AD=A098 121 MARYLAND UNIV COLLEGE PARK COMPUTER VISION LAB F/6 9/2
IMAGE PROCESSING ON MPP, (U}
FEB 81 T KUSHNERes A Y WU+ A ROSENFELD AFOSR=-77=-3271
UNCLASSIFIED TR=1007 AFOSR=TR-81-0367

e —

ol =
"l"=———_l_o e m"i

il TR ——

ToBse

[l &

= &
LS s e

-
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1967 2

— — T " 1

T IR @

AOGS121

2 DTIC
ELECTE

COMPUTER SCIENCE Q APR 2 3 1981%

TECHNICAL REPORT SERIESW -7

iy UNIVERSITY OF MARYLAND
| COLLEGE PARK, MARYLAND
20742

QYT 4 99

&pproved for public rel angey

8 1 di..tributiox .mlinutei. k“ 9

& :’:

‘;,‘i 5".&

ﬁn

gﬁ.ﬁﬁ&»l

TR-1007 February 1981
AFOSR-77-3271

IMAGE PROCESSING ON MPP: 1

Todd Kushner
Angela Y. Wu *
Azriel Rosenfeld

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742 e TR

o LA

(O
—
C ates

N ABSTRACT : b

The Ma551ve1y Parallel Processor (MPP) is a 128 by 128
array of processing elements that communicate with their
horizontal and vertical neighbors by shifting data one bit
at a time. This paper describes the efficient use of MPP for
various types of image processing operations, including point
and local operations, discrete transforms, and computation of
image statistics. A comparison between MPP and ZMOB (a system
consisting of 256 microprocessors) is also presented.

A

*Also with the Department of Mathematics, Statistics, and
Computer Science, American University, Washington, D.C.

The support of the U.S. Air Force Office of Scientific Research
under Grant AFOSR-77-3271 is gratefully acknowledged, as is
the help of Sherry Palmer in preparing this report.

ALR FORCE QOFFiCE (i SCIENTIFIC RESEARCH (AFSC)
NOTTCE OF TRANUMITTAL TO DO

This technical repert hiss buen reviewed and s
appreved oo plog eelcase 1AW AFR 190-12 (7).
Distritution is unligited.

A. D. BLuUSH

Technical Information Officer

UNCLASSIFIED
SECUAITY TLAS ICATION QF Twil PAGE (When Data Enterea)
EPORT DQCUMENTATION PAGE J IEFORE cone e PR

2. GOVT ACCESSION NQ). RECIPIENT'S CATALOG NUMBER

OSRYTR—8 1 = { gp-Ho95 2 A

M T —— | 5 }“’Wi PE€A100 2OVERED
” iMAGE ’PROCP‘.SSING ON &PP\ 4 9 _//" <L //77 7[/b/;:f,
. » - '__,J _____'
| R /) Tr-1007
R T, (A RONTRAGT OR SRANT NUMBER(e)
Todd ﬁ(ushner . / }/
Angela Y. / MV AI’OSR—77—3275

[9- PECRFORMING ONGANIZATION NAME ANO ADORESS

Computer 7Vision Laboratory, Computer
Science Center, University of Marvyland,
College Park, MD 20742

11, CONTROLL/NG QFFICE NAME ANO A0CRESS / e e
Math. & Info. Sciences, AFOSR/NM — .“Febn-uty 3081/

Bolling AFB /7 //j 13. NUMBER OF BAGEY
Washington, DC 20332 e {32

14, WONITORING AGENCY NAME § AQOAESS I/ glllerent lremm Canwrolling Otlice) 1S, SECURITY CLASSK. (of thie report)

U . Unclassifiad
[)35]

' . iSa 3EC~ASSI‘|CATICN/ CCWNGRACING

ROGAAM SLIMENT. PROJECT, TasK
REA & YORK UNIT NUMBERS

30Y/RL Gr/OR /=

r—]

SCHEDULE

T
16 ANITRIBUTION STATEMENT (of hie Ropari)

Approved for public release; distributicn unlimiced.

17. NSTRBUTION ISTATEMENT (of the absizast sntored /n Bleck 0, il dillevrent (rem Repert)

8. SUPe_EZnENTAARY ~QTES

19, KLY SQROS (Contirnue en reverse ade i(nenveoary and igeniity ey biock mumber)

Image processing

Pattern recognition

: Parallel processing

Cellular computers

. MPP

10. ABSTNACT (Coanttrvue en reveree s/de |l Neqveoary and (dentily by Bdiocl manser)

4 The Massively Parallel Processor is a 128 by 128 array of
processing elements that communicate with their horlzontul and
vertical neighbors by shifting data one bit at a time. 7This
paper discusses the efficient use of MPP for various tyjes of imaice
processing operations, including point and local operations, dis-
. crete transforms, and computation of image statistics. A compar-
| ison between MPP and ZMOB (a system consisting of 256 micro-
processors) is also presented.

