EFFECT OF DIFFERENT INITIAL CONDITIONS ON THE EVOLUTION OF THE ETC(U)
**EFFECT OF DIFFERENT INITIAL CONDITIONS ON THE EVOLUTION OF THE E X B GRADIENT DRIFT INSTABILITY IN IONOSPHERIC PLASMA CLOUDS**

**AUTHOR(s)**
M.J. Keskinen and S.L. Ossakow

**PERFORMING ORGANIZATION NAME AND ADDRESS**
Naval Research Laboratory
Washington, D.C. 20375

**DEFENSE NUCLEAR AGENCY NAME AND ADDRESS**
Defense Nuclear Agency
Washington, D.C. 20305

**ABSTRACT**
The effects of different initial conditions on the evolution of the E X B gradient drift instability in large F region ionospheric plasma clouds have been studied by means of two dimensional numerical simulations. Both small and large amplitude monochromatic (one wave) and random (many waves) initial perturbations have been used to seed initially slablike plasma clouds with different magnetic field line integrated

---

**KEY WORDS**
- Gradient drift instability
- Nonlinear numerical simulations
- Ionospheric plasma clouds
- Different initial conditions

**ABSTRACT (Continues)**
(Continues)
Pedersen conductivity gradient scale lengths $L = 4, 6, 10$ km perpendicular to the magnetic field. Independent of the initial conditions used, all of the models studied become similar in the nonlinear late time regime both in real $(x, y)$ space and in Fourier $(k_x, k_y)$ space where $x$ and $y$ define the plane perpendicular to the magnetic field. In the nonlinear regime, evidence is presented for an outer scale turnover in the one-dimensional plasma cloud conductivity spatial power spectra computed in a direction $(y)$ perpendicular to the $E \times B$ drift $(x)$ of the plasma cloud. In addition, under the different initial conditions used, the spatial power spectra in the nonlinear regime are shown to be anisotropic in the plane perpendicular to the magnetic field with most of the spectral power concentrated along and near the linearly most unstable $y$-direction. Furthermore, independent of the initial conditions studied, the one-dimensional $x$ power spectra $\propto k_x^{-n_x}$ with $n_x \approx 2$ for $2\pi/k_x$ between 1 and 80 km while the $y$ power spectra $\propto k_y^{-n_y}$ with $n_y \approx 2 - 3$ for $2\pi/k_y$ between 1 and 10 km. These quasi-final power law power spectrum states are achieved faster for the random initial perturbation than for the monochromatic initial perturbation, and similarly for the large amplitude case within each set.
## CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MODEL EQUATIONS</td>
<td>2</td>
</tr>
<tr>
<td>NUMERICAL SIMULATIONS</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS</td>
<td>7</td>
</tr>
<tr>
<td>SUMMARY OF RESULTS</td>
<td>12</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>

### Accession For

| NTIS GRA&I | ![X](x) |
| DTIC TAB   |       |
| Unannounced|       |
| Justification|     |

### Distribution/

<table>
<thead>
<tr>
<th>Availability Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
</tr>
<tr>
<td>Avail and/or Special</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
</table>

iii
EFFECT OF DIFFERENT INITIAL CONDITIONS ON THE
EVOLUTION OF THE $E \times B$ GRADIENT DRIFT INSTABILITY IN
IONOSPHERIC PLASMA CLOUDS

1. INTRODUCTION

Experimental studies of artificially injected plasma clouds into the
ionosphere [Rosenberg, 1971; Davis et al., 1974; Baker and Ulwick, 1978]
have provided much information concerning not only ambient ionospheric con-
ditions, e.g., electric and magnetic fields, but also the structure and
morphology of evolving plasma clouds themselves by means of, for example,
scintillation and power spectrum studies. The characteristic initial
steepening, elongation, and striation of drifting plasma clouds have been
explained by applying the linear theory of the $E \times B$ gradient drift insta-
Bility, originally developed for laboratory plasmas [Simon, 1963], to plasma
cloud geometries [Haerendel et al., 1967; Linson and Workman, 1970;
Völk and Haerendel, 1971; Perkins et al., 1973]. More recently, Chaturvedi
and Ossakow (1979) have studied the nonlinear stabilization of the long
wavelength $E \times B$ gradient drift instability in ionospheric plasma clouds.

