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(U) Evaluation of Statistical Fracture Criteria for Magnesium Fluoride
Seeker Domes, by M. D. Herr and W. R. Compton. China Lake, Calif., NavalIWeapons Center, December 1980, 52 pp. (NWC TP 6226, publication
UNCLASSIFIED.)

(U) Four statistical fracture theories are applied to the problem of

infrared dome fracture in an aerodynarmic heating environment. Theoretical
fracture predictions are compared with time-to-fracture data obtained for
full-scale magnesium fluoride domes in an aerodynamic heating environment.

The surface-distributed flaw theory of Batdorf proves to yield the most
- accurate predictions of the probability of dome fracture.
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INTRODUCTION

The launch envelopes of heat-seeking missiles used on current combat'1aircraft are frequently restricted by the thermostructural limits of the

infrared (IR) dome used in the seeker system. These limits are derived
from the predicted fracture of the ceramic materials used in IR dome

construction. In general, ceramics are brittle materials that exhibit a

wide range of fracture strengths under apparently identical loading con-
ditions. Consequently, unrealistically severe missile launch envelope

4restrictions are imposed on the aircraft in order to compensate for the

11 uncertainties in the dome fracture strength.

The results of a previous investigation1 gave indications that better
definition of such launch envelope restrictions could be achieved through
the use of the statistical fracture theories of Weibull 2 ,3 and Batdorf. 4 ,5

The limited amount of IR dome fracture data extant at the time of this
previous investigation prevented a comprehensive evaluation of these
fracture theories. In addition, the mathematical details required to
utilize material fracture statistics from a variet7 of fracture strength
test methods were not yet developed for the Batdorf theory. The current
investigation extends the usefulness of the Batdorf theory by developing
these mathematical dezails for three commonly emplovad strength test
methods.

1 W. R. Compton. Application of Statistical Fracture Criteria to the Problem of Predicting Infrared

Dome Thermal Shock Failures. China Lake. Calif., NWC, January 1978. (NWC TP 6010. publication

U-NCLASSIFIED.)
2 W. Weibull. "Statistical Theory of Strength of Materials," Ing. Vetenskaps Akad. Handl., No. 151.

45 pp(1939); Ceram..4bstr., 19 (3 78 (1949)
3 W. Weibull. "Statistical Distribution Function of Wile Applicability," J. Appl Mech.. 1S3) 93

(September 1971)
4 The Aerospace Corporation. Fracture Statistics of Brittle Materials with Jntergranular Cracks. by

S. B. Batdorf. El Segundo, Calif., 10 October 1974. (SAMSO-TR-74-210. publication UNCLASSIFIED.)
.. Fracture Statistics of Isotropic Brittle Materials with Surface Flaws, by S. B. Batdorf. El

Segundo, Calif.. 3 December 1973. (SANSO-TR-73-378, publication UNCLASSIFIED.)
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Fracture statistics for IR dome materials are usually determined
from flexural tests of small laboratory material specimens. Such material
specimens frequently do not have the same internal grain structure or
external surface preparation that exists for an IR dome. Consequently,
any difference in the method of fabrication between the small material
specimens and an IR dome may yield erroneous fracture statistics for the
dome. Two sets of fracture statistics for the material magnesium
fluoride (MgF2) were used in this investigation in order to explore this
problem area. One set of fracture statistics was obtained from four-
point bending tests 6 of specimens with surface scratches less than
6(lO)- 4 inch deep (15 im) and another was obtained from concentric ring
bending tests 7 of specimens with surface scratches less than 4(10)- 5 inch
deep (I pm). Both sets of material test specimens were fabricated from
MgF 2 plate stock.

The objective of the present investigation was to obtain a comprehen-
sive evaluation of the aforementioned fracture theories by direct com-
parisons w,7ith full-scale IR dome fracture statistics. The fracture
statistics for IR domes were obtained by subjecting thirty MgF 2 domes to
the same simulated free-flight thermal environment of the NWC T-Range
hot gas facility. The statistical fracture theories were evaluated by
comparing the predicted and observed probability of dome fracture as a
function of time after the simulated missile launch.