DO /3%, 1473 toimom or 1 wav a3 s cesoLETE UNCLASSIFIED /

SECUMITY SLALSIFICATION OF Twis Aaill . Men Jere Lateved)

s 2L oY 7

~—

2

baywlesis

1. Introduction

1.1 MPP

The Massively Parallel Processor (MPP) is a 128 by 128
array of processing elements (PEs) that communicate with their
horizontal and vertical neighbors by shifting data one bit
at a time. For a description of the MPP design see [l1]. 1In
the following paragraphs we outline only a few basic features
of MPP that are needed in designing image processing algorithms
for it.

Each image processing algorith& implemented on MPP
will consist of two phases: computation and communication.

To support the computational aspect of parallel algorithms,
each PE, while being a "bit-slice" processor, is capable of
supporting a complete conventional instruction set. Each PE
has a bit addressable local memory of 1024 bits and a number
of fast registers to support arithmetic and interprocessor
communication.

Parallel algorithms generally require interprocessor
communication: to accomplish this, every PE can synchronously
shift data to its north, south, east, or west neighbor.

(At the array edges, processor passing may "wrap around" to

the PEs at the other end of the row or column.) When loading
data from the host machine, a 128-long bit vector may be passed
to the 128 edge processors all at once, which may in turn

shift it across the image while the rest of the image is loaded.
In the current configuration this data loading occurs over a

UNIBUS from a VAX host.

T T Sy . . A

sy

~ ot

1.2 1Image Processing on MPP

This paper deals with the efficient useof MPP for
performing various types of image processing operations,

including point and local operations, discrete transforms,

and computation of image statistics. The aim is to make the
fullest possible use of MPP's parallelism, so as to achieve
a speedup by a factor proportional to the number of PEs (1282 = j
16,384). We also compare MPP processing with performing
operations on the host VAX itself, as well as with processing
on ZMOB (a system consisting of 256 microprocessors that
communicate via a fast shift-register bus). A more detailed

treatment of image processing on ZMOB can be found in [2].

Accencinn For

nTT
ied Lo

Ehdit s w

= o g SN a2

.-

W)«wv»w’m bl YR ——

2. Point Operations

A point operation on an image maps the value of each
pixel into a new value, independent of the values of other
pixels. The image is divided equally among the PEs; 1 pixel/

processor for a 128 by 128 image, 4 pixels/processor for a
256 by 256 image, 16 pixels/processor for a 512 by 512 image,
and so on. Images much larger than 512 by 512 cannot be held
in the 1024 bits of local memory available to each PE. The
PEs are loaded with the image data from the host VAX over the
UNIBUS, the point operation is performed, and the results are
returned to the host VAX.

To compute the amounts of time needed to perform point
operations on MPP and on the VAX, let G, and CV be the times
for an MPP PE and for the VAX, respectively, to perform the
given operation on one pixel. In an N by N image, there are

2

N2 pixels: thus, CvN and qu2/16,384 are the times to perform

the point operation on the VAX and MPP (with its 16,384 pro-

cessors) , respectively.

However, in the case of the MPP, there is also the amount
of image loading and unloading time to consider. On the MPP,
data is loaded from the host VAX, via the UNIBUS, to a staging
area of the MPP, where the data is input simultaneously to 128
edge PEs, 128 bits at a time. Letting r be the rate at which

a byte of data is transferred on the UNIBUS (400nsec., and p be

the rate at which a bit of data is passed between PEs, let us

compute how long it takes to load a 128 by 128 (say) image
of byte-long pixels: 1) from the VAX to MPP staging area
via the UNIBUS, and 2) from the MPP staging area to the PEs
(a concurrent process). Via the UNIBUS it takes 128 x 128 x r,
or 6.534msec. From the staging area to the PEs, it takes
128 x 128 x 8 bits x 1/128 (number of bits passed simultaneously)
X p, or 1.024ysec. Thus, the UNIBUS is the rate-limiting
step of the MPP image loading process, and the total time to
load and unload is er + er = 2rN2.
In summary, on the VAX, the time to perform the operation
on the entire image is CVNZ, while the time to perform it on

the MPP is 2rN2

+ cmN2/16,384. If 32,768r + Ch < 16,384CV,
using the MPP is faster than using the VAX.

with local operations, the situation is more complicated
because information must be shared between neighboring processors.
The next section will discuss the amount of time it takes to
perform local operations, using different neighborhood geometries.
A comparison with performing an (iterated) operation on the

host VAX will also be given. Due to the limited local memory

of MPP PEs, the focus of the discussion will be the one pixel

per PE case.

3. Local operations

Each iteration of a local operation consists of two
steps: a neighbor-passing step, and a computation step
involving the gathered neighborhood. Several types of local
neighborhoods are commonly used, and these (with the steps
involved in passing neighbors) are outlined in Figure 1.
Every passing sequence involves the exact number of neighbors
required, except for the 8-neighbor connected component case,
where one extra neighbor transfer occurs (due to the inter-
connection structure of MPP). 1In all, eight pixels are
passed in the 8-neighbor case; four pixels in the 4-neighbor
case; three pixels in the 2x2 case; five pixels in the 8-
neighbor connected component case; and two pixels in the
4-neighbor connected component case. In the following para-
graphs we analyze a specific case, the 8-neighbor local operation,
and give a comparison between the performance of MPP and of
the host VAX itself.

