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ABSTRACT

A finite element method is developed to solve initial-boundary value jroblems

for vector systems of partial differential equations in one space dimensicn and

LT

time. The method automatically adapts the computational mesh as the solution pro-

gresses in time and is thus able to follow and resolve relatively sharp transitions

T i

such as mild boundary layers, shock layers, or wave fronts. This pormits an accur-
ate solution to be calculated with fewer mesh points than would be necessary with a

uniform mesh.
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“ijtime amdeis. thus able to follow and rc..olve relatively sharp
transitions such as mild boundary layers, shock layers, orv waro
fronts. This permits an accurate solution to be calculatod with

fewer mesh points than would be neccessary with a uniform mesh.

The overall method contains two parts, a solution alqoritim
and a mesh selection algorithm. The solution algorithm iz a
finite element-Galerkin method on trapezoidal space-timn oleronts,
using either piecewise linear or cubic polynomial approximitions
and the mesh selection algorithm builds upon similar work [or

variable knot spline intcrpolation.

| - N computer code implementing these algorithms has been
written and applied to a number of problems. These computation:s
confirm that the theoretical error estimates are attainad and

demonstrate the utility of variable mesh methods for partial

differential equations..
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The overall method contains two parts, a solution algorithm and a mesh

selection algorithm. The solution algorithm is a finite element-Galerkin
method on trapezoidal space-time elements, using either piecewise linear or
cubic polynomial approximations and the mesh selection algorithm builds upon
similar work for variable knot spline interpolation. %

A computer code implementing these algorithms has been written and applied

to a number of problems. These computations confirm that the theoretical error
estimates are attained and demonstrate the utility of variable mesh methods for

partial differential equations.
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1. Introduction

In this paper we construct an adaptive grid finite element procedure to find

-
4
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numperical solutions of M-dimensional vector systems of partial differential equa-

tions having the form

(1.1)  Lu:= u 4 f(x,t,g,gx) - Ig(x,t,E)Ex]x =0,0<x<a,t>0,

subject to the initial and linear separated boundary conditions

{

(1.2) u(x,0) = go(x), 0<x<a,
g B(O(t) = éll(t)B(o't) + élZ(t)Ex(o't) = E’l(t) v
(1.3)
gzg(a.t) = 521(t)5(a,t) + gzz(t)ux(a,t) = !32(!:), t > 0.

There are kl initial boundary conditions at x = 0 and kz terminal boundary con-
ditions at x = a. We are primarily concerned with solving diffusion problems
where 9 is positive definite and k1 + k2 = 2M; however, we will not restrict
ourselves-to this case, but instead we assume that conditions are specified so
that (1.1)-(1.3) has an isolated solution.

Problems of the above form arise in many applications which model problems
as diverse as heat conduction (cf. Friedman [16]), determining bacterial motion
{cf. Keller and Odell [25,30]), combustion (cf. Kapila [24]), chemical reactions
(cf£. Fife [14]), population dynamics (cf. Hoppensteadt [20]), and convecting
flows (cf. Batchelor [4]). Therefore, a general purpose code to solve (1.1)-

(1.3) numerically would be extremely useful.

Many of the problems mentioned above have solutions which contain sharp

transitions such as boundary layers, shock layers, or wave fronts. In order to
resolve such nonuniformities using a minimum number of mesh points it is desir-
able to concentrate the mesh within the transition layers. Since these transi-
tion layers can move, it is all the more desirable for the mesh to adapt itself

with the evolving solution. To do this we develop methods that (i) discretize

. ‘




(1.1)-(1.3) on a nonuniform mesh and (ii) determine the proper mesh point loca-
tions.

We discretize (1.1)-(1.3) using a finite element Galerkin method on trape-
zoidal space-time elements. This approach is similar to that of Jamet and
Bonnerot [6,22] and it was chosen because it is generally easier to generate
high order approximations to partial differential equations on a nonuniform mesh
with finite element methods than with finite difference methods. The accuracy
and order of convergence of our methods are analyzed in Davis [11]) and are
demonstrated experimentally in Section 4 of this paper.

Adaptive mesh selection strategies typically involve some recomputation of
the solution. That is, an initial solution is computed on a coarse mesh and
this is used to determine whether to add mesh points to some portion of the
domain and redo the calculation, redo the calculation using a more accurate
method, redo the computation using some combination of these methods, or accept
the present computation. Algorithms of this general type have been developed
and successfully applied to adaptive quadrature (cf. eg. Rice [33] and Lyness
and Kaganove [28)), two-point boundary value problems (cf. eg. Childs et al
[9]), elliptic boundary value problems (cf. eg. Carey (8] and Brandt ([7]), and
parabolic and hyperbolic problems (cf. eg. Berger et al [5] and white [37)).

Primarily because of the expense involved in recomputing the solution of
the partial differential equations at possibly every time step we have developed
an algorithm which initially places a fixed number of mesh points in optimal
locations and then attempts to move them so that their locations remain optimal.
Algorithms of this type have been used by Lawson [26], deBoor [12,13], and Jupp
[23] for variable knot spline interpolation and it is their work that motivated
our mesh selection algorithms.

A different approach to this problem was proposed by Miller and Miller [29]

and later extended by Galinas et al [17]. They approximated the solution of
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parabolic partial differential equations by piecewise linear polynomials where
both the polynomial coefficients and the mesh on which they were defined were
unknown functions of time. These functions were determined by minimizing the
least squares residuvals. They found that the mesh points could coalesce in
certain situations and they avoided this by adding a number of spring and
damping terms as constraints to the equations.