Numerical simulation studies [Zabusky et al., 1973; Lloyd and
Haerendel, 1973; Goldman et al., 1974; Doles et al., 1976; Ossakow
et al., 1975; 1977] of barium plasma clouds with a background ionosphere
have reproduced not only many of the gross observational features of
plasma cloud evolution, but also their spatial power spectra [Scannapieco
et al., 1976], minimum scale size [McDonald et al., 1978; 1980] and
outer scale size or correlation length [Keskinen et al., 1980a]. In
addition numerical simulations of the local $E \times B$ gradient drift insta-
Bility in ionospheric plasma clouds [Keskinen et al., 1980b] have yielded

Manuscript submitted February 3, 1981.
spatial power spectra and saturated wave amplitudes that are consistent with experiment.

However, to date, the effects of different initial conditions, i.e., changing the initial seed perturbations, on the spatial and temporal evolution of ionospheric plasma clouds have not been studied in detail. The goal of the present work is to study the effects of varying the initial conditions on the evolution of large region initially slablike ionospheric plasma clouds both in real (x,y) space and in Fourier (k_x, k_y) space. In Section 2 we present the model equations appropriate for describing large plasma clouds in the F region ionosphere. The results of the numerical solution of these equations under several different sets of initial conditions are given in Sections 3 and 4. A summary and discussion of the principal results of this study are presented in Section 5.

2. MODEL EQUATIONS

For wavelengths much greater than the ion gyroradius (approximately 10 meters for Ba\textsuperscript{+} ions in the twilight F region), the dynamics of the plasma cloud and background ionosphere can be studied in the fluid approximation [Völk and Haerendel, 1971; Perkins et al., 1973, Zabusky et al., 1973; Ossakow et al., 1975]. For large clouds (large magnetic field line integrated Pedersen conductivity compared with that of the background ionosphere), the cloud interaction with the background ionosphere (second level) can be neglected [Haerendel et al., 1967]. Furthermore, due to the very high conductivity along the magnetic field lines (typically \(\sigma_p/\sigma_\parallel\approx10^{-6}\) with \(\sigma_p\) and \(\sigma_\parallel\) the Pedersen and parallel conductivities respectively) the field lines may be regarded as equipotentials and, as a result, a field line integrated (two-dimensional) model is justified [Völk and
By adopting a Cartesian coordinate system \((x,y,z)\) with magnetic field \(B\), ambient electric field \(E_o\), and after transforming to a frame drifting with velocity \(V = \left(\frac{cE_o}{B}\right) N\), the two dimensional model equations for the magnetic field line integrated plasma cloud Pedersen conductivity \(\Sigma(x,y)\) and the self-consistent plasma cloud electrostatic potential \(\Phi(x,y)\) can be written:

\[
\dot{\delta \Sigma} + \frac{C}{\rho} \times \delta \Phi \cdot \nabla = D \nabla^2 \Sigma \quad (1)
\]

\[
\nabla \cdot (\nabla \delta \Phi) = E_o \cdot \nabla \Phi \quad (2)
\]

where \(\nabla \Phi = -E(x,y) + E_o, E(x,y)\) the total electrostatic field, \(c\) is the speed of light, \(\nabla \Phi (\partial/\partial x, \partial/\partial y)\) and \(D\) is the cross field diffusion coefficient [Perkins et al., 1973] given by \(2(\nu_e/\rho_e) (ck_B T/eB)\) with \(T\) the ion and electron temperature \(\nu_e\) the sum of electron collision frequencies with cloud ions and ambient neutrals, \(k_B\) is Boltzmann's constant, and \(\Omega_e\) the electron gyrofrequency. For barium plasma clouds, typical values of \(D\) lie in the range of 0.6 to 6 m\(^2\)/sec [McDonald et al., 1978]. All other symbols retain their conventional meaning. Equation (1) results from the field-line integration (along the z-direction) of the ion continuity equation while equation (2) is derived from current conservation \(\nabla \cdot J = 0\).

By linearizing (1) and (2), i.e., \(E = E_o + \delta \Sigma\), etc., and assuming fluctuations in magnetic field line integrated Pedersen conductivity and cloud potential \(\delta \Sigma, \delta \Phi = \exp \left[\frac{i (k_y y + k_x x) + \gamma_k}{\kappa B}\right]\) with \(\kappa B = 0, k L >> 1\), one finds the usual \(E \times B\) growth rate.
\[
\gamma_k = (cE_0/B)(k_y/k)^2 - Dk^2
\]  
(3)

where \( k^2 = k_x^2 + k_y^2 \), \( L^{-1} = \partial \ln \Sigma_0 / \partial x \). For \( cE_0/B = 100 \) m/sec, \( L = 6 \) km, \( D = 1 \) m\(^2\)/sec, the critical wavelength \( \lambda_c (\gamma_k = 0) = 60 \) m.

