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Abstract

A study on the cost effectiveness of mini computer vs. main-

frames is being conducted at the Illinois Institute of Technology.

The study is intended to compare the performance of several finite

element programs on the IIT Prime 400 mini computer and the

United Computing Systems UNIVAC 1100/81 main frame. Additional

comparisons are to be made with other main frame and minicomputer

installations. The present report describes the methodology used

in the study and the matrix of computer programs and structural

analysis problems. Also, preliminary results for one program

and one problem are given and analysed.
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1 . INTRODUCTION

Minicomputers promise cheaper, more widely available

computing facilities, but they pose many problems, particu-

larly to those with large calculations in mind. The smaller

main memory means that users must make more use of disk space.

Many minicomputers have a smaller word size (8 or 16 bits per

word) with a devastating effect on accuracy. (Storaasli and

Foster, 1978, report 4 digit accuracy on a PRIME 400 for a

medium-sized problem as compared to 8-13 digit accuracy on

a CDC CYBER 173.) Longer elapsed times leave more room for

machine hardware failures during a run. At Berkeley, Pearson

reports some theoretical calculations required twenty-four

hours or more, but the (MTBF) mean time between failures was

also approximately twenty-four hours. Lack of adequate

software libraries, debugging facilities, documentation and

operations staff often hampers users of minicomputers.

Several past studies of the performance of minicomputers

and main frames have concentrated on the machine cost aspect.

Chemists have taken the lead in doing large scale calculations

on small machines, perhaps because of their familiarity with

the use of minicomputers for laboratory process control. Peter

Lykos of the Illinois Institute of Technology organized an

American Chemical Society Symposium on Minicomputers and

Large Scale Computations in June, 1977. Four of the papers

from this meeting are particularly relevant to the present

study since they involve large minicomputers with a cost

$100,000 - $200,000 range: 1 44I1X,
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Pearson et. al.,; Norbeck and Certain; Wagner et. al.; and9
Freuler and Petrie. These papers have shown that based on

machine cost alone minicomputers may be two to four times

more cost effective than main frames. However, the National

Resource for Computation in Chemistry Committee has con-

cluded that "Minicomputers alone cannot meet the needs of

the chemistry community" (1978, p.1).

The structural analysis community is also experiencing

a shift from main frames to minicomputers (e.g., Swanson,

1979). For example, most of the major finite element pack-

ages are now available on the PRIME 400.

The users of structural analysis software on mini-

computers have conducted several studies that point to the

economic advantages of using such machines (e.g., Storaasli

and Foster, 1978, Conaway 1979). These are based on data

gathered by running structural analysis programs for various

problems. The scope of the comparison was limited by the

relatively small amount of data that was generated.

The purpose of the present study is to extend the pre-

vious studies in several directions. First, to use a

wider mix of programs and problems for the comparison.

Second, to produce performance models of the computer

programs that will permit prediction of performance for

additional problems and different computer environments.

Last, the present study also attempts to further assess the

human factors involved in such comparison.

i
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The present preliminary report describes the computer pro-

grams, the selected mix of problems and the evaluation tools

developed for measuring performance. Results for one of the test

problems are reported and analysed.
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II. CHOICE OF STRUCTURAL ANALYSIS PROGRAMS AND PROBLEMS

Since the overwhelming majority of structural analysts

use finite element methods, the present study is limited

to such programs.

4It is impossible to get a very accurate comparison of

the performance of the mini and main frame systems without

an exhaustive battery of test problems. However, we believe

that by judicious choice of the type of problems and the

type of structural analyses employed, one can obtain a

reasonably reliable comparison of performance. The following

are the elements in such a comparison.

A. Type of Analysis

The type of structural analysis to be included in the

tests must include the ones which are most commonly in use.

This study will include the following:

(i) Linear static solution for displacement and
stresses

(ii) Linear eigenvalue analysis - calculation of
buckling loads and vibration modes

(iii) Nonlinear response due to large deformations

and material nonlinearities

(iv) Transient Dynamic analysis

B. Type of Problem

Three structural problems are used:
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1. A simple cantilever beam

2. A plate with a hole

3. A stiffened cylinder

These problems will be solved for the different

analysis types. Several models will be used for each pro-

blem ranging from a very crude model to a very refined one.

The number of degrees of freedom ranging from a few dozen

for a crude model to more than a thousand for the refined

one.

C. Computer Programs

Three computer programs are used with the

objective of using two programs for each problem. These

programs are:

1. SAP IV - A general purpose finite element program

developed at the University of California at Berkeley

is probably the most widely used "free" (it costs $200.)

finite element code

2. SPAR - A general purpose finite element program developed

L° by W. D. Whetstone which serves as a prototype of a

commercially developed code

3. TWODEL - A special purpose finite element program

developed by D. Malkus at IIT for large deformation

analysis of 2 dimensional elasticity problems. It is

a representative of in house codes.
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III. THE COMPUTER PROGRAMS

SPAR

SPAR is a general purpose finite element program

developed by W.D. Whetstone for NASA, first at Lockheed and

then at EISI. The program has linear static analysis,

eigensolutions for vibration and buckling and modal response

capabilities. It does not have nonlinear analysis or direct

integration capabilities. The program has a public version

which is distributed by the government through COSMIC. It

also has a proprietary version called EAL (for Engineering

Analysis Language). The public versions for the UNIVAC and

CDC systems are maintained by the developer while the mini-

computer versions (Prime and VAX) are maintained by NASA.

The proprietary version is available on all four systems

but only in its executable version. Because of the expense

of acquiring the proprietary version and the difficulty of

instrumenting it without access to the source code, the

public version was used for this study.

SPAR is a modular system composed of more than 20 small

programs called processors. The processors communicate

through a data base system which is also directly accessible

to the user. (see Giles and Haftka, 1978, for more infor-

mation). The list of the SPAR processors and their functions

is given in Table 3.1.

The public version of SPAR was installed on the UNIVAC

without any trouble. Installation on the Prime was much
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Table 3.1 - SPAR PROCESSORS

Processor Name Function

TAB Creates data sets containing tables of joint
locations, section properties, material
constants, etc.

ELD Defines the finite elements making up the
model

E Generates sets of information for each
element, including connected joint numbers,
geometrical data, material and section
property data

EKS Adds the stiffness and stress matrices for each
element to the set of information produced
by the E processor

TOPO Analyzes element interconnection topology and
creates data sets used to assemble and factor
the system mass and stiffness matrices

K Assembles the unconstrained system stiffness
matrix in a sparse format

M Assembles the unconstrained system mass
matrix in a sparse format

KG Assembles the unconstrained system initial-
stress (geometric) stiffness matrix in a sparse

format

INV Factors the assembled system matrices

EQNF Computes equivalent joint loading associated
with thermal, dislocational, and pressure
loading

SSOL Computes displacements and reactions due to
loading applied at the joints
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Table 3.1. - Concluded

Processor Name Function

GSF Generates element stresses and internal loads

PSF Prints the information generated by the GSF
processor

EIG Solves linear vibration and bifurcation buckling
eigenproblems

DR Performs a dynamic response analysis

SYN Produces mass and stiffness matrices for systems
comprised of interconnected substructures

STRP Computers eigenvalues and eigenvectors of substruc-
tured systems

AUS Performs an array of matrix arithmetic functions
and is used in construction, editing, and
modification of data sets

DCU Performs an array of data management functions
including display of table of contents, data
transfer between libraries, changing data set
names, printing data sets, and transferring
data between libraries and sequential files

VPRT Performs editing and printing of data sets which
are in the form of vectors on the data libraries

PLTA Produces data sets containing plot specifications

PLTB Generates the graphical displays which are speci-
fied by the P1VTA processor
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more troublesome. Difficulties were due to some bugs in

the Prime version that had to be corrected and with the

virtual memory system of the Prime that did not seem to

work well for very large arrays. Additionally, the Prime

company issues new releases of the operating system quite

often. Many times the older version of SPAR did not work

with the newer operating system and the programs had to be

recompiled and reloaded (a non trivial effort because SPAR

is composed of so many individual programs).

