UNCLASSIFIED

TR-14

END

DATE

F. 81

OTIC
ISOLATION OF A STABLE BINUCLEAR COPPER COMPLEX CONTAINING A COPPER-COPPER BONDED UNIT. THE X-RAY STRUCTURE DETERMINATION

\[((7,8,15,16,17,18,25,26,35,36)-12DODECAHYDROTETRAZENZO[e,m,e,a']-[1,4,8,11,15,18,22,25]OCYCLO-OCTAICYCLOGEICOSINE) DICOPPER) TRIPERCHLORATE.

By

K.P. Dancey, P.A. Tasker, R. Price, W.E. Hatfield, and D.C. Brower

PREPARED FOR PUBLICATION

IN

Journal of the Chemical Society, Chemical Communications

UNIVERSITY OF NORTH CAROLINA
DEPARTMENT OF CHEMISTRY 045A
CHAPEL HILL, NORTH CAROLINA 27514

REPRODUCTION IN WHOLE OR PART IS PERMITTED FOR ANY PURPOSE
OF
THE UNITED STATES GOVERNMENT

*THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE;
ITS DISTRIBUTION IS UNLIMITED.

*THIS STATEMENT SHOULD ALSO APPEAR IN ITEM 10 OF DOCUMENT CONTROL
DATA - DD FORM 1473. COPIES OF FORM AVAILABLE FROM COGNIZANT
CONTRACT ADMINISTRATOR.
Isolation of a Stable Binuclear Copper Complex Containing a Copper-Copper Bonded Unit. The X-ray Structure Determination \((7,8,15,16,17,18,25,26,33,34,35,36-\text{Dodecahydrotrabenz}[e,\text{m},s,a]^7]1,4,8,11,15,18,22,25\)-Octa-azacyclo-...

K.P. Dancey, P.A. Tasker, R. Price, W.E. Hatfield, and D.C. Brower

Department of Chemistry 045A
University of North Carolina
Chapel Hill, North Carolina 27514

Office of Naval Research
Department of the Navy
Arlington, Virginia 22217

Approved for Public Release, Distribution Unlimited

An octa-azamacrocycle with a 28-membered ring has been found to be capable of incorporating a symmetrical copper-copper bonded unit which contains a short Cu-Cu bond (2.445(4) Å). The compound is paramagnetic with \(\mu_{eff} = 1.87 \mu_B\) at 300 K and exhibits single lines at \(g = 2.09\) in the X-band EPR spectra of solid samples or of frozen acetonitrile solutions (77 K).
Isolation of Stable Binuclear Copper Complex Containing a Copper-Copper Bonded Unit. The X-ray Structure Determination

(7,8,15,16,17,18,25,26,33,34,35,36-Dodecahydrotetrazeno[a,e,m,n]—
[1,4,8,11,15,18,22,23]octa-azacyclo-octatriene)dichloro|tripperchlorate.

By Keith P. Dancey and Peter A. Tasker

(Department of Chemistry, The Polytechnic of North London, Holloway, London, N7 8DB)

Raymond Price

(ICI Organics Division, Hexagon House, Blackley, Manchester M9 3DA)

William E. Hatfield and Douglas C. Brower

(Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA)

Summary. An octa-azamacrocyclic with a 28-membered ring has been found to be capable of incorporating a symmetrical copper-copper bonded unit which contains a short Cu-Cu bond (2.445(4) Å). The compound is paramagnetic with \(\mu = 1.87 \) B at 300 K and exhibits single line-

At \(\chi = 2.09 \) on the X-band EPR spectra of solid samples or of frozen acetonitrile solutions (17 K).
A number of dinucleating ligands have recently been used to bring two copper atoms into close proximity, thus providing models for the 'Type 3 Coppers' in the multi-copper oxidases. These copper sites are characterized by an ability to act as two-electron acceptor/donor systems, and contain two Cu²⁺ ions which are strongly antiferromagnetically coupled. In most of these models the two copper atoms are separated by bridges containing one or more atoms. We report here the preparation of a dinuclear complex which contains a direct Cu-Cu bond.