Equations (1) and (2) can be put in dimensionless form \([\text{McDonald et al., 1978; 1980}]\) by normalizing \( x = (x, y) \), \( t \), \( \Sigma, \delta \phi \) by \( L_0, L_0/V_0, \Sigma_0, V_0, L_0 E_0 \) respectively, giving

\[
\frac{\partial \Sigma}{\partial t} + \hat{\Sigma} \cdot \nabla \delta \phi = R^{-1} \nabla^2 \Sigma
\]  
(4)

\[
\nabla \cdot (\Sigma \nabla \delta \phi) = \delta \Sigma / \partial y
\]  
(5)

where \( R = V_0 L_0 / D \). As a result, the evolution of a plasma cloud is completely determined by the initial cloud configuration, boundary conditions, and the dimensionless number \( R \).

3. NUMERICAL SIMULATIONS

Equations (1) and (2) were solved numerically on a mesh consisting of 258 grid points in the \( x \) direction (\( E_0 \times B \) direction) and 102 points in the \( y \) direction. With a constant grid spacing of 310 meters, the real space dimensions of the mesh were 80 km along \( x \) and 31 km along \( y \). The magnetic field line integrated Pedersen conductivity \( \Sigma(x, y) \) in (1) was advanced in time using a multi-dimensional flux-corrected variable time step leapfrog-trapezoid scheme \([\text{Zalesak, 1979}]\) which is second order in time and fourth
order in space. At each timestep the self-consistent electrostatic potential $\delta \psi$ due to the ion cloud was determined from (2) using a Chebychev iterative method [Varga, 1962; McDonald, 1980] with a convergence criterion of $10^{-4}$. Periodic boundary conditions were imposed along the $v$ direction with Neumann conditions ($\partial / \partial x = 0$) along the $x$ direction. These boundary conditions result in a realistic representation of plasma inflow-outflow at the boundaries in the $E_o \times B$ direction.

The principal diagnostics used to monitor the evolution of the plasma cloud are the time history of the field line integrated Pedersen conductivity of the ion cloud $\Sigma(x,y,t)$, associated spatial power spectra, and the plasma cloud electrostatic potential $\delta \psi(x,y,t)$. These power spectra were obtained by first Fourier transforming the real space cloud Pedersen conductivity $\delta \Sigma(x,y) \rightarrow \delta \Sigma(k_x, k_y)$ where $\delta \Sigma(x,y) = \Sigma(x,y) - \Sigma_o$, $\Sigma_o$ the maximum cloud conductivity. The power spectral density $|\delta \Sigma(k_x, k_y) / \Sigma_o|^2$ was then formed and the one-dimensional power spectra $P(k_x)$ and $P(k_y)$ were computed where

$$P(k_x) = \int dk_y |\delta \Sigma(k_x, k_y) / \Sigma_o|^2$$

and

$$P(k_y) = \int dk_x |\delta \Sigma(k_x, k_y) / \Sigma_o|^2$$

These transverse averaged power spectra $P(k_x)$ and $P(k_y)$ were then fitted [Keskinen et al., 1980a] with a three parameter (spectral strength $P_o$, spectral index $n_o$, and outer scale wavenumber $k_o$) power law of the form

$$P(k_o) = P_o \left(1 + k_o / k_o\right)^{-n_o/2}$$

where $\alpha = x$ or $y$. The method used to extract the best fit parameters
$P_\alpha, n_\alpha, k_\alpha$, is a nonlinear least squares procedure [Keskinen et al., 1980a] which computes $P_\alpha$ and $n_\alpha$ directly and then iterates to find $k_\alpha$.

Initially, the field line integrated Pedersen conductivity of the plasma cloud was taken to be of the form

$$\Sigma(x, y, t=0)/h_0 = [M \exp(-x^2/L^2) + 0.1] (1+c(x, y))$$

where both the mean amplitude and spatial distribution of $c(x, y)$ were varied. In previous numerical studies [McDonald et al., 1978; 1980; Keskinen et al., 1980a] $c(x, y)$ was given a root mean square value of 3% and generated from a randomly phased Gaussian power spectrum. In this work two different forms for $c(x, y)$ were used. In the first case $c(x, y) = A \cos 3 k_F y$, a single monochromatic wave along the linearly most unstable $y$-direction with wavelength $\lambda = 2 \pi/3k_F = 10$ km where $k_F = 2 \pi/30$ km$^{-1}$.

