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ABSTRACT

The Massively Parallel Processor (MPP) is a 128 by 128
array of processing elements that communicate with their
horizontal and vertical neighbors by shifting data one bit
at a time. This paper describes the efficient use of MPP for
various types of image processing operations, including point
and local operations, discrete transforms, and computation of
image statistics. A comparison between MPP and ZMOB (a system
consisting of 256 microprocessors) is also presented.
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1. Introduction

1.1 MPP

The Massively Parallel Processor (MPP) is a 128 by 128

array of processing elements (PEs) that communicate with their

horizontal and vertical neighbors by shifting data one bit

at a time. For a description of the MPP design see [1]. In

the following paragraphs we outline only a few basic features

of MPP that are needed in designing image processing algorithms

for it.

Each image processing algorithm implemented on MPP

will consist of two phases: computation and communication.

To support the computational aspect of parallel algorithms,

each PE, while being a "bit-slice" processor, is capable of

supporting a complete conventional instruction set. Each PE

has a bit addressable local memory of 1024 bits and a number

of fast registers to support arithmetic and interprocessor

communication.

Parallel algorithms generally require interprocessor

communication: to accomplish this, every PE can synchronously

shift data to its north, south, east, or west neighbor.

(At the array edges, processor passing may "wrap around" to

the PEs at the other end of the row or column.) When loading

data from the host machine, a 128-long bit vector may be passed

to the 128 edge processors all at once, which may in turn

shift it across the image while the rest of the image is loaded.

In the current configuration this data loading occurs over a

UNIBUS from a VAX host.
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1.2 Image Processing on MPP

This paper deals with the efficient useof MPP for

performing various types of image processing operations,

including point and local operations, discrete transforms,

and computation of image statistics. The aim is to make the

fullest possible use of MPP's parallelism, so as to achieve

a speedup by a factor proportional to the number of PEs (128 =

16,384). We also compare MPP processing with performing

operations on the host VAX itself, as well as with processing

on ZMOB (a system consisting of 256 microprocessors that

communicate via a fast shift-register bus). A more detailed

treatment of image processing on ZMOB can be found in [2].

Acce-inn For
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2. Point Operations

A point operation on an image maps the value of each

pixel into a new value, independent of the values of other

pixels. The image is divided equally among the PEs; 1 pixel/

processor for a 128 by 128 image, 4 pixels/processor for a

256 by 256 image, 16 pixels/processor for a 512 by 512 image,

and so on. Images much larger than 512 by 512 cannot be held

in the 1024 bits of local memory available to each PE. The

PEs are loaded with the image data from the host VAX over the

UNIBUS, the point operation is performed, and the results are

returned to the host VAX.

To compute the amounts of time needed to perform point

operations on MPP and on the VAX, let C and Cv be the times

foran MPP PE and for the VAX, respectively, to perform the

given operation on one pixel. In an N by N image, there are

N2 pixels: thus Cv N2 and CMN
2/16,384 are the times to perform

the point operation on the VAX and MPP (with its 16,384 pro-

cessore, respectively.

However, in the case of the MPP, there is also the amount

of image loading and unloading time to consider. On the MPP,

data is loaded from the host VAX, via the UNIBUS, to a staging

area of the MPP, where the data is input simultaneously to 128

edge PEs, 128 bits at a time. Letting r be the rate at which

a byte of data is transferred on the UNIBUS (400nsec., and p be

the rate at which a bit of data is passed between PEs, let us



compute how long it takes to load a 128 by 128 (say) image

of byte-long pixels: 1) from the VAX to MPP staging area

via the UNIBUS, and 2) from the MPP staging area to the PEs

(a concurrent process). Via the UNIBUS it takes 128 x 128 x r,

or 6.534msec. From the staging area to the PEs, it takes

128 x 128 x 8 bits x 1/128 (number of bits passed simultaneously)

x p, or 1.024usec. Thus, the UNIBUS is the rate-limiting

step of the MPP image loading process, and the total time to

load and unload is rN 2 + rN 2 = 2rN 2 .

