this scheme, the equation governing the kth itera-
tion within the ith external loading increment is

f*

K Agg =897 * &g

-~

(22)

where Qg* (i.e. k=1) is zero. This scheme (see Figure 3b for an illustrative 1-D

-~

case) seeks to satisfy the condition

f f
o, =0
~k <k-1 (23)
which, if satisfied, implies tha£
Aoi= Ac
~ ~ep; . (24)

for the ith external loading increment. The iteration process is determined to be

converged when * £*
e - o/
RCONV

<
/%] (25)

is satisfied. In scheme B, total displacements, stresses, and strains are updated

only after equation (25) is satisfied, using the incremental quantities computed
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Figure 3. Schematic 1-D representation of iteration schemes A and B.
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for the final iteration step.

An advantage of scheme B with H;C is that, in view of equation (24), total stresses
may be updated using 49. Since Ag satisfies equilibrium, the total stress, go, will
be in equilibrium and no equilibrium imbalance correction is needed. If‘B° can be
ignored, no interior displacement field need be defined when using H;c . This is
particularly important for elements requiring C1 continuity, but is of no real con-

sequence for c® continuity elements (as in the present application). .

6.. Description of Plate Elements

The plate elements to be used are taken from a recently-developed family (4,8, and
12 node) of hybrid-stress plate elements [14-16_. The elements utilize independent
interpolétions for the transverse displacement, w, and cross-section rotations, Sx
and ey’ so that any of the c® continuity families of shape functions may be used
(in these cases, the Serendipity shape functions). In general, all components of
stress are included, allowing for the analysis of moderately-thick plates.

Results presented in References 14-16 show these elements to yield comparable or
superior results when compared to the analogous assumed-displacement plate element
(also based on a Mindlin-type displacement behavior and utilizing reduced or selec-
tive-reduced integration). Each of the hybrid-stress elements of this family has a
stiffness of correct rank (i.e. no spurious zero energy modes) and the elements will
not 'lock' for arbitrarily thin plates, independent of machine precision used.

Comparisons made in Reference 16 suggest that the 8-node and 12-node elements are
the more accurate per degree-of-freedom in the assembled structure. However, 12-node
elements may be impractical for general applications. Also, for nonlinear analyses,
where computation time is strongly dependent on element-level operations, the 4-node
element may be preferred..In the present study, both the 4- and 8-node elements will
be used (with most emphasis on the 4-node element).

The elements, both of which allow for isoparametric planforms, are shown in Fig-

ure 4. Briefly, the 4-node element (termed LH4 [14] ), contains 12 degrees of free-

S e ety
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dom and is based on a 118 stress field (bilinear x,y variation for inplane stresses).
Note that c: = 0 in LH4. The 8-node element (termed QHl 152 ), contains 24 degrees-
of-freedom and is based on a 238 stress field (bicubic x,y variation for inplane
stresses) with cz # 0.

It is important to observe that a criticism [8] of Hiﬁ for plate analyses - - -
the requirement of an interior displacement field yielding C1 interelement contin-
uity - - - is no longer valid. The interior displacement fields for the present
plate elements (C° continuity) are easily constructed, and H;i does not present

any formulation or computational difficulties.

7. Example Problems and Numerical Results

The problem of a simply-supported thin beam subjected to a uniformly distributed
transverse load of magnitude, P, has been chosen as a first fest. An analytic solu-
tion for this problem is available [20] under the assumption of elastic, perfectly-
plastic material behavipr. Here, the beam length is 10.0 in, depth is 1.0 in.,
thickness is 0.1 in. The elastic material constants are E = 107 psi, and v = 0.3,
with a uniaxial y4dild stress of 104 psi. First yielding will occur at the beam

center at a load of 1.33 psi, and the fully-plastic load is P p = 2.0 psi.

F

For initial comparisons, the 4-node plate element, LH4 C14],is used and half of
the beam span is modelled by a mesh of NDX by NDY equal-sized elements (see Fig-
ure 5).

For a given functional, effects of various parameters can be examined; these in-
clude iteration scheme (A or B), number of equal-size load increments in the load
range from initial to full piasticity, NINC (i.e. the load corresponding to first
yield, P=1.33 psi, is applied first, after which increments in load corresponding
to AP=(2.0-1.33)/NINC are applied. Loading ceases at the theoretical fully plastic
load), convergence ratio, RCONV, maximum number of iteration permitted per load
step, MAXIT, mesh size (NDX, NDY), and integration stations for computing the equiv-

alent loads (NGX,NGY,NGZ). Unless otherwise stated, NDX = 4, NDY = 1 is used;

P e wf e e va ey A v
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remaining parameters are defined on each figure. In all cases, the predicted nor-
malized center transverse displacement (normalized by the center deflection
at first yield) versus the applied load (normalized by the fully-plastic load,
pFP) is compared with the analytic result. In a first series of tests, only
H;g will be used (determined to be the superior functional in [5,7]). In all cases
the equilibrium imbalance correction is included and jiteration scheme A is used.
The effects of NINC (number of load steps from first to full plasticity) is shown
in Figure 6 where MAXIT = 1 so that no iteration is used. Decreasing load step
sizes lead to an improved response, particularly near the fully-plastic load. The
effects of maximum permitted iterations per load step, MAXIT, for load increments
NINC = 8,4, and 2 are shown in Figures 7a through 7c, respectively. In each case,
MAXIT = 1 (no iteration), 10 and 20 are used. For smaller load steps (NINC = 8,
Figure 7a), iteration has a major effect only near the fully plastic load; however,
increasing MAXIT from 10 to 20 has no effect on the solution. For increasing load
step size (NINC = 4, Figure 7b), MAXIT has a greater effect and differences are
observed between MAXIT = 10 and 20. For large load steps (NINC = 2, Figure 7¢),
solutions are poor even when MAXIT = 20.
The effects of convergence ratio, RCONV, are shown in Figure 8 for NINC = 4
and MAXIT = 20; a value of RCONV = ,01 has been used previously. Increasing RCONV
to .1 has a discernable effect at all load levels, whereas decreasing RCONV to
.001 produces significant effects only for the last load step. Arbitrary
decreases in RCONV without a corresponding increase in MAXIT will not, in general,
lead to a significantly improved solution as MAXIT will terminate the iteration
cycle for load steps in severely nonlinear regions. For practical purposes, values
of RCONV = .01 and MAXIT = 10 are believed to be adequate. Converging results can
then be sought by increasing the number of load steps (smaller load increments).
The computation time required to compute the equivalent load vector is nearly
proportional to the number of integration stations employed (see Table 1 and equa-

tion (19b)). The question of through-thickness and inplane stations can, however,
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be examined independently. The through-thickness distributions used for all stress
components in the present hybrid-stress plate elements should correspond to the
'exact' distributions for thin to moderately-thick plates in the linear elastic
region. Yielding will, in general, initiate at and progress from the plate upper/
lower surfaces, resulting in discontinuous through-thickness stress distributions
(for cx, cy, and dxy). This, in principle, requires that increasing numbers of :z
integration stations be used (which therefore locates stations closer to the upper/
lower surfaces). The effects of NGZ (number of z stations) are shown in Figure 9a
where NGX=NGY=3 and NINC=4. Decreasing NGZ from 3 (used in all previous cases) to
2 severely stiffens the solution, whereas increasing from NGZ=3 to NGI=4 produces
only a slightly improved solution. In view of the increased computation time asso-
ciated with NGZ=4'éompared with NGZ=3 with only marginal improvement in the results
obtained, the value NGZ=3 would appear to be the appropriate choice.

The selection of the number of inplane stations, NGX and NGY, is dependent on
the accuracy of the predicted x-y.intraelement stress distribution; i.e. there is
no merit in sampling stresses (from which equivalent loads are calculated) at lo-
cations where predicted stresses may be severely in error. For assumed-displacement
elements, optimal sampling points can be defined [e.g.21,22] and used. No such
points have been rigorously defined for hybrid-stress elements; however, stress
results given in [14] for linear analyses suggest that LH4 yields good intraele-
ment stress predictions throughout the element, and therefore increasing NGX and
NGY should produce improved results. Figure 9b shows the effects of NGX and NGY
(for NGZ = 3). The results for NGX=NGY=3 are marginally improved compared with
NGX=NGY=2. The solution for NGXaNGY=1 is slightly stiffer until the final load
step where an excessively flexible solutiom is obtained; once this point is fully
yielded, the entire element is assumed to be yielded and a mechanism forms pro-
ducing the excessive flexibility. In view of the results obtained and computation-
al considerations, NGXaNGY=2 is recommended.

The 1 point inplane integration can lead to acceptable results if a more refined
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mesh is used, as shown in Figure 10. Using the NDX=4, NDY=1 case as a basis for
comparison (with NGX=NGY=1), the excessive flexibility no longer appears when NDX=
§, NDY=1 is wused (note that a fully plastic zone has not yet been reached in this
solution at P=PFp). Increasing to NDX=8, NDY=2 shows a slight improvement.

Using the benchmark multiplication counts given in Table 1, total multiplications
(for a load increment or iteration cycle, and a specified number of elements, as-
suming yielding occurs at all integration stations) have been computed for a number
of cases of interest and are given in Table 2. Based on these benchmark counts,
the use of a 2 by 2 block of elements with NGX=NGY=1 in each element should re-
quire a similar computational effort compared with 1 element and NGX=NGY=2. This
is analogous to an 3x2 mesh with NGX=NGY=1 and a 4x1 mesh with NGX=NGY=2. Results
for these two cases, shown in Figure 11, indicate that the first approach is su-
perior, despite the fact that the predicted elastic center deflecion is nearly iden-
tical for both meshes. This improvement would therefore appear to correspond to
superior stress accuracy at the element centroid compared with the 2x2 Gauss
stations.

The results presented thus far have been obtained using H;é . Similar studies have
been carried out using H;c which verify the general trends (with regard to NINC,
MAXIT, RCON, and integration stations) observed for H;é . A more important con-
sideration is the effect of iteration scheme. Figure 12a shows results obtained
using iteration scheme A for a coarse load/iteration solution (NINC=4, MAXIT=1)
versus a refined solution (NINC=8, MAXIT=10). In both cases, NDX=4, NDY=1, RCONV=
.01, NGX=NGY=2, NGZ=3 are used. The coarse solution is stiff (as expected) whereas
excessive flexibility is observed for the réfined solution; the predicted center

displacement exceeds the exact value far P/P__, > 0.75. Such behavior is judged

FP
unacceptable and it would appear that iteration scheme A is not well suited to
Hmé . Note that further solution refinement (results not shown) leads to increased

flexibility.
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Table 2. Multiplication count comparisons for various cases of interest.

N .