When is using MPP better than simply using the host VAX?
In other words, when does the overhead of using MPP (loading
and unloading an image via the UNIBUS) offset the time saved
in performing an (iterated) local operation? To answer this,
we must first obtain formulas for computation times on VAX
and MPP.

We will assume a 128 x 128 image, thus one pixel per MPP

PE. The relevant parameters are:

N = length of image side = 128
p = time to pass one bit between MPP PEs

m = number of bits per pixel (8, for 256 grey levels)

q“ = time to compute one local operation on MPP
Cy = time to compute one local operation on VAX

n = number of iterations of the local operation
r = time to pass one pixel over the UNIBUS
On the VAX, the time to compute n iterations of a local

operation taking Cv time per pixel is

2

T = nC_ N
v

VAX
On MPP, the computation must be split into three

states: Loading (Lm), processing (Pm), and unloading (Um).

As we have already seen, the loading of the MPP PEs is limited
} by the amount of time it takes to transfer the image pixels
over the UNIBUS (loading of the PE. from that point is much
faster). Loading and unloading times are the same:
p’ Lm=Um=rN2
There are two stages for each iteration of a local operation
on MPP: communication and computation. For an eight-neighbor
operation with one pixel/PE, the pass time is 8mp per iteration,
and the compute time is Cm per iteration. Thus,

i = gnm
! Pm gnmp+ nCm

In summary, the total time for MPP processing is T =L +U +P
MPP m m '

or

9 _ 2
| TMPP = 2rN® + 8nmp +nCm

Given that the VAX takes some fraction a of the time
that an MPP PE does for the given local operation (a will
vary), how time-consuming must that local operation be (on

MPP, say) before it is worth moving to MPP for processing?

Let CV = aCm, and solve:

Tvax = Tmpp
2 2
onC_N = 2rN~ + 8nmp +nC
m 2 m
c - _2rN” + 8nmp
m

omN2 - n

i Tables 1 and 2 show typical results for the realistic values

N = 128
m = 8
p = 3x10" ' sec. (300nsec/bit PE transfer rate)
Fr r = 4x10" 'sec. (400nsec/byte UNIBUS transfer rate)

Table 1 gives minimum MPP computation times for TVAX = TMPP;

i f Table 2 gives minimum times for TVAx = lOTMPP.
:V We can see from these tables that MPP will usually be
i advantageous over, and often more than ten times faster than,

the VAX, since one to ten microseconds is the minimum for MPP
PE operations. For short once-iterated operations, MPP will
be I0-bound: for C_ between 1077 and 1073 sec., the fractional
overhead in transferring the image between the VAX and MPP is
| over 90%; at Cn = 10-2 sec., the overhead is 57%; at Cn = 107! sec.,
the overhead is 12%; and, at higher Cm values or for more than
one iteration, the overhead drops well below 1%. Generally,

more than one iteration of a local operation must be performed

before MPP is useful.

TN VORPUNEPT ST I

In the case where we have several pixels per PE

(N by N image, N > 128), the situation is different. For

local operations on images larger than 128 by 128, the general
formula for the computation time is CmmNz/P and for the communica-
tion time is (4(N/VP) + 4) (the number of points bordering

the size N2/P subregion) times mp. Thus, with increasing

N (within the constraint of the limited PE local memory),

the computation time rises by the square and the communication
time rises linearly with N; consequently, the calculation becomes
more CPU bound. In any case, the small amount of memory per

PE limits the number of pixels that can be handled by a PE.

The values of a pixel and its eight neighbors already take up a
significant fraction of this memory (72 bits, or about 7%).

To handle a 2x2 block of pixels and their neighbors (a 4x4

block in all) requires nearly twice this, and a 3x3 block

with neighbors (5x5 in all) requires 40% of the memory. It

would be difficult to handle much larger blocks.

4. Computation of image statistics

1., this section we consider some MPP tasks involving
computation of image statistics - in particular, the computa-
tion of image histograms and co-occurrence matrices on MPP,

4.1 Histograms

The histogram algorithm for MPP consists of two main
steps: histogramming the columns of the image (creating a
histogram for the pixels in each column with the "buckets"
for each gray-level residing along with the pixels in the PEs
of each row), and totalling the row so that the (e.g.) left-
most column of PEs contains the final histogram for the image.
For simplicity, the method described below is designed for
one pixel and one histogram bucket per PE--a 128 x 128 image,
and 128 (i.e., seven-bit) gray levels.

