
I AD-A098 439 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF--ETC F/B 9/2
MODULAR DESIGN OF OPERATING SYSTEMS USING ABSTRACT DATA TYPES(U)
.)UN 80 P B HANSEN- J FELLOWS DAAB29-77-G 0192

UNCLASSIFIED ARO015037.2-EL NL,

12.

I11 ' "~jL

11 2 111,8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURIAL) OF STANDAW , 1 %3 A

IJ
UNCLASS IF!L2 dD

SUCU UT CLA*ICATION OP THIS PAG - . - 1 a
REPORT DOCUMENTATION PA " G9O. COMPL&M .

I. NEPOT MEENG9 LGOVT ACCIgiON NO. 2. RE9CIPI14mI" CATAL.0 NUM68R

qt.ANK IBLANK4./ IfeK i
4. TITLE fWd &SuM.00 S. TYPw o REPORT A Pem@o AgovI

MODULAR DESIGN OF OPERATING SYSTEMS FINAL REPORT
z=== ABSTRACT DATA TYPES .LANFoK1"o G. REPOT mumnBLANK

. MI .;, . CONTRACT 0 GRANT MuNGlWr)

cD AAG29-77-G-0192
A RTNC4 AN-qW Nn 'MW7T .TTh T.Tjt1WQ

PC PFew@ ORGANI4ZATION 14A*M ANO AORIESS 10. PROGRAM &L911Nt ROJCT, TASK
NVOIIN"1 Ll IAREA & WORK UNT 60E"

Comouter Science Denartment *
Universitv of Southern California&/ P-15037-M

111. CONTROLL31NG OFFICE NAME ANO A004188 IL REPORT CATE

U. S. Arm Research Office Jinf 1 Q~n
Post Office Box 12211 is. mu"GmR OF PAGES
Research Triangle Park, NC 27709

4. ISITONING AGENCY NAME & AGORIri(I WH1Vua 6WI CmISawi*nl O1116) IS. SECURITY C LASI. (Of S&W. OPo)

Unclassified
IDA. OEC&:.AIPIC<ATl@NI O@UWNIAOINGa

BLANK W A
. IlO$ S ITION SlATEMENT ed O t RhpQS)

Approved for public release; distribution unlimited. E E TS ELECT E

II. US~hU IONSTA EN N?~ . a . m ~ im w.a ~ i Etiwmit. MAY 5 1981 j

N D
. WSPPLE1"TAR NOTES

The view opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Oepartment of the Army
position, policy, or decision, unless so designated by other documentation.

M Iay wo (C dweab 4 m ide It ***"m OW j mm W8maIO)

Trio. Concurrent Pascal. Modular oroarammina

This recort describes the Trio ooeratina system which enables
users to simultaneouslv develoo and execute pro rams
at three terminals. The system is written in Cbrncurrent and
Seauential Pacal and has been used on a PDP 11/55 mini comnuter
since Sorina 1979.

~< The Trio Svstem is not available Ar distribution. f-OD JAN- IaUN' U 0 i
SCCUNITY C1.A8MFICArO OF ?Wei OAG MW

w tI I r

Asession ForNTSGRAAI

DTIC TAB
Unannounoed CI
Just ficat ion_

pistributionI ,pu
AvailabilitY Codes-.Avail and/or

/

Dit Special -

MODULAR PSIGN OF OPERATING SYSTEMS

USING ABSTRACT DATA TYPES.

Per Brinch/Hansen

Jonathan/Fellows

U.S. ARMY RESEARCH OFFICE

Contr ac tqe.AAG29-77-G-0192

Computer Science Department

University of Southern California

Los Angeles, California 90007

DTIC
ELECTE

APPROVED FOR PUBLIC RELEASE; MAY 5 191

DISTRIBUTION UNLIMITED Si. , D

This research tested recent ideas on the use of

abstract data types in concurrent programming by

implementing a multiterminal operating system for a

minicomputer. This system, named Trio, was implemented in

Concurrent Pascal, a language which makes it possible to

build a large concurrent program out of small modules that

can be programmed and tested one at a time. Trio has been

used by a team of graduate students for over one year. It

has proven to be a system that a iingle person can

understand fully, depend on for months without failure, and

adapt easily to changing requirements. These desirable

properties of large programs are the most fundamental

objectives of all work in programming methodology.

The research had three major goals:

(1) To test the simplicity that, may result from

using abstract data types in the design of realistic

operating systems.

Trio suprised its implementors by being simpler

than its single user predecessor (Solo)

(2) To test how reliability can be improved by

checking access rights to data structures during

compilation and :by testing operations on data structures

one at a time.