DOME FRACTURE TESTS

Fracture data for IR domes were obtained at the N4C T-Range hot gas
facility by subjecting 30 MgF9 domes (Figure 1) to a thermal environment
simulating the free-flight profile shown in Figure 2. The T-Raoge
facility utilizes an axial flow propane burner in a blowdown wind tunnel

- - to produce free-flight aerodynamic heating levels. The MgF 2 domes were
mounted in the free-jet issuing from a convergent-divargent nozzle as
shown in Figure 3. The free-flight thermal environment was simulated by
varying the total pressure and temperature histories in the T-Range
facility in such a way as to match the total conditions on the dome during
free-flight (Table 1). The range of total pressure and temperature pro-
files actually observed during the test series is shown in Figures A and 3.

6 Naval Weapons Center. Report of Modulus of Rupture Tests on Magnesium Fluoride IR Dome

Material. by R. L. Smith. China Lake, Calif.. N\WC. 8 August 1972. (Reg. Memo 4062-010-73.
UNCLASSIFIED.)

-- .Unpublished test data for fracture strength of magnesium fluoride discs subjected to
con :.,ntr! ring loadinL. by R. J. Schiltz and G. A. Hayes. China Lake. Calif.. NWC. 1o5.

4
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IR DOME CALORIMETER DOME

1401.420
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1.260 "TC6

1.1381.3

MAGNESIUM FLUORIDE 3Q4 STAINLESS EEL

FIGURE 1. Magnesium Fluoride Dome Geometry.

The variation of the aerodynamic heat transfer coefficient with time
and dome streamwise position was determined from the thermal response of
a calorimeter dome constructed from 0.060 inch thick 304 stainless steel
(see footnote 1). The heat transfer coefficient variation with time and
dome streamwise position is shown in Figures 6 and 7. The heat transfer
levels obtained in the free jet were found to be more severe than those
encountered during free flight. This was due to the high turbulence
levels inherent in the T-Range facility. The stagnation point heat

transfer coefficient was roughly 40' higher than expected during a

missile free flight. In addition, boundary laver transition occurred
much closer to the dome stagnation point than would be expected during

free flight.

5
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FIGURE 3. IR Dome Test Setup.

TABLE 1. Simulated Free-Tli-ht Conditions.

Free-flight conditions ]T-Range nozzle exit condiLiOnS

t, Much P, Tt { t" Mach P, ,I >

Se C no1. psia OR' psia no. IPsia R sid

0 2.25 51 828 31 2.54 64 828 31
264 93 981 41 2.34 8 981 41

*2 3.06 178 1170 55 2.53 114 1170 33
p3 3.49 336 1386 71 2 .52 11L7 1386 71

4 3.90 602 1613 88 2.51 182 1613 88
5 420 910 1791 102 2.50 210 17191 I1021

6 3.84 554 1579 85 2. 51 17 159 5

P t= Total pressure upstream of normal shock

t'

T Total temperature

7
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Temnerature and thermal stress levels within the M!qF) dmes duriub
The simulated free flight were predicted from thermal ind stress computer
models 8 ,9 (see also footnote 1), and the observed total temperature and
heat transfer coefficient profiles. The accuracy of the computer models
have been verified experimentally in an earlier investigation (footnote ]).
The predicted thermal stress profile corresponding to the time variation
in facility total pressure and temperature is shown in Figure 8 for the
dome stagnation point. The predicted streamwise variation of thermal
stresses in the dome at the end of the free-flight boost phase is shown
in Figure 9. It was found (see footnote 1) that the metal dome housing
could be idealized by a simply supported dome rim with small less of
accuracy. The predominant effect of the housing on the dome stress dis-
tribution was to change the dome temperature distribution locallv.

