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PREFACE

This report presents an evaluation of the Bretschneider and Reid (1954)
technique for calculating wave attenuation due to friction and shoaling using
data collected at the Coastal Engineering Research Center's (CERC) Field
Research Facility (FRF), Duck, North Carolina. The work was carried out under
CERC's coastal engineering research programe.

The report was prepared by William G. Grosskopf, Hydraulic Engineer, under
the general supervision of Dr. C.L. Vincent, Chief, Coastal Oceanography

Branch, Research Division.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress,
approved 31! July 1945, as supplemented by Public Law 172, 88th Congress,
approved 7 November 1963.

TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of mcasurement used in this report can bc converted to

metric (SI) units as follows:

Multiply

To obtain

inches

square inches
cubic inches

feet

square feet
cubic feet

yards
square yards
cubic yards

miles
square miles

knots

acres

foot-pounds

millibars

ounces .35

pounds .8
.4536

ton, long .0160
ton, short .3072

degrees (angle) .01745

millimeters
centimeters
square centimeters
cubic centimeters
centimeters
meters
square meters
cubic meters
meters
square meters
cubic meters

kilometers
hectares

kilometers per hour

hectares

newton meters

kilograms per square centimeter
grams

grams
kilograms

metric tons
metric tons

radians

Fahrenheit degrees 5/9 Celsius degrees or Kelvins!

1To obtain Celsius (C) temperature readings from Fahrenheit (F) readings,
use formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.1S.
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SYMBOLS AND DEFINITIONS

horizontal displacement amplitude of water particles

friction coefficient

water depth

sand grain size of 90th percentile of sediment samples

significant wave height

significant wave height at location n
shoaling coefficient

shoaling coefficient at location n

wave height

roughness height

wavelength

wavelength at location n

deepwater wavelength

bottom slope

Reynolds number

wave period

maximum horizontal water particle velocity
kinematic viscosity

integral of the dimensionless shoaling factor,

dimensionless shoaling factor

e ik
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CALCULATION OF WAVE ATTENUATION DUE TO
FRICTION AND SHOALING: AN EVALUATION

by
William G. Grosskopf

I. INTRODUCTION

Many processes are responsible for variations in the energy of nearshore
waves including breaking, friction, shoaling, refraction, percolation, and
nonrigid bottom effects. However, in an area where nearshore bottom contours
are straight and parallel, and bottom conditions indicate a nonpermeable and
nonelastic sea floor, wave breaking, shoaling, refraction, and friction remain
dominant. The area seaward of the pier end at U.S. Army Coastal Engineering
Research Centers's (CERC) Field Research Facility (FRF), Duck, North Carolina,
meets these conditions. Data from FRF can be used to evaluate different for-
mulations of these processes.

This report evaluates the Bretschneider and Reid (1954) theory recommended
in the Shore Protection Manual ($PM) (U.S. Army, Corps of Engineers, Coastal
Engineering Research Center, 1977) for calculating the effect of bottom fric-
tion and shoaling on incoming waves, using data gathered from two offshore
Waverider buoy gages (manufactured by Datawell, Haarlem, The Netherlands)
located off the pier end at FRF. The two Waveriders operate in depths of
approximately 18 and 10 meters, at 2,880 and 680 meters from shore, respec-—
tively. These instruments are located far enough offshore to avoid the
possibility of wave breaking, other than whitecapping, as a dissipative
mechanism between Waveriders for the data set used. Simultaneously observed
wave spectra from these two gages during 1978 and 1979 were compared to cal-
culated wave characteristics, using Bretschneider and Reid's (1954) prediction
for waves traveling over an impermeable bottom of constant slope. It is
found that Bretschneider and Reid's method provides a close correlation with
observed data, especially in cases where the wave spectrum is narrow and
single-peaked.

II. CALCULATING CHANGES IN WAVE HEIGHT DUE TO BOTTOM FRICTION AND SHOALING

Attenuation of wave height due to bottom friction- and shoaling can be
calculated using equation (1), for waves with significant wave height, Hg,
wave period, T, traveling over a bottom of slope, m, and depth, d, at
the outer gage l. Shoaling effects are calculated using linear theory. The
relation {is
Cg Hg) !

