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Abstract

Recetly there has been considerable interest in eflicient formulations of manipulitor dymamics, mestly
duce to the desirability of real-time control or analysis of physical devices using modest computers. ‘the
mefliciency of the clssicat Fagrangian formulation is well known, and ths has led researchers to seck al-
ternative methods. Soveral authors have developed a highly efficient fimmutation of manipulator dynamics
Based on the Newton Fuler equations, and there way be some confusion as ta the source of this cfliciency.
This paper shows that there is in fact no fundamental differcence in computational cfliciency between
Lagrangian and Newton-Fuler formulations. The efticiency of the above-meationed Newton-Euler for-
mulation is duc to two factors: the recursive structure of the computation and the representation chosen
for the rotational dynamics. Both of these factors can be achieved in the Lagrangian formulation, resulting
in an algorithin identical to the Newton-Fuler formukation. Recursive §.agrangian dynamics has been dis-
cussed previously by Hollerbach. This paper takes the final step by comparing in detail the represeatations
that have been used for rotational dynamics and showing that with a proper choice of representation the
Fagrangian formulation is indeed cquisatent to the Newton-Fuler formulation,
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1. Background

Manipulator dynamics concerns the relationship between the motion of a mechanical kinematic chain of
linkages and the forces applied by its actuators. For some problems, such as simulation, the forces are
Known and it is desired to computce the resulting motion. In other cases, such as the important arca of
real-time control, the desired motion is known and the Torces necessary to achicve that motion tnust be
computed. In cither case, for a given model of o kinematic chain an exact solution cian be found, within
the Tramework of Newtonian mechanics, The former case reduces to a system of non-lincar sccond order
diferential cquations, which can be solved nimerically, “The Eatter casc is casier-- the required forces can
be expressed directly in terims ol the known position, velocity and accelertion of the chain.

In this paper we restrict the discussion to vpen-loop kinematic chains, composed of rigid links con-
nected by joints that allow relitive motion of the links. We assumc. that cach joint has only one degree
of freedom, cither rotational or translational. Multiple rotational degrees of freedom can be modelled by

links of 7ero mass and length.

1.1 Lagrangian Generalized Coordinates

In Newton's original formualation of mechanics, the relationship between lorees acting on bodies and
the resulting accelerations is deseribed using cartesian coordinate systems. There are other, cquivalent
ways to describe the dynamics of a system of bodic .. One such method was invented by |.agrange, using
what are known as generalized coordinates. Generalized coordinates are any convenicnt sct of variables

thvat completely deline the position of a system of bodies. ‘The |agrange equation
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d (3l dL
= al) % (0

describes the relationship between the corresponding generalized forees acting on the bodics and the
kinetic and potential energy of the system. Here ¢; is a generalized coordinate, 7, is the corresponding
generalized foree, and the dot indicates differentiation with respect o time. L is the | agrangian—-the
difference between the total kinetic energy and the total potential energy of the system: L == K — P,
While the Lagrange cquation must yield the same numerical results as direct application of Newton's
taws, cither approach may be more convenient than the other in a given situation, or may provide greater

insight into the physics of the problem.

1.2 The Uicker/Kaﬁn Formulation

A kinematic chain has a natural set of coordinates that completely specify its position—the joint
virrkables ¢, Gangles for rotational joints and distances for sliding joints). The g, satisfy the requirements
for generalized coordinates. FFurthermore, they can be measured directly by the manipulator and the
corresponding generalized forces (torques for rotational joints and ordinary foree for sliding joints) are
Jrist ahat can be controlled. Itis not surbrising, then, that the pioneering work of Uicker [1] and Kaha 2]

on the dynamics of mechanical linkages made use of the |agrangian method.