SAPIV

SAPIV is also a general purpose finite element pro-

gram that has static, vibration and dynamic analysis capa-

bilities. It has been developed by Wilson at Berkeley and is

available at nominal cost ($200.) to the public. It is pro-

bably the most widely used "free" finite element program.

There are =ore advanced versions of SAP denoted as SAPV,

SAPVI, etc. which are available at considerable cost ($9,000)

from the University of Southern California. In the present

study SAPIV is used.

The program was originally written for a CDC system.

However, it has been converted to other systems. On the UCS

UNIVAC 1100/81, there are three versions of SAP IV. However

only one of these is working. The program can be compiled

using UNIVAC's FORTRAN V compiler. An attempt to use the

more efficient ASCII FORTRAN compiler was unsuccessful. A

substantial change in the program and I/O format statements

may be required to make SAP IV suitable for this compiler.
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There also is an absolute version of SAP IV which is supported

by UCS and is available for problem solution

The Prime version of SAP IV was generated by Feeser of

RPI. The first version of SAP IV which we received from the

PRIME users' library was highly mutilated. Another tape

was then obtained from RPI, Troy, after several months wait.

This tape had about 60 lines of code missing towards the end of

the STRETR SUBROUTINE. Two following routines were also

destroyed. Luckily this particular piece of code was correct

on the earlier tape, and we were able to patch the code to

mak- it work. Both times we received 800 BPI tapes. The

PRIME installation at IIT has only a 1600 tape drive, how-

ever. The conversion was another nontrivial task.

TWODEL

TWODEL is a special purpose finite element program for

two dimensional finite elasticity developed by Malkus at

IIT. It is a relatively small program and was developed

simultaneously for the UNIVAC and PRIME systems. The problem

description is built into the program so that refining the

mesh necessitates changes to program patches.
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IV. MACHINE ASPECTS

1. PRIME 400

This section describes some of the aspects of the PRIME

operating system PRIMOS (Rev. 17.2). It deals with memory

management, page fault handling, and process scheduling.

Collecting this information was much more cumbersome than

anyone had anticipated, mainly because the kind of informa-

tion we wanted is not needed in day-to-day operation. There-

fore, it was not available either from the IIT Academic

Computing office or from PRIME's Oakbrook headquarters. The

problem was aggravated due to unavailability of proper documen-

tation. Thus, many times information received from these

sources was either incomplete or incorrect or both. This

eventually forced us to investigate the PRIME Macro Assembler

code of PRIMOS.

a) Memory Management

PRIME has a segmented, paged virtual memory system. The

page size is 1024 (16 bit) words. The segment size is 0 to

65536 (64K) words in units of 1024 words (page size). There

are 4096 segments to a virtual space (2**28 words). The seg-

ments are in four groups of 1024 segments each. There are

four descriptor table address registers which point to tables

containing page map entries. These in turn point to physical

pages of memory. Thus, a 28-bit virtual address contains

2 bits of descriptor table selection, 10 bits of segment

selection, and 16 bits of word selection. The process of

physical address translation is given in Figure 4.1.
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It should be noted that the hardware implemented auto-

matic process-exchange mechanism does not affect the descriptor

table address registers 0 and 1, therefore, all processes

share the same first 2K segments of virtual address space and

have the second 2K segments as private space. Finally, the

presence of both paging and segmentation permits the separa-

tion of physical memory management from user address space

management. Table 4.1 shows the formats of descriptor table

address registers, segment descriptor words, and page map

entries.

A descriptor table has from 0 to 1K entries, must

begin on an even word, and must not cross a segment boundary.

A page table always has 64 entries and must not cross a 64K

boundary. Pages must begin on a 1K word boundary. To facili-

tate memory management, primos maintains three kinds of map-

tables. These are the page table, the disk table and the memory

map table. The first two are 64 words long and are maintained

separately for each segment. The memory map table is a system

table with one word per physical page. At our system, it is

1K words long (we have 1M bytes - 512K words of memory).

Page faults are handled in microcode and regular assembly/

FORTRAN software, Faults are detected and an entry is made

into the fault table. If it is a page fault, a branch is

made to the page fault catcher which saves registers and

finally a routine is invoked which turns the page. After

the page has been brought in, the system wide page fault
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Table 4.1 Virtual Memory formats

DESCRIPTOR TABLE ADDRESS REIGISTER FORMAT
(32 bits)

SSSSSSSSSSDDDDDD
-DDDDMDDDDDDMD

1-10: 1024 minus descriptor table size (SSS...S).
11-16,

18-32: High-order 21 bits of 22-bit physical address descriptor
table origin, low bit taken as zero (DDD... D).

17: Not used.

SEGKENT DESCRIPTOR WORD FORMAT
(32 bits)

pppppPPPP---
FAAABBBCCCPPPPPP

17: Fault if 1 (F).
18-20: Access allowed from ring 1 (AAA).

001: N ( access.
001: Gate (for procedure cass).
010: Read.
011: Read and write.
100, 1ea: Reserved.
110: Read and execute.
111: Read, write, and execute.

21-23: Reserved for future expansion (BB).
24-26: Access allowed from ring 3, same code as above (CCC).
27-32,

1-10: High-order 16 bits of the 22-bit physical address of
the page table origin (PPP...P).

11-16: Reserved, must be zero.

PAG MAP ERY
(16 bits)

VRLISAAAAAAAAAA

1: Valid: page resident if 1, fault if 0 (V).
2: Referenced: set by hardware when page is referenced (R).
3: Unmodified: reset by hardware when page is modified (U).
4: Shared (inhibit usage of cache buffer): set by software when

memory page is shared among processors (S).
5-16: High-order 12 bits of physical page address, low-order 10

bits are taken as zero (AAA...A).
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counter is incremented and a return from the fault handling

routine is made.

Primos uses an approximation of the global least

recently used (global LRU) algorithm which is commonly called

a clock algorithm with prepaging. This algorithm will swap

out three pages whenever its free page pool is exhausted and

a page fault occurs, in order to create some space for future

page faults. It has been widely used in industry, for example

in the CP/67 and VS/370 operating systems. Because of all

the possible interactions with other jobs and the resulting

workload dependency, it is difficult to analyze.

Process scheduling on the PRIME is priority based, i.e.,

the highest priority active process is always dispatched.

There are 5 priority levels. 0 is the lowest and 4 is the

highest (system priority). A user normally is at level 1.

The time slice for priority levels 1 to 4 is 300 msecs, for

priority 0 it is 100 msecs. One would guess that the time

slice of a process is renewed whenever a process is dispatched

but this is not so. The time slice is renewed only when the

time slice has expired and not every time a process is dis-

patched after CPU deallocation.