— ¢+ 1 (L

HSZ - Ks H 2
mT

sl

Ce = friction coefficient

K = shoaling coefficient

m = bottom slope

Hyo = significant wave height at nearshore gage 2 (Waverider gage 610)

Hgp = significant wave height at outer gage ! (Waverider gage 620)

7




The shoaling coefficient can be calculated from %
: ;
L » 4nd -1/,
) 2nd L
: Kg = |\ tanh — J§ 1 + ———— (2)
. L 4nd
sinh —
and
1
- ' fd/ T2 5 ( d ) (3)
S $ = ¢ =y
. . - -] f Tz
\\“ L4
: The term ¢ can be evaluated from Figure 1.
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Figure l. Graph used in determining the integral of the bottom dissipation
function, ¢¢, for waves passing over a constantly sloping bottom.
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? g The frictfon coefficient, C., has been given considerable attention in
o laboratory and theoretical studies in recent years. Bretschneider and Reid
(1954) recommend using a constant value of 0.0l. More recent laboratory work
has indicated a dependence of friction factor on the Reynolds number and
dimensionless bottom roughness height. Jonsson (1966) and Kamphuis (1975)
produced and refined a friction factor diagram, as shown in Figure 2, where
the friction factor, Cgy can be found 1if the Reynolds number at the sea
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Figure 2. Friction factor diagrams (after Kamphuis, 1975).

floor, R,, and the relative roughness height, A/ks, are known.
Reynolds number is related to the bottom velocity under the wave by

" uy A
e v
where
up = maximum horizontal water particle bottom velocity is
LIS
2nd
T sinh —
L

L = wavelength
v = kinematic viscosity of seawater equals 6.25 x 10—7 meters per
second

A = horizontal displacement amplitude of water particles is

Hsl

2nd
2 sinh —
L

=  wave number (2n/L)

= wave period

The

(%)
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This technique, which {s explained and 1illustrated in CERC Field Guidance
Letter 79-4 (Esteva, 1979), is used to determine C; in the present study.

ITI. COMPARTSON WITH FIELD DATA

Simultaneous observations of a variety of significant wave heights,
periods, and energy spectrum shapes were chosen from available field data to
illustrate possible weaknesses or strengths of Bretschneider and Reid's (1954)
theory in all types of wave climate. The wave data selected were obtained
from two Waverider buoy gages located in an area outside the breaker zone
where sediment characteristics indicate that bhottom friction is the predomi-
nant dissipation mechanism. Using conditions at the outer gage (Waverider
gage 620) as input for Bretschneider and Reid's predictive equations, result-
ing calculated wave characteristics at the nearshore gage (Waverider gage 610)
are compared to observed wave height values. Results are shown in Tahle 1 and
Figure 3. Negative deviations from observed wave heights indicate the pre-
dicted value {is lower than actually observed; i.e., the theory predicts more
frictional energy loss than is obhserved. The range of friction coefficients
used is N.004 to 0.07, Most of the large underpredictions occur when no
change or an actual increase 1in wave height 1is observed from offshore to
inshore, possibly due to strong wind-wave generation. Nverprediction indi-
cates that other dissipation processes are occurring. Tabhle 2 summarizes the
results of this study. Figure 3 indicates that negative deviations are more
pronounced for broad or multipeaked spectra, while narrow or single-peaked
spectra correspond to slightly overpredicted wave heights. General trends
show that the theory corresponds closely to observed wave conditions with
maximum deviations of 60 percent but most conditions are within 15 percent.
Examining only the data points for the narrow, single-peaked spectra, over-
prediction occurs for lower wave heights; underprediction occurs for larger
waves which tend to bhe more nonlinear at the same shallow depth.

Table 3, which presents the results of Bretschneider and Reid's theory
using Baylor staff gages (manufactured by Baylor Company, Houston, Texas)
along the pier at FRF, provides an example of the theory's inapplicability
where hottom contours are not straight and parallel. The 1irregular pier-
induced topography causes the theory to overpredict wave height at Baylor gage
665 (located 350 meters from shore), inshore of Baylor gage 625 (located 630
meters from shore), indicating that other processes (e.g., refraction, hottom
scattering) are affecting wave heights. As shown in the table, preliminary
runs of a more advanced, nonlinear model indicate that the additional observed
losses are likely due to refraction. This example shows that caution must be
taken in applying the Bretschneider and Reid theory near manmade structures or
in areas of irregular bathymetry.

k k % k k k k k %k k k kK * * TV, FEXAMPLF PROBLEM ®* % % % % % % % % % % % % % *

GIVEN: A wave with the following wave height and period at gage 620 at an 18-

meter depth:
HS620 = 2.0 meters
T = 10 seconds

FIND: The wave height 2,200 meters closer to shore in a depth of 10 meters.
Assume a dqn of the sediment to he N.3 millimeter.