From the standpoint of the present discussion, the important feature of the work of Uicker and
Kahn is their use of 4 X 4 rotation/translation matricies W, to represent the position and motion of the
kinematic chain. A coordinate system is altached to and moves with cach link. ‘The matrix W, transforms
the components of a vector with respect to link £ coordinates to its components with respect to a fixed
(incrtial) coordinate system. The position and mation of the chain is described by the W,'s and their time

derivatives, which arc in turn functions of the g,'s and their time derivatives,
Once the kinetic and potential energy of the chain is expressed in terms of the W,'s and their deriva-

tives, iU is a straightforward matter to apply the Lagrange cquation and find the generalized forees. The

o et e —————— e
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tosult looks like

z w; ...
T = Zh‘ éq_JJJWJI , (l.2)
j=i '

where 7, is the gencralized force applied to the dth joing, J, is the 4 X 4 inertia matrix of the jth link in
that link’s coordinates, and {r is the trace operation. ‘The gravity term is omitted here because it is not
important for this paper, although in genceral it must of course be included.

It has been observed by many authors that evaluating (1.2) directly as written requires time propor-
tional o the fourth pm\c-r ol the number of links, Hollerbach | 3] has determined that for 6 links well oner
100,000 adds and multiplies would be needed o compute all of the 7,7, and Luh et al. [4] report that
a Fortan program running o a PDP-11745 ook nearly 8 scconds 1o compute them. Since a real-time
control system would have to repeat this calculation at a rate on the order of 60 FHe, until recently it had
been belicved that a manipulator could not be controlled by direct real-time caleulation of the actuator
forces, without introducing approximations or using lookup tables.

The inefliciency of the original Uicker/Kahn formulation, as well as other reasons, have ked rescarch-
ers to look for alternative formulations of manipulator dynamics. ‘The most successful of these has been

the Newton-Euler approach.,

1.3 The Newton-Euler Approach

In order to apply Newton's laws to objects which are not point missses, we consider such objects o
be composed of a large number of point masses bound together by cifectively infinite internal forces. ‘The
laws governing these so-catled “rigid bodics™ may be derived from Newtonian mechanics [5). The key
feature is that the description of motion is broken up into two independent components—Ilincar motion
of the center of mass {or other suitable point) and rotation of the bady about that point. ‘The total vector
force acting on the body is related to the acecleration of the center of mass by Newton's sccond law:

F = mi. The total vector moment (torgue) about the center of mass is related to the angular velocity and

s e et W - e
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angular aceeleration of the body by Euler's equation

N =

—

U=~

@ 4w X (L w). (1.3)

(S

The Fuler equation follows directly from the Taws of rotating reference frames and the (ollowing

definitions:
w angular velocity
1 incrtia tonsor
L=1 w angular momentum
N = (_ft% maoiment (torquce).

These definitions are analogous to those found in the case of tincar motion, except that incrtia is a second
rank tensor instead of a scalar, since angular momentum is not in general parallel to angular velocity. If we

use d* /d to indicate dilferentiation with respect to the rotating refevence frame, we then have:

*
N::cl_l,zdlll_*_wx’d

dt 4

=3t(!;w)+wx(’;%)

= w4 w X (] w).

To apply the Newton-Fuler cquations to a kinematic chain, the following procedure miay be used.
1. The basc of the chain is cither fixed or its motion is known. Starting from the base and working
outwards, and using the known geometry of the chain, ©;, w;, and w; of link £ may be found in
terms of the g, . and §; of the preceeding joints.

2. ‘The total vector force F; and the total vector moment N; acting on cach link may now be

determined using the Newton/ Euler equations.
3. “The total force computed in step 2 is the vector sum of the forces exerted on the link by its
neighbors at the joints, and the furce of gravity. ‘The total moment is the vector sum of the pure

moments excrted on the link by its neighbors, and the moments generated by the forees exerted

W)
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by its neighbors, Thus if the force and moment acting at one end of & link are known, we can
use the totals from step 2 and the known foree of gravity to solve for the furee and moment
acting at the other end. These are equal and opposite to the force and moment excrted hy the
given link on its neighbor, by Newton's third law. Thus, if the force and moment exerted by the
cnvitonment on the terminal link (e.g. the hand) are known, we can proceed down the chain to

the base and determine the force and moment acting at each joint.

4. For rotational joints, the vector moment determined in step 3 is projected along the axis of
rotation to yield the joint torque. For stiding joints, the vector force from step 3 is projected
along the sliding axis to yield the joint force. The other components of the force and moment
are generated by the structure and bearings ol the device.