Functional (1) Element ) nx’“y B, elemsgs) Mults.
1 LH4 2 3 1 11,484
I LH4 1 3 1 3,168
I LH4 2 3 1 2,592
I LH4 1 3 1 945
11 LH4 2 3 1 10,860
I1 LH4 1 3 1 2,814
11 LH4 2 3 1 2,256
II LH4 1 3 1 663
11 LH4 2 4 1 14,436
11 LH4 1 3 4 12,672
11 QH1 2 3 1 13,008
II QH1 3 3 1 28,578
11 Q1 2 3 1 3,540

. " " 1] I II 3
Notes: (1) "I' and "II" correspond to Hmc and nmc , respectively,
(2) For element LH4, nq = 12 and ng = 11.
For element QH1, nq a 24 and nB = 22.
(3) Number of elements for which the equivalent load is com-

puted, It is assumed that yielding occurs at all integra-

tion stations.
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By comparison, results obtained by using H;c with iteration scheme B for the
ccarse and refined solutions are shown in Figure 12b. For the coarse solution,
scheme B yields a more flexible solution compared with scheme A, whereas the
refined solution by scheme B is stiffer than that of scheme A. The scheme B
refined solution is in good agreement with the analytic solution, although
slightly more flexible than the analytic solution, and is therefore the preferred
scheme with H;c. Note that further refinement of the scheme B solution yields

no discernable change.

II

ne with scheme A for coarse and refined

A comparison of H;c with scheme B and I
solutions is shown in Figure 13. Recall that for all cases, load has been applied
only up to the theoretical fully-plastic load, PFP' Thus, for example, the re-
fined Héi run, which underestimates the displacements, would produce, effec-
tively, infinite displacements by application of an additional small increment
in external load beyond P = pFP'

Both functionals (with an appropriate iteration scheme) appear to lead to con-
vergence to the analytic solution. Such observations were also made in References
5 and 7 for axisymmetric structures. However, H;é requires less computation time
per cycle; see References [5,7] and benchmark multiplication counts in Table 2.
Therefore, ﬁ;i would again appear to be the preferred functional.

Before presenting results for a more general plate problem, several observations
related to computation time should be made. In the cases considered here, all
components of stress have been included (i.e. n = 6). For moderately thick
plates, all components should be retained, whereas for thin plates Oz cy:, and
o, are negligible and could be ignored in the computation of equivalent loads.

From Table 1, total multiplications are strongly influenced by the number of
stress components retained, ng, and for selected cases computed in Table 2, it
is apparent that a reduction from ng = 6 to ng = 3 can lead to substantial reductions

in multiplications (i.e. by a factor of 4-5 times). Results (not shown) for the

beam problems (thin plate) show the two solutions (ns = 3,6) to be essentially iden-
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tical.

Results presented also suggest that NGZ=3 is adequate for through-thickness
integration. If the plate is thin so that ng = 3 can be used, the remaining
stresses (cx,dy,dxy) are zero at z=0, corresponding to the center integration
station for NGZ=3, and this point can be skipped in the integration loop. The
result is a reduction of multiplications by approximately 33%. Finally, it is
noted that in the elastic-plastic plate analysis of Horrigmoe and Eidsheim Cs],
the vield surface has been expressed in terms of moments, thereby avoiding through-
thickness numerical integration. There is no difficulty in adopting such a pro-
cedure with the present element and functionals by operating with analytically
integrated stresses. However this approach has not been pursued because of the
inherent smearing of actual partial yielding effects through the plate thickness.

The second example problem is a simply suppotted square plate of side length
10.0 in., thickness 0.1 in. subjected to uniform load of magnitude P (Figure 14).
The material is assumed to be elastic perfectly plastic with E = lO7 psi, v =
0.3; and 3; = 10° psi. Upper/lower bounds for this problem correspond to loads of
6.63 and 6.23 psi, per Hodge and Belytschko -23]. Symmetry is utilized and a quar-

ter of the plate is modelled by a uniform NDX by NDY mesh.

Because H;g is the computationally preferred scheme, only H;é with iteration

scheme A and including equilibrium imbalance correction is used in this example.
In view of the parametric studies for the beam problem, the parameters MAXIT=10,
RCONV=_,01, NGX=NGY=2, and NGZ=3 are used unless otherwise stated. A load corres-
ponding to P = 3.47 psi is applied first, after which the range P = 3.47 to 6.63
psi is divided into NINC equal increments in load. %esults are presented in terms
of the normalized center transverse displacement ﬁ;fz' , (where D is the flex-
ural stiffness, andzMp iS the plastic moment at full yield) versus the normalized
total load ¢ = — .

The effects of iteration (using a 2 by 2 element mesh for which the elastic

tip deflection is in error by less than 2%) are shown in Figure 15,
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NDYﬁ

A

T
NDX Subdivisions

Boundary Conditions:
Sides AB and AD: w=6,,=0
Side BC: 8y =0
Side DC: 9, =0
Loading: Uniform of magnitude P (Ib/in)
Mesh: NDX by NDY mesh of elements LH4 (shown)
or QHI.

Figure 14. Mesh, geometry, and boundary conditions for the exanple
problem of a square plate under uniform load.
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Increasing MAXIT yields a more flexible solution. The MAXIT=10 solution will
produce a fully-plastic load slightly above the upper bound value, whereas the
MAXIT=20 solution will fall within the upper/lower bounds.

The effects of mesh size and inplane integration stations are shown in Fig-
ures 16a and 16b. The comparison between the case of a 2 by 2 mesh with NGX=
NGY=2, and the case of a 4 by 4 mesh with NGX=NGY=1 (approximately equivalent
in terms of computational effort), Figure 16a, suggests that the latter approach
is superior; although the predicted fully-plastic loads will not differ substantially,
details of the load-deflection results are clearly different beyond a normalized load
of >18.0. The effects of mesh (NDX,NDY), for NGX=NGY=1 (Figure 16b) show little
change in predicted response beyond a 3 by 3 mesh.

In Reference [16], comparisons of the hybrid-stress family of plate elements
suggest that the 8-node element, QHl, is in general more accurate than the 4-node
element, LH4, per degree of freedom in the assembled mesh (an exception is the
simply-supported plate under uniform load). A reasonable comparison of these two
elements for elastic-plastic analysis corresponds to a 2 by 2 block of LH4 elements
with NGX=NGY=1 replaced by one QHl element with NGX=NGY=2. Benchmark multiplication
estimates in Table 2 suggest that the LHd4 analysis will require slightly less
computational effort. Results obtained using a 4x4 mesh of LH4 elements with
NGX=NGY=1, compared with a 2x2 mesh of QHl elements with NGX=NGY=2 are shown in
Figure 17. The two schemes are found to produce nearly identical results. Actual
CPU times show that the LH4 analysis requires approximately 80% of the time re-
quired for the QHl analysis. It should be noted that for the elastic analysis of
a simply-supported uniform loaded plate, LH4 is more efficient than QHl. However
for other boundary conditions/loading, QHl is more accurate per degree of freedom

C160 and advantages of QH1 over LH4 in the elastic-plastic analysis may be found.
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8. Concluding Remarks

The elastic-plastic analysis of plates has been performed by using alternate hybrid-
stress functionals based on the initial-stress approach for material nonlineari-
ties., Accurate vesults have been obtained using both H;c with iteration scheme B,
and H;é with iteration scheme A. In principle, H;i has the potential difficulty
of requiring an intraelement displacement field. However, this poses no problems
for the plate elements used here for which such interpolations are easily constructed.
On the basis of computational effort, H;g is preferred over H;c.

Results obtained suggest that a 2 by 2 inplane and 3 point through-thickness
integration rules are adequate for evaluation of the equivalent nodal loads corres-
ponding to plasticity effects for the 4-node element. Although no such examples have
been shown, the elements and procedure used here can also be applied to moderately-
thick plates. Because the 4-node plate element produces good intraelement stress
distributions, the use of a 2 x 2 inplane Gauss rule leads to improved results
compared with a 1 point rule, for fiked mesh size. However, the 1 point rule, coupled
with a more refined mesh may be more effective from a computation time versus accuracy
viewpoint. Significant computational savings can also be realized for thin plates
by using only the inplane stresses to compute the equivalent loads and bypassing
the z=0 integration station of the 3-point through-thickness rule.

A single comparison between the 4-node element (LH4) and 8-node element (QH1)
shows that the use of the simple LH4 element is more efficient computationally.
However, for other loadings and boundary conditions, this observation could be
reversed. In QHl, o, is included, whereas g, = 0 in LH4. If, for example, the pres-
ent elements/analysis were extended to the material nonlinear analysis of multi-
layer laminated composite plates, a QHl-type element should be preferred because
of the dominant role of 0, near free-surfaces for relatively thin laminated plates

C24, 253.
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EDGE SINGULARITIES IN ANISOTRQPIC COMPOSITES

ABSTRACT

The stress singularity at the vertex of an anistropic wedge has the

YA

form T °F(T,

o

} as r—=~0 where 0<g<1l and ¥ 1is a real function or
the polar coordinates (r,3). In many cases, F 1s independent of r.

The explicit form of F(r,8) depends on the eigenvalues of the elasticity
constants, called p here, and on the order of singularity <. When «
is real, §=x<. If Kk 1is complex, & 1is the real part of <. The p's
are all com?lex and consist of 3 pairs of complex conjugates which reduce
to +1 when the material is isotropic. The function F depends not oniv
on p and <, it also depends on whether p and « are distinct roots
of the corresponding determinants. In this paper we present the function
F{r,2) in terms of p and « for the cases when p» and < are single
roots as well as when they are multiple rcots. The relationsuip dDetwesn
the complex variable << introduced in the analysis and the »olar
coordinates (r,2) is interpreted geometrically. After presenting the form
of F for individual cases, a general form of F 1is given in Eq. (64).
We also show that the stress singularity at the crack tip of general
anisotropic materials has the order of singularity &=% which is a
multiple root of order 3. The implication of this on the form F(r,3) is

discussed.

)
g




1. INTRODUCTION

For isotropic materials, use of the biharmonic function, or the Airy
stress function, seems to b& the universal approach in the analysis of
stress singularities [1-4]. There appears to be no universal approach in

analyzing the stress singularities in anisotropic materials. Lekhnitskii

{S] introduced two stress functions to analyze general anisotropic materials.

His approach was used by Wang and Choi [6] to study the thermal stresses

at the interface in a layered composite. Green and Zerna [7] employed a
complex function representation of the solution. Their approach was used
by Bogy [8] and Kuo and Bogy [9] in conjunction with a generalized Mellin
transform to analyze stress singularities in an anisotropic wedge. It
should be mentioned that plane deformation was assumed in {7-9] and hence
the material property was assumed to be symmetric with respect fo the plane
of deformation.

In this paper we use the approach of Stroh [10] whose analysis was
further developed by Barnett and his co-workers (see [l11], for example) to
study the surface waves in anisotropic elastic materials. An excellent
review article on surface waves in anisotropic elastic materials was given
by Chadwick and Smith [12]. Although no stress singularities were studied
in {10-12], their approach is used here to find the stress distribution at
an anisotropic wedge. A recent study by Dempsey and Sinclair [3] on
isotropic elastic wedge problems shows that the singularity analysis can be
accomplished without resorting to the Mellin transform even when the
boundary conditions are not homogeneous [4]. Following their analysis and
using the approach of Stroh, we present here possible forms of stress
distribution near the vertex of a wedge or a composite wedge of anisotropic

materials.
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The stress distribution near the vertex of a wedge or a composite
wedge depends on whether the eigenvalues p of the elasticity constants
are distinct. It also depeads on whether the order of singularity « is
a single or multiple root. The purpose of this paper is to show how one
can derive the form of stress distribution when p and/or Kk are not
single roots. We also show the geometrical meaning of the complex variable
Z 1in terms of the polar coordinates (r,9).