a) Histogramming columns

The method for histogramming the columns of the image
involves passing the gray-levels cyclically (and synchronously)
around the PEs of that column, using the "wraparound" feature
of the MPP when passing pixels between processors. The goal is
to have the processor in row i of the given column contain a

count of the number of occurrences of gray level i in

that column. Ir this example, each PE sets aside an eight-bit

counter for the histogram "bucket" and cycles the seven-bit
gray-levels through each of the 128 PEs in the column. Whenever

a gray-level corresponding to the row number of the PE passes

=

through, the counter in that PE is incremented by 1. This
method is extensible to more than 128 gray levels; the

processors simply multiply their responsibility for gray

levels (e.g., two each for 256 or four each for 512 gray

levels); this is similarly trwe for larger images. Letting

N = the number of processors in the column (128) and m =

the number of gray levels (128, in this example), the com-
plexity of this part of the algorithm is 6(nlogm). See Figure

2 for an example of an eight-long column (and eight gray levels).

b) Totalling rows

Totalling the rows to obtain the final histogram is done
in a somewhat more complicated fashion. The method is to
pass the counters derived from the column histogramming step
leftward and sum them at each level. This summing may be
done bit-by-bit (by adding two bits and saving the carry for
the next round), since they must be passed bitwise anyway, to
save time. The least significant bit (LSB) is passed leftward
first, and this is added to the LSB of the held counter (with
the carry saved in a special register); the LSB of the resulting
number is passed at the next step. This continues until the
final LSB propagates to the leftmost column, where it is added
to that column's counter and results in the LSB of the final

bucket count. Meanwhile, the next-to-last bit propagates

leftward after the LSB, being added to the next-to-last bit,

PV

S L

H and the carry from the LSB addition, in the same fashion,
until it propagates to the left column.
Since larger and larger counts are being formed as the
! column totals merge, the counters of each column must be
. extended to accommodate these sums. For column N (numbering

from1l at the right to 128 at the left), that column's counter

must be extended to (llog, N| + 8) bits. So that the algorithm
may work in proper synchrony, every bit of each counter must
be passed upward, even leading zeros. Figure 3 presents a
worked out example for a row of length 6.

Letting N = the number of processors in a row of the
processor array (128 on MPP), it takes N steps to propagate

the LSB to the left column. It then takes (ZlogzN - 1) steps

to pass the rest of the (210g2N)-bit counter maintained by
the PE in the second-to-left column. Thus, this part of the
algorithm takes 8 (N + logzN) steps.

The total complexity of histogramming on the MPP is e(nlogzm)
(m the number of gray levels) from the first part plus 6(N + log?N)

in the second part, which totals to 6 (Nlogm).

c) Time requirements

The first step, column histogramming, involves cycling N
m-bit pixels through the column PEs, comparing the pixel value
to the row number and (potentially) incrementing a counter

at each step (note that on an SIMD machine such as MMP, a step

- -

” 'y ™ P . v, ot oy
IPRIRETINAR BRSNSV i Y RO PN TR sttt mm——— .

such as this incrementing takes just as much time whether it
occurs or not, since the instruction(s) must be sent to
each processor anyway; they are simply disarmed if necessary).
Thus, at each of N steps, an m-bit pass, an m-bit compare, and
an (n +1)-bit add occur; thus, the time taken for column
histogramming is:
Tcol = N{(mp + mc + (n + 1l)a)

Here

N = length of image side = 128

n = logzN =7

m = number of bits per gray level = 7 (128 gray levels)

p = time to pass one bit between MMP PEs (300nsec.)

a = time, per bit, to add two numbers on MPP (300nsec.)

¢ = time, per bit, to compare two numbers on MPP
(400nsec.)

r = time to pass one pixel over the UNIBUS (400nsec.)
The MPP instruction timing will vary, depending on the exact
programming of the algorithm.

For the second step, row totalling, there are (N + 2n - 1)
steps where one bit is passed and one addition takes place;
thus, the time taken for row totalling is:

Trow = (N + 2n - 1) (p + a)
To this is added the time to load and unload the image, which
is:
T =T = er
load unload
The total time for histogramming a 128 by 128 image (128 gray

levels) on MPP is thus

¢ et - .

= N(mp + mc + (n + 1)a) + (N +2n - 1) (p + a) + 2rN°

-3
]

MPP

[

0.001019 (compute) + 0.0098304 (load and unload)

i

0.0108494 sec.

On the VAX, histogramming requires the time it takes to update
one histogram bin (say tv) times the number of pixels in the
image, N2. Thus the time to histogram an image on VAX is

2

T = N tv

VAX
For the 300nsec. cycle time of the VAX, tv will typically be 1
to 10 microseconds, depending on how the program is coded
(assembly versus C). Thus, on the VAX, histogramming a 128 by
128 image will take about 0.0016384 to 0.016384 seconds. This
is 15% to 1.5 times the total MMP time, or 1.6 to 16 times the
MPP computation time alone. Thus, MPP seems to offer only

a marginal, if any, improvement over using the VAX for this

task.

4.2 Co-occurrence matrices

A co-occurrence matrix is essentially a "histogram" of

the occurrences of pairs of gray levels; if there are M different
gray levels, it is an M by M matrix. To compute the co-occurrence
matrix of an image, the neighbor of each point at some dis-
placement § is obtained, and the appropriate entry (gray—levell,
gray-levelz) of the matrix incremenied by one. On the MPP,

this would be analogous to the histogram algorithm presented
earlier: the M by M matrix would be treated as a size M2 histo-

gram; each processor would be responsible for M/128 rows of

the matrix; the points are circulated around the columns, each

v pp—— Y T—e——— - R

PE updating appropriate entries of its rows; finally, these

columns are passed leftward and totalled.

