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ABSTRACT

Texture plays an important role in many image analysis tasks.
In this note, we examine the role of three-dimensional texture
analysis in three-dimensional image processing.
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Texture plays an important role in many image analysis
tasks [l1]. Visual textures may be regarded as complex patterns
composed of subpatterns of characteristic brightness, color,
slope, shape, etc. A texture then is a similarity grouping of
subpatterns, and in general by texture, we mean the pattern of
spatial distribution of grey level in an image. 1In this note, H
we examine the role of texture in three-dimensional (3D) image
processing (i.e., 3D processing of 3D images). 0

The discussion here is focused on texture in images of three
spatial dimensions, and not, for example, on multi-spectral or i

time-sequence imagery, which may be regarded as three-dimensional,

- rm o

with the third dimension representing wavelength or time. Images

of three spatial dimensions are produced routinely by computed

tomography. Since values in these images represent feature density
in a volume of a scene, 3D texture is not associated with patterns

of changes in brightness, luminance, hue, etc., on the surface of

objects in the scene, but rather with patterns of feature den-

sity of the (solid) object. In time-sequence imagery, where texture %
derives from patterns on the surfaces of objects, the relation \
between 2D texture and 3D texture is completely determined by
motion in the scene, camera, illumination source, etc. For
multi-spectral images, it is more difficult to make this compari-

son, since the 2D monochromatic textures may have an arbitrary

relationship with each other.
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There have been four basic approaches to the measurement
and characterization of two-dimensional texture (see [l1] for
a review): spatial frequency measurement, edgeness measurement,
structural analysis, and co-occurrence probability measurement.
Spatial frequency is related to texture in that finer textures
have more high frequency content than coarse textures, and coarse
textures have more low frequency content than fine textures.
Similarly, coarse and fine textures may be differentiated on the
basis of the amount of edge per unit area. In the structural
approach a generalized autocorrelation is used as a matching pro-
cedure to detect regularity of elementary shapes in a binary
image. Co-occurrence probabilities measure spatial distribution
of grey level; coarse textures are those for which the distri-
bution of co-occurrences of grey level changes slowly with dis-
tance, and fine textures are those for which the distribution
changes rapidly with distance.

There is no doubt that each of these approaches extends
straightforwardly to 3D image analysis. However, the larger
amount of data in a 3D image and the additional degree(s) of
freedom in the measurements render 3D texture analysis very cost-
ly computationally. The question then is not whether these tex-
ture analysis techniques will work in three-dimensions, but rather
to what extent can 3D texture classifiers outperform 2D texture
classifiers?

Inasmuch as these basic texture classification techniques

are statistical in nature, we might expect that a 3D classifier

e




should outperform a comparable 2D classifier. That is, given

a 2D technique measuring some feature of spatial frequency, edge-
ness, grey level co-occurrence, or similarity of elementary
shapes in a given 2D neighborhood, we might expect that the
additional data in a comparable 3D neighborhood would allow a
reduction in the error of these measurements.

In the light of recent findings, such a viewpoint should be
taken cautiously. For example, [2] compared 2D and 3D spatial
averaging on synthetic images with normal noise. A 3x3 local
average should reduce variance by roughly a factor of 3, and a
3x3x3 local average roughly by a factor of 5.2=/27. However,
it was found that (presumably) because of the effect of blurring,
the 2D operator may actually achieve a greater reduction in
noise level (as measured by RMS error) than the 3D operator.

Secondly, since many of thce 2D classifiers have been reported
to achieve very high classification accuracy (some over $%0%),
it is difficult to imagine that this additional information of the
3D image could be used to obtain a significant improvement. Fur-
ther, the most successful of these 2D classifiers rely on rather
large neighborhood sizes (e.g., 16x16 as a minimum), so that the
additional computational cost of a comparable 3D classifier (e.g.,
using a 16x16x16 neighborhood) is substantial. Note that if, say,
it is necessary to use an NxN 2D neighborhood in order to measure
a sufficient number of texture elements with some statistical
accuracy, it is unlikely that an MxMxM 3D neighborhood, with

2

M3=N , Will contain enough structural elements to achieve com-

parable accuracy.




On the other hand, it is not hard to display different 3D .
image textures which cannot possibly be distinguished by a 2D
classifier operating on parallel cross-sections of the 3D image.
For example, let the first texture consist of solid upright i
cylinders whose radii are distributed uniformly in the range
{(0,R], so that every horizontal cross-sectional image consists }i
of circles with radii distributed uniformly in [0,R}. Let the
second image consist of solid spheres of radius R such that the %

vertical coordinate of the center of the spheres has a uniform

distribution. Further, let the distribution of spheres be such

that the density distribution of cross-sections is equal to the
density distribution of cross-sections of the cylinders in the
first texture image (i.e., the distribution of areas contained

in the circles of cross-sections of each image is the same). Thus,
horizontal cross-sections of each image are circles such that the

cross~sections are statistically equivalent in average grey level,

spatial frequency, edgeness per unit area, shape of structural
elements, and co-occurrence probabilities. It is not hard to see
that a 3D classifier based on spatial frequency, edgeness per
unit volume, shape of structural elements, or co-occurrence pro-
babilities would show different statistics for each texture.

It is clear that these examples are highly contrived and
unlikely to occur in most applications. A more realistic analysis
would investigate the texture types indistinguishable by one
method (e.g., spatial frequency measurement) but not another (e.g.,

generalized feature co-occurrence). This is precisely the present




situation being studied in 2D texture classification; a survey of
the literature [l] shows that each 2D classification technique
achieves high accuracy only for limited classes of image texture.

In summary, we find that the intrinsic ability of a 3D
texture classifier to outperform a 2D texture classifier is
limited; only in extreme cases will a 3D technique succeed when
all 2D approaches fail. Since the variety of 2D texture classi-
fication techniques allow high classification accuracy for many
types of image texture, the additional information used by a 3D
texture classifier is unlikely to make a substantial improvement.
Because of the large amounts of data used in texture classification
and the additional degree(s) of freedom in the measurments, 3D
texture classification is computationally expensive. Thus, its
use would not be recommended except in (the unlikely) cases where
the textures to be discriminated are difficult to distinguish

on the basis of their cross-sections.
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