Finally, as an application, we consider the stress singularity at a

crack tip of general anisotropic materials.

2. BASIC EQUATIONS

‘In a fixed rectangular coordinates X, (i=1,2,3), let u, cij
and Eij be the displacement, stress and strain, respectively. The
continuity condition, the stress-strain law and the equations of equilibrium

can be written as

- 1
€55 (8ui/3xj + auj/axi)/Z (1)
= 2
935 = Cijke Exa )
90../9x, = 0 (3)
1) J
where
= = = .. 4
CCi5ke T OCjika T Cijek T Ckaij )
are the elasticity constants of the anisotropic material. Unless stated
otherwise, repeated indices imply summation.
We assume that u, and oij are independent of the x3—coordinate.
Hence we assume that
Z = X+ PX, (5)

~ e siitllinr RO A TV U K e

o




u; = Uif(Z)

oij = Tijdf(z)/dz

a
where f is an arbitrary function of 2Z and p

elasticity constants to be determined shortly. vy

dent of x and x
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(6)

()

is an eigenvalue of the

and Tij are indepen-

1 2 but they depend on the eigenvalue p. Substitution

of Eqs. (6,7) into Egs. (1-3) yields the results

Ti5 = (C45k1 *PC k2%

(8)

DY = 0 (9)

where
= 2

Dix = Ci1k1 *PCi1xa * Sak1) *P Cik2 (10)
For a non-trivial solution of Uk, the determinant of Dik must vanish.
This provides the eigenvalues p. Equation (9) then provides the eigen-
vector v, .

i
3. EIGENVALUES AND EIGENVECTORS QF THE ELASTICITY CONSTANTS
In view of Eq. (4), Cijkl has only 21 constants. If we write

Eqs. (2) and (4) as

Oi = cijEj s cij = Cji (11)
where

0y =953, 9 % %2, % 7 s,

(12)
- = =g

9 = 933, % = %3, % ‘12,

€ =€, 27 %22, %37 f33,

€, = 2653, €5 % 23, % 7 12, (13)

the coefficients in Eq. (10) can be written as




€16

Qx = i1k 66

56

12

ik = Si1k2 © 62

52

62

(o]
ik - Ci2x2 © 22

[od

46 42

Equation (10) can then be written as

D

and vanishing of the determinant Dik

15
65

55}

means

2
ik T Qg PRy * Ry + Ty
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(14)

(15)

2 2 2
C117PC*P So6  C16*P(Cy*Cee) *P Cog C15tP(C14tCse) *P g

c, +plc,,+¢ )+p2c c . +2pc +p2c
16 P{€12%%%e 26 “667<PC2¢

c,-+p(c,  +C )+p2c C. . +p(c,-+c, )+ 2c
157P4€14% 56 46 ©56"PLC25%C46) TP Coy

22

Eq. (16) provides six eigenvalues of p.

Co . +tp(C, *C, )+ 2c =0
56 PLCa5%Ce TP Coy (16)

Ce*2pC +p2c
55 45 44

For each of p the associated Ui's are obtained from Eq. (9). In

general, Ui’ (i=1,2,3) are all non-zero, Hence, u

coupled.

As to Tij’ we let j=1 and 2, respectively, in

the notations of Eq. (14) to obtain

Tip = Qg * PRIV

tal
1}

i2 = Ry +PT 0

u and u

are
2

(2]

Eq. (8) and use

(17)
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It follows from Eqs. (9,15,17) that
T., +pT., =0 (18)

and hence

T T

- -2 -
12° Pl Ty TP Ty T3 = Plyg (19a)

Therefore, of the six components Tij’ all we need is 122, T33 and 123.

They are obtained from Eqs. (17) and (8) with the aid of Eq. (14). The

results can be casted in the following form:

Ty = (o5 +pejgluy + (C5q *PC IV, + (45 +PCy)Vg
(19b)
(i =2,3,4)
where
T2 5T T3= 0330 Ty =Ty (19¢)
Notice that since Qik and Tik are symmetric, so is Dik' Notice
also that c,., (j=1,2,...,6) are not present in Eq. (16). Therefore, the

33

eigenvalues p are independent of these elastic constants. In fact, the
stress singularities are also independent of these elastic constants.

Equation (16) is a sextic equation in p. If the strain energy is
positive definite, it can be shown that p cannot be real [10,12]. There-
fore, we would have 3 pairs of complex conjugate roots for p.

When the material property is symmetric with respect to the (XZ’XS)
plane or to the (xl,xs) plane, Eq. (16) reduces to a cubic in p? [10].
Since every cubic has at least one real root, one of the p's will be

purely imaginary when (XZ’XS) or (xl,xs) is a plane of symmetry.

4. UNCOUPLING OF uz FROM uj AND up

When the material property is symmetric with respect to the (xl,x,)

plane, we have

15 % %24 = 25 = C34 T C35 = Cyg = Cg6 = 0 (20)
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Equation (16) then reduces to

] 9
€117PC16*P g C16*P(C12*C66) P 2 0
c, +p(c,,+c )épzc c Ich +p2c 0 =0 (21)
16"P1€12%%%6 26 66" PC26"P €22
2
0 0 C55*2PCy5*P Cyy

Therefore, instead of a sextic we have a quartic equation and a quadratic
equation in p.

[f p 1is a root of the quartic equation, we see from Eas. (9,21) that
Uy = 0. Moreover, Egs. (19) show that =

deformation.

135 03" 0. Hence, we have a plane

Similarly, if p 1is a root of the quadratic equation, v U, s 0 and

170" T23= 715" 0. This is an anti-plane deformation.
Therefore, when Eq. (20) holds, the plane deformation and the anti-
plane deformation are uncoupled. Since the system is linear, we may consider

them separately when Eq. (20) holds.

5. GEOMETRICAL INTERPRETATION OF Z = x] +px

Let o and B be, respectively, the real and imaginary part of p so

that
p=a+Bi, 3>0 (22)

We assumed B>0 because the conjugate of p will have the negative

imaginary part. Using the polar coordinates with the origin at X) =X, = 0,
we have

X, = r cos@ , Xy = r sinf . (23)
Hence,

Z= x| +px, = X+iY = rpe? (24)
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where

X/r = cosB + asinb = pcosy

Y/r = Bsin® = psiny (25)

2 = (cosB + asin®)? + B%sin?6

©
1}

It is not difficult to show from Eqs. (23-25) that a unit circle in the
(xl,xz) plane maps an ellipse in the (X,Y) plane, Fig. 1. If the (xl,xz)
plane is a stretchable sheet, one obtains the ellipse by first stretching
the circle uniformly 8 units in the xz-direction and then shear the

sheet with the xl-axis fixed until point b displaces a wunit horizontally.
From point a in (xl,xz) and (X,Y) planes we see the geometrical relation-

ship between 6,0 and Y. From Eq. (25), notice that p and ¢ depend on

8 and p but are independent of r. Notice also that

p=1, ¢Y=8, at B8=0, +m (26)
If p 1is purely imaginary, we also have, in addition to Eq. (26),

p=R8, =20, at 8 = £7w/2, £31/2 when & = 0 (27)

For isotropic materials, p=+1 is a multiple root of order 3. Thus

the ellipse in the (X,Y) plane reduces to a unit circle. Hence,

p=1, Y=29, (28)
and

~
"
”
+
[ e
>
L]
]
(o]

(29)

which is the well-known complex coordinate for (xl,xz) in two-dimensional

elasticity problems of isotropic materials.

6. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p's ARE DISTINCT

To find the stress distribution and the stress singularities at the

vertex of a wedge, we choose
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f(2) = Z (30

where K 1s the order of singularity to be determined by the boundary condi-
N

tions. As we mentioned earlier, the eigenvalues p are all complex numbers

and consist of three pairs of complex conjugates. In this section we assume

that the eigenvalues are distinct. Using Eq. (30) in Eqs. (6,7) for all

eigenvalues and forming a linear combination of them leads to

_ S 1S zl-x ) <
ug = (AlJi; +Blui4 3/ (1-k) + ... (31)
-K - 5-K
= T..Z . . (3
ij Al'ij + BlT1)Z + (32)
where Al,Bl,... are constants which may be complex and an overbar denotes

a complex conjugate. For simplicity only the terms associated with one pair
of eigenvalues are written explicitly to aveid introducing an additional
subscript for the eigenvalues. The dots denote terms associated with the
remaining two pairs of eigenvalues.

It should be pointed out that v, as given by Eq. (9) is not unique

and can have an arbitrary multiplicative constant. The constants Al and

B. il L43. 51,32, represent this arbitrary multiplicative constant.
For a wedge or a composite wedge, by substituting Egs. (31,32) in the
boundary conditions (which include the interface conditions if the wedge is

a composite), one obtains a system of linear algebraic equations in A

1)
Bl""’ which may be written as
Kije5 = q; (33)
where Kij is a square matrix which depends on «, cj is a column matrix

whose elements are Al’Bl”"’ and a 1s a column matrix which depends on

the boundary conditions. If the boundary conditions are homogeneous, g, =0.
i




In this case, a nontrivial solution exists if the determinant of Kij
vanishes. The roots of this determinant provides the values for «. Let

LY

K= E+ni (34)

where § and n are real. If 0<§<1l, we have a singularity at r=0.
-Since u; and cij are real, only the real parts or the imaginary

parts on the right-hand sides of Eqs. (31,32) should be considered. They

will have different expressions depending on if the root «k 1is real or

complex.

A. Kk =&, Real

Since Ui and Tij are in general complex, let

ia; ibj
i i
v, =v.e T..=t..e

. (35)
i i ij = Cij

where Vis a5 tij and bij are real and repeated indices do not imply
summation here. With Eqs. (24,35), the real parts of Eqs. (31,32) can be

written as
u, = (rp)l-gvi{Mlcos[ai+(1-£)w]+lein[ai+(1-£)W]}/(1-£)+... (36)

Oij = (rp)-Etij{Mlcos(bij-aw)+lein(bij-Ew)}+... (37)

where ML’N are related to Al’Bl"" and are real. The imaginary

1’

parts of Eqs. (31,32) provide no new expressions.

B. x = £ +in, complex

When « 1is a complex root there is no loss in generality in

assuming n>0 because if K 1is a root, so is K. We then have
- . - _r o3 _i
27K (rpelw) g-in _ (rp) EeMWe xew(rp) n
- (rp)-senwe-1(£w+n1n(ro)) (38)




The real parts, or the imaginary parts of Eq. (32) now become

+

- e eV “eNTsing, )ee Wit tentsing, Y le. .. (39)
oij = (rp) tij{e (chos¢ij+N151n¢ij)+e ( 1C05¢iJ N;s ¢1J)
[ Y
' where
+
> = b..-Eynln(r (40)
} | ¢1J ij gvinln(rp)
and Mi, N; are real constants and are related to Al and Bl' A similar

equation may be written for u, .
unbounded as r-+0.

In the sequel, we will consider only the cases in which «

7. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A DOUBLE ROOT

- 1-x .
ui = UiZ / (1-k)

o..=1..2%
ij ij

are the solutions corresponding to the double root p, so are

.1 d L1k
Ui = 1-x dp{Uiu }
L ',1- -
g R A
I-k i i 2
! - - -
o,. =1,.27 -«t, 27" lxﬁ
1] 1) 1] o

where a prime stands for differentiation with respect to p. Since

xz (z'i)/(ZP);

we have
D SN Jl-x 1 s5,-K
up T Qe vt 2p V)2 3p Uit
_ ! K =K K z.K-1
% 7 Uiy~ 3p Tyt v Tt

complex. The solution for a real « is deduced by letting n=0.