10
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K ) 05 10 15 20 25 30
: Observed Hgt. (m)
* Figure 3. Comparison of observed and predicted wave heights at the
K nearshore gage (Waverider gage 610), Duck, North Carolina. i
) Table 2. Average deviation of Bretschneider and fi
z Reid's theory from observed wave heights. P
: Wave spectra Deviation Regression line 3§
2 (pet) \
F Narrow +4.2 | y = 0.83x + 0.33 |
| Broad -15.3 y = 0.87x - 0.05
: All spectra -6.5 y = 0.91x + 0.03
: (multipeaked)
. lcorrelation coefficient for all spectra equals
0.926.
i
- .
Table 3. Illustration of the inapplicability of Bretschneider and
Reid's theory in areas of irregular bottom topography.
Wave height (m) ‘ Estimated Hccs .
Date Time Observed |Predicted Deviation by including , :
Hoeos Hoges] Hogss from observed refraction s
(pet) (m) . .
13 Sept. 1978 | 0300 0.9 0.5 .96 91.2 0.50 .
_ 13 Sept. 1978 | 2100 | 2.5 | 1.6 | 2.33 " 45.8 1.50 ;
’: 13 Sept. 1978 } 2300 | 2.4 | 1.4 2,24 60.3 1.44
¥ 14 Sept. 1978 | 1100 2.1 1.3 1.97 51.2 1.26 v
' 15 Sept. 1978 | 1600 | 1.3 | 0.7 1.29 85.1 0.78 ‘
18 Oct. 1978 | 0700 2.2 1.6 2.5 55.1 1.32 {'
18 Oce. 1978 | 1100 | 2.1 | 1.4 2.2 59.1 1.26 K
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SOLUTION:

(1) Determine friction coefficient. From SPM Table C-1 (U.S. Army,
Corps of Engineers, Coastal Engineering Research Center, 1977) for
(d/Ly)g20 = 0115,

d

(‘I':) = 0-154 and L620 = 116.9 meters
620

Using linear theory,

g Hg620 2.0
- A = = = 0.89 meter
) 2 sinh kd  2(1.126)
A ' mHgg20 7(2.0)
. Uy, = = = (.56 meter per second
. b T sinh kd  10(1.126)
3 K From equation (4),
o up A (0.56)(0.89)
1 R, = = = 8.3 x 10°
- v (6.25 x 1077)
4,
I
¥ A A 0.89
] - = = 1,483
g kg 2dgy 0.0006

Figure 2 then yields the friction coefficient at gage 620 to be
Cf = 0.004

(2) Determine predicted wave height. The average depth in the traverse
i is 14 meters:

i From Figure 1,

The bottom slope, m, 1is (8.0/2,200) = 0.0036, and the shoaling coefficient
is determined at gage 610 where the wave height 1is unknown:

4nd ~lys
2nd L
K. = tanh — ] + —
8 L 4nd
; sinh —
- L L
( 1.360) ~l/,
K = | (0.591)[1 + = 0.984
s610 | 1.819

13
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The predicted wave height at gage 610 is then found by equation (1) to be

H (0.984)(2.0) (0-008)(2.0) (1.29) +1 B 1.91 me
= . . . = . ter
s610 (0.0036)(100) ers

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k %k k k k k k k *x k *

V. SUMMARY AND CONCLUSIONS

- The combined effect of shoaling and bottom friction 1is underpredicted an

b average deviation of 6 percent by Bretschneider and Reid's (1954) theory,

SN based on 31 observations. This study indicates that care must be taken in

N applying the predictive theory when wave spectra are broad or multipeaked, or

T when the bathymetry is irregular and the bottom contours are not straight and
! parallel. ‘

For parallel bottom contour cases, the largest deviations from observed '
wave conditions arise when the wave spectrum which corresponds to the sig-
nificant wave characteristics is broad or multipeaked. These large devia- '

N T e T T R

“? tions, due to the presence of large amounts of energy relative to the total
! energy of the spectrum in many wave components, indicate that the significant
b wave height may not be a representative number to use for calculations in the
é equations when the spectrum is not narrow and single-peaked.

&

The calculations in Table 3 show that caution must be taken when using the
, equations in areas of irregular bathymetry or near coastal structures where
: the bathymetry may not be uniform. Other types of wave attenuation processes
' become important in these cases, with refraction being particularly dominant
when the contours are not parallel and other bottom irregularities such as
holes and shoals are present.

The choice of the friction coefficient will also play a role in com-
. pounding the predicted wave height deviation from actual observations. The 1
) coefficients used here are a result of controlled laboratory studies and,
! therefore, may not be a true representation of field coefficients. The
M presence of bottom ripples is not considered in this analysis, but has been
shown to be a variable in’"determining the friction coefficient. Also, linear
theory is used to calculate bottom velocity and horizontal water particle

displacement; higher order calculations may lower present deviations.

14
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