One advantage of the above approach is that it readily extends to higher
dimensional problems. However, we are not convinced that it is necessary to
couple the solution and mesh selection methods. This can dramatically increase
the size of the discrete system without offering any corresponding increase in
order of accuracy. Furthermore, the entire solution procedure must halt if an
acceptable mesh cannot be calculated. Under the same circumstances our methods
can continue to compute a solution on a suboptimal mesh. Since both methods are
under development we have not attempted any detailed comparisons.

In Section 2 of this paper we develop a finite element Galerkin approxima-
tion to (1.1)~(1.3) using trapezoidal space~time elements. In Section 3 we
describe a practical and efficient mesh selection procedure that approximately

minimizes the L, error of the computed solution. 1In Section 4 we apply the

2
method to a number of problems and discuss the computed results. Finally, in
Section 5 we present an overall discussion of this effort and some suggestions

for future work.




2. Finite Element Formulation

We discretize (1.1,2,3) using a finite element-Galerkin procedure. To this

end, let sn be the strip

(2.1) s, ={lxefosx<a, t <t<t

},

n n+l

choose "test" or "weight" functions v(x,t)ECO(Sn), multiply (1.1) by v, integrate

over Sn, and integrate the time derivative and diffusive terms by parts to get
tn+1 a

F(u,v) := [ S {-uv, + f(x,t,u,u )v + D(x,t,u)u v }Ydaxdt

-~ - £ 0 ~ t ~ ~ ~X ~ ~ ~X X
n

(2.2) .
a n+l n+l a
+ 7/ uv ax -/ puyv at| = 0.
0 t=t t - x=0

Equation (2.2) is called the Galerkin form of the problem and any function u that

satisfies (2.1) and the initial and boundary conditions (1.2,3) is called a "weak

solution."”
R n n n .
We introduce a mesh {0 = x1 < x2 < ... < xN = al at t = tn and a different mesh
n+l n+l < LIt W . . n
= e = = . e connect the corresponding points X,
{o xg <Xy < Xy alatt t P gp i
n+l

and x; by straight lines and consequently divide the strip Sn into a set of

. . . . +1
N - 1 trapezoids. We let xi(t) denote the straight line connecting x? and x?

(xn+l,t

n . . \ n n
and Ti denote the trapezoid with vertices (xi,tn), (xi+l'tn)’ i1 n+l),

n+l

(xi

't ) (cf. Figure 1).

n+l
We approximate u(x,t) on S, by U{x,t) € UK(Sn) which has the form
K
(2.3) U(x,t) = I c, (t)d.(x,t).
~ . ~1 1

) i=]1
The "trial" functions ¢i(x,t), i=1,2,...,K, can be used to construct a basis
for ux(sn)' They are selected to be of class Co(Sn) and, in finite element

methods, to have small support. Particular choices of ¢i are given in Section

2.1; herein, it suffices to note that ¢i is nonzero only on TE_IL)TQ and that

K must be at least N.

-4-
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We determine U on Sn by solving a discrete problem of the form

(2.4) P U(x,0) = P u®(x) ., n=0
(2.5) F (U,v) = 0,Vv eVK,
(2.6) By U0, 4y = Byt 4p) e By Ulayt 1) =D (t ).

Here VK is a finite dimensional space of co(sn) functions that depends on the

boundary conditions (cf. Section 2.3), P is an interpolation operator (cf. Section

2.3), gl’vgl' EZ' 92 are approximations of 91' ?1, §2, 92 obtained by numerical

~

integration (cf. Section 2.3), and F(U,v) is an approximation of F(U,v) obtained by
evaluating the integrals in (2.2) numerically (cf. Section 2.2). Eguations (2.5,6)
result in an MK dimensional nonlinear algebraic system for determining the Galerkin

coordinates ci(tn ), i=1,2,...K, in terms of ci(tn), i=1,2,...,K. Since

+1
ci(O), i=1,2,...,K, are determined from the initial conditions (2.4), eguations
(2.4-6) define a marching algorithm for determining U(x,t) in successive strips
Sn, n=20,1,... .

If there were no boundary conditions we would select ¢i(x,t), i=1,2,...,K,
as a basis for VK' This prescription has to be modified slightly for i = 1 and/or
i = K (cf. Section 2.3) since boundary conditions are generally imposed; however,

it is still appropriate to write F(U,v) as a sum of contributions from each

trapezoid. Thus,
N-1

F(U,v) = .z fr{ {—9 ve + £(x,8,U,U )V + Dlx,t, U, v dx at
i=1 Ti
(2.7)
N-1 x, . {t) t t + a
+ LIS My vy Mo g™ Dy v dt] =0, Vvel,
i=l x, (t) t=t £ x=0

Since the bases for both the trial and test spaces have small support most
of the integrals in (2.7) will be zero. The algebraic system (2.5,6) will be

sparse and, hence, it may be solved effeciently.

-5-




2.1. Selection of a Basis

A simple way to construct a basis on trapezoidal elements that satisfies
the necessary continuity requirements and has small support is to apply a local
transformation that maps each trapezoid onto a rectangle. The inverse of this

. n .
transformation on Ti is

_ .n n _n £+l n+l_ n
x = x; + (xi+1 x;) 5= ) + (x; "=x)T
b
n+l n+l n n, E+1
(2.8) +ox g T % X1t X 7T !
¥
t = tn + (tn+1-tn)1 .
It maps the rectangle
(2.9) rR={@g,n]-1<£<1, 0<1 <1}

in the (£,7) plane onto T: in the (x,y) plane.