We see that Oij is oscilatory and
As expected, Eq. (39) reduces to Eq. (37) when n=0,

is

) When p is a double root of Eq. (16), we have only two pairs of

distinct eigenvalues instead of three. It is not difficult to see that, if

(41)

(42)

(43)

(44)

(45)

(46)

(47)

—— DY Ll

O
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ui is obtained by differentiating Eq. (9) with respect to p:

Ul

' -
Diy %k * DixkV = © (48)

LY

The existence of a solution for Uk and Ué from Eqs. (9,48) will not be

discussed here. Likewise, Tij is obtained by differentiating Eq. (8) with
respect to p.
Notice that Ui and Uk obtained from Eqs. (9,48) are not unique.

They both have a multiplicative constant, say Al and A2, respectively.

The 2% term in Eq. (47) together with the same term with p replaced by
p is essentially similar to Eq. (32) and hence would yield an expression
similar to Eq. (39). The last term in Eq. (47) will produce a second

independent solution. This is obtained from

K = ,3-K-1
oij 2 7p Tij 2 E;‘Tijhz (49)

by taking the real or imaginary parts of the right-hand side. Therefore,
when p 1is a double root, we have the following second independent solution
for Oij in addition to Eq. (39):
- (ro)Er. {e™ [Mocos (0, - “sin(h. [ - 2
05 = (rp) tij{e [Mzcos(¢ij ) + N251n(¢ij 29) ]

+

+ e WiMpcos (0,7 - 29) * Npsin(o,] - 20)] (50)

20 2 2’ °2 P
and «. Equation (50) applies to the case when « is complex. For a real

where ¢§j are defined in Eq. (40) and v NE are related to A., B
K, we simply let n=0.

8. STRESS DISTRIBUTION NEAR THE VERTEX WHEN p IS A TRIPLE ROOT

For isotropic materials, p=:i is a triple root. However, since us
is uncoupled from U and u, for isotropic materials, p is actually a
double root when we consider vy and u, only. Hence the previous section

on a double root p applies to isotropic materials.

T T e
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We have not seen an example other than isotropic materials for which

p 1is a triple root. If there is one, and if ug is not unccupled from v

and uy, we see that a thisd independent solution is
o, = A4z 1) . (51)
i 1-x dp i
o =L x4 (52)
ij ~dp? T'ij

Following a similar procedure in deriving Eq. (50), the real expressions for
the third independent solution when p 1s a triple root can be obtained

from Eq. (50) with 2¢ replaced by 4y and the subscripts 2 replaced by 3

9. STRESS NEAR THE VERTEX WHEN < IS A DOUBLE ROOT

Up to now, we tacitly assumed that K 1is a single root of the
determinant of Kij and henée, other than a multiplicative constant, the
homogeneous equation of Eq. (33) has a unique solution for Cj whose
elements are the coefficients Al,Bl,... If « 1is a multiple root, then
Al’Bl"" may not be unique and we have other new solutions.

Let k be a double root of the determinant Kij defined in Eq. (33)

with 9 = 0. Then, not only Egqs. (31,32) are the solutions, but also are

_ d; A l-xy = d Bzl -
u.1 = U-1 K{l—-\z “ } o+ Ui ———dK —l-K P+ ... (33)
s5l-x
= - i e 54
015 = Tij dK{A 27) + 1, i3 {B P+ (54)
Since
-K -K
1_] d—K{A Z } = — T Z - A TlJZ InZ, (55)

the first term on the right is essentially the same as the first term of
Eq. (32). The second term provides a new solution for Oij when kK 1is a

double root:




= AT..2"Inz+B

- ==K -
055 T AT 2732 InZ (56)

The real or imaginary parts of Eq. (56) have different expressions depending
a

on whether p is a single root or a multiple root.

A. p is a single root

When p 1is a single root, the real or imaginary parts of Eq. (56)

have the expression:

g.. = (ro)_Etij{ewn[Mé(ln(ro)cos¢ig

a3 -
i usm¢ij)

+ Né(ln(ro)sin¢i; + wCos¢i;)]

+ e'wn[M;(ln(rp)cos¢i; - wsin¢i;)
+ Ny(In(re)sing, [ + Yeose; ]} (s7)
As before, ¢§j are defined in Eq. (40) and M;’ N; are related to Az
and BZ'

B. p is a multiple root

Let us consider first the case in which p is a double root.

Then, in addition to Eq. (56), we also have the solution

d -K d - s5-x, = -
= _— . Z —(1..2 1nZ {(58)
Oij A2 dp(T.lJZ InZ) + B2 dﬁ(rlJ nl)

However, since

d “Kioy o L Ky o
EE(TijZ inZ) = (Tij 5 rij)z inZ

1 K s,-K-1 K 55-K=1
2 - — T..22 InZ (59)
+ ) rij(z 2 ) + 2p 'ij

where use has been made of Eq. (45), only the last term provides a new solu-
tion. The rest of the terms in Eq. (59) have appeared in Eqs. (56,32,47).

Therefore, a new solution when p is a double root is

176
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0.. = A, =1, .52 Inz+B
ij 22p 1

T..22 InZ (60)
The real or imaginary parts~of Eq. (60) have the expression which is obtained
from Eq. (57) with ¢;j replaced by (¢§j -2y).

Similarly, if p 1is a triple root, it is not difficult to show that
the new solution is obtained from Eq. (57) by replacing ¢fj by (¢§j ~4y).

We see from Eq. (57) that o has the singularity of r % nr. The
existence of a solution of Eq. (57) depends on the existence of a solution
for A and dA/dk in Eq. (55). Since A 1is an element of cj in

Eq. (33), the existence of A and dA/d«k depends on the existence of a

solution for cj and dcj/dK from the following equations

K..c. =0 (61)
1)

= 62

Kij(dcj/dK) + (dKij/dK)cj 0 (62)

A discussion of the solution of Eqs. (61, 62) can be found in [3].

10. STRESS NEAR THE VERTEX WHEN k IS A TRIPLE ROOT

When Kk 1is a triple root, one can follow the same reasoning as in the
previous section for a double root «. Therefore, the new solution for a
triple root « 1is obtained by replacing d/dx by d2%/dk® in Eqs. (53,54).

Equation (56) then is replaced by

_ ~K 2 - 5-K 542
cij = AZTijz (InZ) +BzrijZ (In 2) 63)

and Eq. (57) is modified by replacing Ln (rp) by [ln (rp)]%- %2, which is

the real part of (InZ)%, and ¢ by 2y 1ln (rp), which is the imaginary part
of (inz)?2.




11. GENERAL EXPRESSION

We can summarize the results obtained so far in the following form.
Let np be the multiplicit} of p and L be the multiplicity of k. If
we write
0,5 = r'gFij(r,e) (64a)

then Fij consists of a linear combination of the real and imaginary parts

of the following expression
tijo-getwn{ln(rp)tiW}mdl{cos[bij-£¢-2(n-1)w$n1n(rp)] (64b)
+ isin[bij-gw-Z(n-1)w:n1n(ro)]}

for each p and for all integers m and n subjected to the limitations

< 64
1<m<m,, lininp_S (6dc)

As we stated before, o and P depend on 6 but not on r.

12. SINGULARITY AT A CRACK TIP FOR ANISOTROPIC SOLIDS

Consider an infinite anisotropic solid with a crack plane which is
located at X; <0 of the (xl,xs) plane. Hence, 02j =0, (j=1,2,3) at

@=+m. Using Eq. (26), Eq. (37) for O=m and -m reduces to

tzj{Mlcos(ij—En) + lein(b2j~8ﬂ)} + ... =0
(65)
tzj{Mlcos(b2j+€n) + N151n(b2j+€n)} + ... =0
(G = 1,2,3)
If we set £ = %, we have
tzj{Mlsin(sz)-Nlcos(sz)} + ... =90
(66)
tzj{-M151an2j)+N1cos(b2j)} + ... =0

(G = 1,2,3)

-
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Equation (66) consists of 6 equations for Ml’Nl"" and can be written in
the form of Eq. (33) with CH.=O' Since the first three equations are
identical to the last three equations, £=)% 1is a triple root of the deter-
minant. We can therefore let £=%, n=0, m.= 3 in Eqs. (64). Disregarding

the dependence on 6, the singularities at the crack tip in a general

-l , =L =L
anisotropic material are r ° and possibly r “Ilnr and r 2(lnr)?. The
-y y ,
existence of Tt *lnr and r ?(lnr)® depends on the existence of a
solution for cj, dcj/dK, dzcj/dK2 from Eqs. (61,62) and an equation

obtained by differentiating Eq. (62) with «,

15. SUMMARY AND CONCLUSION

We have presented here a means to determine the order of singularity «
at the free-edge of an interface in a layered composite in which each layer
is anisotropic. Although the order of singularity does not depend on the
stacking sequence of the layers in the composite, the coefficients of the
singular terms which are related to the intensity factor do. These co-
efficients can be determined only by solving the complete boundary value
problem. One may use a special finite element at the free-edge using the

analyses presented here and regular finite elements elsewhere in solving the

complete boundary-value problem.

T e
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CHAPTER 6

TRANSIENT WAVE PROPAGATION NORMAL
TO THE LAYERING OF A FINITE LAYERED MEDIUM

ABSTRACT

Plane wave propagation in the direction normal to the layering of a
periodically layered medium is studied. A period consists of two layers
of homogeneous, isotropic, linear elastic or viscoelastic materials. The
layered medium is of finite extent and hence consists of a finite number
of layers. A theory is presented by which the layered medium is replaced
by an "equivalent" linear homogeneous viscoelastic material such that the
stress or the velocity in the latter and in the layered medium are identical
at the centers of the alternate layers. Transient waves in the layered
medium are then obtained by solving the transient waves in the '"equivalent"
homogeneous viscoelastic medium. Solutions at points other than the centers
of the alternate layers are also presented. Numerical examples are given
for transient waves in an elastic layered medium due to a step load applied
at one of the boundary while the other boundary is fixed. Comparisons with
the exact solutions by the ray theory show that the present theory can predict
very satisfactorily transient waves in a finite layered medium. The theory
of viscoelastic analogy applies to other cases for which exact solutions by the
ray theory are not available, such as the case of finite layered medium

with prescribed boundary conditions which are time-dependent.
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1. INTRODUCTION

Most of the approximate theories for wave propagation in a layered
medium focus on the determination of the dispersion relation or the fre-
quency equation due to a harmonic oscillation [1-4], although some of the
theories are able to predict the late-time asymptotic solution in a semi-
infinite lavered medium due to a step load applied at the boundary. For
the latter, exact theories may be used to find the asymptotic solution and
the wave-front solution [5-7].