Treatment of a suspension of the octa-aza macrocycle in tetrahydrofuran with a methanolic solution of copper(II) perchlorate resulted in almost complete dissolution of (1). After filtration the green solution slowly deposited green prisms of the title complex \([\text{Cu}_2(1)](\text{ClO}_4)_3 \). The presence of a tricationic complex was unexpected, and could have arisen either (1) by transfer of a single electron to the dicopper centre, (2) by loss of one of the anilino protons from the ligand (a common form of co-ordination for related tetra-aza macrocycles), (3) by reduction of the copper ions and simultaneous mono-oxidation of the macrocyclic ligand, or (4) from a bonded pair of copper(II) ions with a reduced ligand. The second possibility can be excluded on the basis of an X-ray structure determination which shows that all four anilino nitrogen atoms have approximately tetrahedral geometry (figure 1), rather than a trigonal planar arrangement which has been found for the deprotonated anilino nitrogen atoms in the neutral complexes.

A magnetic moment determination by the Faraday method on a solid sample at room temperature (300 K) yielded \(\mu_{\text{eff}} = 1.87 \mu_B \), thus confirming the expected paramagnetism at the \([\text{Cu}_2(1)]^{3+} \) formulation.
The two copper atoms have very similar coordination geometries (table 1) and the cation has approximate 2-fold symmetry about an axis which passes through the midpoint of the Cu–Cu bond and relates the ligand portion a to c and b to d (see figure 1). The similarity of the environments of Cu(1) and Cu(2), and the short bond (2.445(4) Å) between them suggest that the copper atoms should not be assigned discrete formal oxidation states +1 and +2, but that the single unpaired electron is delocalized over both metal centres, or that the metal centres are identical and the unpaired electron resides on the ligand.

The EPR spectra at X-band of a powdered sample or of a frozen acetonitrile solution (77 K) exhibited one line at \(g = 2.09 \) with a peak line width of 80–90 gauss. These data do not unambiguously support the immediate conclusions from the X-ray structural study that the copper ions are equivalent and that this is a Type IIIA mixed valence compound. The single line could arise from exchange narrowing between sites with life times which are very short on the EPR time scale, or from inherently narrow lines arising from isotropic nuclear hyperfine coupling constants on the order of \(40 \times 10^{-4} \text{ cm}^{-1} \), as estimated from the line width. Such small coupling constants are known for the "blue" copper proteins as well as a variety of typical coordination compounds of copper(II). It is well established that 4s and 4p orbital admixture into the ground state leads to small hyperfine coupling constants and single line EPR spectra. The magnetic susceptibility and EPR data clearly indicate that the formulation of the compound as \([\text{Cu}_2L](\text{ClO}_4)_3 \) is correct, and the X-ray structural results are most readily interpreted in terms of a copper–copper bond since the Cu–Cu distance is very short for a dinuclear complex, and compares with values found in other metal–metal bonded systems.
An ESCA spectrum was obtained with a PHI 548 spectrometer using a magnesium anode and precision energy analyzer. A single copper 2P$_{3/2}$ line at 935.6 eV and a 2P$_{3/2}$-2P$_{1/2}$ separation of 20.3 eV are compelling pieces of evidence for the assignment of like oxidation states to the two copper ions.

The compound undergoes facile reduction rapidly in a variety of solvents including tetrahydrofuran-methanol solutions, but is relatively stable in acetonitrile, thus permitting a range of electrochemical and optical studies on a uniquely new chemical system.

Crystal data [Cu$_2$(I)](ClO$_4$)$_3$, C$_{36}$H$_{40}$N$_8$Cl$_3$Cu$_2$O$_{12}$, M = 1010.2, monoclinic, \(\rho_c \) = 22.577(7), \(b = 11.016(4) \), \(c = 20.909(8) \), \(\beta = 118.96(2)^\circ \), \(V = 4550.0 \), \(Z = 4 \), \(\theta \)-range 3-35° \(R = 0.080 \) for 1815 data with \(I/o(I) > 3.0 \), obtained on a Philips PW 1100 diffractometer with Mo-K\(\alpha \) radiation (two of the perchlorate ions show extensive disorder).†

We thank the S. R. C. for a studentship (to KPD) and for diffractometer equipment and computing facilities. This work was supported in part by the Office of Naval Research.