2. UNIVAC

The UNIVAC 1100/81 is a batch oriented machine. Attempts

to run interactively on the UNIVAC yield results less than

favorable. This is because interactive user processes must

run at virtually real-time priority to maintain a reasonable
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response time. This places a heavy burden on the system,

as its batch oriented management techniques cannot be used.

The memory management scheme for EXEC-VIII, the UNIVAC

1100 series operating system, will fill available memory with

jobs from the eligible run queue. The jobs are taken highest

priority first, real-time over batch, according to sub-cate-

gory priority. The sub-priorities are established at the

beginning of the run and remain constant for the duration of

the run. When a user task requests memory, the executive

shuffles the batch tasks to form a free area above the

requesting task. Thus, by simply extending the address limits

of the task, enough memory is made available to satisfy the

task's requirements. When there is insufficent memory avail-

able, the executive will swap lower priority tasks out to

secondary storage in order to free enough memory. If there

are no lower priority tasks, the executive will suspend the

requesting task until sufficient memory becomes available.

The UNIVAC memory management forces the entire user task to

be resident, if it is active. The user task has no control

over this other than to release some previously allocated

core to decrease the task size.
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V. MEASUREMENT TOOLS

In order to measure the performance of SPAR, SAPIV, and

TWODEL measurement tools to determine the CPU and I/O time,

and the amount of memory used by the program are required. In

the present study, only software measurement tools are used

on both PRIME and UNIVAC because of the

hardware tools. Measurement tools can be applied in two ways,

in the form of independent monitors and by using them as

subroutines called by an instrumented version of the program

under study. Measurement tools can create both time and space

interference. First, they need time to execute (important

for instrumentation). Second, they also create data which need

to be stored in core or in buffers and subsequently written

onto secondary storage devices. Also, software measurement

tools use memory space themselves - they are program modules -

and the space of an instrumented version of a program will

increase as well as its execution time. Clearly, this is

undesirable, because we would like to measure the original

program's behavior, not the instrumented version's. There

are several requirements which when met can alleviate

this problem.

1. The space and time interference should be as small as

possible. This is also important for the resolution of the

measurement tool. The faster a measurement can be taken, the

more often it is possible to measure. Naturally, the measure-

ment data cannot be more accurate than the meters which
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collect them. On the other hand, the accuracy required

depends on how the data are being used and how detailed an

analysis is to be performed.

2. It should be possible to separate the resources (e.g. CPU

or I/O time) consumed by the meter from the resources con-

sumed by the program. For an instrumentation tool this can

be done in the following way: Compute the time interference.

For CPU time, this is the time to execute the measurement

routine once, multiplied by the number of calls to the rou-

tine. For I/O time, it depends on how data is written to

secondary devices. If measurement data are written onto a

device (e.g. a tape) which the program itself does not utilize,

then the *mount. of time for access to this device can be

seen directly, since it means usage of a different resource.

If this is not the case, then the number of data items divided

by the number of items which fit into the meter's I/O buffer

will give the number of transfers. If this is not an integer,

it has to be rounded to the next higher integer value. The

number of I/O transfers multiplied by the average time to do

such a transfer yields the resources used. This applies only

if buffers are written out when the buffer is full or at pro-

gram termination. If buffers are flushed out for other reasons,

this technique will merely provide a lower bound. Also, if

the disk seek-time is added to the I/O time for charges, the

I/O time may vary considerably depending on how full the disk

is or which algorithm is employed for the search.
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Measurement Tools on the PRIME

Since the PRIME is a paged system, any program's CPU and

I/O behavior will have two aspects, the essential CPU and I/O

time and the overhead due to paging. This means that we are

interested in a measurement tool which can measure

- CPU time

- I/O time

- Number of page faults

- Average time (CPU, I/O) to handle a page fault.

The following measurement tools are available:

TIMDAT

This is a user callable subroutine which returns, among

other things, wall clock time, CPU time and disk I/O time

since login. The resolution is 1 tick. Each tick is approxi-

mately equal to 3 msecs, i.e., 330 ticks per second. CPU and

disk time include both the resources explicitly consumed by

the user program and the resources consumed by the system,

e.g. paging overhead.

CTIM$A & DTIM$A

These two routines provide CPU and disk time elapsed

since login in seconds and centiseconds.

USAGE

Usage is a system metering facility which reports on the

system performance, e.g., differential CPU time, differential

disk time, page faults, percentage utilization, etc. for each

reporting period. This period can be specified by the user.
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USAGE also reports on the resource consumption by each user.

Though USAGE is a powerful and important tool, it is of

limited use to us because it reports most performance data

on a system wide basis. This means that it collects unnecessary

statistics for us. This also influences the reporting inter-

val which may not be smaller than 30 seconds which is too large

for our purpose. Table 5.1 shows an exanple of USAGE's output.

In addition to the limitations of TIMDAT and other routines

mentioned above, there are certain other factors which make

meaningful measurements on any multiprogramming system diffi-

cult. These problems arise due to the need to overlap I/O

operations. The system maintains various buffers for each

device user request. Whenever a user issues an I/O operation,

the contents are written to buffers or brought into buffers

from disk, if they are not already present in the buffers due

to an earlier request for input. For write operations,

buffers are written out on disk either when they are full or

for other reasons (for example, the user has not accessed

his buffers lately and therefore it is assumed he is not

likely to reference them in the near future). Other diffi-

culties arise from the overhead introduced through the calls

to the timer routine within the program. If the timing could

be done by an independent parallel process which communicates

with the program under observation, the overhead can be re

reduced.
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For our studies, the measurement tools which are pro-

vided by the system are not sufficient. Therefore, we

decided to modifv the existing ones to suit our needs better.

For PRIME, a possible solution to our measurement problem

is an external software nnitor which can monitor the

activities of a particular program or user. This led to

the development of a modified version of USAGE called

SUSAGE. The difference between tie two is that SUSAGE only

takes the measurements we are interested in and thus pro-

vides us with the information needed without the additional

overhead of USAGE. This improves resolution and reduces

interference. Less information is processed, thus reducing

both time and space required. We will measure the perfor-

mance of SAP4, SPAR and TWODEL by instrumentation and by

monitoring program execution in order to be able to con-

trast both methods.

Measurement Tools on the UNIVAC

There are various executive routines available for time

measurements, such as wall clock time, CPU and I/O time,

etc. The Post interesting for us are

TIME$

This executive routine returns the wall clock time.

It can be used to measure turnaround times. Since this

information can be found on every printout, we do not have

a need for measuring how waiting and progress intervals

are distributed for a given job. We felt no need for this,

because the UNIVAC does not charge the user for wait times,
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i.e., when the job is temporarily swapped out because there

is not enough memory or because a higher priority job is

allowed to run first.

INFO$

This is an alternative executive request which returns

the same form of units as PCT$, but forces the values to be

updated before returning them, because it immediately termi-

nates the time quantum. A FORTRAN callable subroutine was

written which returns these CPU and I/O times in single

integer form. The values returned are in microseconds with

a resolution of 200 microseconds. A source listing with

sample usage is included in Figure 5.1.