To predict the transient response at points not necessarily far away
from the impact end (where the asymptotic solution does not apply) and to
points not necessarily near the wave-front, a new theory based on the
analogy between the dynamic response of a semi-infinite layered medium and
a semi-infinite homogeneous viscoelastic medium has been proposed recently
by Ting and Mukunoki [8]. The fundamental idea is to characterize the
lavered medium by an "equivalent' homogeneous viscoelastic medium such that
the dynamic response of the latter is identical to that of the layered medium
at the centers of the alternate layers. Although the idea of modeiing a
composite by a viscoelastic medium is not new ([9,10], the *"theory of visco-
elastic analogy" introduced in [8] succeeds in obtaining the exact form of
the "equivalent™ relaxation function for the layered medium.

Since wave propagation in a homogeneous linear viscoelastic medium can be

solved easily by many known numerical schemes (see [11], for example), one
can obtain the transient wave solution in a layered medium by solving the

transient waves in the "equivalent" homogeneous viscoelastic medium.

The layered medium considered in [8] is of semi-infinite extent. In
tiilis paper we exterd the theory to the case of a finite layered medium,

First, we derive the general solution in the form of Laplace transform for
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waves propagating normal to the layerings of a finite layered medium. The
general solution, which is applicable to any point in the finite layered
medium, contains two arbitrary coefficients which can be determined from

the boundary conditions of the finite layered medium. Next, we apply the
general solution to certain points in the layered medium, namely, the centers
of each layer. We show that the general solution at the centers of each
layer is analogous to the general solution for waves propagating in a homo-
geneous viscoelastic medium. From this analogy we obtain the viscoelastic

1

relaxation function of the ''equivalent' homogeneocus viscoelastic medium.
Several analogies can be made depending on whéther one is interested in the
stress response or the velocity response in the layered medium. The
analogies obtained here are more general than that presented in [8] and

can be applied to the semi-infinite medium as well. In finding a means

for determining the response at points other than the centers of the layers,
we inadvertently obtain a characteristic relation in an integral form for
one-dimensional waves in homogeneous viscoelastic media. In the literature,

this is in a differential form.

2. BASIC EQUATIONS

Consider a periodic layered medium as shown in Fig. 1 in which each
period 2w consists of two layers of homogeneous, isotropic, linear elastic
or viscoelastic materials. The two different materials in the lavers will
be designated as material 1 and 2, respectively. Thus material 1 occupies
layers 1, 3, 5... while material 2 occupies layers 2, 4, 6... The thick-
nesses of individual layers are denoted by 2h.l (1=1,2) where the subscripts
1 and 2 refer to material 1 and 2, respectively. We will assume that the
layered medium is initially at rest and occupies the region 0 < x < 2. We

choose the central surface of laver 1| as x=0 and the other boundary, x-= .,
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is assumed to be at the central surface of layer N where N can be an even

or odd integer. Hence,
2= (N-1Dow (1

} We will consider plane wave propagation in the direction x in which the
only non-vanishing component of the displacement is in the x direction.
We therefore have a one-dimensional wave propagation problem in which the

equation of motion and the continuity of the displacement are given by

1 = v = 2
ax pl i } (1 1:“) (2)
Bvi .
———ax = Ei N (1= 1’2) (")
Q where a dot stands for differentiation with respect to the time t, and

ci, €0 Vi Py (i=1,2) are the normal stress, normal strain, particle
velocity and mass density, respectively. Let Xi(t) and ui(t) be the re-
laxation functions of the materials. For elastic materials, Xi(t) and

ui(t) are independent of t and are identified as Lamé constants. The

stress-strain relation can be written in the form of Stieltjes convolution

! t
[

Gi(x,t) =J gi(t-t‘)dei(x,t') , 4)
0"

gi(t) = ki(t) (Y, (3)

where we have assumed that

ci(x,o') = vi(x,o‘) = ei(x,o') =0 . (6)

3. GENERAL SOLUTIONS

The general solution to Eqs. (2-6) can be obtained by the method of

Laplace transform and by the use of the Floquet theory. We define the Laplace

FEYeS
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transform, f(p), of a function f(t) by
t t
£(p) =J f(tye Pt dt (7)
0"

After applying the Laplace transform to Eqs. (2-6), the general solution for

the stress and the velocity in layers 1 and 2 can be written as

cl(x,p) = Alcosh(klx)4-Blsinh(k1x) (8a)

- 1 (- . -

vl(x,p) = EI'{AI sinh (klx) + B1 cosh (klx)} (8b)

02 (x,p) = Az cosh (kzx - kzm) + B2 sinh (kzx - kzm) (8¢c)

- 1 - . -

v,(x,p) = a;-{A251nh(kzx-kzw)+-82cosh(k2x -kzm)} (8d)
where

w = hl +h2

k; = Yo; p/Ei (9)

m, =p, p/k; = Yo, pg;

Ri and Ei (i=1,2) are determined by the continuity condition at x = h1

5 3,
(hy,p) = | 7| (hpup) (10)
v

Y1 2
and the quasi-periodicity property of the solution together with the con-
tinuity condition at x = Zm--h1

g . 1
2 1 -2wK
(26-h;,p) = | J(-hl,p)e (11)

<

2 V1
where K is the characteristic exponent [12]. Substitution of Eqs. {8) into

Eqs. (10) and (11) leads to four homogeneous equations for Riand §i. The




Notice that if

remains unchanged while pM becomes (plfl)'l
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requirement for a non-trivial solution results in the following equation

for the characteristic exponent K:

cosh(2ux) =0 cosh(2k1hl +2k2h2) - (9-1) cosh(2k1h -2k hz) (12)
1/1 1>
8=3(>=+2+—=— (13)
4 (ml 2
Moreover, Ri and Ei are related by
72 = ~Wk E’ = -0
— = pMe ) = = -pRm,e ,
! M
(14)
==l , 2= 5L, ,
A 1 A 2
1 2
where
El = m Rplt EZ = m,R/ (pi)
pM i} m1C1C2+-m23152 : mzcosh(wK)
1cosh(wic) m2C1C2+mISIS2
(15)
. MmG%rmGS) | sinh(w)
pr = 1m251nh(wK) b Clsz-rm C S1
Ci = cosh(kihi) , Si = Slnh(kihi)

we interchange the subscripts 1 and 2, the expression for pR

Therefore, we can obtain the

Stieltjes inversion of M(t) by simply interchanging the subscripts 1 and 2

in the expressi
With Eq.

by Eq. (8) can

say 51. The s

relation:

Tt O e

on for pM and applying the Laplace inverse transform.
(14), the general solution in the layers 1 and 2 as expressed
now be reduced to a solution containing only one coefficient,

olutions in other layers are obtained by the quasi-periodicity




(2nw + x,p) =

<\

i
where n 1is an integer.

characteristic exponent, so

solution with Rl

tion by changing the sign of K.

will be denoted by Ri.
and velocity at any point x

Eqs. (8,14,16),
&l(an-rxl,p)

=
+ Al

- ‘&1
vl(an-fxl,P) = EI

Slh?i

1

5’2(2nm+w+ X,,p) =

= Al{cosh(klxl)-lesinh(klxl)
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c-,i
WK

(x,p) e 2" (16)

V.
1

Moreover, we see from Eq. (12) that if k 1is a

is -k. Therefore, in addition to the géneral

as the coefficient, we obtain the second general solu-

The coefficient of this second solution

Consequently, the general solution for the stress

in the layered medium can be written as, using

} -2nwK
e

= . 2nex
{cosh(klxl)*-pL151nh(k1xl)}e (17a)
. - -2nac
{51nh(k1x1)-lecosh(klxl)}e
. - 2nwK
{51nh(klx1)-rlecosh(klxl)}e (17b)

T = = . -(2n+1
AlpM {cosh(kzxz)4-pL251nh(k2x2)}e ( Jax

-t - - . 2n+l
+ AipM {cosh(kzxz) +pL2 51nh(k2x2)}e( n+l)ax (17¢)

vz(an W+ xz,p) =

A
. —
m

where

- S e -

= f . - -(2
% pM {smh(kzxz) - pL2 cosh(kzxz)}e (2n+1)ax
= { . - 2
pM{s1nh(k2x2)+ pchosh(kaz)}e( n+l)ax (17d)
i=1,2) (18)




—— ——— e

189

When proper values for n and X (or x2) are chosen, Eqs. (17) can be used
to determine solution at any point in the layered medium. The two co-

efficients A, and Ri are determined from the boundary conditions at x=0

1
and x=2.

In the next section we will show how one can obtain the solution at
the centers of the layers by solving the wave propagation problem in an
"equivalent' homogeneous viscoelastic medium. Having found the viscoelastic
analogy for the solution at the centers of the layers, we then show how one

can obtain the solution at points other than the centers of the layers ir

terms of the solution at the centers of the layers.

4. SOLUTION AT CENTERS OF LAYERS

The stress and velocity at the centers of the layers have specially

simple forms. By letting xl = x, = 0 in Eq. (17), we have
5, (2nw, p) = & e 2NUK L §!o2nux 1
v, (2nw, p) = EEL (-g o~ onWK A'eanK>
1 ! p - m 1 1
(19)
- s _en )
3,(2nw+w, p) = p <A (2n+l)ux | Aie(2n+l)wi<>
v p-z M 3 -(In+l)ux =1 (2n+1)ux )
vplenurw, p) =Tn_p1( 1 + Aje )

We now consider a homogeneous, isotropic, linear viscoelastic medium
which occupies 0<x<f& and which is at rest at t=0" and is subjected
to certain prescribed boundary conditions at x=0 and x=£. Let ¢, n
and V be the normal stress, normal strain and particle velocity, respec-
tively. Also, let p and G be the "equivalent'" mass density and the

"equivalent" relaxation function of this homogeneous viscoelastic material.

gﬂ“&}u

b e
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The equation of motion, the continuity condition, the stress-strain relation

and the initial conditions are

3 e
> PV
WV .
e
t (20)
d(x,t) = J G(t-t)dn(x,t")
o

$(x,07) = V(x,07) = n(x,07) =0

By applying the Laplace transform to Eqs. (20), the general solution for the

stress and velocity will contain the exponential term
exp (t vop/G x) (21)

In view of the exponential terms in Eqs. (19), we will define the "equivalent"

relaxation function G(t) by the relation

Kk = Ypp/G (22)

We will also define the '"equivalent' mass density p by the average mass

density in the layered medium [4,8]:
p = (pyhy + Pyhy)/(hy+ hy) (23)
With Eq. (22), the general solution to Eq. (20) can be written as

$(x,p) (24a)

]
[
o
+
[¢]

V(x,p) = = (-5 e KX 4 i'er) (24b)
PP
where a and a' are arbitrary functions of p.

There are several ways to identify the analogy between Eqs. (19) and (24).