In the second case, $c(x, y) = A (1-2r(x, y))$ where $r(x, y)$ is a random number between 0 and 1. This case models the many wave initial condition. In both cases small and large amplitude initial perturbations were modeled by taking $A$ equal to 0.03 and 0.15 respectively. Figure 1 gives a rough schematic plot of the structure of $c(k_x, k_y)$ used in these simulations. For both forms and amplitudes of $c(x, y)$, three simulations were made distinguished by different initial field line integrated cloud Pedersen conductivity scale lengths $L = 4, 6, 10$ km perpendicular to the magnetic field. For all cases $V_o = 100$ m/sec and the cross field diffusion coefficient $D = 1$ m$^2$/sec. In addition, in all cases $M = 1$ so that the maximum field line integrated Pedersen conductivity of the cloud to the background ionosphere is approximately 10. For the sake of consistency and brevity, we confine ourselves to the description of the evolution of the $L = 6$ km
barium plasma cloud only.

4. RESULTS

Figures 2a-2d illustrate the evolution of an initially slablike barium plasma cloud driven unstable by a 3% monochromatic initial wave by showing the real space isodensity contours of the field-line integrated Pedersen cloud conductivity in the plane perpendicular to the magnetic field. Figure 2a displays the initial configuration. Figure 2b shows the plasma cloud conductivity at t = 200 sec where some elongation, steepening, and jetting to the frontside has begun. Figure 2c details the cloud structure at t = 1000 sec where the characteristic fingers have formed and stretched along the \( E \times B \) drift direction. Figure 2d gives the structure in the late time nonlinear regime at t = 2400 sec (\( \gamma_{\text{max}} t = 40 \) with \( \gamma_{\text{max}} \) the maximum linear growth rate). Similar shapes and morphologies are observed and for the other two Pedersen conductivity gradient scale lengths studied, i.e., \( L = 4 \) and 10 km, but on different time scales.

Figure 3 gives representative one-dimensional plasma cloud Pedersen conductivity spatial power spectra computed in the nonlinear late time (t = 2400 sec) regime both parallel \( P(k_x) \) and perpendicular \( P(k_y) \) to the plasma cloud drift for the 3% monochromatic initial conditions with \( L = 6 \) km. Before significant bifurcation occurs, the perpendicular power spectrum \( P(k_y) \) is not described by a power law, but is dominated by the initially excited mode \( k_y/k_{Fy} = 3 \) where \( k_{Fy} = (2\pi/30) \text{km}^{-1} \) is the fundamental mode number in the y-direction. However, due to the steep edges of the plasma cloud striations in the parallel x-direction the parallel power spectra \( P(k_x) \) do conform to a power law with spectral index of approximately \( n_x = 2 \). At
late times in the nonlinear regime, however, the perpendicular $P(k_y)$ power spectra also tend toward a power law.

Figure 4 shows the time histories of $n_x$ and $n_y$ for the small amplitude monochromatic initial conditions with $L = 6$ km. Similar results were found for $L = 4, 10$ km.

Figure 5 gives a sample contour plot of the unaveraged two-dimensional spatial power spectra of the plasma cloud Pedersen conductivity at $t = 2400$ sec using 3% monochromatic initial conditions with $L = 6$ km. As can be seen, the two-dimensional spatial power spectra is anisotropic with most of the spectral power concentrated along and near the linearly most unstable $y$-direction. This anisotropy in $(k_x,k_y)$ space is consistent with the late time distribution in $(x,y)$ space of the field line integrated cloud Pedersen conductivity which show striations elongated much more in the $x$-direction ($E_0 \times B$ drift direction). Similar anisotropic spatial power spectra in the late time nonlinear regime are also found using the large amplitude (15%) monochromatic initial conditions.

Figures 6a-6d give the real space distribution of field line integrated cloud Pedersen conductivity for the large amplitude 15% monochromatic initial conditions for $L = 6$ km. Figure 6b describes the conductivity profile also at $t = 200$ sec and shows a similar configuration to the 3% case in Figure 2b with the exception that more elongation and jetting to the frontside has taken place in the larger amplitude case. For the monochromatic initial conditions used the evolution of the plasma cloud with the larger amplitude perturbation was found to proceed on a faster time scale than the plasma cloud seeded with a smaller amplitude perturbation. Figure 6c displays the cloud contours at $t = 1000$ sec while Figure 6d details the plasma cloud field line integrated Pedersen conductivity at $t = 2400$ sec and is not dissimilar from
the plasma cloud configuration using the 3% monochromatic initial conditions (cf. Fig. 2d). Similar morphologies are also observed for the plasma clouds with conductivity gradient scale lengths L=4,6,10 km, but on different time scales with the L=4 km case proceeding faster and the L=10 km case slower.