All of the MgF 2 domes fractured during the free-flight aerodynamic
heating stimulation. Time to dome fracture after the simulated missile
launch was obtained from 400 frame/second camera records of each dome
test. The probability of MgF2 dome fracture as a function of rimv- after
simuiated missile launch is shown in Figure 10. All domes ,ere subj 3'd
to a thermal environment corresponding to the Mach 2.25 launch -ondition
for a minimum of 20 seconds prior to the start of the simulated free 'light.
Note that 50T of the domes failed within 4.5 seconds (Figure 10) at a
corresponding stress of less than 10,000 psi (Figure 8). The published
value of the mean fracture stress obtained fr-om small material specimens
is on the order of 20,000 osi.

I0

WEIBULL FR\CTURE THEORY

The fracture theory developed bv Teibull (see footnote 2) i -umes
that fracture occurs when the tensile stress exceeds the srrengn )f the
we'ikest fla-. present in a material sample. It is further issu. d "a' '
flaws (type unspecified) occur in a manner such that the nrobab it i :
fracture for the brittle material is described by the expression:

P, = ! - exp - - ) In

8 Naval Weapons Center. Aerod.,namic Heating of Spherically Tinped Cyl!nders, Cones and Og,,'cT
Using the General Thermal Anaiyzer SIADA. by W. R. Compton. C!una Lake. Calif.. \WC. June 11%
(NWC TN 4061- 72. publication UNCLASSIFIED.)

9 The Aerospace Corporation. SAAS-III Finite Element Stress AnalYvis oj".4.:iSYmmernc and Plant'
Solids with Different Orthotropic. Temperature-Dependent Material Properties on Tension ana Compress-
sion. by R. M. Jones and J. G. Crose. Los Angeles. Calif.. June 1971. (TR.005 (5681t-53 .1. publcation
UNCLASSIFIED.)

! The Eastman Kodak Company. Kodak Irrran, Infrared Optical Materials. 1971. (Kodak Pubiicaltin
U.72. LNCLASSIFIED.j
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where

Pf = probability of fracture

(i = applied tensile stress

a u = tensile stress at which P 0

o 0 = a scaling parameter0

- m = a flaw density parameter

n = either the surface area or the
volume of the material

The parameters au, Jo, and m are determined by a least-squares fit of
the fracture strength data obtained from flexural strength tests (see
footnote 3). The values of -7o and m for MgF2 have been determined
using Weibull's two-parameter (cu = 0) method using the expressions below.

"I N N

n F, n X ny

o 1 nl n+ nl
rN 12 .

Xm

n n

n= 1 n=1

ep Zn Zn (m + 1) C Vo lume-distributed

0o expl 1),[n LtU + LH -CI( Surface-distributed

n M + f aws
ZnP =.~ P V( +o 1i "ume-d is tr ibuted

ZnP Zn(1 - Pf) L +r Surface-distributed

16
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where

H = material specimen thickness parallel to the applied load
(Figure 11)

L - material specimen length between supports

V - material specimen volume between supports

W = material specimen width normal to the applied load

-' X = Zna
n n

Y aZnn n +
n n+ Il-n

n = number of material specimens that failed at a maximum tensile

strength of a or lower~n
N = total number of material specimens tested

th
C - maximum tensile stress at fracture for the n material specimenr

P -- probability of survival

LOAD LOAD

H

OR AE

UNIAXIAL TEST SPECIMEN

UNIFORM LOAD RING
RING LOAD

RING

SUPPORT RING

EQUIUIAXIAL TEST SPECIMEN

FIGURE 11. Material Specimen Geometry.
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A summary of values for the Weibull porameters obtained for MgF 2 is
given in Table 2. The fracture data 6 are the data obtained from flexural
strength tests of material specimens with surface scratches less than
6(10)- 4 inch (15 uin) deep. A comparison of the results of the least-
squares approximation and the fracture strength data is shown in
Figures 12 through 16.