10 is cear that numy details muast be filled in belore the above procedure can actually be applied to a
kincmatic chain, We must have conventions for defining the geometry of the chain and specifying how the
joint variables are to be measured, and coordinate systems that allow the vector and tensor quantities to
be specified. The transformation required by step 1 must be worked out, and the operations specified by
the other steps must be written down in detail. ‘The efficiency of the resulting computation will depend on

how these issucs are resolved.

Recently a number of authors have been interested in the Newton-Ealer approach, partly duc to
perceived problems with the Lagrangian formulation, as mentioned above. Stepanenko and Vukobratovie
[6] worked out the details in L"(lllI\CL‘li()ll with work on understanding the dysamics of human limbs. One
of their main goals was to develop a computer program that could perform the tedious mathematical
manipulations necessary to set up the eyuations of motion from a de-cription of the kinematic chain.
"They rejected the Lagrange cquation because of the differentiations it requires—there are severe problems
associated with numerical differentiation, as they pointed out. ‘These problems can be avoided, however,
by deriving the differential cquation of motion for an arbitrary kinematic chain, as is done in section 3

for the open-loop class. Numerical values for a specific device are then substituted, but at this point all of
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the necessary differentiations have been done symbolically. ‘The general solution can readily be found by

hand, and only needs to be done once.

Stepanenko and Vukobratovic were not concerned with the cfficiency of the computation. Their
formulation was revised by Orin ef al. [7] in connection with the control of robot legs. They improved
upon the cfficiency of Stepanenko and Vukobratovie by referring the forces and moments to coordinate
systems attached to the links instead of fixed coordinates. They also noticed that the sequential nature
of the computation (iterating froni the base to the tip to determine the motion of the chain, and then
from the tip to the base Lo determine the forees, as deseribed above) seemed to reduce the computation
time and storage requirements. ‘They speculated that such a recursive procedure might be more cflicient
in general, but did not draw any conclusions, Armstrong [8] and Luh et al. [4] paid close attention 1 com-
putational efliciency and confirmed these suspicions, They poitited ont that the Newton-Euler formulation
leads to an algorithin where the computation time grows lincarly with the number of links, as opposed
to the quartic behaviour of the originhl 1.agrangian formulation. ‘Ihey further improved the cfficiency by
referring the linear and angular velocitics and accelerations, as well as the forces and moments, to link
coordinates. In addition, the need for cfliciency produced a formulation which is simpler in many ways.
FFor example, the three coordinate systems attached to cach link by Stepanenko and Vukobratovic were

replaced by one.

1.4 Recursive Lagrangian Dynamics

Hotlerbach [3] realized that the recursive nature of the Newton-Euler formulation that made it so
cflicient could be achieved with the Lagrangian formulation as well. Starting with the original results of
Uicker and Kahn, he developed forward and backward recurrence relations for the terms in (1.2) that al-
low the generalized forces to be computed in lincar time. The result for o 6-link manipulator still required

about 5 times the number of adds and multiplies as the Fuh formulation, but this is about 15 times better

than dircct evaluation of (1.2).




el Lalid g

Willam M. Sibver 9 Bk rou

Hollerbach also realized that the use of 4 X 4 rotation/translation matricics to represent the position
and maotion of the chain led to inefliciencies in the calculation. He reformulated the 1agrangian dynamics
in terms of pure rotation matricies to specify the orientation of the links, and displacement vectors to
specify their position. This reformulation resulted in an additional factor of 2 savings in adds and mul-
tiplies, bringing the Tagrangian formulation to within roughly a factor of 24 of Lul's Newton-Fuler

tormulation.

1.5 The Importance of the Representation of Angular Velocity

Hollerbach used a rotation matrix W, to specify the orientation of fink ¢ of the kinematic chain. W;
transforms the componcents of a vector with respect o a coordinate system fixed in link ¢ to its components
with respect to a fixed (incertial) coordinate system. The angular motion of link ¢ is represcnted by the tisne
derivatives of W: W, and W,