In summary, on the VAX, the time to perform the operation

2on the entire image is C N , while the time to perform it onv

the MPP is m /16,384. If 32,768r + Cm < l6,384CVI

using the MPP is faster than using the VAX.

With local operations, the situation is more complicated

because information must be shared between neighboring processors.

The next section will discuss the amount of time it takes to

perform local operations, using different neighborhood geometries.

A comparison with performing an (iterated) operation on the

host VAX will also be given. Due to the limited local memory

of MPP PEs, the focus of the discussion will be the one pixel

per PE case.



3. Local operations

Each iteration of a local operation consists of two

steps: a neighbor-passing step, and a computation step

involving the gathered neighborhood. Several types of local

neighborhoods are commonly used, and these (with the steps

involved in passing neighbors) are outlined in Figure 1.

Every passing sequence involves the exact number of neighbors

required, except for the 8-neighbor connected component case,

where one extra neighbor transfer occurs (due to the inter-

connection structure of MPP). In all, eight pixels are

passed in the 8-neighbor case; four pixels in the 4-neighbor

case; three pixels in the 2x2 case; five pixels in the 8-

neighbor connected component case; and two pixels in the

4-neighbor connected component case. In the following para-

graphs we analyze a specific case, the 8-neighbor local operation,

and give a comparison between the performance of MPP and of

the host VAX itself.

When is using MPP better than simply using the host VAX?

In other words, when does the overhead of using MPP (loading

and unloading an image via the UNIBUS) offset the time saved

in performing an (iterated) local operation? To answer this,

we must first obtain formulas for computation times on VAX

and MPP.

We will assume a 128 x 128 image, thus one pixel per MPP

PE. The relevant parameters are:



N = length of imaqe side = 128

p = time to pass one bit between MPP PEs

m = number of bits per pixel (8, for 256 grey levels)

C = time to compute one local operation on MPPm

Cv = time to compute one local operation on VAX

n = number of iterations of the local operation

r = time to pass one pixel over the UNIBUS

On the VAX, the time to compute n iterations of a local

operation taking Cv time per pixel is

TVAX =nCv
2

On MPP, the computation must be split into three

states: Loading (Lm)I, processing (P m), and unloading (U M).

As we have already seen, the loading of the MPP PEs is limited

by the amount of time it takes to transfer the image pixels

over the UNIBUS (loading of the PE. from that point is much

faster). Loading and unloading times are the same:

L = U = rN
2

m m

There are two stages for each iteration of a local operation

on MPP: communication and computation. For an eight-neighbor

operation with one pixel/PE, the pass time is 8mp per iteration,

and the compute time is Cm per iteration. Thus,

Pm = 8nmp+ nCm

In summary, the total time for MPP processing is TMP Lm + U + P

or

TMPP = 2rN 2 + 8nmp +nCm

m ... -



Given that the VAX takes some fraction a of the time

that an MPP PE does for the given local operation (a will

vary), how time-consuming must that local operation be (on

MPP, say) before it is worth moving to MPP for processing?

Let Cv = acCm , and solve:

TTVAX MPP

anC N2  = 2rN 2 + 8nmp +nC

C = 2rN + 8nmp

m cnN 2 - n

Tables 1 and 2 show typical results for the realistic values

N = 128

m= 8

p = 3xl0 7sec. (300nsec/bit PE transfer rate)

r = 4xl0- 7sec. (400nsec/byte UNIBUS transfer rate)

Table 1 gives minimum MPP computation times for TVA = TMpp;

Table 2 gives minimum times for TVAX = 10TMpp.