The probability of fracture for a given dome geometry is determined
as follows:

1. The temperature distribution within the dome is determined as a
function of time.

2. The thermal stresses within the dome are determined at a partic-
ular time from the temperature distribution and a finite-element stress
analysis.

3. The probability of survival, Ps = 1 - Pf, is determined for
each volume (surface) element (,n) in the stress model by using the
maximum principal stress (tensile) in that element (s), and the approxi-
mation,

P = exp A An

4. The probability of dome survival is then determined for that
particular time by taking the product of the individual volume (surface)
element probabilities of survival.

Weibull's method is widely used to predict brittle material fracture.
There is, however, no theoretical -.;av of emonstrating theft the method
is valid for materials that exhibit large fracture strength dispersions.
Bardorf (see footnote 4) has demonstrated analvti:aily that the physical
model implied by Weibull's method is not satisfactory when the fl;jwc
density parameter, m, is greater than six.

TABLE 2. Uniaxial MgF 1 Fracture Data.

Temperature, Volume theory, Surface theory,
OF 0 psi , psi

0 O

75 7,507 19,814 8.5
250 10,152 19,897 12.78
500 8,625 20,302 9.77
750 4,470 20,371 5.12

1000 2,279 17,269 3.75

18
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BATDORF FRACTURE THEORY

VOLUME-DISTRIBUTED CRACKS

The fracture theory developed by Batdorf (footnote 4) assumes that
the flaws existing within a brittle material are penny-shaped intergranular
cracks. In addition, Batdorf devised a means of accounting for the effects
of crack orientation on the probability of fracture in triaxial stress
states. Batdorf arrived at the following expression for the probability
of survival for a small volume element at a uniform stress state:

;ZEaP =-dv f -'d

C

- ~ dM

where

M = probability tihat a crack of criti,-al strength c r less) is
present in the volume element ( v) C

- probadbil5v that the crack is oriented in a direction such that
the s Lr i her-al to t:-e crack plane e:.ceeds -he crfri"-
crack strength

- crack criLical strength

The probability that the crack is oriented in a direcrion thau '.:ill
result in fracture is determined from the expression,

-T

I - cose dt

0

where
, K - K- (K - K)sin-

cos 2 . ( V (shear insensitive cracks)
c ]-K v - (K - K )sin-

24
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- K v  (KF

Cos v  - n (shear sensitive cracks)
C 1 K y- (K - K z)sin2 ¢J2

K =oIaC C X

I! K =0 / I
y y x

K = a /a

z z X

t = angle between the component of aN in the a - z plane
and the y axis (Figure 17) y z

9 = angle between aN and the G axis.N x

C YN = stress resulting from the principal stresses in a
direction normal to the plane of the crack

a= principal stress in the x directionG x

a = principal stress in the y directionv

a = prinicipal stress in the z direction

Oz

tV

oxo

FIGURE 17. Volume-Distributed Crack Coordinate System.
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The preceding integral has been evaluated for che following stress
states:

Shear Insensitive Cracks

(Kv  0, K 0)V Z

4 7T I c (uniaxial)

(K = 1, Kz = 0)

7 = C (equibiaxial)

(Ky = 1, KZ 1)

- = (equitriaxial)

(K-z Kc < K V)
(KK -- (K -

z- -= i y

47 (1- )(Kv  Kz I

0 (1-(K -K 1-7

+V z+ I -- --(K-K (t r iu:.ial)
7* (1 - K c )(K - K ) Kz

(K - K < 1)

V C -K

2 ( - K)(K - Kc zJ 7

2 (1- Ky)(K - K ) sin c Z (triaxial)*

*See Appendix A.
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Shear Sensitive Cracks

(Ky = 0, Kz 0)

1 1 - K (uniaxial)

(K = 1, K = 0)

l K-'- (equibiaxial)

~~(KV -1, K,- i

SV Z

(equibiaxial)

"= 1 (equitriaxial)

Evaluation of the integral for 2/47 for shear sensitive cracks in a
triaxial stress state involves rather messy hyperelliptic integrals and
is best treated via numerical integration techniques.