171
-* •%

During the development of Trio, only one error was

discovered that was not caught by compile time checks and

module tests.

(3) To set standards for the specification, design,

and documentation of non-trivial concurrent programs.

The following publications contain a complete

description of the design of Trio:

Brinch Hansen, P. and Fellows, J., The Trio Operating
System, Software - Practice and Experience 8, xxxxxxxxx

Fellows, J., The Trio User Manual. Computer Science
Department, University of Southern. California,
Los Angeles, CA, June 1980.

Fellows, J., Applications of Abstract Data Types -
the Trio Operating System. Computer Science Department,
University of Southern California, Los Angeles, CA,
(In preparation) .

The authors of this report were the only scientific

personnel who participated in this research.

2

SOVTWAR2-44CTICE AND E CU IRNCI. VOL. A 5-*4(1950)

The Trio Operating System*

P1R DRINCH HANSN AND JON FELLOWS

Cowmpau Scm.e Ddp.,nent, Umevnty of South.w CaUfonn, Los Amc. Catiorma 90007,
U.S.A.

SUMMARY

This paper is ma overview of the Trio sysem which mbles users to m e del
end exeute proerams at three terminals. The system consists of an operdag system writtem
in Comncurrmt Pascal sd a e ofstandard proprms writg in Sequen"PascaL. The sy
hrs bemused on a POP 11155 minIcomputer sine spring 1979. This work conludes S yean o
epeence with the firt abetact langhg for cocurret pRoWa-,-g

W os nCM Pamd m m 'Opengn sYM Tro

BACKGROUND

This paper is an overview of the Trio operating system which enables users to
simultaneously develop and execute programs at three terminals. The system consists
of an operating system written in Concurrent Pascal and a set of standard programs
written in Sequential Pascal. The system has been used on the PDP 11/55 minicom-

puter since spring 1979.
This work is a continuation of earlier work that led to the development and

implementation of the programming language Concurrent Pascal which includes
processes, monitors and classes.'

The focus of this research haa*been the concept of an abstract data type--the
combination of a dat structure and all the possible operations on it into a single
program modulO. This concept contributes to simplicity by locating details of data
represntation end trnsformation in modules instead of spreading them throughout a
large program. It increases reliability by making it possible for a compiler to prevent
data structures from being destroyed by arbiumry operations.

So far Concurrent Pacel has been used to design a single-user operating sysem, a
job sa system, a real-time scheduler, and a message passing system for a
multicomputer network.3'4 It has s been used to build several microcomputr
operating systems.

Each of these model systems has the following characteristics:

1. Each concurrent program consists of modules of less than one pae each.
2. Each module consists of a data structure and a set of procedures which can be

called by other modules. These procedures provide the only means of changing

* h re majppmd by ts Amy Rnoth Ol mnde C~ascra No. DAAG-29-77--0192.

0038-0644/80/1110-0943501.00 Receivd 21 edy I.O
(C) 1980 by John Wiley & Sons, Ltd.

943

I..

944 FIR BRINCH HANSIN AMD JON XJLoWS

the data. This protection of data integrity is enforced during compilation only and
is not supported by run-time mechanisms.

3. Each module can only call the procedures defined within- a small number of other
modules. The access rights of modules to the procedures of other modules are also
checked during compilation.

4. The modules are connected hierarchically to one another. So a module cannot call
itself indirectly through other modules. This too is verified by the compiler.

5. The modules were tested one at a time from the bottom towards the top (but may,
of course, be conceived top down). The compilation checks mentioned above
ensure that new (untested) modules do not make old (tested) modules fail.

6. Each of these programs was built and described in complete detail by a single
programmer in a matter of weeks.

The resulting systems have been more reliable than the hardware they run on.
The aim of the Trio system is to demonstrate the practicality of using the same

programming concepts to build an operating system of medium size. The following is
only an overview of the function and structure of Trio. The reader is referred to the user
manual for more detailA(The Trio system is ,to currenty availabl for distribusion.

SYSTEM OPERATION

The Trio system is built for a PDP 11/55 minicomputer with 80 K words of store, a
disk drive (of I M words), a multiplexor with three alphopumeric display terminals, a
apetic tape drive and a line printer.

The Trio system permits three pyogrammers to use the minicomputer simul-
taneously. The three users are assumed to be members of a (possibly larger)
programming team which is developing a set of related programs.

The programs of a user tem am stored a text and code files on a remnovable disk
pack. The files that are used by the whole team are described in single system catalog
on the disk, while those that are still being developed ae described in one or more user
catalogs. The system does not restrict a user to operate on the files of a single user
catalog. Multiple user catalos ar provided to enable users to group their files into
convenient subclasses and to operate on diferent subclasses simultaneously.