†The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
REFERENCES

N. Bresciani-Pahor; M. Calligaris; G. Nardin and L. Randaccio, J. Chem. Soc.,
1980, 102, 1443.

2 K.D. Karlin, D.M. Feller and L.T. Dipierro, 1979, April ACS Meeting, Hawaii INOR 205; Chi-Lin O'Young, J.C. Dewan, H.R. Lilienthal and S.J. Lippard,
J. Amer. Chem. Soc., 1978, 100, 7291, M.G.B. Drew, M. McCann and S.M. Nelson,

3 J.A. Fee, Structure and Bonding, 1975, 23, 1.

28, 2377.
Table 1. Geometry about the copper atom Cu(1) and Cu(2).

<table>
<thead>
<tr>
<th>Bondlengths/Å</th>
<th>Cu-N(1)</th>
<th>1.95(2)</th>
<th>1.91(2)</th>
<th>1.97(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-N(2)</td>
<td>2.18(2)</td>
<td>2.20(2)</td>
<td>2.19(2)</td>
<td>2.15(2)</td>
</tr>
</tbody>
</table>

Angles/°

<table>
<thead>
<tr>
<th>Angles/°</th>
<th>N(1)-Cu-N(2)</th>
<th>91.8(9)</th>
<th>92.5(7)</th>
<th>93.7(9)</th>
<th>92.2(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-Cu-N(1)'</td>
<td>159.8(7)</td>
<td>-</td>
<td>158.0(9)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N(1)-Cu-N(2)'</td>
<td>106.1(7)</td>
<td>98.3(9)</td>
<td>101.2(9)</td>
<td>105.0(8)</td>
<td></td>
</tr>
<tr>
<td>N(2)-Cu-N(1)'</td>
<td>5(8)</td>
<td>-</td>
<td>84.6(8)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N(1)-Cu-Cu+</td>
<td>80.6(7)</td>
<td>80.6(7)</td>
<td>78.7(7)</td>
<td>80.5(6)</td>
<td></td>
</tr>
<tr>
<td>N(1)-Cu-Cu+</td>
<td>131.5(7)</td>
<td>131.8(7)</td>
<td>129.0(5)</td>
<td>146.4(6)</td>
<td></td>
</tr>
</tbody>
</table>

*Denotes an atom in the alternative quarter of the ligand which is co-ordinated to the same Cu atom.

**Denotes the Cu atom in the other half of the complex.
\[\text{(1)} \]

\[(2a) \quad R = \textcircled{\text{C}} \]