Although W, Wi, and W, cach have nine components, orientation has only three degrees of
freedom and thus onfy three of the components are independent. An equivalent representation for the
angular motion of a fink is the angular velocity vector w, and the angular acceleration vector w;, which
have been used in all of the Newton-Euler formulations reported here, and which contain no redundant
information. Unfortunately, there in no “orientation vector”™ corresponding o W;; the BEuler angles or

cquivalent may be used instead, although we will not neced to do so here,

in the next section we explore in detail the relationship between w and W, and the resulting descrip-
tions of rotational dynamics. In the R)ll'owing scction we show that a I agrangian formulation based on
w instead of W lcads to exactly the same computation as the Newton-Euler formulation. ‘This result 1s
hardly surprising, since both methods must give the same numerical solution, and we are now starting
with exactly the same quantitics. The sighificance of this result is nol just that it doesa’t matter which

formulation one uses. Rather, it shows what the real issues are if one is interested in eflicieney: structure of
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the computation and choice of representation.
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2. Comparison of Rotational Dynamics with w and W

1Cwas pointed out above that the angular motion of arigid body could be described equally well by cither
the angular velocity vector w or the derivative of a rotation matrix. . Obs iousty, scalar quantitics such as
kinetic energy must be independent of the representation chosen, but higher rank tensor quantitics need
not be, and expressions tor any guantity will be different in form. Furthermore, neither representation is
clearty better in all cases. Usce of w may yield a more efficient computation, but it has the disadvantage that
there is no “angular position vector™ that it is the derivative of. Vherefore, it is interesting and uscful to
compare the description of rotational dynamics that results from different choices of representation, and
to develop formulas that allow one to switch between representations, That is the main purpose of this

section, although o making this comparison we will also get expressions for rotational inertia and kinetic

energy which are needed i thie next section,

.

21w

We start by defining W omore formally and introducing some conventions that arc necded below.

We assume that the reader is familiar with the propertics of the angular velocity vector w and rotating
reference frames, which have been discussed in many texts (see, for example, [S]).

A A A . N . . A, A A, .

Let{ey, €z, €4} be any fixed (inertial) orthonormal basis, and fet {¢}, ¢}, ¢,} be any orthonormal basis

attached 1o a rotating rigid body. We will always use primes o indicate rotiting basis vectors or the

components of i vector with respect 1o such a basis. Thus, il » is any vector we have:

A A,
v = E Ve, = E v'e,.
i

11

e v aadtrm
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From now on we will drop the summation sign and use the Einstein stmmation convention, that is,

indices that appear twice in any erm imply a sumimation of that wem over all values of the indices (i.c.
{1,2,3).

Ulsing the above comventions we can wiite:

v "’J:'J/
ve =€ :"Jv’]
v =Wy, W, =¢. ¢ (2.1)
. dw,;
W, = .
dt
Note also that since the imverse of Wois its transpose, we have:
W:A-W[J = WyWy == §;, (2.2)

whese d, ) are the components of the dentity tensor d.

2.2 The Cross Product Operation

We must now bricfly discuss the cross-product operation, which is indispensible when dealing with
rotation in three dimensions, and which must be used unambiguously with sccond rank tensors as well as
vectors. We assume that the standard geometric definition of the cross product of two vectors is known to
the reader.

The cross product may be viewed as a function of two vectors that produces a third vector:

axb=c=(ab)

Mesinatnely, we may view the cross product as a function of three vectors that produces a scalar, the so-
catled sealar triple product:

a X b c= 8= Plah,c)
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1he function P is:

e lincarina,b, andc.

o Independent of the choice of basis vectors (since it is defined geometrically).
1

Therefore, P is a rank three tensor'.
‘e . . N A A A .
I'o find the components of P according to some right-handed basis {e), ez, €3}, we simply apply the
function to the basis vectors:
A A A
P = Plei, e, )

A A A
:r,Xej~ek

[, i 17k is an cven permutation of 123,
== t. i 7k is an odd permutation of 123,

0, otherwise.

From this it can be scen that I is totally anti-symmetric—swapping any two indices changes the sign (but
rotating the indices has no cffect). To illustrate how P is used, here are the formulas for the cross-product

of two vectors, and the scalar triple product, in coordinates:

[a X b]; = P;jra,b; a-b X ¢ = Pjabick.