If the stress in material 1 is of main interest, we may set




i

we then have

G, (x,p) = &(x,p)
for x = 2nw

v, (x,p) = pJ V(x,p)

and
0,(x,p) = phié(x,p)
for x = (2n+l)w
vy (x,p) = pM {pJ,V(x,p)}
where _
- ppLy .
It (1=1,2)

It should be pointed out that while & and V as given by Eq. (24) are

defined for all x, Eqs. (26a) and (26b) apply only to x
X = (2n+l)w, respectively. By using the identity,

- - .2 - -
Jl/JZ = (pM)® = m,L,/(m,L

the last of Eq. (26b) can be written as

V.00p) = = {pJ Tep)} X = (Znsljw
- pM

With Eq. (29), we rewrite Eqs. (26) in the following form:

01(2nw,t) = ¢(2nw,t)
vl(an,t) = V¥(2nw,t)
t
cz(an+w,t) = J M(t-t') dé (2nw +w,t")
0-
t -1 t [
vﬂ&w+w¢)=j M (t-t )dv* (2nw+w,t')
0"
where
t
vi(x,t) = j Ji(t-t')av(x,t")
0-
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(25)

(26a)

(26b)

(27)

(28)

(29)

(30a)

(30b)

(30c¢)

{30d)

(30e)
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and M'l is the Stieltjes inverse of M. (See the discussion following Eq. (15)
regarding the Stieltjes inverse of M.) Thus the stress and velocity at the
centers of the layers are related to the stress ¢ and velocity V in the
"equivalent" homogeneous medium. In particular, the stress at the centers

of the odd layers, cl(Zw,t), is identical to the stress ¢ in the'equivalent"
homogeneous viscoelastic medium.

As an illustration for the theory of viscoelastic analogy, we consider
an elastic layered medium which is fixed at the center of the 1l4th layer
{i.e., 2 = 13w) and subjected to a unit step stress applied at x = 0. Since
the 1l4th layer is occupied by material 2, we have the following boundary

conditions:

UI(O,t) = H(t) , V2(13m,t) =0 (31a)

where H(t) is the Heaviside step function. In view of Eqs. (30), the corre-

sponding boundary conditions for the "equivalent'" viscoelastic medium are:
$(0,t) = H(t) , V (13w,t) = 0 (31b)

We now replace the elastic layered medium by the 'equivalent' homogeneous
viscoelastic medium whose mass density p and the relaxation function G(t)
are given by Eqs. (23) and (22). Because of the complicated expression for
K as given by Eq. (12), analytical inversion of the Laplace transform

ﬁ(p) from Eq. (22) does not appear feasible. We therefore resort to a
numerical Laplace inversion of G(p), [13]. The result is shown in Fig. 2
along with the physical parameters of the elastic layered medium used in the
calculation. The physical parameters are taken from [4]. Unlike for most
real viscoelastic materials, the relaxation function for the "equivalent"
viscoelastic medium is not a monotonically decreasing function of t. This

was also predicted by Christensen [10] based on the dielectric theory. In
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[8] one can find a discussion on the behavior of G(t) as t+0 and t-+« as
well as the value of é(t) at t = 0.

With G(t) given by Fig. 2 and the boundary conditions given by
Eq. (31b), we integrate Eq. (20) numerically by the method of characteris-
tics [14] for the stress ¢ and velocity V in the "equivalent” homogeneous
viscoelastic medium. The stress and velocity at the centers of the lavers 1
in the layered medium are then determined by using the viscoelastic analogy
Eqs. (30). In Fig. 3 we present &(4w,t) which is the stress history at
the center of the 5th layer. For this example, the exact solution in the
elastic layered medium using the ray theory can be obtained numerically by 1
keeping track of every reflected and transmitted waves at the interfaces
of the layers {8]. This exact solution is also shown in Fig. 3 for compari-
son. It is seen that the agreement is excellent.

In Fig. 3 we also show the solution obtained by the effective modulus
theory {15]. With this theory, the elastic layered medium is replaced by

a homogeneous elastic medium whose effective modulus Soff is given by

h. h :
1 <_l . _2>/(h1 . h7) (32)
e \B1 B <

and whose effective mass density is identical to the ''equivalent" mass den-

sity defined in.Eq. (23).
In Figs. 4 and 5 we show, respectively, the velocity history at the 1
center of the 5th layer and the stress history at the center of the 8th
layer by using Egqs. (30b) and (30c). Since ¢(x,t) and V(x,t) have already
been determined, all we need is the functions Jl(t) and M(t) which are

defined in Eqs. (27) and (15). Jl(t) and M(t) are obtained numerically by

i;,u’?”:é o

inverting their Laplace transforms. Again, the solutions by the ray theory

Yo
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and the effective modulus theory are also shown in the figures for compari-
son.

The function Ji as well as functions M, R, and Li, (i =1,2) defined
in Eq. (15) are called the "auxiliary" functions. Like G(t), the auxiliary
functions depend only on the physical properties and the geometrical layer-
ing of the layered medium. They are independent of the boundary conditions.
For the viscoelastic analogy given by Eqs. (30), only the functions Jl’ M,
and M—l are needed. Of course, if cl(Zm,t) is the only quantity desired,
no auxiliary functions are needed.

Before we study the solution at points other than the centers of the
layers, we will discuss other forms of viscoelastic analogy in the next

section.

5. OTHER FORMS OF VISCOELASTIC ANALOGY

In Eqs. (30) we present one form of viscoelastic analogy between
Egs. (19) and (24). The analogy, Eqs. (30), is convenient for the case
when the stress in material 1 is of main interest because according to

Eq. (30a) o, is identical to 9. If the stress in material 2 is of main

1
interest, then the analogy given by Eq. (30c) requires a convolution inte-
gral with the auxiliary function M(t).

There are of course other forms of viscoelastic analogy which would

be more convenient for other situations. 1If the stress in material 2 is

of main interest, one may set

pHMA, = a

=i
>

= 3'

=z
b

P

— -

Then the analogy between Eqs. (19) and (24) can be wfitten as

A et mpo o s, WA 5 MR e e o
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o,(2nw+w,t) = $(2nw+w,t) \
v,nwrw,t) = V¥ (2nw + w,t)
t
GI(an,t) = J M'l(t -t') dd (2nw,t") \
0 ( (34)
t
v, (Qna,t) = J M(t-t')dV* (2nw,t")
0"
t
V¥(x,t) =J Jy(t-t")av(x,t") J
o 2

With this analogy, the stress ¢ in the '"equivalent'" viscoelastic medium is
identical to o, at x = (2n+l)w.
Likewise, if the velocity in material 1 is of main interest, the visco-

elastic analogy can be written as

vl(an,t) = V(2nw,t)
GI(an,t) = ¢*(2nw,t)
¢ 1
VZ(an'+m,t) = J M (t -t') dvV (2nw +w,t") (35)

t
J M(t-t')do* (2nw+ w,t")
o-

cZ(an+w,t)

t
% (x,t) =J JIl(t—t')d'b(x,t')
o-

Finally, if the velocity in material 2 is of main interest, we can write

v2(2nw+w,t) V(2nw + w,t)

*
0,(2nw+w,t) = ¢ (2nw+w,t) (36)

t
v (2nw,t) = f M(t-t')dV (2nw,t’)

0
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t
o, (2nw,t) = J M‘lct-t') do* (2nw,t')
0” (36)
t Cont'd
0" (x,t) = f e -ty aox, )

0

Sometimes the boundary conditions may influence the choice of a visco-
elastic analogy. For example, suppose that one is interested in the stress
in material 1 for the problem in which the velocity is prescribed at x = 0
(i.e., vl(O,t) is known), and the other boundary x = 2 is fixed. We could
use either the analogy Eqs. (30) or the analogy Egs. (35). If we use

Eqs. (30), we obtain o, directly from ¢ but then we have to transform

1
the boundary condition vl(O,t) to V{0,t) by using Eqs. (30b,e),

vV(0,t) =J le

0"

(t-t')dvl(O,t') (37)

before we solve for ¢ and V in the "equivalent'" homogeneous viscoelastic
medium. If we use Eqs. (35), we can solve for ¢ and V immediately since

V({0,t) = vl(O,t), but to obtain ¢, from ¢ a convolution integral is

1

required.

6. SOLUTION AT ARBITRARY POINTS

If we solve for Rl and Ri from the first two equations of Egs. (19)

and substitute the results into Eqs. (l7a,b), we have

- 1 klxl -klxl -
ol(an-rxl,p) = E-(e + e Gl(an,p)
K. X Kox (38a)
1 k1% kg 1) -
+ §-<e e mlvl(an,p)
- 1{ kixy -kix,\ -
vl(an-vxl,p) = 2-(e ve 11 vl(an,p)
y . (38b)
1/ %1% - 1"1) 1 ,
* 3 (e - e — 01(;nw,p)
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Similar results can be obtained for OZ(an-fw-bxz,p) and vz(an-kuJ+ xz,p).
We will define the Laplace transform of the functions Dl(xl,t),
El(xl,t) and Fl(xl,t) by

-k.x

ﬁl(xl,p) = % e 11
£ ) = g o (59)
F (x,p) = R

Dl’ El and Fl have the following physical interpretation. Suppose that

material 1 occupies the semi-infinite space x 2 0 and is initially at rest.
Then Dl(xl,t) and El(xl,t) are, respectively, the stress and velocity

; history at x = x; due to a unit step normal stress applied at x = 0.

1

Fl(xl’t) is the stress history at x = x, due to a unit step velocity

1

0. We now rewrite Eq. (38a) as

applied at x

le/cloip’ 'le/clof

3 (2 = L1l5 ¢; D, (-
cl(_nm-*xl,p) = 2301(2nm,p) e Dl( xl’p) e

- -px,/c - Xq/¢
+ %;cl(m,p)e 4 10%";”1("1’?) e’ 102

) (40)
¥ %sGI(an,p) S 2P 3§1(-x1’P) e-le/cwi
- %;Ql(an,p)e-pxl/clotpzﬁl(xl,p)epxl/cloi
where
o = V8O @=L (41)

and Dl(-xl,t) is obtained from Dl(xl't) by analytically extrapolating the

later from Xy > 0 to x) < 0. Similar definition applies to Fl(-xl,t).

Equation (40) can now be inverted as

.- e - p—
- o ———— — AL e = e WG e LY S gy Eataca
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(42)

t X X
g, (2nw + x t)=-1- o, {2nw,t + 1 -t')dD, [-x t'-—l—
1 1’ 2 J_. 1 i c 1 1’ c
0 10 1
t X X
+%— J o, 2nw,t——-1——t'>le<xl,t'+cl )
0" 10 10
t X X
+ % I v1<2ncu,t+ < 1. t'> dF1<—x1, t' - E-l_>
0- 10 10
t X X
--,1,— vy an,t--gl—-t'>dFl<xl,t'+ _1>
© - 10 10

Equation (42) can be written in a compact form if we observe

that o, (2nw,t)

and vl(an,t) vanish for t < 0, and Dl(i xl,t) and Fl(t xl,t) vanish for

t<t xl/c10 and that -h1 < X, < h1 by Eq. (18). We have
1 t
- = ' '
cl(an+x1,t) =3 [ 01(2n(-n,t-t )d{Dl(-xl,t ) +Dy(x
(-hy/¢10)
t
1 ' ' '
+ E—J vl(an,t -t )d{Fl(-xl,t ) -Fl(xl,t )}
(-hl/clo)

By a similar argument, we obtain from Eq. (38b),

t

f ' '
Vl(znm+xl,t) = %J vl(an,t-t )d{Dl(-xl,t ) +Dl(x
(-hy/epo)
1 rt [ ' '
+ 3 ) °1(2m’t't )d{El(-xl,t )-Elcxl,t )}
(‘hl/clo)-

When material 1 is elastic, m1 is a constant and Dl’

step functions:

1’t')}

(43a)

1’t')}

(43b)

E.1 and Pl are
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*1
D,(£x,,t) = H <t ¥ ————>
1 1 ClO
.El(ixl,t) ='m1—H<t7- ';L> (44)
1 10

X1 >
F.(x,,t) = m H(tl'—
1 1 1 ClO

Equations (43) then reduce to (when material 1 is elastic)

xl Xl
2 = = 2 - —
01(-nw+xl,t) 3 ol<2nm,t+ C10> + ol< nw,t S >

m X X
+ %{vl<2nw,t+ cl > - v1<2nw,t - c~1>}
10 10

! X1
v,(2nw + x,,t) = =<V <2nw,t+ > + Vv <2nw,t- —>
1 1 2 1 c10 1 clO

1 xq X (45Db)
* 3 cl<2nw,t+ < > -9 2nw,t - E_—>
1 10 10

This is nothing more than the familiar characteristic relation for one-

[

(45a)

—

dimensional waves in a homogeneous elastic medium. As such, Eq..(43) may
be regarded as the characteristic relation in an integral form for one-
dimensional waves in a homogeneous viscoelastic medium.