The system is operated by the users themselves. Each session typically Ism an hour
or more. At the beginning of the session, the user tmii mounts its own disk pack and
sum the Trio system. Each user then sits down at one of the terminals and types a
command that lives him access to the flies described in a given user catalog as well as the
files deecribed in the sysm catalog.

A user can now input, compile, edit and test Pascal programs. When a program is
finished, the user can move its description from the given user catalog to any other
catalog (including the system catalog).

The users can make copies of text files on the line printer. But the system makes
display an diting of tzt at the terminals so convenient that the need for printed
listings is reduced considerably compared to the Solo system.

TIM TRIO OPATING SYSTEMA 945

It is possible to copy the files of a single catalog (or the whole disk) onto manetic tape
and use it to re-emblish disk iles after hardware or software failure.

The execution of a program can be pre-empted by depressing the ben key on a user
terminal. The system then displays the line number of the last statement that was
executed in the program. This is a very convenient mechanism for locating endless
loops in new programs while they are being tested.

USER PROCESSES

In the single-user operating system Solo, concurrency could only be exploited by
performing the input, execution and output of a single program simultaneously. In the
Trio system, simultaneity is achieved by the much simpler means of executing three
user processes simultaneously. No attempt is made to perform the input/output and
program execution of a single-user process concurrently.

The concurrent program Trio resides prmanenuay in tbe nuun store together with
three user processes of fixed size. Each user process serves a single user terminal.

A user process executes a cyclical Pascal program called 'do' which accepts
commands from the corresponding terminal. Each command specifies the execution of
a Pascal program with a set of arguments of type identifier, integer or boolean. The
given program is loeded from the disk and executed as a procedure called by the do
program. Any Pascal program can call any other Pascal program stored on the disk by
means of a standard procedure 'run' implemented by the operating system.

The overating system maintains a set of booleans which represent the resources
shared by the user processes. These resources are primarily the line printer, the
magnetc tape and the disk. A standard procedure enables a user program t request
and release exclusive access to any subset of these resources. Within the
system then resources are acquired one by one in fixed order to prevent deadlock."
When a user program is pre-empted by depressing the bell key, the operating system
automatically releases all resources requested but not yet released by the given user
process.

The processor is treated as a composite resource which consists of three processor
shares-one for each user process. When a user types a command to the do program the
latter requests exclusive use of the corresponding processor share before executing the
program named by the commend. When that program terminates or fails, the do
program temporarily releases the processor share again. When a user wishes to execute
a concurrent program he needs exclusive access to the whole machine. This is achieved
by requesting the use of all three processor shares-sn action that delays the execution
of the concurrent program until the other user processes have completed their current
execution of programs.

The interface between the Trio system and any of its user programs is a set of
procedures that are implemented by the operating system and are called by the user
programs. The names and parameter types of these procedures are defined by a piece of
text, called the prefix, which is put in front of every user program before it is compiled.

These procedures give each user program simultaneous access to at most four
sequential files. Two of these files are text files that are read and written character by
character. The others ar files that are input and output in blocks called disk pages.

£ A.-
_~~~~ ~~.

946 PER BRINCH HANSEN AND JON FELLOWS

Other procedures enable programs to use the terminals, to create and delete files on the
disk, and to call other programs stored on the disk. We have tried to make this interface
much more convenient to the programmer than the interface of the Solo system.

FILE SYSTEM

The file system is the most critical part of the operating system. Not only is it the long-
term storage of the users, but it also resides on a mechanical device that is several orders
of magnitude slower and much less reliable than the computer itself.

The Trio file system is an extension of the Solo file system.
To avoid occasional, but time-consuming relocation of data on the disk, the pages

allocated to a single file are addressed indirectly through a page map-a single disk page
which defines the addresses of the data pages of the file. The page map alows the
operating system to place the data pages anywhere on the disk and let them remain there
until the file is deleted.

The systam catalog is a file that starts at a fixed disk address and describes the name
and attributes of all common files (including itself). The attributes of a file are the disk
address of its page map, its protection status (true or false), and its kind (scratch, text,
code or catalog).

Each user catalog is described in the system catalog as a file of type 'catalog'. At the
beginning of a terminal session, all file names used within a user process are looked up
in the system catalog. A user can now select a given user catalog by name. Following
this, all file names used by the corresponding process are first looked up in the given

user catalog, and (if that fails) they are then looked up in the system catalog. The set of
catalogs that are used by a process at any given time is known as its current catalog set.

A file is opened by looking it up in the current catalog set and bringing its $age map
into the main store. The file is looked up by converting its name to a hash key that
defines the starting point of a cyclical search in one of the catalogs.