T'here are two very useful identitics associated with the components of P.
Pl ji == 26, (2.3)

and

I’U'kpilm = 6)'16;"" -— 5_,',"6”. (24)

"l’cchnically. a pseudotensor, since it requires consistent use of right- or lefi-handed coordinate systems, but not both.
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2.3 The Relationship Between  and W

We can now find the explicit relationship between w and W. That relationship will be scen to be
position {i.c. orientation) dependent, and the position will always be represented by the rotation matrix

W.

I.ct v be any vector rotating with angular velocity w. We can derive the components of ¢ in the

following two ways:

1) -wXuv 2) v= W0,
v, Pty v,= W0,

Lguating the two gives:

i o — ’
W,V = Py = PirawWivl.

Since this must hold for any v, it is clear that

W, = PiuunW; (2.5)

(or in vector notation, W = w X W). The inverse relation may be found from this and cquations (2.2)

and (2.3) as follows: )
‘VU == I’I“lwkmj

W,,,)W,J = Dwnbpn = Pikmton
l)nnnwnu WU = I’I"l'l Pnuuwk == 26[-‘::(‘% = 2“’7!'

Making an appropriate change of dummy indices, we get
wi = y P WuWu, (2.6)

1o which there is no corresponding vector notation known to the author.

2.4 Rotational Inertia and Kinetic Energy

‘This scction has three purposes: it gives one example of how a dynamic quantity (rotational kinctic

energy) can he expressed in terms of cither w or W, it provides one way of defining the incrtia tensor (the
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definition will depend on whether w or Wiy used), and it provides the expression for ratational kinetic

energy that is needed tor the T agrangian formulation of the next section.

1 et r beavector from the conter of mass of a rigid body to a small volume clement of mass dm, The

velocty and kinetic energy ol the volume clement (duce o roLation of the budy ) can be writlen as;

v=r

di = Jv - vdm.

We will express dK in terms of both W and w and integrate over the body to get the total rotational
kinetic encrgy. The definitions of the incrtia tensor will (ull out of the derivation. Components of vectors

are with respect to any sight-handed orthonormal basis, primed for rotating and unprimed for fixed, as

above. lirst, using w:

n= wl'j"j
Y = wij';‘

di = }(Wur:)(w,-kr;c)dm
K = %Wllw“‘/‘l’r,j"kdm

et J)) = /V r\rdm (2.7)
K =W, Wa
= Jr(WI'WT) (2.8)

‘The last expression is in matrix form for the benifit of readers whoe are more Eamiliar with that notation.

Now we repeat the derivation, using w instead;
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v =wXr
dif = }{(w X r) (w X r}dm
= H{w w)r- 1) — (w- r)w r)ldm

i

VNwwir? - w,rw,r,|dm
= }ww,b,,r* — wwrrldm
= Jwuw,(r®,, — rr)dm

K = jww, /‘Iy(rzti,J — r;r,)dm

fet 1, — /(r"&,, - rr)dm (2.9)
v
K wwl, s lw I w (2.10)

From eguations (2.7 and (2.9) the selationshup between the two inertia tensors can be seen:
! lr(J)&-.!, J = }lr(l)&——-l (2.11)

Note that since 1 and J have been defined above by their componeats, they have not actually been shown
to be tensors, The proof is simple and can be supplied by the reader.

Erom cquations (2.8) and (2.10), and a definition of a generalized coordinate ¢, the rotational con-
tibution to the corresponding generalized force can be found from the | agrange cquation. This was

done by Hollerbach [3] for Woand is done in the next section for w. We summiarize the results here for

LOMParson: ﬂ
angular ' )
~velocity “’ ‘ ) w
kinctic L
cnergy lw lw Yr(WIWT)
generalized . . . . d_u OEV o
| foree | R IAwx (el g | W) |

While these expressions have been derived independently, their equality can be verified by direct substitu-

tion using cquations (2.4), (2.5), (2.6), and (2.11).




3. Lagrangian Dynamics Using w Instead of W

b this section we give the details of the Tagrangian formulation hased on the angular velocity seclor w.
Fhe generalized forees are derised for any open-loop kinematic chain, and the resuits are interpreted and
compared to the Newton-Fualer fornualation of Fuly [4).