After finding the stress and velocity at the center of the 5th layer
in Figs. 3 and 4, we use Eq. (45a) to find the stress history at the inter-
face between the 4th and the 5th layers by letting n = 4 and X; = -hl.

The result is shown in Fig. 6 along with the exact solution by the ray theory.

7. DISCUSSION AND CONCLUDING REMARKS

Several analogies between the solutions of transient waves in a finite

layered medium and in a finite homogeneous viscoelastic medium are established.

-



T e e e e g il et . e

290

The analogies between the solutions apply to the centers of the alternate
layers in the layered medium. Solutions at points other than the centers
of the alternate layers are obtained in terms of the solutions at the centers
of the alternate layers through the use of convolution integrals with auxi-
liary functions introduced in the paper. The materials in the individual
layer of the layered medium can be elastic or viscoelastic, although numeri-
cal examples are given for an elastic layered medium.

The viscoelastic analogies derived here lead us to an exact expression
G(p), which is the Laplace transform of the relaxation function G(t) for
the "equivalent' homogeneous viscoelastic medium. The relaxation function
G(t) is obtained by numerically inverting its Laplace transform using the
method outlined in [13,14]. The method used in [13,14] tends to provide
the value of G(t) only at a finite number of t's which are close to t=0.
It provides poor information on G(t) for large t. Fortunately, our
relaxation function approaches rapidly to the equilibrium relaxation
modulus G, so that the inversion obtained by the method in {13,14] is
adequate for most cases. One could certainly obtain a better numerical
inversion of a Laplace transform by using other techniques such as the fast
Fourier transform [16].

Even though the relaxation function G(t) obtained here is quite crude,
we have reached an excellent agreement between the solutions by the visco-
elastic analogy and by the exact ray theory. The differences in the
solutions are caused mainly from the numerical Laplace inversion of the
relaxation function G(p) and the auxiliary functions M(p) and Jl(p). For
those solutions which require no auxiliary functions, the differences in
the solutions are less noticeable. Some of the auxiliary functions, namely,

M, R, L1 and L2 defined in Eq. (15) can be determined exactly when the

o mleee o w
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constituents of the layered medium are elastic. With the use of exact
auxiliary functions, the differences between the solutions by the visco-

elastic analogy and by the ray theory can be made smaller [l4].

One might ask the relative advantages of the viscoelastic analogy
over a direct numerical computation of the original layered problem.
In a direct computation of waves in the original layered medium, the
calculations are feasible when the boundary conditions are constant in
time and the individual layers are elastic. Moreover, keeping track of
every reflection and transmission of waves at the interfaces between the
layers may soon exhaust the storage capacity of the computor, not to
mention the computing time. The situation is particularly acute when
there are a large number of layers involved as in a real composite.
These shortcomings are not present in the theory of viscoelastic analogy.
One possible shortcoming of the theory of viscoelastic analogy approach
is the less accurate result for the solution at points other than the
centers of the layers. This shortcoming is not serious in practical
qprlicaticns when <he individual lavers are very thin such that the
solution at the center of a laver and at cther pcints in the layer are

practically the same.

In connection with the present work on transient waves in a finite
layered medium, we would like to point out that harmonic waves in a finite
layered medium has been considered by Herrmann, Beaupre and Auld [17]. In
contrast to the normal stress waves studied here, the harmonic waves con-
sidered in [17] are horizontally polarized shear waves. However, one can
see from the analyses presented here that if we replace the normal stress
and the normal displacement by the shear stress and the transverse displace-
ment, respectively, the analyses presented here apply to the transient

shear waves in finite layered media as well.

~ © A AN R e A
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CHAPTER 7

THE EFFECTS OF DISPERSION AND DISSIPATION ON WAVE PROPAGATION
IN VISCOELASTIC LAYERED COMPOSITES

ABSTRACT

In Chapter 6, stress response at a finite distance from the impact
end in an elastic or viscoelastic layered composite is studied. In this
Chapter, the stress response at a large distance from the impact end of a
viscoelastic composite is investigated. If the distance is not large enough,
the stress response is oscillatory due to the dispersive nature of the com-
posite. As the distance increases, the dissipation effect of the visco-
elastic materials becomes pronounced and eventually wipes out completely
the oscillatory response. The transition from the oscillatory response to
the monotonic response is controlled by a parameter Y which contains (a)
the impedence mismatch of the composite which contributes to the dispersion,
(b) the dissipative properties of the viscoelastic materials and (c) the

distance traveled by the wave.

1. INTRODUCTION

Consider a semi-infinite periodic layered composite as shown in Fig. 1
in which each period 2w consists of two layers of homogeneous, isotropic,
linear viscoelastic materials. The thickness of individual layers are Zhi
(i=1,2) where the subscripts 1 and 2 refer to materials 1 and 2, respective-

ly. We will consider plane wave propagation in the direction x which
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is normal to the layers. For the problem considered here, the surface x=0
need not be the central surface of the first layer. We will assume, however,
that the first layer in which x=0 1is located is occupied by material 1.

The composite is initially at rest and at time t=0, time-dependent,
uniformly-distributed normal and shear stresses are applied at the surface
x=0. Since the problem considered is linear, the solutions due to the
applied normal stress and the shear stress can be treated separately. The
two solutions are mathematically identical. Therefore, we will consider
only the solution due to the applied normal stress at x=0. lMoreover, we
will assume that the applied normal stress at x=0 1is the Heaviside unit
step function in time t, because the solution for a more general applied
normal stress can be obtained by a linear superposition.

The stress response at a position x which is sufficiently large can
be obtained by an asymptotic analysis. When both layers are elastic, the
solution can be expressed in terms of an integral of an Airy function [1,2
The stress, as a function of time t, oscillates around the Heaviside step

function. When one or both lavers are viscoelastic, the asymptotic solution

. v
[EPEON

©w

ce expressed in terms of an error function [1,21 The stress response is
o longer an oscillatory function of t, but a monotonically increasing
function -of t which approaches to the unit stress as t increases.

Since elastic materials are special cases of viscoelastic materials,
one might ask how a monotonic solution becomes an oscillatory solution when
the viscoelastic materials become elastic. Alternately, one might ask what
would be the behavior of the asymptotic solution if the relaxation functions
of the viscoelastic materials are nearly step functions. Clearly, when the

position x 1is not large enough, the dissipative effect of the viscoelastic

materials does not have enough time to prevail and the stress response is

Rk
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essentially governed by the dispersive nature of the composite which causes
the solution to be oscillatory. As x increases, the dissipative effect,
no matter how small, becomes prominent and dampens the dispersive mechanism
so that the solution is non-oscillatory. The purpose of this paper is to
study the effects of the dispersion, dissipation and the distance of wave
propagation have on the wave profile. To simplify the analysis, we will
consider only solutions at x=2wN where N 1is an arbitrary positive
integer.

It should be pointed out that a similar problem was studied by Sve [1]
for two special viscoelastic materials. The imaginary part of the wave
number for the special materials is assumed to be proportional to the abso-
lute value of the frequency or proportional to the square of the frequency.
Hegemier [3] obtained asymptotic solutions for elastic composites as well
as viscoelastic composites. However, his solutions differ from that obtained

here and in [2]. A discussion on the differences will be given later.

2. SOLUTION FGR x = 2wN

The equations of motion and the continuity of the displacement are

given by
dg; .
T i =1,2) (1)
avi .
T (i=1,2) (2)

where oi, Ei’ Vi’ pi (i=1,2) are the normal stress, normal strain, normal

particle velocity and mass density, respectively. A dot stands for differen-

tiation with respect to time t. The initial and boundary conditions are

"
[en]

0;(x,07) = v, (x,07) = e; (x,07) (i =1,2) (3)




to
—
192}

[l
[}

0 (=) = (i =1,2) (4)

OI(O,t) = H(t) (5)

where H(t) 1s the Heaviside unit step function. The relation between ci
and € is written in the form of Stieltjes integral

t

Gi(x,t) = j gi(t-t’) dei (t") (1 =1,2 (6)

0

where gi(t) are the relaxation functions of the viscoelastic layers.

Let Ff(p) be the Laplace transform of f(t):

Ep) = j £(t)e Pt at )

CACH ) -

. = ki o, (8)
3, (®,p) =0 5«0)=L (9)
ik’ » 1 ’p p

where
K =\/pip/gi - (10)

Since k.l is periodic in x with periodicity 2w, by using the Floquet
theory [4] the solution for x=2wN where N 1is an arbitrary positive
integer is

_ KX
01 (x’p) =

1
L e 11
D (11)
where « 1is the characteristic exponent given by (see [2,5,6])

cosh (2wk) = 9 cosh (Zklh1 + 2k2h2) - (3-1) cosh (Zklh1 - Zkzh:) (12)

~ e RS TN
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p.k ek
1 12 21
8= = 242 (13)
APk iRy
Therefore, the solution for x=2wN 1is
1 1 pt-kx
Ol(x,t) iy J 5 e dp (14)

Br

For a large x, the main contribution to the Bromwich contour integral
of Eq. (l4) appears to come from the values of integrand near p=g0.
Hence we must study the behavior of « near p=0 before we evaluate

Eq. (14) for large x.

3. BEHAVIOR OF k NEAR p=0

For most viscoelastic materials, the relaxation function gi(t),

(1=1,2) is a monotonically decreasing function of t. Let be the

8im
value of gi(t) at t=%, For most viscoelastic solids 8 is non-zero.