Figure 7 gives sample one-dimensional parallel P(k_x) and perpendicular P(k_y) spatial power spectra of plasma cloud conductivity computed in the nonlinear late time (t = 2400 sec) regime for 15% monochromatic initial conditions with L = 6 km. Note the similarity with Figure 3.

Figure 8 displays the time dependence of the best fit spectral indices n_x and n_y for the 15% monochromatic initial perturbation with L = 6 km. As can be noted the spectral indices n_x and n_y achieve their quasi-steady state values on a slightly faster time scale (on the order of 100-200 sec) for the larger amplitude monochromatic perturbation as opposed to the smaller amplitude monochromatic initial conditions (see Figure 4). The value for the spectral index in the ExB direction approaches n_x = 2 while n_y = 2-3. Similar spectral indices are also found for the other two cases studied, i.e., L = 4, 10 km, but again on different time scales.

Figures 9a-9d portray the evolution of the plasma cloud using purely random initial conditions with maximum amplitude of 3% for L = 6 km. In these simulations the initial evolution of a test wave is influenced not only by the ambient plasma cloud, but also by a many wave background. Figure 9b displays the cloud at t = 200 sec and shows the initial random perturbations developing on the backside. Figure 9c illustrates the field line integrated Pedersen conductivity contours at t = 1000 sec with striation and elongation evident. Figure 9d shows the cloud configuration at t = 2400 sec and is similar to the late time configurations using the monochromatic initial conditions as shown in Figure 2d and 6d. The evolution of the clouds with gradient scale lengths L = 4, 10 km under 3% random initial conditions is
similar to the $L = 6$ km case, but on different time scales, i.e., the $L = 4$ km cloud structuring faster in absolute time and the $L = 10$ km cloud developing slower.

Figure 10 shows sample one-dimensional power spectra of plasma cloud conductivity with $L = 6$ km both parallel $P(k_x)$ and perpendicular $P(k_y)$ to the $E \times B$ drift ($x$-direction) at $t = 2400$ sec for the purely random 3% initial conditions. The time histories of the best fit spectral indices $n_x$ and $n_y$ both in the parallel $P(k_x)$ and perpendicular $P(k_y)$ directions with $L = 6$ km for the small amplitude (3%) random initial conditions are displayed in Figure 11. After initial transients, the spectral index in the $E \times B$ direction becomes $n_x = 2$ with $n_y \approx 2-3$. In comparing the time evolution of $n_x$ and $n_y$ for the 3% monochromatic and random initial conditions (see Figures 4 and 11) one notes that the spectral indices reach their quasi-steady state values faster for the many wave random initial conditions. This is particularly true for the spectral index $n_x$. The same values for the spectral indices $n_x$ and $n_y$ are also observed using the gradient scale lengths $L = 4,10$ km starting from the 3% random initial conditions. These spectral indices are in agreement with both experimental values [Baker and Ulwick, 1978; Kelley et al., 1979] and previous one level [McDonald et al., 1980; Keskinen et al., 1980] and two-level [Scannapieco et al., 1976] numerical simulations of ionospheric barium clouds using different initial conditions.

The turnover or outer scale size in the one-dimensional perpendicular power spectra $P(k_y)$ of the plasma cloud conductivity with $L = 6$ km using the small amplitude (3%) random initial perturbations is plotted in Figure 12 as a function of time. In the early nonlinear regime, the perpendicular outer scale size $2\pi/k_{oy}$ approximates the initial parallel Pedersen conductivity.
gradient scale length $L$ of the cloud in agreement with previous numerical simulations [Keskinen et al., 1980a] using Gaussian initial conditions with mean amplitude of 3%.

Figure 13 shows a representative sample of the unaveraged two-dimensional spatial power spectra of the cloud Pedersen conductivity of $t = 2400$ sec using the 3% random initial conditions with $L = 6$ km. The power spectra is anisotropic with most of the power located along and near the linearly most unstable $y$-direction. Note the similarities with Figure 5 which evolved from monochromatic initial conditions. Similar anisotropy is found for $L = 4, 10$ km.