One feature that distinguishes the present formulation from previous ones is that expressions for the
generalized forces are derived without defining a single coordinate system. All quantities are expressed in
1erms of geometric objects (tensors) and geometric operations (vec tor addition, dot and cross product). It
is only at the end, when a computation must be derived from these expressions, that coordinate systems
must be defined, so that the various quantitics can be measured and represented in a computer program.
At this point, expressions may be evaluated inany convenient right-handed orthonormal coordinate sys-

‘ tem, pravided that this is done s in consisient nasmer, I practice, the method presented by | oh 4] is

probably inost eflicient.

3.1 The Derivation of the Generalized Forces

In this scction we write down the total kinctic cnergy of a kinematic chain and apply the Lagrange

cquation to derive the generalized forces. The potential encrgy term duc to gravity is omitted here as

mentioned in section 1.2, although this and other minor details are taken care of below.,

The total kinetic energy of a rigid body is the sum of the energy duc to the mation of the center of

mass and the energy due o rotation about the center of mass {S);

K = Jm(v)? + jw l-w
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To get the total energy of a chain, sum over alt of the links:

K= i[gm,(v,)’ + dw, - 1, -w,]. (3.1)

We inay now compute the derivatives required by the Lagrange equation (1.1).
K v, Sw; .
S~ mu, . Hw- (3.2)
H, Z[ N, ' N, ]

The first term of (1.2) (oltows directly from the chain rule. FFor the secomd term, note that while the
inertin tensor 7, is a function of position, it is independent of any jont velocity ,. Furthermore, since 1 is

symmetric,

T
l‘ oqj'

Straightforward application of the rules for differentiating products gives:

d{IKY) . O, d [ Bu;
(u(oa,,) Z‘:['"'"' o, +mw, dt(&‘“)

(3.3
PRS- ATRRATR b))
Itis shown in Appendix A that:
::(3:‘,) = %‘ (3.4)
w, 13‘,’; = wi X (_rm)-"‘—ﬂ—; (35)
1(3)-5 ey

wi-1;- (w, X ') = —w; X {I;-w,)- g:" (3.7)
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Substituting (3.4)-(3.7) into (3.3) gives:

d oK _ 00 2 e P b 2 R
dl(dfh)_‘z{m‘v' &,,j'f‘mtl’u &j‘{"‘!a I; aqj“‘?éh I &b} (3:8)

Now for the final werm in the | agrange cquation:

. ( N
‘;’z zz E[m v, ?U,» —i~ w, - I, a‘h " ':wl : :.)q ) wl] ('!9)
s

This is very snarkar 1o (3.2), except for the appearence of a term due to the position dependence of the

ne.a tensor wis shown in Appendix A that:
al; .
o 5w = 0 x () G2 (3.10)

Putung it all together:

o dfIK) 6K
P N, &,

E(m,t), z:;; bl 1w, X (1w tﬁ,) (311)

3.2 Comparison with the Newton-Euler Formulation

We have derived the géncmlizcd forces in a very general way, without unnccessary demiB like
coordinate systems, link and joint numbering conventions, and other conventions nceded to specify the
geometry of the manipulator. In order to interpret the result and compare it to the Newton-Euler formula-
tion, however, it is finally nocessary to make some of these definitions. Such details are not the point of

this paper, and will be kept to @ minimum.,

‘The tinks of the manipulitor are numbered consecutively from the bise 1o the tip, as are the joints

that connect them. ‘The hase is considered o be link 0, while the terminal link is numbered link n. ‘Ihe
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Figure 3.1. Link and joint numbering, and other conventions for open-loop kinematic chains,

joings are numbered | thru n, joint | connecting link 1 to the base. 'Thus joint & connects links £ — 1 and

2 link i is bounded by joints £ and 2 - 1, as shown in figure 3.1,

! I joint 2 1y rotatiomal, the joint variable ¢, measures the angle of rotation from some Gebitrary tor the
present discussion) reference point; if it is translational, g; measures the sliding distance. ‘The unit vector
‘ 1
2, is attached to joint 1 and points along the axis of rotation for rotary joints or along the sliding axis for
} . L - . . AL
} sliding joints. Note that for rotary joints, ¢; must be measured in a right-hand sensc about 2;. I¥inally, let
;.. be a position vector that points from anywhere along the axis of joint j to the center of mass of link
. T . e A . .
1. (Note: ‘These definitions of 2; and pji are non-standard, and are clcarly too ambiguous to be used in
practice, They are, however, all that is nceded to understand equation (3.11)). ;
{
Onc of the first things one notices when looking at equation (3.11) is that it contains the Newton-
\‘ )
b
4 i
b