We can see from these tables that MPP will usually be

advantageous over, and often more than ten times faster than,

the VAX, since one to ten microseconds is the minimum for MPP

PE operations. For short once-iterated operations, MPP will

be IO-bound: for Cm between 10-7 and 10- 3 sec., the fractional

overhead in transferring the image between the VAX and MPP is
over 90%; at Cm = 10- 2 sec., the overhead is 57%; at Cm = 10- 1 sec.,

the overhead is 12%; and, at higher Cm values or for more than

one iteration, the overhead drops well below 1%. Generally,

more than one iteration of a local operation must be performed

before MPP is useful.



loalIn the case where we have several pixels per PE

(N by N image, N > 128), the situation is different. For

local operations on images larger than 128 by 128, the general

formula for the computation time is CmN 2/P and for the communica-

tion time is (4(N//P) + 4) (the number of points bordering

the size N2/P subregion) times mp. Thus, with increasing

N (within the constraint of the limited PE local memory),

the computation time rises by the square and the communication

time rises linearly with N; consequently, the calculation becomes

more CPU bound. In any case, the small amount of memory per

PE limits the number of pixels that can be handled by a PE.

The values of a pixel and its eight neighbors already take up a

significant fraction of this memory (72 bits, or about 7%).

To handle a 2x2 block of pixels and their neighbors (a 4x4

block in all) requires nearly twice this, and a 3x3 block

with neighbors (5x5 in all) requires 40% of the memory. It

would be difficult to handle much larger blocks.

-1L



4. Computation of imay statistics

L, this section we consider some MPP tasks involving

computation of image statistics - in particular, the computa-

tion of image histograms and co-occurrenoe matrices on MPP.

4.1 Histograms

The histogram algorithm for MPP consists of two main

steps: histogramming the columns of the image (creating a

histogram for the pixels in each column with the "buckets"

for each gray-level residing along with the pixels in the PEs

of each row), and totalling the row so that the (e.g.) left-

most column of PEs contains the final histogram for the image.

For simplicity, the method described below is designed for

one pixel and one histogram bucket per PE--a 128 x 128 image,

and 128 (i.e., seven-bit) gray levels.

a) Histogramming columns

The method for histogramming the columns of the image

involves passing the gray-levels cyclically (and synchronously)
I

around the PEs of that column, using the "wraparound" feature

of the MPP when passing pixels between processors. The goal is

to have the processor in row i of the given column contain a

count of the number of occurrences of gray level i in

that column. In this example, each PE sets aside an eight-bit

counter for the histogram "bucket" and cycles the seven-bit

gray-levels through each of the 128 PEs in the column. Whenever

a gray-level corresponding to the row number of the PE passes

i



through, the counter in that PE is incremented by 1. This

method is extensible to more than 128 gray levels; the

processors simply multiply their responsibility for gray

levels (e.g., two each for 256 or four each for 512 gray

levels); this is similarly tri for larger images. Letting

N = the number of processors in the column (128) and m =

the number of gray levels (128, in this example), the com-

plexity of this part of the algorithm is 0(nlogm). See Figure

2 for an example of an eight-long column (and eight gray levels).

b) Totalling rows

Totalling the rows to obtain the final histogram is done

in a somewhat more complicated fashion. The method is to

pass the counters derived from the column histogramming step

leftward and sum them at each level. This summing may be

done bit-by-bit (by adding two bits and saving the carry for

the next round), since they must be passed bitwise anyway, to

save time. The least significant bit (LSB) is passed leftward

first, and this is added to the LSB of the held counter (with

the carry saved in a special register); the LSB of the resulting

number is passed at the next step. This continues until the

final LSB propagates to the leftmost column, where it is added

to that column's counter and results in the LSB of the final

bucket count. Meanwhile, the next-to-last bit propagates

leftward after the LSB, being added to the next-to-last bit,

-I



and the carry from the LSB addition, in the same fashion,

until it propagates to the left column.

Since larger and larger counts are being formed as the

column totals merge, the counters of each column must be

extended to accommodate these sums. For column N (numbering

from 1 at the right to 128 at the left), that column's counter

must be extended to(tlog, NJ + 8) bits. So that the algorithm

may work in proper synchrony, every bit of each counter must

be passed upward, even leading zeros. Figure 3 presents a

worked out example for a row of length 6.

Letting N = the number of processors in a row of the

processor array (128 on MPP), it takes N steps to propagate

the LSB to the left column. It then takes (2log2N - 1) steps

to pass the rest of the (21og2N)-bit counter maintained by

the PE in the second-to-left column. Thus, this part of the

algorithm takes O(N + log 2N) steps.