We choose this basis so that ¢i(x,t) is a function of £ only on Tg. To
be specific, we currently allow ¢i(x,t) to be either a piecewise linear or a 4
piecewise Hermite cubic polynomial in £ on . P

For piecewise linear approximations we construct a basis in terms of the

canonical basis function

(2.10) $(€) = (1-6)/2, -1 < § < 1,

by defining

=

?(5) , (x,t)eT,
(2.11) ¢i(x,t) = 4¢(-E), (x,t) €T,

0 , otherwvise

ot ad

1,2,...,K = N.

..1’ i

W

Thus, the dimension of the trial space UK is K = N. Along the line xj(T) joining

x; and x?+1 we have

{2.12) ¢i(x (1), t(1)) = 61 0<t<1,

b 3’

-6-
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where Gij is the Kronecker delta. Using (2.3) this implies that
(2.13) c.(t) = U, (1) = U(x, (1), t(1)).
~1 ~1 -~ 1

. n
Thus, since only ¢i and ¢i+‘ are nonzero on 'I‘i we have

= N N n
(2.14) Vi, t) = U (OEE) + U LMo -5), (x,0)CT,.

For piecewise cubic Hermite approximations we construct a basis in terms of
the two canonical basis functions

~

~ 1
(2,150 ¥©) = 3a-0720), x(0) = ;e a-n’, 1w <,

by defining

o ve e er)
- n 3 - \
(2.16a) Cog1 Xt =4 VE), (x,t) €T 10 i = 1,2,...,N

0 , otherwise
(), (x,t) €1
(2-16b) ¢21(xlt) = —X(-E)r (xrt) (Ti_lr 1= 1121-"!N

0 , otherwise

I

Thus, the dimension K of the trial space in 2N.
1
We note that ¢_, _(x,t)CC (s ) with
2i=} n

(2.17a,b) ¢2i_1(xj(r).t(T)) = éij. ¢2i_1x(xj(r),t(r)) =0, 0<T1 <1,

but &_. (x,t) € (s ) with
2i n
(2.17¢,d) ¢, (x (1), (1)) = O, ¢2ixlxj(r),t(r)) = Gij/XE(T)' 0<t <1,

The function xE(T) is easily computed from (2.8) as

n n 1, n+l n+l_ n

n . n
- - - +
341 xj) + (xj+1 xj xj+1 xj)T, if (x,t)¢ Tj'

=1
(2.18) x. (1) = F(x 3

Thus, xg(T) is different on each trapezoid (unless the mesh is uniform and

rectangular) and ¢2i {x,t) jumps as x crosses xi(T). However, using (2.3) and
x

-7~




(2.17) we can make Uix.t) of class Cl(sn) by selecting

(2.19a) (6) = U (1) = Ulx (1), £(D),

S2i-1

(2.19b) €10 =X MY, (M = xp (@) y g (0,00,

n
Thus, on Ti we have

(2.20) U (x,t) = gi(f)w(g) + gi+1(T)w(-£) + Pxi(T)XC(T)X(E)

- U (Tyx_ (T)x(-5).
~Xi+1 £

2.2 Numerical Integration

Ignoring the boundary conditions for the moment, we choose v = ¢j(x,t)

according to either (2.11) or (2.16) and use (2.8) to transform (2.7) to

N-1
2.21) F(U,$.) = I I1I.(U,$.) ~I_(U,4.) =0, 3 =1,2,...,K,
(2.21) F(U.9) L I; (08 - 15,00 j=1,2 K

where

11
(2.22a) LU,y = é_{ {-g Ve Et + f(x,t,g,gggx)v
+ Dix,t,0U v.£2)|g|aEat + ff u v x !
- ~ - Ex -1 " & T=0
1 x=a,f=1
(2.22b) I.(U,v) = /7 D(x,t,0) U vE tTdTl
~E - 0 Vs X x=0,E=-1

The functions Et' Ex' XE' to and ]J] the Jacobian of the transformation
can be computed from (2.8).

In order to complete the specification of our numerical method we need to
select quadrature rules for evaluating the integrals in (2.22). We use the
Trapezoidal rule to evaluate the T integrals and a three point Gauss-Legendre
rule (cf. Abromowitz and Stegen [1], Chap. 25) to evaluate the £ integrals.

The latter was chosen because it is known (cf. Strang and Fix [35]) to have the

same order discretization error as our finite element method with cubic

-8-




approximations and the exact integration of (2.22). At present, we also use the

three point Gauss-Legendre rule for linear approximations although it is more

accurate than necessary in this case and therefore somewhat inefficient.
Upon use of the above mentioned quadrature rules eguations (2.25) become

A N"l ~ ~ l .

2.23) F(Uu,6.) = Z 1.(U,¢.) -1I_(Uu,d,) =0, 3 =1,2,...,K,

( P = I L) - T 3
[

~ A )

where li and IB denote the approximations of (2.22) that are obtained by numerical

integration.

2.3. Initial and Boundary Conditions. Solution Technique.

The solution U is determined on Sn by solving (2.23) together with the
initial and boundary conditions (2.4) and (2.6), respectively. We satisfy the
initial conditions (and implicitly define the interpolation operator P of (2.4))

by requiring

(2.24a) t° = ®(x,), i =1,2,...,N,
~1 ~ X

for both linear and cubic approximations, and additionally

(2.24b) v o= Wix.), i=1,2,...,N
~xi ~X 1

for cubic approximations. Here

e

n no_ n
(2.25) U, := H(xi'tn)' Ux : Ux(xi,tn).