A program has been developed to enable an almost auto-

mated instrumentation of SAP and SPAR on both machines. The

instrumented versions call timing routines at appropriate

places. They take CPU and I/O time measurements of the pro-

gram. On the UNIVAC both CPU time and time for executive

requests are treated as CPU time for charging purposes. There-

fore, it was decided to treat them both as CPU time. Cali-

bration runs were done to find out what the appropriate block-

size for writing measurement data should be so that the over-

head is low, and also to quantify the overhead due to

instrumentation.

CPU and I/O overhead depend on the kind and the size of

the problem. For the 72 node plate problem, CPU overhead is

16.5 percent, I/O overhead 12.3 percent. If the size of the

plate problem is increased to 143 nodes, the respective over-

_ _ _ _ _ _ IIII. ... .. . . . . .._ _ _ _... ..
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Figure 5.1

@ELT,IL A.SUPTIM

• SUPTI14: FORTRAN CALLABLE SUBROUTINE TO GET CURRENT CPU
* AND I/O SUP TIMES FROM THE EXEC.

NORM BARTEK 23-JUL-80

TO USE THIS ROUTINE, MERELY CALL IT WITH TWO SINGLE
PRECISION INTEGERS WHICH WILL RETURN THE CURRENT

• CPU AND I/O TIMES RESPECTIVELY.

CALL SUPTIM(ICPU,IO)

* THE VALUES RETURNED WILL BE IN MICROSECONDS WITH
* A 200 MICROSECOND BASIC RESOLUTION.

$(1) AXR$ . REGISTER EQUATES
SUPTIM* LA AO,(7,SUPBUF) . SET UP BUF ADDR & LENGTH

SA AO,TBL+I . SET UP ACW FOR ER CALL
LA AO,(7,0,0) . SET UP FUNCTION FIELD ALSO
SA AO,TBL
LA AO,(2,TBL) * SET UP AO FOR ER CALL
ER INFO$ . PERFORM SUP TABLE FETCH
LA AOSUPBUF+3 . GET CPU SUP FROM TABLE
MSI,XU AO,200 . ... TIMES 200 MICROSECONDS
SA AO,*0,Xll . PUT IT WHERE USER CAN ACCESS IT
LA AOSUPBUF+4 • GET I/O SUP FROM TABLE
MSIXU AO,200
SA AO,*l,Xll • STORE I/O RESULk
J 3,XlI . RETURN TO USER ROUTINE

TBL RES 2 . ER CALL TABLE
SUPBUF RES 8 • RETURNED INFO TABLE

END

@EOF
@EJECT



26

Figure 5.1 Cont'd

@ELT,IL A.TIMER
C
C
C TIMER/FTN: CPU & I/O MEASUREMENT TEST PROGRAM.
C (PART 1 OF 2 PARTS)
C
C AUTHOR: NORMAN R. BARTEK JULY, 1980
C
c SYSTEM PERFORMANCE EVALUATION PROJECT

C
c

C THIS PROGRAM WILL PRINT OUT THE CURRENT AMOUNT OF CPU & I/O
C USAGE FOR THE CURRENTLY ACTIVE RUN.
C
C THE TIMES WHICH ARE PRINTED ARE IN MICROSECONDS, WITH A
C BASIC RESOLUTION OF 200 USEC. THE TIMES RETURNED ARE THOSE
C FROM THE *SUPTIM' SUBROUTINE WHICH ACCESSES THE PCT VIA
C AN ER TO INFO$. FOR FURTHER INFORMATION, REFER TO THE
C 'SUPTIM' SUBROUTINE.
CI
* TO USE, JUST EXECUTE WITHOUT ANY PARAMETERS...
C
C

IMPLICIT INTEGER (A-Z)

C PRINT OUT INITIAL READINGS...
C

WRITE(6,20)
WRITE(6,30)

C

C NOW PERFORM THE INFO$ EXECUTIVE REQUEST VIA THE 'SUPTIM' SUBROUTINE...
C

CALL SUPTIM(CPUTIM,IOTIME)
C
C THE TIMES RETURNED ARE IN MICROSECONDS ALREADY, SO PRINT THEM OUT...
C

WRITE(6,40)CPUTIM,IOTIME
CALL EXIT

10 FORMAT(IHI)
20 FORMAT(lX,'*** SYSTEM PERFORMANCE EVALUATION PROJECT ***',

I' TIMER ROUTINE ***',/)
30 FORMAT(lX,'CURRENT TIMES FOR ACTIVE RUN:',/)
40 FORMAT(IX,'CPU TIME: ',I10,8X,'I/O TIME: ',I10,//)

END
@EOF
@ASM,S A.SUPTIM,A.SUPTIM
@FOR,S A.TIMER,A.TIMER
@MAP ,A.TIMER
IN A.TIMER
IN A.SUPTIM

@EOF
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heads are only 4.6 and 2.2 percent. Despite this small

amount, we made an effort to subtract the overhead at the

point where it occurs (where the measurements are taken).

Since I/O may overlap CPU activity, a possible problem occurs

because the point of measurement is where initiation of I/O

occurs, not its completion. We found however, that the major

portion of I/O cost occurs at initiation time. There is only

a fixed amount of I/O time which is added at I/O termination.

This quantity depends on the type of device. For a drum, it

is 1.6 msecs. The I/O initiation time depends on the block-

size and the type of device. In one of our runs, it came

out to be 21.2 msecs. This termination charge is about 7%

of the total I/O charge. An approximation algorithm is used

which also take this termination charge into account. A

set of test runs of uninstrumented and instrumented versions

of SAPIV showed that estimated and actual overhead are within

1% of each other.
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VI. CHARGING ALGORITHMS

The performance indices which are most important to

predict are those which iluen-_ & *he charges most. On the

UNIVAC there are rnore charge - relevant resources than on the

PRIME. Appendix I shows current rates for the PRIME 400

and UNIVAC 1100/81 at IIT. The rmst import-ant differences

between the charges are how memory requirements and paging or

other system activities on behalf of the user are charged,

UNIVAC bills for file storage and core blocks used. This can

constitute a major expense for programs with large primary

and/or secondary memory requirements. If the programs are

overlaid to avoid these large core requirements, then I/O

time and its charges can increase significantly, if more I/O

needs to be done to make communication between the overlays

possible. The charging algorithm shows that the user is

charged for the amount of memory used, multiplied by the time

it is actively used. This implies that programs which are

very heavily I/O bound and pay for memory usage during times

of I/O activity may add a significant amount of cost to their

charges. PRIME does not charge for memory directly. There

are very significant indirect 'memory charges' however. One

of them is that the user is charged for any paging on his

behalf. If a program would require a large amount of memory

on the UNIVAC and does not exhibit sufficient locality pro-

perties (i.e., only a small portion of the program and data

area needs to be in core at any point in time), the number of
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page faults and thus the numbe;: of page swaps performed

will be large and contribute substantially to both I/O and

CPU charges. There is no such charge on the UNIVAC. A

second factor can make itself felt drastically. It is the

seek time for locating records on disk. If a disk is highly

utilized and has become fragmented and nearly full, a higher

seek time will result than if it were less full. This seek

time is part of the time which is charged to the user as

I/O time. We can expect to run into such an unfavorable

situation on a machine where no file charges exist, because

there is no incentive to discard old files. Not only do

both paging and disk seek time contribute to charges on the

PRIME, but in both cases the situation can be further aggra-

vated when there is a lot of contention among users. If there

is a long disk wait time because of an overload situation, a

program may have to wait considerably for input to be brought

into memory. Although the wait time is not charged, the wait-

ing programs' pages in core become old, because they are not

referenced as often as those of other active programs. In

the PRIME environment, this means that pages and a considerable

number of them, if contention is high, are swapped out while a

program is waiting for data to be brought into core. This

means that more paging needs to be done on behalf of that

program to bring the pages back into memory and that further

increases CPU and I/O time charged. This explains why

charges for the PRIME can vary so widely, even though the same
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program with the same input data is run, whereas the charges

on the UNIVAC are constant. This leaves an unpredictability

factor for the PRIME which may well go into orders of magnitude.