The total complexity of histogramming on the MPP is 6(nlog 2m)

(m the number of gray levels) from the first part plus O(N + log2N)

in the second part, which totals to 0 (Nlogm).

c) Time requirements

The first step, column histogramming, involves cycling N

m-bit pixels through the column PEs, comparing the pixel value

to the row number and (potentially) incrementing a counter

at each step (note that on an SIMD machine such as MMP, a step



such as this incrementing takes just as much time whether it

occurs or not, since the instruction(s) must be sent to

each processor anyway; they are simply disarmed if necessary).

Thus, at each of N steps, an m-bit pass, an m-bit compare, and

an (n +l)-bit add occur; thus, the time taken for column

histogramming is:

Tc N(mp + mc + (n + l)a)

Here

N = length of image side = 128

n = log2N =7

m = number of bits per gray level = 7 (128 gray levels)

p = time to pass one bit between MMP PEs (300nsec.)

a = time, per bit, to add two numbers on MPP (300nsec.)

c = time, per bit, to compare two numbers on MPP
(400nsec.)

r = time to pass one pixel over the UNIBUS (400nsec.)

The MPP instruction timing will vary, depending on the exact

programming of the algorithm.

For the second step, row totalling, there are (N + 2n - 1)

steps where one bit is passed and one addition takes place;

thus, the time taken for row totalling is:

T = (N + 2n - 1)(p + a)row

To this is added the time to load and unload the image, which

is:

Tload = Tunload = rN
2

The total time for histogramming a 128 by 128 image (128 gray

levels) on MPP is thus

M7)



2

T = N(mp + mc + (n + l)a) + (N +2n - 1) (p + a) + 2rN 2
MPP

0.001019 (compute) + 0.0098304 (load and unload)

- 0.0108494 sec.

On the VAX, histogramming requires the time it takes to update

one histogram bin (say tv ) times the number of pixels in the

image, N . Thus the time to histogram an image on VAX is

T 2
TVAX N tv

For the 300nsec. cycle time of the VAX, tv will typically be 1

to 10 microseconds, depending on how the program is coded

(assembly versus C). Thus, on the VAX, histogramming a 128 by

128 image will take about 0.0016384 to 0.016384 seconds. This

is 15% to 1.5 times the total MMP time, or 1.6 to 16 times the

MPP computation time alone. Thus, MPP seems to offer only

a marginal, if any, improvement over using the VAX for this

task.

4.2 Co-occurrence matrices

A co-occurrence matrix is essentially a "histogram" of

the occurrences of pairs of gray levels; if there are M different

gray levels, it is an M by M matrix. To compute the co-occurrence

matrix of an image, the neighbor of each point at some dis-

placement 6 is obtained, and the appropriate entry (gray-levell,

gray-level2 ) of the matrix incremented by one. On the MPP,

this would be analogous to the histogram algorithm presented

earlier: the M by M matrix would be treated as a size M2 histo-

gram; each processor would be responsible for M/128 rows of

the matrix; the points are circulated around the columns, each

~I



PE updating appropriate entries of its rows; finally, these

columns are passed leftward and totalled.

However, since there are only 1024 bits (128 bytes)

available in the local memory of each PE, the largest number

of values which can be accommodated is 128 (with no room to

space) or, practically, 64. Thus co-occurrence matrix computa-

tion on MPP should be done for matrices of small size, e.g.,

8 by 8.
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5. Two-dimensional discrete transforms

On MPP, the following method calculates the two-dimensional

Fourier transform (or other similar discrete transform) of

an N by N image in 0(N) time. The process is composed of two

steps: the discrete transform of the image row-wise, then the

discrete transform column-wise. To transform the rows, each

processor computes the first complex term it will use in its

summation, multiplies it by the pixel value, and stores the

result in a register. Then each pixel is shifted circularly,

the second term is calculated, multiplied, added to the

counter, and so on. This process is repeated similarly for

the columns. Each takes N steps, thus the algorithm takes

0(N) time. However, while this method does well on 128 by 128

images (one pixel per PE), the processors quickly run out of

local memory with larger images.