We obtain the approximate boundary conditions (2.6) by substi-
tuting (2.3) into (1.3), integrating the resulting eguation from tn to tn+1, and
evaluating the integrals by the Trapezoidal rule. Each boundary condition is
associated with a particular partial differential equation in the vector system.
The test space Vx is modified by setting the test functions ¢land ¢N (for linear

approximations) or ¢ (for cubic approximations) equal to zero for those

2N-1

partial differential equations associated with boundary conditions. This has

-9~
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the effect of replacing the Galerkin approximation of a partial differential
equation at either x = 0 or x = a by its corresponding approximate boundary

condition.

The system (2.6), (2.23) is a nonlinear algebraic system for determining

+
pH
~1

. R . . + +
, i=1,2,...,N for linear approximations or U? l, Un 1

cubic approximations given the same information at t = tn. We solve this non-

linear system by Newton's method which requires the computation of the Jacobian

. + + n+
of the vector [F(U,¢1),F(U,¢2),...,F(U,¢K)]T with respect to [U; 1, 2 1,...,UN llT
. . . + + + + +1.T .
for linear approximations or [Un 1, Un 1, Un 1, Un 1,...,Un+l, " 1] for cubic
~ ~xl ~2 ~x2 ~N ~Xy

approximations. The Jacobian will be block tridiagonal because of the local
nature of ¢i. The elements in the i th block of rows will be the MX M matrices

35(91¢i)

(2.26a) , J=i-1,1i, i +1

for linear approximations and the 2M x 2M matrices

AF (U, d,; ) 3F (U, 4,; ;)
n+l n+l
agj auxj
(2.26b) p3=i-1,4, 0+ 1,
3F (U,4,.) OF (U,0,.)
aUn+1 BUn+1

) ~X.
L i -
for cubic approximations. The elements of (2.16) are obtained from (2.22,23) in

a relatively straightforward manner, but their computation requires users of our

code to supply subroutines that define fu(x,t,u,ux), fu (x,t,u,ux), and Pu(x,t,u).

-~

-~ ~X -

Subroutines that define f(x.t,u,ux) and D(x,t,u) must, of course, also be supplied.

We calculate and factor the Jacobian once per time step and use U(x,tn) as an initial

guess for U(x,tn+1). The linearized Newton system is solved by an efficient block
tridiagonal algorithm that uses pivoting both within and outside of bluiks (cf.

Davis [11]). Generally two iterations are performed per time step.

«10-
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3. Adaptive Mesh Selection Strategy

In Section 2 we developed a finite element method to obtain numerical
solutions to systems of partial differential equations on nonuniform trape-
zoidal grids. 1In this section we construct an algorithm to select a grid at

t=t so that the L_ norm of the error at tn is approximately minimized.

n+l 2 +1

This algorithm builds upon the work of deBoor [12]), Lawson [26], and Jupp
[23] on variable knot spline interpolation.

For most of this section we will be discussing approximations at a single
time level, say t = tn. so whenever there is no possibility of confusion we
omit the n superscript on x: and 92 and surpress the t dependence when writing
E(x,t). We also present the development for scalar functions u and indicate
the extensions to vector functions in Section 3.2.

It is well known (cf. [10,35,36]) that the errors in finite element-

Galerkin methods for problems like (1.1-3) satisfy estimates of the form

(3.1) llu-UIlL2 1cllu-t30HL2.

where PU(IUK interpolates u. Thus, the error in the solution of the partial
differential equation is bounded by an interpolation error. The following
result (cf. e.qg. Pereyra and Sewell [31]) indicates how to minimize this

interpolation error for piecewise polynomial interpolants.

Lemma: Let HN = {0 = xl < x2 L EIERY 4 xN = a) be a partition of [0,a)

. . 2+
into N-1 subintervals and let u(x) € C l[0,a]. The piecewise poly-

nomial of degree £ on (xi,x ). i=1,2,...,N-1, that interpolates

i+)
to u on HN has minimal L

, error when the knots X i=2,3,...,8-1

are chosen such that

(3.2) h:+1|u(2+1)(€i)l =E, i=1,2,...,N-1,

(2)

where u

is the 2 the derivative of u with respect to x, Ci E(xi,x ).E

i+l

is a constant, and
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‘. (3.3) h, = x, - X..

The Lemma states that the interpolation error is minimized by selecting the

partition in such a way that the quantity hf#llu(g+1)

(Ci)l is equidistributed.
Considerable success has been achieved by using this result to implement adaptive
3 grid algorithms for two-point boundary value problems (cf. Lentini and Pereyra
[27), Ascher, Christiansen, and Russell [2), or Russell and Christiansen [34]).
Nevertheless, some practical difficulties still remain and we discuss these and

our solutions to them below.

Rather than work with (3.2) directly, we follow Lawson [27) and Jupp [23])

and express (3.2) in the form

(2+1) (2+1) 1/(2+1)
u , 1=

(3.4 p, =nh /b <= (l

i+1 €m0 g ]

where £ = 1 for piecewise linear and % = 3 for piecewise cubic approximations.

In addition to (3.4) we impose the constraint that

(3.5) h1 + h2 + ... + hN-l = xN - xl.

This can be expressed in terms of the pi's by defining

(3.6) z =14 (pl) + (plpz) + (p1p2p3) + ... 0+ (p1p2p3 e+ Pyy

and observing that

(3.7 z=(hy +hy, +hy + ... +h )h= (x - x)/h

Equations (3.3,4,6,7) permit us to determine hi' i=1,,2,...,N-1, and

(2+41)

x50 i=12,...,N, in terms of u without an explicit determination of E.