However, since there are only 1024 bits (128 bytes)
availablie in the local memory of each PE, the largest number
of values which can be accommodated is 128 (with no room to
space) or, practically, 64. Thus co-occurrence matrix computa-

tion on MPP should be done for matrices of small size, e.qg.,

8 by 8.

e —— : b

5. Two-dimensional discrete transforms

l On MPP, the following method calculates the two-dimensional
Fourier transform (or other similar discrete transform) of

an N by N image in 6(N) time. The process is composed of two
steps: the discrete transform of the image row-wise, then the

discrete transform column-wise. To transform the rows, each

processor computes the first complex term it will use in its
summation, multiplies it by the pixel value, and stores the
result in a register. Then each pixel is shifted circularly,

the second term is calculated, multiplied, added to the

counter, and so on. This process is repeated similarly for
the columns. Each takes N steps, thus the algorithm takes
B(N) time. However, while this method does well on 128 by 128
images (one pixel per PE), the processors quickly run out of
local memory with larger images.

MPP is also very limited in its ability to perform geo-
metric operations on images, primarily due to memory con-

straints. Due to the fixed geometry of the processo.s and '

the synchronous nature of their intercommunication, unless
each processor can hold the block of data it needs to calculate

the values of the output pixels, there is no "smooth" way of

getting the needed data to its destination in a parallel fashion.

6. Comparison of MPP and ZMOB

Tables 3 and 4 show the performance of MPP and ZMOB,
respectively, at various basic image processing tasks. The
MPP table uses bits as the basic image units, whereas the ZMOB
table uses pixels. These tables include total complexity
measures for computation time, communication time, and memory
requirements as a function of image size (N, the diameter),
number of processors (P), the number of gray levels (M), and
various constants. Tables 5 and 6 restate this information
for the histogramming algorithm, based on the relations of
P and M to N. Note that a factor of 6(N2), due to the UNIBUS
image loading and unloading step, appears in each communication
complexity formula, separated by parentheses from the inter-
processor communication complexity.

If the number of processors in ZMOB is regarded as pro-
portional to the image diameter (N), and the number of pro-
cessors in MPP as proportional to image size (N2), then we
see in Tables 3 and 4 how computational complexity decreases,
but intercommunication complexity increases, when the relative
number of processors assigned to a task ircreases. A comparison
of the actual timings of a histogram algorithm, in Tables 1

and 2, and Tables 3 and 4 in [2], show that in reality, the

machines are quite close in their utility relative to the VAX.

7. Concluding remarks

Due to the inflexible intercommunication structure in
MPP, certain algorithms are constrained to have a value or
values propagate from one end of the array to the other, and
thus have an unavoidable factor of N, or 8N for one-byte
data, built into their complexity. 1In addition, other
algorithms, where communication does not occur in a tightly
orchestrated way, become intractable. The severely limited
local memory space is also a difficultyin considering certain
algorithms or certain (practical) image sizes. Nevertheless,
MPP still manifests significant speed advantages, particularly
when it is used for point and local space-domain operations

or for transform-domain filtering. It will be a powerful tool

for image processing and analysis.

Appendix

Image reconstruction on MPP and ZMOB

The two methods of image reconstruction which will be
discussed for implementation on MPP and ZMOB are the Filtered
Back Projection and Fourier reconstruction methods. The former
basically involves taking each point of a density projection
and "smearing" its value, divided by an appropriate measure
of width, across the image. This is repeated for each pro-
jection, its points being smeared additively, with suitable
(pre-and) post-processing of the image to compensate for the
spread function of the back projection process. The latter
method involves taking the Fourier transform of each projection
and, by applying the Fourier Slice Theorem (which states that
the transforms of the projections are the values of the
central cross sections, at the same orientations, of the
transformed image), using them as values from which to interpolate
the Cartesian-grid representation of the transformed image,
from which the reconstructed image is derived by inverse
transformation.

On the MPP, the first method, filtered back-projection,
is difficult due to the non-linear nature of the reconstruction
process. The problem may be restated thus: for any point
in the image, what points from each projection must be used
to get (interpolate) that projection's contribution to the

final value? Since the projections are at various orientations,

this becomes a geometric operation problem which, except for

Y

e

the two-projection situation, is of a form that the fixed
geometry of the MPP cannot easily handle.

In the Fourier reconstruction method, while rows of
processors may be able to transform the projections, and
the projections, once in place among the appropriate pro-
cessors, may be fairly readily interpolated (and the image
inverse transformed by the method in Section 5), it is not
clear how to smoothly get the transformed projection points
to the processors where they belong.