[

LW o .. .
RPN T T R WSR-S b - ok o
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Euler expressions for the total vector force and moment acting on a rigid body. In fact we can rewrite
3.1 as:
Bv; Bw;
=3 \Fi- S+ N 52 ) 3.12
! ; b8y, 44; (3.12)

Thus we are very interested in the vectors Qv /8 and 8w, /8q; that the force F'; and moment N are
projected onto. ‘These vectors specify the dependence of the lincar and angular velocity of link £ on the
joint velocity of joint . For § > 1 (here is no such dependenee, and so these vectors are 0. 'This means
that the summation in equation (3.12) can be taken from ¢ = j o £ = n, instcad of over all 3.

For j < ¢, we note that the fincar and angular motion of link £ may be written as the vector sum of

contributions due to the relative motion of the previous links at the joints:

i (('1,«31) X Pj,i. if joint j is rotational;

wi=39 . (3.13)
i= { 4;2;, if joint j is translational.
i . A e s .. - .
q,zj, if joint 7 is rotational;
wi=y 0 " (3.14)
i1 10, i joint 7 is translational.
Diflerentiating gives:
Sv; zj X pji  ifjoint 3 is rotational; (3.15)
L : 3.15
9; zj, if joint 7 is translational.
Sw z; if joint j is rotational;
T ’ (3.16)
’ %; Q if joint § is transtational.

If joint § is translational, the joint force can now be written:

n
A
'J'=ZI'EP'"

§==j
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If joint 3 is rotary, the torque is;

n
7 =2 2 (pji X Ei+ Ni).
i==j

Thus, to compute the generalized forces we first iterate from the base o the tip to compute ,, w;, and w,,
and then iterate rom the Gp o the base using the above rekitions o compute the forees. Relerring to [4), it
citn be seen that this is exactly the computation specified by 1uh that was derived from the Newton-liuler
approach.

A few minor points still need Lo be cleared up, however., IFirst, we are still free to choose a coordinate
system or systems in which to evaluate these expressions. The method presented in [4] is probably best,

where quantitics associated with a given link (such as the inertia tensor) are expressed in a coordinate

system attached to that link, and then are transformed to the coordinates of the previous link as the
‘ iteration proceeds. 1
Sccond, we must say something about the gravity term which we have thus far ignored. We could W

include it in the Lagrange equation in the standard way, as a position dependent potential energy term.,

This is equivalent o its inclusion in the Newton-Buaier formulation as described in step 3ol section 1L,

Perhaps i better way was also discussed by Luh- - instead ol cunsidcring the base as fixed, give ita vector
acceleration equal to that due o gravity. Both methods will give the same numerical result, but 1.ul's is
probably more efficient since the effect of gravity is computed only once.

Third is the sliding friction forces produced in the joints that Luh includes in his cquations. These,
- however, are simply computed based on the joint velocity and are added directly to the joint gencralized
force. This clearly can be done no matter how the dynamics are formulated.

Finally, the Newton-Euler dynamics includes the solution to the problem of the statics of the
manipulator, that is the effect of the external force and moment acting on the terminal link. ‘This can J

be included in the Lagrangian formulation by supposing an additiona! link attached 1o the terminal link,
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whose mation is defined soas o produce the required external forces. This is very much like including H

gravity by specifying the aceeleration of the base rather than the equivalent forces,

| s am —— g 22— - - —




ey

A. Details for the Lagrangian Formulation

I this Appendix we supply the details that were omitted from the derivation of the generalized forces

presented in section 2.1,

FFor equation (3.4), Iet r, be a position sector from any fixed origin to the center of mass of link ¢, so

that v; == r,. Then we have:
S,  OF, g ori. Ir;
N = o = Q=
o; 9, 94 ;‘9% ag;

d [ v, d [ Or, Ar, | a Or;,
- -z = 2 . “ (Ik' = , Z . Eqk
di\ Iq, di\ Iy, " g, N, - e
d . Oy

. :')qu' - (')qj.