Figures 14a-14d display the evolution of the barium plasma cloud using the 15% purely random initial conditions for the $L = 6$ km scale length. Comparing the plasma cloud structure in Figure 14b at $t = 200$ sec with Figure 9b (small amplitude random initial perturbation at $t = 200$ sec) one again notes the increased elongation and penetration to the frontside in the larger initial amplitude case. Figure 14c shows the striations at $t = 1000$ sec while Figure 14d illustrates further bifurcation at $t = 2400$ sec. Many similarities can be seen in comparing Figure 14d and Figure 9d.

Figure 15 shows sample one-dimensional power spectra of the $L = 6$ km plasma cloud Pedersen conductivity both parallel $P(k_x)$ and perpendicular $P(k_y)$ to the $E \times B$ drift (x-direction) at $t = 2400$ sec for the purely random 15% initial conditions. The time histories of the best fit spectral indices $n_x$ and $n_y$ both in the parallel $P(k_x)$ and perpendicular $P(k_y)$ directions with $L = 6$ km for the large amplitude (15%) random initial conditions are displayed in Figure 16. The spectral index in the $-E_x \times B$ direction (x-direction) approaches $n_x = 2$ with the spectral index perpendicular to the $E_x \times B$
drift $n_y = 2-3$. By comparing Figure 16 (15% random initial conditions) with Figure 11 (3% random initial conditions) one again notes that the spectral indices $n_x$ and $n_y$ approach their quasi-steady state values on a slightly faster time scale for the larger amplitude initial perturbations. In addition, in comparing Figure 16 (15% random initial conditions) with Figure 8 (15% monochromatic initial conditions) it can be said that the spectral indices $n_x$ and $n_y$ develop on a faster time scale for the many wave initial perturbations as opposed to the single wave monochromatic initial conditions.

The turnover or outer scale size in the one dimensional perpendicular power spectra $P(k_y)$ for the $L = 6$ km plasma cloud seeded with the large amplitude (15%) random initial perturbations corresponding to Figure 14 is plotted in Figure 17 as a function of time. In the nonlinear regime (for the times the simulations were run) the perpendicular outer scale size $2\pi/k_y$ approximates the initial parallel (to $E_x \times B$ motion) Pedersen conductivity gradient scale length $L$ of the cloud in agreement with the 3% random initial conditions (see Figure 12). Again, this scaling is achieved on a slightly faster time scale than with the smaller amplitude 3% random initial perturbations.

5. SUMMARY OF RESULTS

We have studied the effects of different initial conditions on the evolution of large F region ionospheric plasma clouds driven unstable by the $E_xB$ gradient drift instability. This has been accomplished by the numerical solution of the fundamental one level (one for the plasma cloud and neglect of cloud-background ionosphere interaction) two-dimensional magnetic field line integrated plasma cloud fluid equations using several different sets of initial conditions. In these numerical simulations both large and small
purely random and monochromatic initial conditions have been used to see if initially slablike plasma cloud models with different magnetic field line integrated Pedersen conductivity gradient scale lengths \( l = 4, 10 \) km perpendicular to the magnetic field. Independent of the initial conditions studied, all models, in the nonlinear late time regime become similar both in real \((x, y)\) space and in Fourier \((k_x, k_y)\) space where \(x\) and \(y\) define the plane perpendicular to the direction of the magnetic field. In the nonlinear regime, an outer scale turnover is observed in the spatial power spectra computed in a direction \((y)\) perpendicular to the \(E\!x\!B\) drift \((x)\) of the plasma cloud. Under the different initial conditions studied, the two-dimensional spatial power spectra in the nonlinear regime in the plane perpendicular to the magnetic field is found to be anisotropic with most of the spectra energy concentrated in the linearly most unstable \(y\)-direction. Furthermore, independent of the initial conditions used in this report the one-dimensional \(x\) power spectra is \( \propto k_x^{-\eta_x} \) with \( \eta_x = 2 \) for \( 2^3 / k_x \) between 1 and 80 km, while the \( y \) power spectra is \( \propto k_y^{-\eta_y} \) with \( \eta_y = 2 \) for \( 2^3 / k_y \) between 1 and 10 km. The random initial perturbation case achieves its quasi-final power law power spectrum description on a slightly faster time scale than the single monochromatic wave initial perturbation case. Within the context of initial perturbation amplitude, for a given case, the larger amplitude perturbations attain the quasi-final state more rapidly. These numerical results are consistent with recent experimental [Baker and Illwiek, 1978; Kelley et al., 1976; Chaturvedi and Ossakow, 1979; Keskinen et al., 1980] studies of ionospheric plasma clouds.