For image reconstruction on ZMOB, there is an attractive
way to implement the filtered back-projection method. Given
P processors and projections, the circular image is parti-
tioned into 2P sectors, and each processor is assigned two
opposite sectors, such that each projection bisects each pair
of sectors. For an N by N image, each sector pair will
contain approximately %gi points (about 50 for a 32 by 32
image with 16 partitions). Each processor is then loaded with
the projection data assigned to it. Each point in the sectors

will add to a running sum, as the back-projected contribution

from that projection, an interpolated value depending on where
a line from the point, normal to the projection, falls on

the projection. After the first projection is processed,

each processor passes those values to its next neighbor, then

again to the neighbor two over, and so on (note that in later
rounds, the normal each point drops onto the projection takes

into account the ray number it is working on).

i
|

To calculate the computational, communication, and
space complexity of this algorithm, define the following

variables:

N = image diameter (N by N image) (and
projection length)

P = number of processors (and projections)
p = time to pass one point between processors

C. = time to process one image point (interpolate
and sum)

r = time to load one point into ZMOB via the
UNIBUS

The computation time is the time for each point in one
processor's allocation of the image (2 sectors) to be

processed, for each projection:

N
o[l
Tcomp B P[3 jcint

2
3
TN Cint

The communication time will consist of two parts: the
time to pass projections between processors, and the time to
load the projection data (via the UNIBUS, as shown earlier to
be the rate-determining step). Thus,

Tcomm = PNp + 2rN2

Finally, the amount of memory required is that for the

projection and the portion of the image:

B
n .
2) +' N

P

Memory size

N2

To find how well this algorithm compares to commercial
algorithm timings (around 10 sec.), using the following

representative values:

N = 512 (512 by 512 image, at 1lmm resolution)
P = 256
p = 10 °sec. (l0psec./byte ZMOB transfer rate)
r = 4x10" ' sec. (400nsec./byte UNIBUS transfer rate)
we get:
Tcomm = 1.31 + 0.210 = 1.52sec.
Tcomp = 205776Cint
and for: Cint = (lusec., 1l0usec., 100usec.)
we get: Tcomp== (0.206sec., 2.0bsec., 20.6sec.)

for a total time of: (l.73sec., 3.58sec., 22.lsec.)

For the range of Cin values used, which should be realistic

t
since many of the values used in projection normal computation
and interpolation may be precomputed instead of computed
"on-the-fly", the timings for 2ZMOB image reconstruction

should be very attractive compared to commercial systems.

References

1. K.E. Batcher, Design of Massively Parallel Processor, IEEE
P Trans. Computers C-29, September 1980, 836-840.

2. T. Kushner, A.Y. Wu, and A. Rosenfeld, Image Processing on
ZMOB, TR-987, Computer Science Center, University of
Maryland, College Park, MD, December 1980.

X¥A @2Yy3 03 A371
uoTye3induwod g4 ggw

T d37149vy

11qe19391d ddW 103 (swr3
‘spuooss ur) spToyssayg

(-OTX8L™8 0TX8e'y _0TX6T'Z (-OT¥60°T o 0TXLb'S | oTxeL'e g 0TXLE"T b9
9-0T¥89°T 0TX6E'8 _0Tx6T'yp (-0TX607Z) 0TXS0"T . oTxpz's g-01XZ9°2 ze
9-0TX6Z°E o 0TX¥9°'T _0Tx0z'8g (-O0TXOT'Y, 0TXS0%T ,_0Txga'1 g-0TXZT S 91
g-0T*0S"9 , oTXpz'e | 0Txz9'T (-0TXOT'8 | 0TXS0'vy | _oTxz0'z -OTXT0°T 8
g-0T¥6Z°T 4 0TXSp"9 oTxzz'e 9-0T¥T9'T | _0Tx50°8 _oTxzo'p ,-0TXT0°Z v
g-0TX8S°Z . 0TX62°T _0TXcy"9 9-0T¥TZ7E o OTXT9'T oTxz0's [-OTXTO0 ¥ 4
g-0TXST'S . 0TXL5'C . _0TXge'T 9-0TXTP ™9 o 0TXTz e 0Tx09°1 ,-0TXT0"8 T
¥9/1 Ze/1 9T1/T 8/1 v/1 Z/T 1

g s - PR

ST e)

‘Aaias e b el

¥ 5t AN s, b 20 G

¢ Jd1dYdL

ddW butsn usym
X¥YA 9y3 ao2a0 dnpasds pro3-0T I0F (swWr3l
uotjzeindwod Id JdN /SPUOD3S UT) SpIoOyYsaayl

o OTXTT"6 o 0TX9¥"v o O0TXTZ'Z o 0TX0T'T ,_0TX8¥'S _OTX¥L'ZT , OTXLE'T
¢ OTXPL T o 0TXPS'8 o OTXEZ'¥Y .m-oﬂxoﬂ.m g-0TXSO'T _0TXpZ'S ,_0TXZ9°Z
¢ OTXTP € (_O0TXL9"T o 0TXLZ"8 ¢ OTXTIT'¥ o 0TXS0°Z o 0TXZ0'T ,_OTXZI'S
cOTXPL'9 OTX0E'E€ . OTXE9"T o OTXET'8 4 0TX90'V o OTX€0°Z o OTXTO'T
pOTXPE'T . 0TXLG'9 OTXSZT'€ . 0TXZ9'T o OTXL0'8 g OIXE0'? o OTXT0°Z
,_0TXL9°Z | OTXTE'T . _0TX8y'9 . OTXEZ € . OTXT9'T , OTXE0'8 o OTXTO'¥
pOTXVE'S OTXT9°Z OTX6Z'T . OTXpp'9 OTXTZ'€E . 0TX09'T ,_0TXZ0'8
v9/1 ze/1 91/1 8/1 v/1 /1 1