If a potential buyer knows the expected user behavior (work-

load, contention), he can make an appropriate decision. One

should keep in mind however, that workloads change over time

(they VERY seldom decrease) and that a sensitivity analysis

is necessary to assure that adequate performance at acceptable

cost is possible for most of the projected usages of the systtem.

For all these reasons cost/performance comparisons for the two

machines cannot and should not be made on an absolute basis,

but rather one should compare ranges of cost and performance

of PRIME and UNIVAC.
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VII COST-EFFECTIVENESS MEASURES

In trying to estimate the cost-effectiveness of a

computer system for a given set of tasks, several different

measures can be used. In the present study various struc-

tural analysis programs were run on the two computer systems

and the following five measures of the system were recorded

analyzed for all of the examples.

a) Correctness of Result

This is the first and primary performance index, since

a program which terminates abnormally or gives incorrect

results is useless.

The correctness of the result may depend on various

system and user software related factors. For numerical

software such as structural analysis programs some of the

factors are:

*Precision of the Machine

This depends on word-length and on machine arithmetic.

Precision problems are likely to occur when a program is

transported from a machine with high precision to one with

lower precision. Word length may influence the result, but

need not, if system arithmetic compensates for the smaller

word size.

*Errors in Software

Most computer programs of significant size contain

errors. The problem is aggravated when a program is con-

verted from one machine to another because of imperfect

conversion. Mini-computers suffer doubly on that account.
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First, being new, there axe relatively few programs that

have been originally developed on any particular mini.

Second, because minicomputers are rarely attended by a

large support staff the conversion of programs to the

minicoputer is often not done thoroughly and professionally.

b) Resource Consumption

This is mostly chargeable resource consumption.

However, since charging algorithms vary, some data on

resource consumption were collected even though they were

not cost relevant for the machines which were used. Re-

source consumption may vary considerably on two different

machines for the following reasons:

*The two programs although functionally equivalent are

different.

The utilities they use are different and may have

different resource requirements, e.g. I/O routines ay use

dissimilar buffer sizes (impact on memory requirements and

number of I/O operations, devices and access techniques).

The dynamic memory space used could be much larger on a

virtual memory machine than on a real memory machine. This

usually results in a trade-off of data vs. paging (which

may not be charged). Each implementation will likely use a

different size for dynamic memory space. The support soft-

ware varies, e.g. one function minimization routine may use

a more sophisticated method than another (this depends on

the availability of certain support software), and thus need

different amounts of resources. In extreme cases this may



33

change a CPU bound job into an I/O bound one or vice versa.

*Computational accuracy.

The word-size on a machine may require a program to

be run in double precision which can run in single precision

on another machine.

*Operating system and architectural differences.

These will usually account for most of the dissimilari-

ties in resource consumption. On the architectural side

there are the questions of hardware components and their

speeds or size, the configuration of the system. A system

with faster components will often use a smaller amount of

CPU and I/O time than a slower one. But that does not

necessarily mean that runs are much cheaper. Also a

comparison of hardware speeds is not always a good indi-

cator of comparative resource consumption on two machines.

Much depends on the operating system which coordinates the

operation of all the components. An operating system

introduces overhead, which reduces the effective speed of a

system. The amount of overhead will influence the overall

quality of a system. An important aspect is also how

resources and competition for them are managed. Does

resource contention have an impact on resource consumption?

If so, how much? Is resource consumption predictable? Is

it possible to request a particular device which is faster

than others of a similar kind? Naturally this will have

implications on resource consumption. Some systems put

files which are over a system defined size automatically

on slower I/O devices - this will increase the resource
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consumption for I/O and the time main memory is allocated

to a program, because the time to transfer infonation from ;

and to main memory is now longer. The instruction set of

each machine is important, does it have floating point

arithmetic?. Compilers and their ability to optimize can

make a large difference.

Another factor is the impact from other jobs. Clearly,

in a multiprogrammed environment, this will affect perfor-

mance. It can affect resource consumption as well. As an

example take a paged system with a global page replacement

strategy such as global LRU (Least Recently Used). Every

time a page is needed and not in memory, the least recently

used page (or pages, if more than one page is replaced each

time) is swapped out. This means that it has to be brought

back in should a program request it later on - thus increas-

ing the program's CPU and I/O consumption. The more 'passive'

or I/O bound a program is, the more its resource consumption

will increase with contention in the system. If the user

is charged for paging, a difficulty arises for these systems,

because the resource consumption of programs is not easily

predictable any more. Accurate prediction would require

exact knowledge of the behaviour of all other programs run on

the system at the same time. This is impracticable. What is

important to know for system comparison, however, is what

range of resource consumption can be expected for light,

medium, or heavy system loads. Although this will not

accurately predict actual resource consumption in a particular
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case, it will help to compare two systems and to decide

which is ore favorable, based on its expected and worst

case resource consumption.

c) Charges

This includes both job-step and run charges. In

many cases it is important to know which part of the program

contributes the highest portion to the total charge, or

which resource proved to be the most expensive for a given run.

Charges are related to resource consumption, but it depends

on the particular charging algorithm which resource is the

most expensive. Sometimes it is possible to shift to a

less expensive resource and save money, at other times it

may be more profitable to use a more expensive but considerably

faster device for a shorter time. It makes little sense to

compare only resource consumption of a program on a machine

or only charging algorithms of a machine. What seems expen-

sive in the charging algorithm actually may constitute only a

minor part of the charges because only a small amount of the

resource is needed. All that has been said previously influ-

ences charges and needs to be taken into account. If resource

consumption is not predictable and only a range can be given,

the resulting impact on the charges has to be analyzed. How

much do the variations of resource consumption influence the

charges? Again this depends on the actual charging algorithm

and may have only marginal influence on the charges, e.g.

if a highly varying I/O time is not charged very much com-

pared to a relatively stable CPU time, the resulting
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variations of the charges may well be below 10%. For cost

comparisons this can be a very important result.

d) Performance

Performance indicates how well a system works. It

shows the effectiveness with which the resources of the host

computer system are utilized towards meeting the objectives

of the user. It can be seen as the technical equivalent of

the economical notion of value. In order to do a job,

resources are required. The performance of a system then is

determined by the following factors:

*how much of each resource is required (resource

consumption)

*in which order are the resources expended

*how does this affect the user oriented measures of

performance such as response time and turnaround time

or system performance measures such as utilization or

throughput?

In other words: how well does a computer system do its job?

Performance may depend on how much a user is willing to pay,

e.g. when different priorities for jobs exist or when

different rates are in effect during business hours and at

nights or weekends. Performance as the user sees it

(turnaround time for batch systems or response time for inter-

active system) consists of the time spent towards progress

of the program and any waiting time during execution. The

former is usually charged to the user, including system

overhead when it spends time on the user's behalf, whereas
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the latter may or may not be. Waiting time can be of two

kinds: internal or external.