Since each user team has its own removable disk pack with a separate user catalog for
each programmer (or subtask), files need only be protected against accidental
overwriting and deletion. All files are initially unprotected. The user protects a file by
calling a standard program which sets the protection boolean in the file attributes to
true.

The Trio file system then is a hierarchical system with three levels. The first level is
the system catalog which describes common files and user catalogs. The second level
consists of the user catalogs which describe disjoint classes of user files. And the third
level consists of the user files. Descriptions of files can be moved freely from any catalog
to any other catalog. The protection facilities are minimal and do not prevent users
from operating simultaneously on the same files in a time-dependent manner.
Although this philosophy is adequate for program development from a small number of
terminals, it is not secure enough for a general time-sharing system.

We would like to emphasize that since small operating systems become inexpensive
when they are written in abstract programming languages, one can afford to tailor each
of them for a single purpose. We have followed this approach in designing an operating
system that is convenient for a computer with three user terminals. But we have made
no attempts to make the same design applicable to larger systems with five or ten
terminals.

*1A

THE TRIO OPERATING SYSTEM 947

SIZE AND PERFORMANCE

The Trio system consists of a Concurrent Pascal program and a set of standard
programs of the following lengths:

Trio program 1,600 lines
Do program S00 -
File program 900 -
Edit program 900 -

Cat progams 2,700 -
Devic, programs 1,900 -
Other propums 700 -
New program 9.200 lines
Compilers 17,000 -

Total symm 26,200 lines

The design of the system was started in the spring of 1978 by the authors. The initial
implementation was done over a period of 1 year by a graduate student (Jon Fellows)
who was unfamiliar with Concurrent Pascal to begin with. During 1979 the system was
used experimentally and tuned. We estimate that a full-time programmer who knows
Concurrent Pascal could have done it in 6-8 months. By comparison Solo was
developed in 3 months.

The compilers for Concurrent and Sequential Pascal were moved from the Solo
system with minimal changes.

Trio requires a main store of 80 K words which is used as follows:

Concurrent Pascal kernel 4 K words
Operating system 7 K words
User processes 69 K words

Main store 80 K words

A text file can be created or deleted in 1-2 s depending on its length (< 128 K char).
It can be opened in 240 ms and then read or written at the rate of 1000 char/s. The
orerall performance of the system for non-trivial processing can best be illustrated by
the compilation time which is 13 s + 3 ms/char for a single user. When two users are
compiling simultaneously, the compilation time for each of them becomes
23 s+5 ms/char. The compilation time reaches 35 s+7 ms/char when all iree users
are compiling simultaneously (a very unlikely situation). This means that the operating
system itself (of 1600 lines) can be recompiled in 2-5 min.

These execution times are primarily limited by the speed of code interpretation and
to a lesser extent by the slow disk. The compilers generate abstract code which is
interpreted by the well-known technique of 'threaded code'.

FINAL REMARKS

In a recent book' one of us said this:

'The operating systems written so far in Concurrent Pascal are small. I
would hope (and expect) that a larger system will turn out to be 'more of
the same.' But it seems worthwhile to confirm this by using Concurrent
Pascal to build a medium-size operating system, for example, a terminal
system that gives each user the capability of Solo.'

I

948 PER DRINCH HANSEN AND JON FELLOWS

Well, we have done it now and it was more of the same. The real surprise was that
Trio in many ways turned out to be simpler than Solol This concludes 5 years of
experience with the first abstract language for concurrent programming. The
underlying concepts of processes, monitors and classs can now be regarded as proven
tools for software engineering. So it is time to do something else.

ACKN4OWLEDGEMENT

Habib Maghami derived a single-user version of Trio known as the Mono system. This
work has been supported by the Army Research Office under contract
DAAG-29-77-G--192.

REFERENCES
1. P. Brinch Hanson, 'The programming language Concurrent Pascal'. IEEZ Tram. o. Software

Eqmheeviq, 1 (2), 199-207 (1975).
2. P. Drinch Hansen, 'The Solo operating system', Safsware-PAactim anid Expwmuiew, 6 (2) 141-205

(1976).
3. P. Brinch Hansen, The Arciitawe of Comuwaent Programs, Prentice-Hail, Englewood Cliffs, N.J.

1977.
4. P. Brinch Hanse, 'Network- a multiprocessor program'. IEEE Tram, o. Software Efgweuiwq, 4 (3)

(1978).
S. J. A. Fellows, The Ti~o User Mammai, Computer Science Department University of Southern

California Los Angeles. CA., 1980.

6. P. Drinch Hansen, Operatw System Priacpie, Prentice-Hall, Englewood Clifs N.J. 1973.

77.

I