MPP is also very limited in its ability to perform geo-

metric operations on images, primarily due to memory con-

straints. Due to the fixed geometry of the processors and

the synchronous nature of their intercommunication, unless

each processor can hold the block of data it needs to calculate

the values of the output pixels, there is no "smooth" way of

getting the needed data to its destination in a parallel fashion.



6. Comparison of MPP and ZMOB

Tables 3 and 4 show the performance of MPP and ZMOB,

respectively, at various basic image processing tasks. The

MPP table uses bitsas the basic image units, whereas the ZMOB

table uses pixels. These tables include total complexity

measures for computation time, communication time, and memory

requirements as a function of image size (N, the diameter),

number of processors (P), the number of gray levels (M), and

various constants. Tables 5 and 6 restate this information

for the histogramming algorithm, based on the relations of

P and M to N. Note that a factor of e(N 2), due to the UNIBUS

image loading and unloading step, appears in each communication

complexity formula, separated by parentheses from the inter-

processor communication complexity.

If the number of processors in ZMOB is regarded as pro-

portional to the image diameter (N), and the number of pro-

cessors in MPP as proportional to image size (N 2), then we

see in Tables 3 and 4 how computational complexity decreases,

but intercommunication complexity increases, when the relative

number of processors assigned to a task ircreases. A comparison

of the actual timings of a histogram algorithm, in Tables 1

and 2, and Tables 3 and 4 in [2], show that in reality, the

machines are quite close in their utility relative to the VAX.



7. Concluding remarks

Due to the inflexible intercommunication structure in

MPP, certain algorithms are constrained to have a value or

values propagate from one end of the array to the other, and

thus have an unavoidable factor of N, or 8N for one-byte

data, built into their complexity. In addition, other

algorithms, where communication does not occur in a tightly

orchestrated way, become intractable. The severely limited

local memory space is also a difficultyin considering certain

algorithms or certain (practical) image sizes. Nevertheless,

MPP still manifests significant speed advantages, particularly

when it is used for point and local space-domain operations

or for transform-domain filtering. It will be a powerful tool

for image processing and analysis.



Appendix

Image reconstruction on MPP and ZMOB

The two methods of image reconstruction which will be

discussed for implementation on MPP and ZMOB are the Filtered

Back Projection and Fourier reconstruction methods. The former

basically involves taking each point of a density projection

and "smearing" its value, divided by an appropriate measure

of width, across the image. This is repeated for each pro-

jection, its points being smeared additively, with suitable

(pre-and) post-processing of the image to compensate for the

spread function of the back projection process. The latter

method involves taking the Fourier transform of each projection

and, by applying the Fourier Slice Theorem (which states that

the transforms of the projections are the values of the

central cross sections, at the same orientations, of the

transformed image), using them as values from which to interpolate

the Cartesian-grid representation of the transformed image,

from which the reconstructed image is derived by inverse

transformation.

On the MPP, the first method, filtered back-projection,

is difficult due to the non-linear nature of the reconstruction

process. The problem may be restated thus: for any point

in the image, what points from each projection must be used

to get (interpolate) that projection's contribution to the

final value? Since the projections are at various orientations,

this becomes a geometric operation problem which, except for



the two-projection situation, is of a form that the fixed

geometry of the MPP cannot easily handle.

In the Fourier reconstruction method, while rows of

processors may be able to transform the projections, and

the projections, once in place among the appropriate pro-

cessors, may be fairly readily interpolated (and the image

inverse transformed by the method in Section 5), it is not

clear how to smoothly get the transformed projection points

to the processors where they belong.

For image reconstruction on ZMOB, there is an attractive

way to implement the filtered back-projection method. Given

P processors and projections, the circular image is parti-

tioned into 2P sectors, and each processor is assigned two

opposite sectors, such that each projection bisects each pair

of sectors. For an N by N image, each sector pair willI irN2

contain approximately 4PN2 points (about 50 for a 32 by 32

image with 16 partitions). Each processor is then loaded with

the projection data assigned to it. Each point in the sectors

will add to a running sum, as the back-projected contribution

from that projection, an interpolated value depending on where

a line from the point, normal to the projection, falls on

the projection. After the first projection is processed,

each processor passes those values to its next neighbor, then

again to the neighbor two over, and so on (note that in later

rounds, the normal each point drops onto the projection takes

into account the ray number it is working on).