Future analytical and numerical studies of the evolution of ionospheric plasma clouds are planned which include the addition of inertial effects and the coupling to other ionospheric levels.
ACKNOWLEDGMENTS

We wish to thank B.E. McDonald for useful discussions. This work was supported by the Defense Nuclear Agency.
REFERENCES


Fig. 1 — Schematic plot of $\varepsilon(k_x, k_y)$, Curve A refers to previous simulations [McDonald et al., 1978; 1980; Keskinen et al., 1980] and has a Gaussian dependence on $k = (k_x^2 + k_y^2)^{1/2}$. Curve B represents a delta function in $k_y$ while curve C is approximately flat in $k$. 
Fig. 2 — Real space isodensity contour plots of $\Sigma(x,y)/\Sigma_o$ for $L = 6$ km using 3% monochromatic initial conditions at (a) $t = 0$ sec, (b) $t = 200$ sec, (c) $t = 1000$ sec, and (d) $t = 2400$ sec. Eight contours are plotted in equal increments from 0.1 to 1 with every other contour represented by a dashed line. The $x$ axis ($y$ axis) denotes the $E_o \times B(E_o)$ direction.
Fig. 3 — One dimensional (a) x power spectra $P(k_x)$ and (b) y power $P(k_y)$ at $t = 2400$ sec for $L = 6$ km using 3% monochromatic initial conditions. In (a) $k_{Fx} = 2\pi/80$ km$^{-1}$ while in (b) $k_{Fy} = 2\pi/31$ km$^{-1}$. The dots represent the numerical simulation results; the solid curve is a least squares fit which yields in (a) $n_x = 1.9$ and in (b) $n_y = 1.7$. 
Fig. 4 — Time history of best fit spectral indices $n_x$ and $n_y$ for $L = 6$ km using the 3% monochromatic initial conditions. The spectral index $n_y$ is not plotted before approximately 1500 sec since $P(k_y)$ is not a power law. $\gamma_{\text{max}}$ is the maximum linear growth rate.
Fig. 6 — Real space isodensity contour plots of $\Sigma(x,y)/\Sigma_0$ for $L = 6$ km using the 15% monochromatic initial conditions at (a) $t = 0$ sec, (b) $t = 200$ sec, (c) $t = 1000$ sec, and (d) $t = 2400$ sec.
Fig. 7 — One dimensional (a) x power spectra $P(k_x)$ and (b) y power spectra $P(k_y)$ at $t = 2400$ sec for $L = 6$ km using the 15% monochromatic initial conditions with $n_x = 2.2$ and $n_y = 2.1$.
Fig. 8 — Time history of best fit spectral indices $n_x$ and $n_y$ for $L = 6$ km using the 15% monochromatic initial conditions. The spectral index $n_y$ is not plotted before approximately 1200 sec since $P(k_y)$ is not a power law.
Fig. 9 — Real space isodensity contours plots of $\Sigma(x,y)/\Sigma_0$ for $L = 6$ km using the 3% random initial conditions at (a) $t = 0$ sec, (b) $t = 200$ sec, (d) $t = 1000$ sec, and (d) $t = 2400$ sec
Fig. 10 – One dimensional (a) $x$ power spectra $P(k_x)$ and (b) $y$ power spectra $P(k_y)$ at $t = 2400$ sec for $L = 6$ km using the 3% random initial conditions with $n_x = 2.0$, $2\pi/k_{ox} = 32$ km, and $n_y = 2.4$, $2\pi/k_{oy} = 3.8$ km

27
Fig. 11 — Time history of best fit spectral indices $n_x$ and $n_y$ for $L = 6$ km using the 3% random initial perturbations.
Fig. 12 — Time history of $k_{oy}L/4\pi$ for 4, 6, 10 km using the 3% random initial conditions. $\gamma(L)$ is maximum linear growth rate.
Fig. 13 — Contour plot of $\log_{10} |\delta \Sigma(k_x, k_y)/\Sigma_0|^2$ at $t = 2400$ sec for $L = 6$ km using the 3% random initial conditions.
Fig. 14 — Real space isodensity contour plots of \( \Sigma(x,y)/\Sigma_0 \) for \( L = 6 \) km using the 15% random initial conditions at (a) \( t = 0 \) sec, (b) \( t = 200 \) sec, (c) \( t = 1000 \) sec, and (d) \( t = 2400 \) sec.
Fig. 15 — One dimensional (a) \( x \) power spectra \( P(k_x) \) and (b) \( y \) power \( P(k_y) \) at \( t = 2400 \) sec for \( L = 6 \) km using the 15% random initial conditions with \( n_x = 2.0, 2\pi/k_{ox} = 30 \) km and \( n_y = 2.3, 2\pi/k_{oy} = 3.9 \) km
Fig. 16 - Time history of best fit spectral indices $n_x$ and $n_y$ for $L = 6$ km using the 15% random initial conditions
Fig. 17 - Time history for $k_{oY} L/4\pi$ for $L = 4, 6, 10$ km using the 15% random initial conditions. $\gamma(L)$ is maximum linear growth rate.
Science Applications, Incorporated
1710 Goodridge Drive
McLean, VA 22102
Attn: J. Cockayne