Of course, u(2+1) is unknown and must be approximated by U(£+l).

The
finite element procedure provides us with an approximate solution U and for
cubics an approximate first derivative Ux‘ However, equation (3.4) requires

a knowledge of second derivatives for linear approximations and fourth deriva-

tives for cubic approximations. This situation typically arises in adaptive

-12-




mesh algorithms and it is usually resolved by using finite difference approxima-
tions for the necessary higher derivatives.

DeBoor [12] used finite difference approximations to choose mesh points for
the solution of two-point boundary value problems by assuring that the (£+1)st

derivative was constant on each subinterval, We modify this scheme slightly by

assuming that U(Q*l) is linear on each subinterval and takes on the following
values at the nodes: () )
AUl/z/(h2+h1), i=1
2AU(£)/(h +h) i=2
172 21"
(2+1) (2) (L) L .
(3.82) U (x,) -4 BU; 3 0/ thy ¥Ry _5) # AU D) o/ (hithy )y d = 3,40 ned
(%) .
AUN~3/2/(hN—1+hN-2)' i=N
where
\
(3. 8b) sul® e @) - oY),

We use the approximation

(3.9a) (U, - U, .})/h

U2 = 9 = BP0
for linear polynomials and

(3.9b) Uil1/2

3
12005 470370y

2
+ 6(U +U_)/h.
X1 X i-1

for cubic polynomials.

(L+1)

We note that P, becomes infinite or indeterminate when u (Ei) =0

(L+1)

(cf. (3.4)); hences we can expect numerical difficulties when u (x) is small

on any subinterval. Indeed numerical experiments have shown that the mesh
fL+1 ,
becomes very sensitive to small perturbations whenever U( )(x) is of the same

order of magnitude as the discretization error in the computed solution U.

«]l3-

. e—
[—

s i




U(2+1)

We combat this problem by imposing a lower bound on | (x)!. Thus,

we let Atn = (tn+1-tn) and h = a/N denote the current timc step and the average

mesh spacing, respectively, and for linear approximations we calculate fU (x.)]
i

2

as the maximum of the value computed by (3.8,9) and max(Ltz/h ,hz) while for

. ) . i .
cubic approximations we calculate IU( V)(xi)l as the maximum of the value com-

puted by (3.8,9) and 12 max(At/h,hz) + 6 max(At4/h3,h2). These limits were l

determined empirically. They are small enough so that they do not affect the

I
mesh adaption procedure when U(1+1)(x) is not small but large enough to avoid the {

numerical difficulties caused by vanishing values of U(n+1)(

U(£+l)

x). Observe that if ;

(x) is uniformly small on [0,a] our limits assure that the solution of

(3.3,4,6,7) is a uniform mesh, as it should be in this case.

The discussion thus far has concerned the computation of an optimal grid
at a time level tn where the solution U" has already been computed. We wculd
also like to estimate an optimal grid at time level tn+1 prior to computing the
solution there. This can be done by extrapolating the optimal grids computed

at a number of previous time levels to tn It was somewhat surprising that

+1°

numerical experiments seemed to favor zero order extrapclation; i.e., the optimal

grid computed at time level tn is used at time level tn Multi-level extraro-

+1°

lation consistently overestimated the distance that a mesh point should move in

one time step and then overcorrected this error in the next time step. In some

cases this caused the mesh to oscillate wildly when in fact the sclution changed
very little. when we simply extrapolated the optimal mesh determined at the prev-
ious time level it tended to follow the solution even when rapidly moving fronts
were present.

It is easy to show that the mesh selection strategy (3.3,4,5,6) maintains
the knot ordering so that no two mesh points can cross. It does not however
prohibit severely distorted trapezoidal elements. Ciarlet and Raviart [10] and
Babuska and Aziz [3] have studied the effect of element distortion on the

accuracy of the finite element method. They have shown that the error obtained

-14-




when computing on trapezoidal elements is a multiple of the error obtained when
computing on rectangular elements. The multiplicative factor is proportional to

a power of the magnitude of the derivatives of the transformation (2.8). There-

fore we must control the magnitude of these derivatives in order to maintain

acceptable accuracy. We let ;

n n n n
. , = . - . = - ’ W, = . .
{3.10) hl Xia "% Atn tn+l tn tan i h:./Atn

Hence, Ui is the angle between the line xi(t) and the positive t axis.

Differentiating (2.8) and using (3.10) we find

= n] + r(h:*l-h'i‘)]/z,

*e

(3.11) XT = Atn[tan wy + (tan 0, ~-tan mi)(£+l)/2],

1

t, =0, tT = Atn.

g

. +
Since the magnitudes of h; and hz 1 are controlled by the bounds that we
. 2+ . . - )
imposed on |U( l)l and Atn is prescribed, we can limit the magnitude of the

derivativesin (3.11) by controlling the growth of |tan SR We found that the

condition

(3.12) max o | < 3n/8
1<i<N

worked well in practice.