I: the critical crack strength parameter, M, is expressed as a
series,

a nM c n1 x Q

I=I n=l

then the probabiLity of survival can be determined analytically for the
following special cases:

Shear Insensitive Cracks

nm
a2U

nP = -V (2n + (uniaxial, pure tension)

n=l

n

n --- - _ n- (uniaxial, pure bending)
s 2 (n + 1)(2n + 1)

n=l

n
V na"nPs - ) (n y) B f,!- (equibiaxial, pure bending)

5 - (n : 1) \2/
n=l

27



Shear Sensitive Cracks

n

nP s= -V E (n1) (uniaxial, pure tension)

n-1
n

ZnP s  -i (uniaxial, pure bending)
s (n + 1)-

n=l
n

Sna JnV nnm (n 3 )(n +I '
4mnPs  - B (equibiaxial, pure bending)

E (n +) \2 2
n=l

where

= maximum tensile stress
m

B = Beta function

The coefficients, an, in the preceding series are determined from
material specimens by fitting a least-squares polynomial to the fracture
data:

'2n? N+l nb

i=l

If four-point bending tests have been used, for example, then the a,
coefficients can be expressed in terms of the >n coefficients of the
least-squares fit to the fracture data.

b

n

ba= 2(n 2 n_
an 2(n + 1)2 _ (uniaxial, shear sensitive)

The probability of survival of a material volume element in a triaxial
stress state can then be expressed,

1

n n-l
ZnP -=_V na a K dK

s -n x c c
fo n=

28
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where 9. is the maximum principal stress (tension) in the volume element
and P,/47 is determined from the stress state that exists within the
element. The probability of dome survival is then determined in the
same way as described for Weibull's fracture theory.

The current investigation employed a simplified version of the above
equations. The analysis was constrained to using shear sensitive cracks
and the critical crack strength parameter, M, was simplified to

M = (m + 1) &c

where m and U are the Weibull parameters. The parameters, m and c, are
determined from the equations given in the section describing the Weibull
fracture theory. The parameter, co, is determined from the following
relations:

0= expl - nV-C 1  (uniaxial, pure tension)
m

exp - jn - n(m + 1) C (uniaxial, pure bending)0 m 2

Jo = - + n( + ,ZnB - I (equibiaxial, pure bending)

The probability of survival for these special cases then becomes,

;-nP s  -V ( )(uniaxial, pure tension)

InP -- ixil pur be-dinC)
s 7 B (2,3 mo (equibiaxial, pure bending)

and the probability of survival for a volume element in a triaxial stress

state is found by numerical integration of the expression,

im
1

Znx 2m \J m '4 K m - d K

,n --- V(m + 1) K Km  AV m(m + i)-o-

s Cr~a J z J flk r/K
z
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where I/4i4 is evaluated for the stress state existing within the volume
element. The probability of dome survival is found by the method pre-
viously described in the section on the IWeibull fracture theory.

The simplified method described above reduces to Weibull's method
for uniaxial stress states, yet retains crack orientation effects on the
probability of fracture in biaxial and triaxial stress states. In
addition, the least-squares curve fit of the material specimen fracture

data is identical to that used in the Weibull theory for uniaxial fracture
tests. Consequently, the values for the parameters, m and ao, shown in
Table 2 for uniaxial fracture data for MgF 2 can be used directly in the
Batdorf fracture theory. Application of the simplified method to equibi-
axial fracture data (see footnote 7) for MgF 2 leads to the values for m
and ao shown in Table 3. A comparison between the least-squares fit
approximation and the equibiaxial fracture data for MgF 2 is shown in
Figure 18.

TABLE 3. Equibiaxial MgF1 Fracture Data.