N

ddW uo ‘31q 1a@d ‘uotjerado suo a3ndwod 03 BwWIY

3Tq 13d ‘931 UOTILOTUNWWODIDIUT IJ

(LIS ¥dd SIYNSVIW) XUYWWNAS

3Tq 1ad ‘@3ex 19Fsuexl sSNAINA

€ A7dvdL

non
/m
N o

I
O

sTeaa1 Aeab jJo zsqunu
sxossao0xd jo zaqunu
obewtr (N Aq N) 30 92zTS

won
Z b =

zmoHAm\sz SmoHszuN + wborddNng Nz swIojsueiy 93910S1d
zmoamumz +
wso1x(C¥ + ap/N) g
/2uty) Iaseyd pugz = No
T, . dp/ e 31q .
7+ /N + AN R ¢ /ouTy oseyd 3ST = Mv
d (T-NPOTZ + N)w
zmoHaM\\mzAszmoH + (T-NbOTZ + N)“d+ 2t JusweoeTdsIp = (G Ty
. w
@y 4 am) (Y1 + d/N) m\\zoonmNZN (4/) /WBOT W N2 S90TI3PW 90USIINDD0-0)
ITq
d =
WboT N%1z+ 4p/ie d /e SWT3 SsEUd puz = 2o
31q
WBOT (d/W+ (T-nBoTz + N)¥d + | (T-NBOTZ+ N),o + /outa sseyd asT = o
(NI BOT + d/,N) wbot¥d N | (drd) /MBOTH NGO BUTWWe1603STH

zmoHAmzmnm

SUOT3ILIBIT § = T

(saoquybtau-g)

zmoHNAN + d/N) + (1 +@\ivﬁmmvv m\szmoHEUﬁ suotjexado Teo07]
zaoHAm\sz zmoﬁmzmum m\NZEU suot3eIado UTO4
AIOWSW UOTIEDTUNUWO) uoT3e3nduc)

(T3XId Y34 STUNSVIW) AYVWWNS SOWZ P IT9YL

(Textd aad) a3ex Iajsueayz 3I[3q I10Aaauod = d sT9A9T LAeab Jo aqumu = R
(TaxTd xad) o3ex a93sueal sngINn = I sxossadoxd jo yaqumu = g
gOWZ uo ‘ToxTd 1ad ‘uorjeaado suo a3ndwod 03 SUWTF = NU obeuwtr (N Aq N) 3JO 9215 = Nz
I
Nz Z +
m\mz Amm\mz - m\mzvm m\zmoHNzNUN sSwIOISsurI3 93919STd
I
Nz +
wboT 1Cy + ap/m) Ty o+
/(,N) BOT + (a/,N)BoTH) + dr/N) + (WBoTq) JusweoeTdstp = (%3 Vy)
(7 + M\\ZVAﬁa + dr/N) \Am\mzvmoﬂﬁﬁumvaNZ mNzNU S90TI3BW 30U3XINDI0-0))
wbot1/(,N)boT + ,NIT + (WboT4)
(a/,N) BOTH) + &/ N /(d/,N) BoT(1-d) di m\NzNo BuTuueabo3STH
SUOTIeIDIT 4 = T
NzuN + (I0quUbtToU-~g)
(T + dA/N) (1 + a£/N) 1dy m\NzNUﬂ suotjexado [eooq
m\Nz NzuN m\ﬂzNU suot3jeaado 3Furod
. 1
Azowsy UOT3IEDTUNUMO) uotj3eindwo) _

uot3eindwo) :A3rxeTdwod
butuwe1b503STH ddW § FTIVL

Ny N
NBOT + ;N Npop t N NboT
NN | x
(,N+)NPOT + N + ,N —Auz+v T * Nbot + N/ + N/N —A~z+v_mmmm + N
(d)e
8/ x N N
NEOT + N4 N T * ot * IV NBoT * 1
N,BOTN + NBOT,N NAN,BOT + NBOI N N,BoT + NBOT
P T r— Py TR | we
(NBOT, z+vz+ NBOTN+,N+ NPOT,N _AzmoH~z+v_zmon\ + NAN + NPOIN/N [(NBoT, z+:zmoH + N + NPOIN
N + NPOTN+,N + NDBOT N NBOINA + NAN + NBOIN/N NBOT + N