3.1. Mesh Selection Algorithm

In this section we discuss some details of a mesh selection algorithm based
on the discussion of the previous section. The first algorithm uses the finite
element solution U(x,tn) calculated on the mesh xz, i=1,2,...,N, and equations
(3.3,4,6,7) to find a new mesh at t = tn that satisfies the optimality condition
(3.2). This is the mesh that should have been used to calculate U(x,tn). Instead

we use it in the second algorithm to estimate an optimal mesh at t = ¢t .
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The difficulty in solving (3.3,4,6,7) for the optimal mesh is that these

equations are nonlinear and must be solved iteratively. We use a relaxation
scheme that is similar to one which has been analyzed by Isaacson and Keller
[21, chap. 3]. They give necessary convergence criteria, but, we chose not

to incorporate these into our algorithm because they require too much additional

computation. The following algorithm, which calculates the relaxation parameter

heuristically, has not failed to converge in any of our tests. h

t
1. Set the relaxation parameter 2 := 1 and let x;o):= I

X, i=1,2,...,N be an initial guess for the optimal 1
4

mesh. Calculate

(0) _ (0)__(0) (0)__(0)
z 1= (xN Xy )/(x2 X, )
z(l, = 2z + 2€
v = 1 j

where € is a convergence tolerance.

i
2. Compute

U(2+1)(x;0))’ i=1,2,.,..N

using equations (3.8,9).

3. while |z(\))—z(v+l)| >€or v <V do
—_— — max —

(2+1)

4. Calculate U

(va_l)
1

), i=1,2,...,N by linear
{0)

i

(2+1)

interpolation of U (x, '), i=1,2,...,N.

Calculate

p:v) . |U(2+1) x_(v-l)

(241)
i+l u

(v—l))‘l/(£+1)

( i+2

)/ (x

i=1,2,...,8-2.

and

A , ;
3 2 tm 1 4+ (p;v‘) + (p{v)p;v)) + ... (p{v)pév)...p;t;).

-16-
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5. Ifv>1 then

If Iz(v)-z(v-l)l Z_lz(v-l)-z(v-Z)lthen Q = Q/2 i

6. Calculate )

V), (v-1) _ (v=1) 2 ()

1 ‘m (xN 1 V/z ’

L)) (el K
) AR 1 ’ 3
vy _ sy (v-l) ;

XN H xN : xN ’ {5

ST v
iv] Xty t
V) _ . V) ) o ,

hi+1 1= hi Py > i=1,2,...,N-2
V) o V) 0y, VD)
i+l ° Qxi+1 + Q)"i+l
V) VW, ) W)

R \Y) \Y] \Y
z : (xN X )/(x2 - % ),

7. V=V +1

V)

AY :
For vector systems we need only to change the definition of pi used in step 3.

We used
v) (2+1) ,_ (v-1) (241) 1/(2+1)
P gLy U g T g ) '
where U, is the j th component of U,
J ~
“n+l ) .
After we compute a convergent mesh, xi = xi , 1=1,2,...,N, we perform
the following:
1. Compute
Ax = max |§n+1-x?|
max i i

2<i<N-1

2. If Axmax :-Atn tan (3n/8)

then Axfixz- Axmax

else Axfixg. Atn tan(3n/8).
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+
3. Compute corrected mesh x" 1 as

n+l n “n+l n
x, =x, + (X, T-x,)8x /bx,. , ;
i i i i max fix i

»-

=2,3,...,N-1

Steps 2-3 prevent the elements from becoming too distorted.

The algorithms contain several approximations and heuristic procedures. 1
Derivatives are estimated by differences and are assumed to vary linearly
between mesh points. Zero order extrapolation was used to predict optimal
grids at subsequent time levels. Grids were restrained to prevent severe
element distortion. Even with these approximations the mesh selection
algorithms performed satisfactorily on all test examples that we considered.
In addition we note that Rheinboldt [32] has shown that an order A error in
the placement of the optimal mesh only produces an order A2 change in the

computed solution. Thus, it suffices to only be close to the optimal mesh

in order to reap its benefits.




4. Computational Results

In this section we examine the performance of our method on four prcblems
which are graded in difficulty such that each one exercises an additional facet
of the method. The following norms are used to evaluate the performance of our

method on examples where exact solutions are known.

(4.1a) He(t)“°° = max ]e(x.,t)lm = max |u(x.,t) - U(x.,t)]co
1ign ~ Y 1<i<N ~ -t
(4.1b) lIe(t)||L2== iil (h;/2) (le(x, ,¢) |2+ letx;,, 02 [2),
where
(4.1c) |y|@ = max lvkl.
1<k<M
Example 1:
u, = (l/ﬂ)zuxx, 0<x<1l,t>0
(4.2)

u(l,t) = 0.

u({x,0) = sin 7 x, u(0,t)

The exact solution is

-t _.
e sin T X.

u(x,t)
Analysis presented in [11] indicates that the finite element method des-

cribed in section 2 would have L, error of 0(h2) + O(Atz) with linear elements
and O(h4) + O(Atz) with cubic elements on a uniform spacial mesh of width h and
a uniform time step of duration At. We created this simple constant coefficient
example to verify that these errors are actually attained. Fiqures 2 and 3
present plots of the L2 error at t = 1 as a function of h for linear and cubic
approximations, respectively.

The analysis of [11] predicts that the points on Figure 2 for which At = h

and the points in Figure 3 for which At = h2 should lie on straight lines having
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slopes 2 and 4, respectively. These lines are shown confirming that the thecr-
etical error bounds are actually attained.

Example 2:

(4. 3a) u =0u _ + f(x), 0<x<1l,t>0,0>0. -
t XX !