Temperature ............... 750 F

Volume, j ................ 6,524 psi

Surface, .... ............... 19,379 psi0

.m .......................... 4.318

SURFACE DISTRIBUTED CRACKS

The fracture theory developed by Batdorf (footnote 5) for surface
flaws assumes that such flaws are cracks oriented normal to the surface.
The effects of crack orientation on probability of fracture in a biaxial
stress state are also included in the theory. The following expression
is used to determine the probability of survival for a small surface
area element in a uniform biaxial stress state:

ZnP d da

LA3 Md
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100

:0

90 - .......... .. ..... ... 7............

:0

...0... .. .. .. .. ... . .. . ..0. . . . . . . . . . .. .

~6o

..1.0.. .. .. ... .............0. ..

00

40

10................. .............. 0DAT

0.....CURV ... T

10~

0 5 10 15 20 25 30
STRESS, PSI (THOUSANDTHS)

FIGURE 18. MgF 2 Equibiaxial Fracture Statistics (T '1 a50 F)
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where

M = probability that a crack of critical strength Ic (or less) is
present in the surface area element (ZA)

= probability that the crack is oriented in a direction such
that the stress normal to the crack plane exceeds the critical

crack strength

= critical crack strength
c

The probability that the crack is oriented in a direction that will
result in fracture is determined by setting $ = 0 in the expression for
cos 2 b in the section on the volume-distributed crack theory.

sin = c (shear insensitive cracks)1 Kc y

1-K
2

sin c (shear sensitive cracks)• c 2

Since j must be equal to twice 8 (Figure 19),
c

7- 7 r (shtzar insensitive cracks)

I - Ky

- -s c(shear seusitive :rJc s)
sin I

1 1 (equibiaxial limiting value)

• ON

-a°

FIGLRE 19. Surface-Distributed

Crack Coordinate System.
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If the critical crack strength parameter, M, is again expressed in
series form,

M= an anj
n Kn

n=l n=1

then the probability of survival can be determined analytically for the
following cases:

Shear Insensitive Cracks

ZnP =- 2L [W + H], anCn B ((2n + i) ,
s En 2 '2

(uniaxial, pure tension)

ZnP - - [LW + LH a n B (2n + 1 1)

n= l
(uniaxial, pure bending)

in

' - A aa n m(equibiaxial, pure bending)

n=l

Shear Sensitive Cracks

i'nP [W + H] a B i
n1l (uniaxial, pure tension)

2'nP s =-LW a

n=l (uniaxial, pure bending)

2nP -A a In (equibiaxial, pure bending)
n m

n=l

The an coefficients are again determined from a least-squares fit to the
fracture daca. However, for the surface distributed crack theory, a
solution can be obtained for any biaxial stress state* from the following:

Shear Insensitive Cracks

ZnP = A ] a ,S 7 an xn

n=]
*See Apnendix B
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where

~ ~~i(~c~)1(K _x < 1)
Io -c ba -

-KK
L y

b

(3b1 -- I

c ! = -1 ShaIestieCa

3 (4ce2 16c 3 o

-2 n - ) b - (n - 1)11 n 2c n-I n c n-2

a -K~Y

where

b0 = I+K)

G

G 2

G,~

3 4 [1+Kvi

GO  K2 (k +(k)2JE

G3 4 [i 3

; - K ( k + 2
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(2n + 1) K2 + (2n + 2) [1 + K_,

2n+4 (2n + 3) y 2n (2n + 3) 2n+2

G (n + 1) K2 G 1 (2n + 3) 9
2n+5 (n+2) y 2n+l 2 ( n 2)" + Ky"2n+3

9 9

y

K(k) = complete elliptic integral of the first kind

c(k) = complete elliptic integral of the second kind

If the above equations are derived in terms of the two Weibull para-
meters, m and ao, for shear sensitive cracks, then the critical crack
strength parameter, M, becomes