1 ' t i se
| 1 1 ' >
1 1 | — i ¥e)
I 1 1 o | 2 e
i — V2 \ Z 1 o b
— | ~N i t +] o 0}
'3 o~ I 4 1+ o~ T S ~
~ Z + i 2 | Z t + oR
o | ~ 1N \ o 1~ E
| z [.4 | (o]] A [e]
| 1 i - | 3
| | | 1
\ 1 I ! o
]] [| o
I | | ' o [t
I] } | m (o]
| | |) g1~
| { 1 ! © O P
e ————— _,—————— tm—————— ﬁ llllllll pm————— —_———— - - o | T Y B |
1 f | [} [o B~ I B 4 I |
) | i 1 O @t -l
' ! | | PP g >y
) [}] —_ 1 n 31 31 M
| | 1 o~ | io.._m_o
) —~ 1 i Z [o E | I E
—] o~] i + i -4 O16L 01 Q@
=z | Z) ' ~ t o m UOVTO V=
~ 2z + 1=z z | z 1 (o} (@]
152 1 ~ 1 1 o] ~ =
i z 1 | e} | + N
[| | — | Z
) 1 ! '
| | ' \ v
i 1 |] ©
I ! |]
| ' 1 1 <3
' ' ﬁ |] w3
- - - - - - I"l llllll .". llllllllllllll “- lllll —f = - - w
| | | (3]
! | i
] 1 |
| |]
I — t l
o~ |
2 i + 1 ! z
~ (ST] ~ 1 o Q ! ~
o)] Z | =Z]10]
1 o \
1 Zio 1t i
i I |
t])
S R Y NS I
(W — —~
\ z 3
x @ ©

No. of
Pass Pixels
Neighborhood Step Direction Passed Result
8-neighbor 1 Up 1 X
X
2 Right 2 XX
XX
3 Down 2 XX
XX
XX
4 Left 3 XXX
XXX
XXX
4-neighbor 1 Up 1 X ;
X \
2 Right 1 XX f
3 Down 1 X
XX
X
4 Left 1 X !
XXX }
x |
. 2 x 2 1 Down 1 X |
' x
2 Right 2 XX
XX
8-component 1 Right 1 XX
Left 1 XXX
Down 3 XXX
XX
4-component 1 Down 1 X
X
L 2 Right 1
: i XX
o
I

Figure 1. MPP passing sequences for various
types of neighborhoods 3

T g Sy .

Step 1 2 3 4 5 6 7 8

Row
1 2/0 3/0 4/0 3/0 0/0 6/0 7/0 6/0
2 3/0 4/0 3/0 0/0 6/0 7/0 6/0 2/1
3 4/0 3/1 0/1 6/1 7/1 6/1 2/1 3/2
4 3/0 0/0 6/0 7/0 6/0 2/0 3/0 4/1
5 0/0 6/0 7/0 6/0 2/0 3/0 4/0 3/0
6 6/1 7/1 6/2 2/2 3/2 4/2 3/2 0/2
7 7/1 6/1 2/1 3/1 4/1 3/1 0/1 6/1
8(0) 6/0 2/0 3/0 4/0 3/0 0/1 6/1 7/1

In entry a/b, a = value passing through,

b = counter contents. The values are
cyclically shifted upward. Each counter
adds 1 when the value passing through

it is equal to its row number. In this
example, there are 8 PEs and 8 gray levels.

Figure 2.

Column histogramming
example

c S 5 M et A A

Step Row Contents
. 0 11 0l 00 10 11 10
| 1 11 01 00 10 11 10
2 11 01 00 11 1'0 00
3 11 01 01 10 100 00
4 11 01’ 10 100 000 00
5 11 1'0 100 000 000 00
6 11 1'00 000 000 000 00
7 11 1000 000 000 000 00
8 1011 0000 000 000 000 00

In each entry, bits that have just been
passed are underlined; primes denote
positions of carry bits

Figure 3. Row totalling example

UNCLASSIFIED

T SECUMTY CLASSIFICATION OF Tiis PAGE (When Date Entefew)

REPORT DOCUMENTATION PAGE

] READ INSTRUCTIONS
SEFORE COMPLETING FORM

1. QOVT ACCEZSISION NQ,). ACCIPIENT'S CATALIG nuUMEBER

TRt o7 NEFGAT & PQOC SovERES
ZA7L

6. PERFOAMING ORG., JEPORT NuMOER

TR-1007

S CONTRACT OR GHANT NUMOER(s)

AFQSR-774£3271

of Mar

Computer

ELIMENT. PROLECT, T ASK
ORK UMIT NUMBERS

& //0F

yland,

1.
Math. & In
Bolling AFB
Washington

20332

. Sciences, AFOSRYNM

18. SUSPS ENMENTAAY NQTES

ng

ge

n MPP and ZMOB

elements that cdmnm
verticalfneighhors- by shi¥§i

petisSes the effici
operations, inc
ransforms, and comp

128 by 128 array of
ith their horizontal and
one bit at a time. This
MPP for various types of image
t and local operations, dis-
image statistics. A compar-
sisting of 256 micro-

DD 'unﬂ 1‘73

CNTION OF | NnQVv 6818