*Internal waiting time -

this is all the waiting time the program experiences due

to contention on the part of other programs which cause waits

for CPU, I/O channels, memory etc. It also includes the time

a program has to wait for the completion of a read operation

from secondary storage or the time to handle a page fault

on behalf of a program. Finally, if a program has a specified

starting time or if the system is so crowded that the

program cannot be executed promptly, another sometimes very

considerable wait time may result. This may also happen,

if a very low priority was specified and most other jobs

are allowed to bypass the program.

*external waiting time

this includes mannual special set-ups (e.g. mounting a

tape) and service tasks such as changing paper for a printer,

switching a printer off periodically to remove printout,

refilling paper, putting printout into mail boxes, and

other related tasks which occur periodicalLy and can cause

delays. In this case performance may be related to staffing

and thus to human factors, and sometimes considerably more

time is spent on these than on the actual computing. Finally,

uptime/downtime for the system needs to be considered. This

really is most important, since the fastest computation

time does not help much, if the system tends to go down for

prolonged periods of time frequently and no work at all is

possible.
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VIII. PRELIMINARY RESULTS

The combination of problezs and programs that is the

basis of the cost effectiveness evaluation is described in

Section II. The present section contains the computation

and analysis of the preliminary results obtained so far.

Each one of the three structural problems - the beam, the

plate, and the stiffened cylinder , was run for several

choices of mesh refinements. The main reason for doing this

was to determine the effects of problem size on the relative

performance on the two types of computers. The riaximum

problem size was limited by budgetary considerations so

that no problems were run that would cost more than $100.

This permitted the measurements to be taken only for small

and medium size problems. However, in each case curves

of resource consumption as a function of problem size were

generated. These curves often proved to be good enough for

extrapolation to larger problem sizes. At the present time

only the beam runs are completed, so only these results are

reported.

Beam Problem

A cantilever beam was modeled by plane beam elements

(E24 elements in SPAR) and the vibration modes and frequencies

were calculated using the SPAR program. The number of nodes

was varied from 5 to 600 and with three degrees of freedom

per node ; the maximum number of degrees of freedom is 1800.

However, even for 600 nodes the problem is not costly to run

because of the very small band width associated with a one

dimensional problem.
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For small problem sizes (up to 25) the problem can be

run in single precision. For larger number of nodes the

limited double precision option in SPAR (double precision

used only for assembling the stiffness matrix) must be

employed.

a) Correctness

This simple problem exposed a bug in the Prime version

of SPAR. The program could not calculate more than two

vibration modes and frequencies. The problem occurred in

the subspace iteration method and seemed to indicate that

the initial vectors generated by a random number routine

were not linearly independent. On the UNIVAC there was no

problem to get the required three lowest frequencies.

b) Resource Consumption

(i) UNIVAC

Resource consumption was measured by run and by processor.

The following resources were measured as a function of the

problem size (i.e. no. of nodes) for each run,

*1/0 time

*CPU + ERC (executive request call) time
The total resource consumption is shown in Figures 8.1 and

8.2 and individual processor results in Figures 8.2 to 8.20.

Linear and quadratic polynomials were used to curve-fit f

the results, Figs. 8.1 and 8.2 both show only slightly quad-

ratic tendencies. Likewise, most of the processors show

resource curves which are linear or almost linear. Only
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E,M and EIG have slight quadratic tendencies. TOPO shows

stepwide behavior. Resource consumption on the UNIVAC is

predictable and not dependent on other workload or its

contention for system resources.

For a function of the form

2CPUu = f(x) = c 0+ c x + c2 x (x is no. of nodes)

the coefficients are given in Table 8.1. Analogous to the

CPU-function, an I/O time function can be defined depending

on the problem size:

IOU = g(x) = d + d1 x + d2 x2  (x is no. of nodes)

The coefficients are given in Table 8.2. TOPO shows again

step function behaviour, E,EKS, and INV are slightly quad-

ratic. EIG's I/O needs are between a linear and a stepwise

function of the problem size. All other processors resource

needs are linear functions of the problem size. Both CPU

and I/O times are reproducible on the UNIVAC between

different runs. This is not at all true for the PRIME.

(ii) PRIME

On the UNIVAC the relationship between problem size

and resources used is very close to linear. As opposed to

the UNIVAC where CPU and I/O times are reproducible, on the

PRIME only CPU time is fairly stable regardless of the number

of other users and their workload. I/O time varies greatly

with system load, as much as +350% was observed above single
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Co C1 C2

TAB 428.923 2.57652

ELD 30.6118 3. 34269

TOPO 306.212 1.35297

E 62.7211 8.84745E-01 7.24682 E-05

EKS 30.7085 1.74234

M 27.3906 3.86747 2.44555 E-05

K 34.1455 1.59195

INV 32.2601 9.89308E-01

EIG 2078.19 2.10312E-01 8.07338E-03

Extra 1864.0

Entire Run 4925.84 38.109 7.01927 E-03

I.

Table 8.1: Curve Fitting Coefficients for CPU Consumption

for Beam Problem on SPAR (UNIVAC)
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dO0 d I  d 2

TAB 595.215 1.39369

ELD 441.288 1.93669

T0PO 431.941 2.12298

E 594.906 1.44295 1.648 E-04

EKS 401.836 8.25819 E-01 4.9918 E-04

M 377.765 1.80876E+01

K 370.656 1 81532E+01

INV 403.323 8.61281E-01 2.46417E-04

EIG 2202.05 2.50931E+01

Extra 8460.

Entire Run 15.745 4.08766E-01 5.07216E-04

Table 8.2: Curve Fitting Coefficients for I/O Consumption

for Beam Problem on SPAR (UNIVAC)



63

user environment. The CPU times are slightly affected by

large variations in I/O time on the PRIME. This is because

setting up, initiating and terminating I/O operations is

regarded as CPU time. On PRIME the runs were I/O bound.

As before, resource consunDtion was measured by run and

by processor, this time for different workload conditions.

The number of users logged on the PRIME varied between two

and twenty-five. The curve fitting results for CPU time

and disk time of the entire run as a function of the number

of nodes in the Beam are given in Figures 8.21 and 8.22.

Selected processor results are shown in Figures 8.23 to 8.30.

