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Texture
Three-dimensional images

r-Texture plays an important role in many image analysis tasks. In
this note, we examine the role of three-dimensional texture analy-
sis in three-dimensional image processing.
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ABSTRACT

Texture plays an important role in many image analysis tasks.
In this note, we examine the role of three-dimensional texture
analysis in three-dimensional image processing.
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Texture plays an important role in many image analysis

tasks [I]. Visual textures may be regarded as complex patterns

composed of subpatterns of characteristic brightness, color,

slope, shape, etc. A texture then is a similarity grouping of

subpatterns, and in general by texture, we mean the pattern of

spatial distribution of grey level in an image. In this note,

we examine the role of texture in three-dimensional (3D) image

processing (i.e., 3D processing of 3D images).

The discussion here is focused on texture in images of three

spatial dimensions, and not, for example, on multi-spectral or

time-sequence imagery, which may be regarded as three-dimensional,

with the third dimension representing wavelength or time. Images

of three spatial dimensions are produced routinely by computed

tomography. Since values in these images represent feature density

in a volume of a scene, 3D texture is not associated with patterns

of changes in brightness, luminance, hue, etc., on the surface of

objects in the scene, but rather with patterns of feature den-

sity of the (solid) object. In time-sequence imagery, where texture

derives from patterns on the surfaces of objects, the relation

between 2D texture and 3D texture is completely determined by

motion in the scene, camera, illumination source, etc. For

multi-spectral images, it is more difficult to make this compari-

son, since the 2D monochromatic textures may have an arbitrary

relationship with each other.
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There have been four basic approaches to the measurement

and characterization of two-dimensional texture (see [1] for

a review): spatial frequency measurement, edgeness measurement,

structural analysis, and co-occurrence probability measurement.

Spatial frequency is related to texture in that finer textures

have more high frequency content than coarse textures, and coarse

textures have more low frequency content than fine textures.

Similarly, coarse and fine textures may be differentiated on the

basis of the amount of edge per unit area. In the structural

approach a generalized autocorrelation is used as a matching pro-

cedure to detect regularity of elementary shapes in a binary

image. Co-occurrence probabilities measure spatial distribution

of grey level; coarse textures are those for which the distri-

bution of co-occurrences of grey level changes slowly with dis-

tance, and fine textures are those for which the distribution

changes rapidly with distance.

There is no doubt that each of these approaches extends

straightforwardly to 3D image analysis. However, the larger

amount of data in a 3D image and the additional degree(s) of

freedom in the measurements render 3D texture analysis very cost-

ly computationally. The question then is not whether these tex-

ture analysis techniques will work in three-dimensions, but rather

to what extent can 3D texture classifiers outperform 2D texture

classifiers?

Inasmuch as these basic texture classification techniques

are statistical in nature, we might expect that a 3D classifier



should outperform a comparable 2D classifier. That is, given

a 2D technique measuring some feature of spatial frequency, edge-

ness, grey level co-occurrence, or similarity of elementary

shapes in a given 2D neighborhood, we might expect that the

additional data in a comparable 3D neighborhood would allow a

reduction in the error of these measurements.

In the light of recent findings, such a viewpoint should be

taken cautiously. For example, [2] compared 2D and 3D spatial

averaging on synthetic images with normal noise. A 3x3 local

average should reduce variance by roughly a factor of 3, and a

3x3x3 local average roughly by a factor of 5.2=2-. However,

it was found that (presumably) because of the effect of blurring,

the 2D operator may actually achieve a greater reduction in

noise level (as measured by RMS error) than the 3D operator.

Secondly, since many of the 2D classifiers have been reported

to achieve very high classification accuracy (some over 90%),

it is difficult to imagine that this additional information of the

3D image could be used to obtain a significant improvement. Fur-

ther, the most successful of these 2D classifiers rely on rather

large neighborhood sizes (e.g., 16x16 as a minimum), so that the

additional computational cost of a comparable 3D classifier (e.g.,

using a 16x16x16 neighborhood) is substantial. Note that if, say,

it is necessary to use an NxN 2D neighborhood in order to measure

a sufficient number of texture elements with some statistical

accuracy, it is unlikely that an MxMxM 3D neighborhood, with

M34N 2 , will contain enough structural elements to achieve com-

parable accuracy.
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On the other hand, it is not hard to display different 3D

image textures which cannot possibly be distinguished by a 2D

classifier operating on parallel cross-sections of the 3D image.

For example, let the first texture consist of solid upright

cylinders whose radii are distributed uniformly in the range

[0,R], so that every horizontal cross-sectional image consists

of circles with radii distributed uniformly in [0,R]. Let the

second image consist of solid spheres of radius R such that the

vertical coordinate of the center of the spheres has a uniform

distribution. Further, let the distribution of spheres be such

that the density distribution of cross-sections is equal to the

density distribution of cross-sections of the cylinders in the

first texture image (i.e., the distribution of areas contained

in the circles of cross-sections of each image is the same). Thus,

horizontal cross-sections of each image are circles such that the

cross-sections are statistically equivalent in average grey level,

spatial frequency, edgeness per unit area, shape of structural

elements, and co-occurrence probabilities. It is not hard to see

that a 3D classifier based on spatial frequency, edgeness per

unit volume, shape of structural elements, or co-occurrence pro-

babilities would show different statistics for each texture.

It is clear that these examples are highly contrived and

unlikely to occur in most applications. A more realistic analysis

would investigate the texture types indistinguishable by one

method (e.g., spatial frequency measurement) but not another (e.g.,

generalized feature co-occurrence). This is precisely the present
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situation being studied in 2D texture classification; a survey of

the literature (I] shows that each 2D classification technique

achieves high accuracy only for limited classes of image texture.

In summary, we find that the intrinsic ability of a 3D

texture classifier to outperform a 2D texture classifier is

limited; only in extreme cases will a 3D technique succeed when

all 2D approaches fail. Since the variety of 2D texture classi-

fication techniques allow high classification accuracy for many

types of image texture, the additional information used by a 3D

texture classifier is unlikely to make a substantial improvement.

Because of the large amounts of data used in texture classification

and the additional degree(s) of freedom in the measurments, 3D

texture classification is computationally expensive. Thus, its

use would not be recommended except in (the unlikely) cases where

the textures to be discriminated are difficult to distinguish

on the basis of their cross-sections.
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