The initial conditions, boundary conditions, and source f are chosen so that the

exact solution is

(4.3b) u(x,t) = tanh (rl(x-l) + rzt)

The solution (4.3b) is a wave that travels in the negative x direction

when rl and r2 are positive. The values r and r, determine the steepness of

the wave and its speed of propagation. Thus, the problem can be made more or

less difficult by adjusting rl and Ty

We created this problem to study the effectiveness of our adaptive mesh 4
algorithm at concentrating grid points in transition regions, following moving
fronts, and reducing errors below those of uniform grid calculations.

We first solve problem (4.2) with rp=r,= 5, uniform time steps of

At = 0.01, 10 elements per time step, and linear approximations. The mesh com-

e

puted by our adaptive mesh algorithm is shown in Figure 4. The grid points are

=

PR

concentrated in the region of maximum curvature and move to the left with the

wave. As the wave front passes out of the domain and uxx becomes small, the
grid points move toward a uniform distribution. It is clear that the grid

adapts to the solution and follows its progress.

TR T

As a somewhat more difficult problem we solve (4.3a) with initial con-
ditions, boundary conditions, and forcing function chosen so that the solution
is given by (4.3b) with rp=x,= 100. The wave front is much steeper than in

the previous test of (4.3).
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In Table 1 we present a comparison at t = 1 of the results of computation
using linear approximations on a variety of uniform and variably spaced meshes.
These results are somewhat disappointing. At best the mesh moving scheme improves
the accuracy of the solution only slightly. The improvement is greatest when At
is small and in some cases, when 8t is large, the uniform mesh is mocre accurate.
A closer examination explains these results and reveals something about the nature
of this mesh moving scheme.

Table 1 shows that the solution of this problem was not computed accur-
ately with either a uniform or a variable mesh. This can be explained by examin-
ing the time evolution of the solution at a fixed value of x, say x*. The
solution is approximately given by -1 until the time when the wave reaches the
point x*. It then jumps suddenly to a value near l. If the time step At is
too large to resolve this transition, we would expect large errors in the
vicinity of the wave. The solid curve in Figure 5 confirms this prediction.

The mesh selection procedure misinterprets these errors as being part of the
solution and places too many points in the region outside of the wave front.
Thus, a suboptimal mesh is selected and the expected decrease in the error is
not obtained. When At becomes small enough to adequately resolve the passing
wave the mesh selection procedure does improve the accuracy of the sclution
(cf. Table 1).

This points out the need for an algorithm to adaptively refine time steps
in the vicinity of severe temporal gradients. Such a procedure was used by
Berger et al. [5] to solve hyperbolic partial differential equations and we are
currently studying its suitability for our code.

Table 2 summarizes the results of computations performed on the same
problem using cubic approximations. 1n these cases the time steps At were

small enough to resolve the transition of the solution and the cubic

-21~
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approximations were accurate enough to provide us with reasonable estimates of
the derivatives. As a result, the variable mesh scheme improved the sclution
significantly.

Figures 5 and 6 for linear and cubic approximations, respectively, show
that the mesh selection algsrithm tends to distribute the local error evenly
over the domain and thus, as indicated in Section 3, approximately minimizes
the error in L_.

2

Example 3: (Burgers' Equation)

ut = —uux + Cuxx' 0<x<1l, t>0,
(4.4)
u(x,0) = sin 7 x, u(0,t) = u(l,t) = 0O,
and € = 5 x 10 °. | !
It is well known that the solution to this problem is a wave that steepens
and moves to the right until a shock layer forms at x = 1. After a time of 0(1/¢
the wave dissipates and the solution decays to zero. Figures 7 and 8 show the
results of computations on this problem using linear approximations on a uniform
mesh and a variable mesh with a constant time step of At = 0.1 and 10 elements
per time step. The results in Figure 7 are typical of finite difference or finite
element calculations for this problem. Spurious oscillations develop in the com-
puted solution unless the mesh width is of the same order as the width of the
shock layer. which is 0(Y€) for this example. The variable mesh results in Figure
8 largely surpress these oscillations by automatically concentrating the mesh in
the shock region as the wave steepens.
When Example 3 is solved using cubic approximations on a uniform mesh we
find that the solution U? at the nodes is computed accurately; however, there are
large errors in the slope of the solution U: at the nodes when the mesh is not

i
suitably fine in the shock region. This effect is exhibited in Figure 9 where

-22-

— ‘”"“.‘ﬁﬂﬁ‘ﬂ“HﬁH-Ihhﬂnhﬁnun-IlI-...-...I-ﬂ..-.....-..




the solution at t = 0.6 is shown for a calculation performed with At = 0.1 and

N = 10. Equations (2.6,19,20,23) were used to calculate the solution between
mesh points.

One possible explanation of this behavior was proposed by Miller and
Miller [29], but they do not explain why the large error in the slopes do not
feed back and cause large errors in the function values.

Once again, these problems are corrected when the mesh adapts with the
solution. Figure 10 shows the result. of a similar computation using cubic
approximations on a variable mesh. Both the function values and slope values
are computed accurately at the nodes.

Example 4:

o
]

(u (s)bx]x ~ [bx(S)sx]x,

(4.5)

]
t

-k(s)b, 0 < x <5, t>0.
This two component nonlinear system was studied by Keller and Odell [24,30] as
a model for the chemotactic motion of bacteria. The quantity b(x,t) denotes

the bacterial density and s(x,t) denotes the concentration of the critical

substrate (bacterial food). 1If the functions y,X and k satisfy conditions

derived by Keller and Odell [25], equations (4.5) have travelling wave solutions.

These solutions have been computed by Odell and Keller [30] and are interpreted
as travelling bands of bacteria. For our study we choose k(s) = 1, u(s) = Ugr
and X (s) = Go/s where v, and Go are constants. The initial conditions are

shown in Figure 1lla and the boundary conditions are
(4.6) b(0,t) = b(5,t) = 0, s(0,t) = 1.