Analogous to the UNIVAC results we fitted curves of the

form

2

CPUp = f(x) = c0 + c1 x + c2 x (x is no. of nodes)

for the CPU time, and

IOp =g(x) d= d x + d2 x2  (x is no. of nodes)

for the I/O time. Tables 8.3, 8.4 show the curve fitting

results for CPU and I/O time as a function of the

number of nodes for eech processor. As on the UNIVAC

most processors exhibit linear behavior for their resource

consumption. For CPU time only INV and EIG have quadratic

tendencies whereas for the I/O time K also is slightly

quadratic.
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TAB 2.82175 2.60476E-02

ELD 1.22498 2.37648E-02

TON0 1.14709 1.2603E-02

E 1.12291 1.9357E-02

EKS 1.06172 3.54174E-02

M .96290 5.97628E-02

K .945755 2.89618E-02

INV .987217 1.09337E-02 3.32624E-06

EIG 3.63656 4.30206E-02 7.12645E-05

Entire Runi 13.7082 2.61343E-01 6.63862E-05

Table 8.3: Curve Fitting Coeffic~ents for CPU Consumption

for Beam Problem on PRIME
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d 0  d 2

TAB 2.65327 1. 44986E-03

ELD 1.29594 2.50116E-03

T0P0 1.21505 8.56351E-03

E 1.219 2.6913E-02

EKS 2.20327 1.53554E-02

M .411161 3.0679E-02

K .77813 2.36577E-02 1.14976E-05

INV 1.4734 6.3223E-03 2.40503E-05

EIG 10.52890 9.77343E-03 7.14104E-05

*TTAL* 12.8567 1.87896E-01 1.64497E-05

Table 8.4: Curve Fitting Coefficients for Disk Time Consumption
for Beam Problem on PRIME
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Additionally the CPU and I/O functions for the user

environment were analysed for all processors. The disk times

for EIG, INV,K,M, and E are slighlty quadratic, and so is

the CPU time for EIG. The CPU time for TAB is linear,

but the disk time for TAB is very erratic and neither linear

nor quadratic as a function of the number of nodes in the

beam. All other CPU and I/O plots were linear.

c) Charges

From the results on resource consumption, it can be

expected that the charges will also be close to linear as a

function of the problem size, i.e. cost is directly related to

the number of nodes.

(i) UNIVAC

Figure 8.31 - 8.33 show only slightly quadratic behaviour

for the total run cost (Fig. 8.31), the core cost (Fig. 8.32)

and the CPU cost (Fig. 8.33). When the resource consumption

was contrasted to the charges, some inconsistencies

were discovered which are not explained by the charging

algorithm.

*KCB (i.e. Kilo Core Block) time charges are deferred

(up to 50% of the total) until the last job step.

There is no explanation for this. Since this makes

an analysis of memory charges by job step and hence by

processor inaccurate, no such analysis was performed.

*ERC (Executive Request Call) time, which is a part of

the CPU time, and the charges for ERC time do not

match. It was found that less ERC time is charged than
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consumed, constituting a credit of approximately 3.12

seconds for each job.

*When the core blocks needed and the core blocks charged

were compared, it appeared that normally 4 to 5 extra

core blocks are charged, above and beyond the actual

program size. These blocks are probably used for I/O

buffers and task control blocks.

*1/0 charges are based on internal, device-dependent

operating system constants for transfer rate, seek time,

etc. The use of faster devices greatly reduces I/O

charges, because the user is charged for the time it

takes to transfer data to and from a device regardless

of the type. This makes the use of the fastest

possible devices highly desirable. To avoid an overload

for them, the system imposes size restrictions on the

files stored on fast devices and automatically assign

slower devices for big files, thus penalizing the use

of large files.

(ii) PRIME

Due to the variation in resource consumption, especially

as far as disk time is concerned, the charges also vary

The curve fitting in Figure 8.34 shows that the average

total cost as a function of the number of nodes in the beam

is close to linear as it was for the UNIVAC. Since the

charging algorithm for the PRIME is so simple and relates

CPU and I/O usage directly to cost, it was not necessary
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to do a separate fitting for CPU and disk time. There are

several charge related items:

*executing the first program in a job (in our case the

first SPAR processor) incurs the overhead of build-

ing segment tables and allocating backing store for

memory management.

*writing into an existing file will cause the current

user job to be charged for releasing unused space

in the file when the file is closed.

Tables 8.5 and 8.6 relate the average PRIME and UNIVAC

costs for the beam problem to the diffeent charging rates

depending on the time of day when the job is run. These

charges are based on CPU and I/O time, not on connect time

since we assume that these problems are run as phantoms.

Table 8.5: Cost Variations on PRIME based on Time of
Day

time/# of 9 AM-5PM 5PM-10PM
nodes Weekdays Weekdays Other

(100%) (75%) (50%)

5 .65 .49 .32
25 .72 .54 .36
60 1.18 .89 .59
90 1.20 .90 .60

125 1.70 1.28 .85
280 3.16 2.37 1.58
450 4.98 3.73 2.49
600 6.45 4.84 3.22

The UNIVAC job costs are consistently much higher, even

with "off hour discounts", when charges are compared:
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Table 8.6: Cost Variations on UNIVAC Based on Time of Day

# Nodes Business Hrs. Weekends/Nights

100% 75%

5 $1.83 $1.37
25 2.07 1.55
60 2.66 2.00
90 3.16 2.37

125 4.07 3.05
280 6.90 5.17
450 9.53 7.15
600 13.80 10.35

They are approximately twice as high as for the PRIME when

run in batch mode, up to four times that of the PRIME if

they were run interactively (on the UNIVAC there is a 100%

surcharge for interactive use)

If it is assumed, however, that a PRIME user does not

run the problems as phantoms, but rather is sitting at the

terminal, waiting for output, then connect time charges occur

in proportion to the response time of the system. In Table

8.7 we added $1.00 per hour connect time for a 300 Bd.

connection and $2.00 for a 1200 Bd connection.

Table 8.7: Average PRIME Cost

Processing Cost Connect Cost Total

300 Bd 1200Bd 300 Bd 1200 Bd

5 .65 .02 .04 .67 .69
25 .72 .02 .04 .74 .76
60 1.18 .04 .09 1.22 1.27
90 1.20 .03 .07 1.23 1.27

125 1.70 .10 .20 1.80 1.90
280 3.16 .09 .19 3.25 3.35
450 4.98 .18 .37 5.16 5.44
600 6.45 .23 .46 6.68 6.91
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Another charging algoritlun (NASA, Langley Research

Center, PRIME) which does not charge for I/O but only for

CPU and connect time bills $15.00/connect hour and $30.00/

CPU hour. The average execution, connect and total charges

are given in Table 8.8

Table 8.8: Estimated Cost of Running Beam Problems on NASA
Langley Research Center PRIME 400.

Number
of Processing Connect* Total
Nodes Cost Charges

5 .12 .26 $ .38
25 .16 .26 .42
60 .26 .66 .92
90 .31 .49 .80
125 .40 1.51 1.91
280 .79 1.42 2.21
450 1.18 2.77 1.95
600 1.64 3.44 $ 5.08

Incurred only if job is run interactively

Compared to the average PRIME cost in the earlier table, it

can be seen, that for short connect times the NASA charging

algorithm produces much cheaper runs, whereas the large

problems incur more equal charges. If the IIT PRIME runs are

done during nights or weekends, they may even be considerably

cheaper. In general, it can be said that a charging algorithm

which mainly c- rges for predictable resources (as we have

seen CPU demands to be) is to be preferred, since the

charges also will be much more stable. Both the IIT and the

NASA PRIME installation charge for "unstable" resources, i.e.
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I/O time and connect time respectively and in both cases

this part of the charges may constitute the majority of

the expenses.

d) Performance

On the UNIVAC, the turnaround times for the different

beam problems range between just below 2 mins. to 6-1/2 mins.

for the double precision runs. The system reaction time is

between half a minute and two minutes. The exact figures

are given in Table 8.9 together with comparisons with

Prime response times for the same problems. Not included

in these figures are possible delays due to human factors,

such as putting a run into a mailbox, etc.