\[(2b) \quad R = \textcircled{\text{C}} \]
<table>
<thead>
<tr>
<th>Office</th>
<th>No. Copies</th>
<th>Office</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td></td>
<td>U.S. Army Research Office</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 472</td>
<td></td>
<td>Attn: Code CRD-IP</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street, Arlington, Virginia 22217</td>
<td>2</td>
<td>P.O. Box 1211</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, N.C. 27709</td>
<td></td>
</tr>
<tr>
<td>ONR Branch Office</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. George Sandoz</td>
<td>1</td>
<td>Attn: Mr. Joe McCartney</td>
<td>1</td>
</tr>
<tr>
<td>536 S. Clark Street, Chicago, Illinois 60605</td>
<td></td>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>ONR Area Office</td>
<td></td>
<td>Attn: Dr. A. B. Amster, Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Attn: Scientific Dept.</td>
<td>1</td>
<td>China Lake, California 93555</td>
<td>1</td>
</tr>
<tr>
<td>715 Broadway, New York, New York 10003</td>
<td></td>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>ONR Western Regional Office</td>
<td>1</td>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>1030 East Green Street, Pasadena, California 91106</td>
<td></td>
<td>Department of Physics & Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Postgraduate School</td>
<td>1</td>
</tr>
<tr>
<td>ONR Eastern/Central Regional Office</td>
<td></td>
<td>Monterey, California 93940</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. L. H. Peebles</td>
<td>1</td>
<td>Dr. A. L. Slafkosky</td>
<td></td>
</tr>
<tr>
<td>Building 114, Section D</td>
<td></td>
<td>Scientific Advisor</td>
<td></td>
</tr>
<tr>
<td>666 Summer Street, Boston, Massachusetts 02210</td>
<td>1</td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Code RD-1)</td>
<td></td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Code 6100</td>
<td></td>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td>1</td>
<td>Attn: Dr. Richard S. Miller</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 N. Quincy Street, Arlington, Virginia 22217</td>
<td>1</td>
</tr>
<tr>
<td>The Assistant Secretary of the Navy (REAS)</td>
<td></td>
<td>Naval Ship Research and Development Center</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td>Attn: Dr. G. Bosmajian, Applied</td>
<td></td>
</tr>
<tr>
<td>Room 4E736, Pentagon</td>
<td>1</td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20350</td>
<td></td>
<td>Annapolis, Maryland 21401</td>
<td>1</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwater)</td>
<td>1</td>
<td>Attn: Dr. S. Yamamoto, Marine Sciences</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td>Division</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td></td>
<td>Mr. John Boyle</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>12</td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Dr. Fred Saalfeld</td>
<td></td>
<td>Washington, D.C. 20375</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 053

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor M. Newcomb
Texas A&M University
Department of Chemistry
College Station, Texas 77843
1

Professor Richard Eisenberg
Department of Chemistry
University of Rochester
Rochester, New York 14627
1
TECHNICAL REPORT DISTRIBUTION LIST, 053

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
</table>
| **Dr. R. N. Grimes**
Department of Chemistry
University of Virginia
Charlottesville, Virginia 22901 | **Professor H. Abrahamson**
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019 |
| 1 | 1 |
| **Dr. M. F. Hawthorne**
Department of Chemistry
University of California
Los Angeles, California 90024 | **Dr. M. H. Chisholm**
Department of Chemistry
Indiana University
Bloomington, Indiana 47401 |
| 1 | 1 |
| **Dr. D. B. Brown**
Department of Chemistry
University of Vermont
Burlington, Vermont 05401 | **Dr. B. Foxman**
Department of Chemistry
Brandeis University
Waltham, Massachusetts 02154 |
| 1 | 1 |
| **Dr. W. B. Fox**
Chemistry Division
Naval Research Laboratory
Code 6130
Washington, D.C. 20375 | **Dr. T. Marks**
Department of Chemistry
Northwestern University
Evanston, Illinois 60201 |
| 1 | 1 |
| **Dr. J. Adcock**
Department of Chemistry
University of Tennessee
Knoxville, Tennessee 37916 | **Dr. G. Geoffrey**
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802 |
| 1 | 1 |
| **Dr. A. Cowley**
Department of Chemistry
University of Texas
Austin, Texas 78712 | **Dr. J. Zuckerman**
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019 |
| 1 | 1 |
| **Dr. W. Hatfield**
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514 | **Professor O. T. Beachley**
Department of Chemistry
State University of New York
Buffalo, New York 14214 |
| 1 | 1 |
| **Dr. D. Seyferth**
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 | **Professor P. S. Skell**
Department of Chemistry
The Pennsylvania State University
University Park, Pennsylvania 16802 |
| 1 | 1 |
| **Professor Ralph Rudolph**
Department of Chemistry
University of Michigan
Ann Arbor, Michigan 48109 | **Professor K. M. Nicholas**
Department of Chemistry
Boston College
Chestnut Hill, Massachusetts 02167 |
| 1 | 1 |
| **Professor Ralph Rudolph**
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019 | **Professor R. Neilson**
Department of Chemistry
Texas Christian University
Fort Worth, Texas 76129 |
<p>| 1 | 1 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
</table>
| Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco 96503 | 1 |
| Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402 | 1 |
| A. M. Anzalone
ARRADCOM
Plastics Technical Evaluation Center
Bldg. 3401
Dover, New Jersey 07801 |