To calculate the computational, communication, and

space complexity of this algorithm, define the following

variables:

N = image diameter (N by N image) (and
projection length)

P = number of processors (and projections)

p = time to pass one point between processors

Cin t = time to process one image point (interpolate
and sum)

r = time to load one point into ZMOB via the
UNIBUS

The computation time is the time for each point in one

processor's allocation of the image (2 sectors) to be

processed, for each projection:

T p= P Tr JCintcompP

= N2Cint

The communication time will consist of two parts: the

time to pass projections between processors, and the time to

load the projection data (via the UNIBUS, as shown earlier to

be the rate-determining step). Thus,
T = PN + 2rN 2

comm p

Finally, the amount of memory required is that for the

projection and the portion of the image:

memory size _n+=
P
N2



To find how well this algorithm compares to commercial

algorithm timings (around 10 sec.), using the following

representative values:

N = 512 (512 by 512 image, at 1mm resolution)

P = 256

p = 10 5 sec. (10sec./byte ZMOB transfer rate)

r = 4xlO-7 sec. (400nsec./byte UNIBUS transfer rate)

we get:

T = 1.31 + 0.210 = 1.52sec.comm

Tcomp = 205776Cin t

and for: Cint = (lpsec., 10psec., 100psec.)

we get: T (0.206sec., 2.0sec., 20.6sec.)

for a total time of: (l.73sec., 3.58sec., 22.1sec.)

For the range of Cin t values used, which should be realistic

since many of the values used in projection normal computation

and interpolation may be precomputed instead of computed

"on-the-fly", the timings for ZMOB image reconstruction

should be very attractive compared to commercial systems.
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No. of
Pass Pixels

Neighborhood Step Direction Passed Result

8-neighbor 1 Up 1 x
x

2 Right 2 xx
xx

3 Down 2 xx
xx
xx

2 Left 3 xxx
xxx
xxx

4-neighbor 1 Up 1

x

2 Right 1 xx

3 Down 1 x

xx
x

2 Left 1 x
xxx

x

2 x 2 1 Down 1 x
x

2 Right 2 xx
xx

8-component 1 Right 1 xx

2 Left 1 xxx

3 Down 3 xxx
xx

4-component 1 Down 1 x
x

2 Right 1 x
xx

Figure 1. MPP passing sequences for various

types of neighborhoods



> Step 1 2 3 4 5 6 7 8

Row

1 2/0 3/0 4/0 3/0 0/0 6/0 7/0 6/0

2 3/0 4/0 3/0 0/0 6/0 7/0 6/0 2/1

3 4/0 3/1 0/1 6/1 7/1 6/1 2/1 3/2

4 3/0 0/0 6/0 7/0 6/0 2/0 3/0 4/1

5 0/0 6/0 7/0 6/0 2/0 3/0 4/0 3/0

6 6/1 7/1 6/2 2/2 3/2 4/2 3/2 0/2

7 7/1 6/1 2/1 3/1 4/1 3/1 0/1 6/1

8(0) 6/0 2/0 3/0 4/0 3/0 0/1 6/1 7/1

In entry a/b, a = value passing through,
b = counter contents. The values are
cyclically shifted upward. Each counter
adds 1 when the value passing through
it is equal to its row number. In this
example, there are 8 PEs and 8 gray levels.

Figure 2. Column histogramming
example

1*.



Step Row Contents

0 11 01 00 10 11 10

1 11 01 00 10 11 10

2 11 01 00 11 10 00

3 11 01 01 10 100 00

4 11 01' 10 100 000 00

5 11 1'0 100 000 000 00

6 11 1'00 000 000 000 00

7 11 1000 000 000 000 00

8 1011 0000 000 000 000 00

In each entry, bits that have just been
passed are underlined; primes denote
positions of carry bits

Figure 3. Row totalling example

-A.
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