If §i(p) is the Laplace transform of g, (t),

- -pt
pg; (p) = P J g, (t)e Pt dt
0 - (15)
-pt
=8, *P [ [g; (t) - g,.]e P at
For small p, e Pt=1- pt+... Hence
pg, (P) = g;,(1+a,p-a,T,p?+...) (16)
where
aigim = J [gl(t) = gl°°] dt
° . (a7)
T, = — [g; (t) - g, ]t dt
i~ 3.g, i 8jw
171 0




It is seen that a8, is the area between the curve gi(t) and the
horizontal line gi(t)=gioo while T, is the distance of the centroid of this
area from t=0. According to (7], a, provides a measure of the "viscosity"
of the viscoelastic materials. An example of relaxation function which

yields Eq. (16) is the standard linear viscoelastic solid

a,
_ i /Ty
g;(t) = giw<l T—l— e > (18)

Using Eqs. (16), (10) and (13}, the right-hand side of Eq. {12} can
be expanded into power series in p. If we assume that, for small p, x can
be expressed as

3
ch=p-EU!—p2-§-p3+... (19)

and use of this to expand the left-hand side of Eq. (12) into power series in
p, we can determine the constants c¢_, v and 2 by comparing the coefficients
of same powers of p on both sides of Eq. (12). After a lengthy algebra,

one obtains

2 . -
Cx—gw/Q, (50)
an a,n,
'J=gw<11+““ (21)
gloe g200
2
o) o a,n
2 1 2 3 1
B = (wn,n¢c )" (—— - —=] -= (3a, +4T,)
127 <°2m glm> 4 [glm 1 1l
arn, 1 2 22
il R S e e
wnere “
ni = hi/w , n1 +n2 =1
(23)
b epmn +on U S
11 2727 oo g1°° €50

Lol
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We see that p and g, are, respectively, the effective mass density and
the effective equilibrium modulus of the composite.
When both layers are elastic, a, = 0 and hence uvu=0. Moreover, only
the first term of $ remains and $2>0. Notice that the first term of B
+ is proportional to the difference in the impedances of the two layers and
becomes zero when the difference in the impedances is zero. Since the dis-
persive nature of the composite comes from the impedance mismatch, the first
term of 8 1is responsible for the oscillatory nature of the stress response.
When one or both of the layers are viscoelastic, U 1s positive and

non-zero while 3 can be positive, negative or zero. Not only is VU

responsible for the dissipative nature of the stress response, the second
part of (8 1is also responsible for the dissipation.

The case when both U and £ vanish will not be considered here.

4. ASYMPTOTIC SOLUTIONS

From Eqs. (19) and (14), we have

(1 NERWOUE Sl I R o
Ul(x,t) T I = exp ;( Cm) p+ 2c 647 * 3 Bp~ + .->$ dp (24)
Br

We will assume that x 1is sufficiently large that the terms denoted by the
dots can be ignored. We will also assume that B8#0. The case B8=0 will

be discussed later. Let

(25)

<
0
C
1]
N
~N
O R
g |cC
W] w
N
~———
—
~
(92

b TET =




e —— e e

Equation (24) then takes the form

* 1
o (Y,T) = 577 dp (26)
where the subscript 1 of O has been omitted and the + sign is for 8>0
and - sign for B<0O.

By taking the Bromwich contour L, as shown in Fig. 2, it is not

1
difficult to show that

v, T o (Y,-T) = 1 (27)

We will therefore consider only the case B>0 and hence the integral

2,1 53
1 I Tp+Yp +=x P
Br
Using tne identity
T
% e? < % + J P s (29)
0

the integral in Eq. (28) can be divided into two parts:

S(Y,T) = I +1,, (30)
2.1 3
1 1 YP"+=pD
L =57 J "y e 2 dp » (31)
Br
T 1
2 3
sp+Yp?+3p
Iz-st -ZTITIJE 35 a4l . (323
0 Br

Notice that I1 = c(y,0) and hence is the magnitude of stress at t =x/c,. By

taking the Bromwich contour L, of Fig. 2, one obtains

R g
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11 ml -syr? -l V3
_ 1.1 1 2 3 L [YS 2
I1 =3 + - J = e 51n<2 Yr > dr
0 (33)
-1 V3Y).-1/3 (g) _L1/3 (i)ﬁ
=3 *Sp 33 r 3 Y-3 r 3) o1 + ...
where T[(x) 1is the Gamma function. If Yy is very large, we take the
Bromwich contour L1 and thain
DU I S S <§. )
Il—‘_’*rjre sin{y T dr
0
(34)
Lt b
2 12/7? 144
where 212
302 _ (2B
§ = vy = 3 (35)
XU
We now turn to the integral 12. By replacing the variable p by
p=z-Y, (36)
Equation (32) can be written as
T 2 1
3 2 3
) -sY +3Y 1 (s-¥")z+ 32 <
Iz-j e ds Z—WTJ e dz (37)
0 Br
or
T 2 3
=Sy +3Y 2
L, =I e 2 Ai(-s+Y%) ds (38)
0
where the Airy function is defined as [8]
L 1.3
Ai(s) == | e 27F% g4, (39)
2mi >

L

2




ce—— - U e o ——— e —— - -- — -

= L 1 3 (39)

= = J cos (sr-+3 T > dr (Cont 'd)
Two extreme cases of Yy=0 and Y=« have been studied in the

literature, Before we evaluate ¢ for arbitrary vy, we will obtain these

two extreme cases from Eq. (30).

For elastic composites, w=0 and hence Yy =0. Equations (30), (33)

and (38) then yield

T
5(0,1) = % . J Ai(-s) ds (40)
0

This is precisely the asymptotic solution obtained in [1,2]. The stress o

-

is an oscillatory function of T (see Fig. 3).

For viscoelastic composites, U#0 and 8 of Eq. (24) may or may
not be zero. In [2] the term containing B8 was ignored. This is equiva-
lent to assuming that 8=0 and hence y=w, For a very large Y, the

Airy function has the expression [8]:

,
Ai(s) 2 11 o3 (41)
' o/ (L4
Use of this expression in Eq. (38) results in
F ()
i -t i 2/7) L>=£ (T*>
i) e d(ﬁ >erf (3 (42)

0

e e RGN CIT T L NN e
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where
* = -L * = _Xi
R LR AR
x (43)
erf (x) =—2—J e % ds
d 0

Therefore, when B=0, (i.e., Y=« or §=0), Eqs. (34), (42) and (30) yield
the following asymptotic solution obtained in [1,2] :
G =441 +erf(t/2)L (44)

The stress 0 is a monotonically increasing function of TH, Fig. L.

5. NUMERICAL RESULTS AND DISCUSSION

For an arbitrary Y, the stress o as a function of T may be

obtained from Eq. (30) where I1 is given by Eq. (33) or (34) and 12 is

given by Eq. (38). Since both Il and I2 require a numerical integra-

tion, it might be simpler to evaluate ¢ directly from Eq. (28). If we

take L2 of Fig. 2 as the Bromwich contour, Eq. (28) reduces to
1.1 " %(Tr‘er) 37 [/ 2
g(y,t) = g*;r-J ce sin [? (tr +yr )] dr (45)
For the contour Ll’ we have
o
o(y,T) = %+%—J %e"rz sin (r*r-%— r’) dr (46)
0

where T* and & are defined in Eqs. (43) and (35). Notice that

Lo
[}

™ when y=8=1. 47)

2
Notice also that because of the factor (l/r)e T in the integrand of

Eq. (46), the absolute value of the integrand diminishes rapidly as r

3

-2~ -
increases. For instance, at r=2, (l/r)e T zo9x10 and at r=3,
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(1/r)e-r2§ 4x10-s. Therefore, the infinite integral can be replaced by an
integral of finite interval say 0 < r < 3. A similar argument applies
to the integral in Eq. (45).

Equation (45) is used to calculate g for Yy=90, 0.1, 0.3, 0.6 and
1.0. The resuits are shown in Fig. 3. Equation (46) is used to calculate
6 for y=1 and y=«, (i.e., §=1 and §=0), Fig. 4. We see that the
stress response differs very little for y=1 and y=w=.

The example of stress response at the 30th layer considered in [Z]
has a negative value of 8 and v =0.38. On the other hand, the example
considered on p. 110 of [3] has a positive value of $8 and vy =0.68.

For a given viscoelastic composite, uU and &% are known and fixed.
Y then depends on x and increases as x increases. We see from Fig. 3
that the oscillatory nature of the stress diminishes as Y increases.
Since for Yy >1 the oscillation is practically non-existence, we may say

that for

(48)

the stress response is monotonic.
The asymptotic solution for viscoelastic composite derived in [3] is
different from Eq. (24). Using the notations of Egs. (20-22), the asympto-

tic solution derived in [3] is based on the equation

-1/2

1 1 U .

st,t) = 7 | seXP;tP*zf 2 20) e
Br [+ -] [+ ]

If we expand the last term in the exponent into a power series in p and
ignore the terms of order higher than p®, Eq. (49) is identical to

Eq. (24). We are able to verify that v in [3] is identical to the one
obtained in Eq. (21). However, £ in [3] appears to be different from the

expression in Eq. (22).
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6. CONCLUSION

The parameter Yy defined in Eq. (25) consist; of the variables v, B
and x. The dissipative nature of the viscoelastic material is represented
by v and a part of B, while the remaining part of 82 represents the
dispersive nature of the composite. The distance traveled by the wave is
represented by x. Thus vy contains the influences on the wave profile
due to dissipation, dispersion and the distance traveled by the wave. With

v determined from Eq. (25), Figs. 3 and 4 provide the wave response.




(6]

(7]
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CHAPTER 8

CONCLUSIONS

Static and dynamic analyses of multilayer composite laminates and/or
pilot studies leading toward such analyses have been presented in this report.
Detailed summaries and conclusions have been included with each chapter. The
present chapter is intended to briefly summarize these conclusions and, where
possible, to make suggestions for further investigations.

Three approaches were investigated in Chapter 2 for the finite-element
analysis of edge-effects in symmetric laminates under prescribed inplane strain.
Although these approaches produce essentially identical results away from the
free edge, some differences are noted in the magnitude, and in selected cases
the form, of the stress distributions near the free-edge. Until further analytic
results are available it is not possible to conclude which of the strain contin-
uity or traction-free-edge approaches is the more accurate. Some insight into
this comparison may be obtained by combination of the stress predictions with
appropriate failure criteria; the better analysis should be capable of consis-
tent predictions of laminate first-failure in comparison with experimental
results,

Of the 8-node single layer plate bending elements with a straight traction-
free edge, developed in Chapter 3, the best element is identified as one based
on a 21;35tress-fie1d. This element produced displacement and stress predic-
tions which were, in general, superior to all other elements tested. Although
the superiority of this element over a standard hybrid-stress plate element

is not evident in all cases, it is expected that the superiority will be
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apparent in examples where free-edge effects are dominant, such as in multi-
layer laminates. In the development of an 8-node multilayer plate element,
a layer stress field analagous to that used in the 218 element is recommend-
ed.

In Chapter 4, alternate initial-stress approaches based on the hybrid-
stress model were compared for the elastic-plastic analysis of single layer
plates. Results obtained for selected example problems suggest that hybrid
functional II, coupled with iteration scheme A, is the preferred approach.
This approach should therefore be used in extension to include material non-
linear effects in multilayer laminated plates.

Chapter 5 provides a means for analysing the nature of singularities
at the free edge of a composite whose individual layers are anisotropic.

The results obtained can be used to formulate a hybrid-stress singularity
element for the free-edge point.

The two dynamic problems studied in Chapters 6 and 7 contributed signif-
icantly to the literature of dynamic response of composites. A theory of
viscoelastic analogy presented in Chapter 6 offers a reliable way to pre-
dict the transient response of a layered composite at finite times. More-
over the dimension of the layered composite is finite. This problem was
not solved successfully before.

The other dynamic problem, namely the transient response of a visco-
elastic layered composite studied in Chapter 7, sheds much light on the
nature of interaction between the effects of dispersion, dissipation and
the distance traveled by the wave. The results show how an oscillatory
wave approaches a monotonic wave as the distance traveled by the wave

increases.
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