Lockheed Missile & Space Co., Inc.
Huntsville Research & Engr. Ctr.
4800 Bradford Drive
Huntsville, Alabama 35807
Attn: Dale H. Davis

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: Donald Neilson
Attn: Alan Burns
Attn: G. Smith
Attn: L. L. Cobb
Attn: David A. Johnson
Attn: Walter G. Chesnut
Attn: Charles L. Rino
Attn: Walter Jate
Attn: H. Baron
Attn: Ray L. Leadabrand
Attn: G. Carpenter
Attn: G. Price
Attn: J. Peterson
Attn: R. Hake, Jr.
Attn: V. Gonzales
Attn: O. Deel

Technology International Corp
75 Higgins Avenue
Bedford, MA 01730
Attn: W. P. Boquist

TRW Defense & Space Sys
One Space Park
Redondo Beach, CA 90278
Attn: R. K. Plebich
Attn: S. Altschuler
Attn: O. Deel

Visidyne, Inc.
19 Third Avenue
Northwest Industrial Park
Burlington, MA 01803
Attn: Charles Humphrey
Attn: J. W. Carpenter
IONOSPHERIC MODELING DISTRIBUTION LIST
UNCLASSIFIED ONLY

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

ADVANCED RESEARCH PROJECTS AGENCY (ARPA)
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VIRGINIA

CAPT. DONALD M. LEVINE

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375

DR. P. MANGE
DR. R. MEIER
DR. E. SZUSZCEWICZ - CODE 4127
DR. TIMOTHY COFFEY - CODE 4700 (25 COPIES)
DR. S. OSEKOW - CODE 4780 (100 COPIES)
DR. J. GOODMAN - CODE 5860

SCIENCE APPLICATIONS, INC.
1250 PROSPECT PLAZA
LA JOLLA, CALIFORNIA 92037

DR. D. A. HAMLIN
DR. L. LINSON
DR. D. SACHS

DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
NOAA
BOULDER, COLORADO 80302

DR. A. GLENN JEAN
DR. G. W. ADAMS
DR. D. N. ANDERSON
DR. R. DAVIES
DR. R. F. DONELLY

A. F. GEOPHYSICS LABORATORY
L. G. HANSOM FIELD
BEDFORD, MASS. 01730

DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J. M. FORBES
DR. T. J. KENESHEA
DR. J. AARONS

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217

DR. M. MULANEY

COMMANDER
NAVAL ELECTRONICS LABORATORY CENTER
SAN DIEGO, CALIFORNIA 92152

MR. R. ROSE

U. S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MARYLAND

DR. J. HEIMERL

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20350

DR. T. CZUBA

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MASS. 02138

DR. M. B. MCELROY
DR. R. LINDZEN

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802

DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. D. E. BANAN
DR. L. A. CARPENTER
DR. M. LEE
DR. R. DAVIES
DR. P. BENNETT
DR. E. KLEVANS

UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILLCARD AVENUE
LOS ANGELES, CALIFORNIA 90024

DR. F. V. CORONITI
DR. C. KENNEL

UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA 94720

DR. M. HUDSON

UTAH STATE UNIVERSITY
4TH N. AND 8TH STREETS
LOGAN, UTAH 84322

DR. P. M. BANKS
DR. R. HARRIS
DR. V. PETERSON
DR. R. MEGILL
DR. K. BAKER

CORNELL UNIVERSITY
ITHACA, NEW YORK 14850

DR. W. E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

NASA
Goddard SPACE FLIGHT CENTER
GREENBELT, MARYLAND 20771

DR. S. CHANDRA
DR. K. MAEDO

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MARYLAND

DR. J. HEIMERL