On the PRIME, the average response time (wall times)

are very good for the smaller problems (up to 90 nodes)

Table 8.9: Comparison of Response Time for Beam Problem

Turnaround PRIME UNIVAC SYSTEM REACTION

Average Response Turnaround TIME
Time (min)* Time(min)

5 1:03 2:27 0:54

25 1:03 1:53 0:57

60 2:37 5:05 0:59

90 1:57 2:16 0:25

125 6:02 3:25 1:01

280 5:41 6:34 0:43

450 11:04 3:01 0:15

600 13:47 5:44 2:01

,

Time from job submission to its completion

tTime between beginning of job execution and job completion

ttTime between job submission and beginning of execution
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But for the two biggest problems the turnaround time on the

UNIVAC becomes about one third that of the average response

time on the PRIME. However, the response time for the

PRIME problems are subject to a wide variation as shown in

Table 8.10. One rather puzzling feature is that the response

time can be higher when there are only two users on the

system (in our case, the Beam run and a person editing the

input file for the next Beam run) than when the system is

supporting more than 20 users. An explanation for this

behavior are so-called backstop processes which are acti-

vated when there is little other work to do.

Table 8.10 shows that the PRIME is much slower than the

UNIVAC for a majority of the runs, but it also shows that

it worked more efficiently from the user's point of view,

when there were between ten and fifteen users active.
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Table 8.10: Variations in Response Time with Number of Users
on the PRIME for Beam Problem

Number of Response Average
Nodes Users Time Response

(Sec) Time (Sec)

5 2 85.08

13 33.27 62.93

24 70.44

25 92 91.54

4 59.50 63.15

13 42.25

24 59.31

60 2 135.33

4 90.18 157.38

13 65.25

25 338.78

90 2 165.46

3 108.98 117.35

13 66.52

24 128.45

125 2 210.05

3 146.53 361.62

13 124.50

24 965.42

280 2 465.88

3 336.58 341.25

15 261.26

25 301.28

450 2 715.41

4 629.28 664.09

12 489.30

25 822.37

600 2 1029.83
4 623.33 826.58
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IX. CONCLUDING REMARKS

A study on the cost effectiveness of mini-computers

vs. main-frames for structural analysis is being conducted at

the Illinois Institute of Technology. The study compares

the performance of several finite element programs on the

IIT PRIME 400 minicomputer and the United Computing Ssstems

UNIVAC 1100/81 main frame. Preliminary results for a

planar beam problem with one program were obtained with

number of nodes ranging from 5 to 600. These results indi-

cate that based on run cost consideration the PRIME 400 mini-

computer is much more attractive than the UNIVAC main frame.

Problems of reliability of software and hardware and the

quality of the service tend to balance the picture because

they are more favorable to the main frame.
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APPENDIX I

User Charging Algorithms for The PRIME 400

and The UNIVAC 1100/81.
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PRIME 400 and 550 RATES

1. The cost for processing is $0.02 per CPU-second plus
$1.00 per connect hour for 300 Bd. connection or $2.00
per connect hour for 1200 Bd. connection.

The following price differential factor table applies to
the above CPU rate.

Priority*
High Reg. Low

9 AM - 5 PM, Weekdays 1.5 1.0 .5
5 PM - 10 PM 1.25 .75 .5

10 PM - 9 PM 1.0 .5 .25
5 PM - (FRI) - 9 AM (MON) 1.0 .5 .25

* Users may change their priorty by request at the
Academic Computing Center.

2. Permanent file storage presently not billed but will be
in the near future.

3. Printing cost $0.015 per page.

4. Magnetic tapes are 5¢ per day rental and 5o per day storage.

5. Special services such as keypunching and program develop-
ment will be billed at negotiated rates.

6. File access and RUN cost limits are inioperative on the
PRIMEs. %. •

Univac 1100/80 Service Control Defaults

The Service Controls sections marked with "0' shou. be
filled in by the requester. If the default values indicated
below are inappropriate, then please indicate your require-
ment in the SPECIAL CONTROLS OR COMMENTS SECTION.

250 = approx 1 CPU-SEC, 10 pages, no cards
$1 = approx 5 CPU-SEC, 49 pages, 100 cards
$5 = approx 25 CPU-SEC, 99 pages, 500 cards
$100 = approx 10 min, 1000 pages, 5000 cards
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UNIVAC 1100/80 RATES AS SET BY UCS

The Cost of computer services provided shall be determined by the
following algorithm:

1. UNIVAC 1100/80 PROCESS COST - .18T1 + .0011A(TI + T2 ), dollars where:
A is the number of 512-word blocks of core being used; T I is the time
in seconds in active use under run control spent by the central pro-
cessor processing either the user's code (i.e. a program) or other
code directly serving the user; and T2 is the time in seconds in active
use under run control spent by the channel control unit accessing or
transferring data at the user's request or on behalf of the operating
system.

Process cost is computed on the task basis; i.e., a run consisting of
a compilation, a collection and an execution would consist of three
tasks, each task using different A values and T values.

A surcharge of 25% will be applied to all batch runs which request
preemptive scheduling.

A surcharge of 100% will be applied to all Demand interactive runs
initiated.

A 25% discount will be applied to all Demand and batch computer runs
initiated between the hours of 6:00 p.m. through 8:00 a.m. Monday
through Friday as well as all operating hours Saturdays and Sundays.

A 40% discount will be applied to all deferred priority runs.

Proprietary Application Software is a separately priced service; the
cost of which is determined by the supplier of such software.

2. PERMANENT FILE STORAGE COST = 0.0005 x N x T, dollars where;
N is the number of tracks used (1 track = 1,792 words); T is the time
in hours.

3. CARD READING COST = 0.001 x N, dollars where:
N is the number of cards read at the central site.

4. CARD PUNCHING COST = 0.003 x N, dollars where:
N is the number of cards punched at the central site.

5. PRINTING COST = 0.0005 x L + 0.010 x P, dollars where:
L is the number of lines printed at the cnetral site;
P is the number of pages printed at the central site;
Special Forms change = $1.00 per occurrence.
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6. MAGNETIC TAPE RENTAL AND STORAGE = $1.00 per reel charge for tape
inventory set-up, plus 5C per day storage charge, plus a 5c per day
rental charge for UCS-owned tapes.

7. MAGNETIC TAPE = Mounting cost of 50c per tape mounted plus $9.80 per
hour tor each magnetic tape unit utilized.

8. TERMINAL CONNECT TIME COST (synchronous or asynchronous) = $12.00 x T,
dollars where:
T is the time in hours the terminal is actually connected to the 1100/80
system through a packet switching network or WATS service. Local access
will be at $10.00/hr for 1200 bps and 6.25/hr for 300/110 bps.

9. PRIVATE PORT = Waived for first Prime Port connection and $250.00
per month for additional ports.

10. MINIMUM CHARGES = $.25 minimum run charge for each execution.

11. PLOTTER COST = $20.00 per hour plus supplies used.

12. BLOCK TIME AND OTHER SPECIAL RATES - The cost for the system to be up
during non scheduled hours is a minimum of $100.00 an hour with a four
hour minimum guarantee. The Block Time Rates are $750.00/hour for the
first two hours and $450.00/hour thereafter, with a two hour minimum
guarantee. Scheduling for services must be made in advance with the
Facility Manager.

13. SPECIAL SERVICES = Other services furnished by UCS, such as consulting,
keypunchinmg, file restoration, manuals, postage, shipping charges,
computer programs, tapes, binders, etc., will be billed to the
consumer at the then current time and materials rate structure.

i.

I.
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