Fquation (3.5):

w.'it'g%=%'(%x£f"£iX@‘)'%
= w; (w; X [}) 325—9): U.Yw:)'g%
=w; X w; !i‘%;f)f_(@t l:)xw!'%
=w, X (I; w,)g‘:;

Fguation (3.7):

24

(A1)
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For equation (3.10): Following a procedure similar to that used in (A.1) above, it can be shown that:

3, wi
aq.l aq] ]
Thus we have:
al; ( L-1L )
— W X Ii— i Xw
J;j 04, ' i
Swi A
= I: N ==
a"b. X X i‘ X 'J. |
Therefore,
al; Sw; Ow;
wi = wi= o [ S X L) e — o[ Lx G2 )
%N: 5()j 4 W (an \) i 2 (ﬁ,x aq]) i
Sw; Sw;
= %Wi'é'(;f X (- wi) — lwi- 1)) X (—9'%‘ Wy
Sw; Sw,
== = Ywi X (I w, 2 — L X (1 wi) - it
( ) 0‘11 ( 3q;
A,
= —w; X (- w) - B
(liwi)- a;
The final (and trickiest) proof is equation (3.0):
d | Sw; Sy <9w.
‘“(a‘h‘) %; ' ‘9‘11
We will need cquations (3.14) and (3.16), and the conventions of section 3.2 (see figure 3.1), cxcept that for ;

convenience we will take i to be 0 if joint k is translational.

First note that if joint 7 is translational, or if > ¢, w; is independent of both g; and ¢, so that both

sides of the cquation are identically zero. Now for j < ¢, since 2; is attached to joint 3 and therefore link

J. we may write:

d (9(4) dgj A
) A.
dt(aq,) T Wi X3 (4.2)

By considering the rotation of a vector by some angle about a given axis, it can be seen that:

% =2;x% (<hK) (A3)

e il i Bk
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Now we have everything we need for the proof, Starting with (A2),

dfdwi) _ 5
dt\eg; | 7

=w; X2+ Z Q@zj X 2k

A . U2
=wi X2+ I e




Acknowledgements

1 would like to thank John tHollerbach, Mike Brady. and Berthold Horn for many usclul discussions and

comments, and Frank Morgan for tcaching me tensor algebra.




References

[1] J.J. Uicker, “On the Dynamic Analysis of Spatial 1.inkages Using 4x4 Matricies,” PhD ‘Thesis,
Northwestern University, August 1968,

[2] M.E. Kahn, *“Ihe Near-Minimum-Time Control of Open-i.oop Articulated Kinematic Chains,”
Stanford Artificial Intelligence Project Memo AIM-106, December 1969,

131 .M. Hollerhach, “A Recursive | agrangian Formulation of Manipulator Dynamics and & Comparitive
Study of Dynamics Formulation Complexity,”™ HWEEL Transactions on Systems, Man, and
Cyberneties, pp. 730-736, Nov. 1980.

[4] J. Luh, M. Walker and R. Paul, *On-linc Computational Scheme for Mcchanical Manipulators,”
2nd IFAC/IFIP Symposiwm on Information Control Pmblcms in Manufacturing ‘I'ecchnology,
Stuttgart, Gcrmany October 22-24, 1979.

{5] K.R. Symon, Mechanics, 3rd cdition, Addison-Wcslcy, 1971.

[6] Y. Stepanenko and M. Vukobratovic, “Dynamics of Articulated Open-Chain Active Mcchanisms,”
Math. Biosc., vol. 28, pp. 137-170, 1976.

[7] D.E. Orin, R.B. McGhee, M. Vukobratovic and G. Hartoch, “Kinematic and Kinctic Analysis of
Open-Chain Linkages Utilizing Newton-Luler Mcthods,” Math. Boise., vol. 43, pp. 107-130,
1979.

8] W.W. Armistrong, “Recursive Solution to the Faguations of Motion ol an N-tink Manipulator,” Proc.
Sth Warld Congress on Theory of Machines and Mechanisms, vol. 2, pp. 1343-1346, July 1979,

28