We solved this problem for Go/uo = 2 using cubic approximations, uniform
time steps of At = 0,005, and 50 elements per time step. The computed solutions

at t = 0, 0.1, 0.5, and 1.0 are shown in Figures lla,b,c, and d, respectively.
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The method places the majority of the mesh points in the regions of the wave
fronts and follows the bacterial motion. The results indicate that our adap-

tive mesh algorithm may be also used for vector systems of equations.
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5. Discussion and Conclusions

The computations presented in the last section show that it is possible to

construct an accurate and stable adaptive grid finite element method for nonlinear

systems of partial differential equations and that such techniques offer advantages

ver fixed grid techniques. 1In particular, we have shown that the error estimates

obtained by Davis [11] are actually realized in practice and that the adaptive mesh

algorithm correctly concentrates the mesh in a sharp transition and is able to
follow moving fronts. Examples 3 and 4 of Section 4 indicate that our method is
also useful for nonlinear equations and vector systems of equations.

In the present study we used piecewise polynomial functions for both the
trial and test spaces. However, recent work of Flaherty and Mathon [1S], Heinrich
et al. [18], and Hemker [19] indicates that exponential and "upwinded" polynomial
functions may give superior test spaces for singularly perturbed prcblems. We
plan to incorporate these functions into our methods shortly.

All of our calculations were performed with a constant time step. Examples
3 and 4 of Section 4 indicate that it would be most desirable to be able to vary
the time step during the calculation. Our code presently allows for this, but as
yet we have not implemented an algorithm to adaptively alter the time step. We
also plan to add this feature to our code shortly.

Other areas for future study include free boundary problems and higher
dimensional problems. The present work has shown that it is possible to construct
a practical adaptive grid finite element method. Future work must refine this

method and apply it and test it on a greater variety of problems.
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ot TABLE 1
Results of Computations at t = 1 for Example 2 with r1 = r2 = 100 using Linear
Approximations on Uniform and Variably Spaced Grids.
Uniform Spacing Variable Spacing
‘!)
' i
N se | Ileil, el lell, lell, ~
2 2
10 0.1 0.168 0.137 0.459 1.346
0.05 1.107 1.708 0.492 0.949
0.01 0.146 0.254 0.121 0.340
20 0.1 0.365 1.391 0.567 1.00 j
0.05 0.177 0.392 0.15% 0.746 £
0.01 0.768 E-1 0.226 0.166 E-1 0.870 E-1
40 0.025 0.367 E-1 0.697 E-1 0.348 E-1 0.565 E-1
0.01 0.342 E-1 0.158 0.106 E-1 0.105 ]
4
100 0.01 0.701 E-2 0.703 E-2 0.493 E-2 0.158 E-1 |
0.144 E-2 0.275 E-2




TABLE 2

Results of Computations at t = 1 for Example 2 with r, = r. = 100 using Cubic

1 2

Approximations on Uniform and Varibly Spaced Grids.

Uniform Spacing

Variable Spacing

X se | Tlelly, el e, lell,
10 0.01 0.607 E~-1l 0.801 E-1 0.130 E-1 0.232 E-1
14 0.005 0.319 E-1 0.257 E-1 0.332 E-2 0.602 E-2
20 0.01 0.214 E-1 0.394 E-1 0.167 E-1 0.951 E-1
0.005 0.185 E-1 0.309 E-1 0.483 E-2 0.950 E-2
0.0025 0.138 E-1 0.405 E-2 0.353 E-3 0.170 E-2
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Figure 1: Space-time discretization for the time step tn <t < tn+1'
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Figure 2: Lz error vs. h for Example 1 computed on uniform meshes with linear
approximations. The dotted line connects points for which At =« h.
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Figure 3: Lz error vs. h for Example 1 computed on uniform meshes with cubic

approximations. The dotted line connects points for which At = K.
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Figure 4: Mesh selected for Example 2 with ry
At = 0.1, N = 10, and linear approximations.
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Figure 5: Local error at t = 1.0 for Example 2 with n=r,-= 100, uniform time

steps of At = 0.01, N =« 20, and linear approximations. The solid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 6: Llocal error at t = 1.0 for Example 2 with r, = r_ = 100, uniform time

1l 2
steps of At = 0.0025, N = 20, and cubic approximations. The so0lid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 6: Local error at ¢t = 1.0 for Example 2 with r, = r_ = 100, uniform time

1l 2
steps of At = 0.0025, N = 20, and cubic approximations. The solid curve was com-

puted on a fixed uniform mesh, the broken curve on a variable mesh.
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Figure 7: Solution of Example 3 for various values of t using linear approxima-
tions on a uniform mesh with At = 0.1 and N = 10,
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Figure 8: Solution of Example 3 for various values of t using linear approxima-

tions, uniform time steps of At = 0.1, and a variable mesh with N = 10 elements
per time step.
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( Figure 9: Solution of Example 3 at t = 0.6 using cubic approximations on a uniform
& mesh with At = 0.01 and N = 10.
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Figure 10: Solution of Example 3 for various values of t using cubic approximations,
uniform time steps of At = 0.01, and a variable mesh with N = 10 elements per time
step.
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Figure 11: Computational results for Example 4 with 6°/p° = 2.0 using uniform time
steps of 4t = 0.005, N = 50, and cubic approximations at t = 0, 0.1, 0.5, and 1.0.
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