4,

7 m
B (' m + 1"C~

The parameters, m and c, are determined from the equations describing
Weibul. fracture theory, and the parameter, co, is determined from the
following expressions:

o= exp 11 1nA A (uniaXial, pure tension)

Co = exp 1- ',n W 4-)C11 (uniaxial, pure bending)

.n +
o exp nA - -r ) C

(equibiaxial, pure bending)

The probability of surviv: for these cases then becomes,

ZnP s  A R ) (uniaxial, pure tension)

P = -LW - (uniaxial, pure bending)

ZnP = + A (equibiaxial, pure bending)
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and the probability of survival for a surfac element in a b ' i - - s

state is found by numerical integration of the expression,

zrP = KmA .( ) - , -

s 3m. +. M+
- 0

where w/7 is evaluated for the s.-ress sz-te existing ,ithin The surfa*=c
area element. The probability of dome surviva± is then Utrmi:>-c Pv

the method previously described.

This simplified method reduces to Veihull 's metcod fr UnlaXIdi
stress states and retains the effects of crck )rienrta in ii
stress states. Values for the parameters, m aid 7, , :,)r ecIi:L::m
fracture data are shown in Table 3.

RESULTS

The volume and surface distributed crack theories of both Veibuil
and Batdorf (simplified version) were applied to the thermal stress
distributions in the full-scole, MgFH domes toit were sur'ected to :

simulated free flight. A comparison between the predicted and obs .r .e
prohnabilit-' of dome fr -cture s MunctCn :e, r
launch is shown in Fi ures 20 through 2'L. Al ' ie doe5 retai:.
their geometric shape throughout the simuatd fr, e ight, even .

dome fracture. Note that two curves reDresenLin-< predicted Drobdilitv
of dome fracture appear i: each figure. 7'e curves :r s .n:

probability of dome fratare for tnt -::r i nimum "rm -

leveis that :.er observed i a given ti= . - oulat-

Lest series.

DISCUSSION

Examination of the fracture statistics that are avatile 7or \IF,
shows that (1) the si:rrace scratches on the unixial fA exura' test
soecimens are much 1:urger than on a dome, mi ( h tmn:raturc
dependence of the fle:.xural strenvth .,or te c"J e t 0 xia- tt si ,,es
is not known. Consequently, one would e::pec that the combination .f
large surface scratches and the effo,:ts sf tst specimen temper.ture
would result in higher than actoil orohibil i ois of dome frt.c'ure t.-r

the fracture statistics obtained from the uniaxial flexural tests.
Since the flexural strength of'".. decreases with temperature, use of
fracture statistics derived fr~m !qui.txial fiexural tests -t room

36
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temperature will tend to underpredict the probability of dome fracture.
The optimum fracture theory for MgF2 domes should therefore overpredict
the probability of dome fracture when based on the uniaxial fracture
data, and underpredict the probability of dome fracture when based on
the equibiaxial fracture data. It is evident from the results shown in
Figures 20 through 24, that only the surface distributed crack theory of
Batdorf satisfies this criterion.

CONCLUSIONS

1. Fracture statistics obtained from flexural tests of small MgF2

specimens can be used to predict the probability of fracture of full-
scale domes in an aerodynamic heating environment.

2. The surface distributed flaw theory of Batdorf provides an accurate
means of predicting the probability of dome fracture for the material,
MgF?.
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FIGURE 21. Comparison of Weibull Surface Theory and Dome Fracture
Data (Uniaxial Fracture Statistics).

39



NWC TP 022b~

to0

0

0

90 .....

0

. .. ... .... . -0

800
800

0

700

70 7

....... ..0 .. I.-..6001

0

0

0
20U -0 

.0

0

0

20- ,

0o . 1 2AT 304.
STRETIME SECEME

400

FIUR 22 Coprsno ad o. -her ndDm Fatr



NWC TP 6226

100 -

0
..........0. .. . ..

0

0
8 0 . .. . .. . . . . ..... . . ... 0

0

0

70 .. .. .. .. ..

* 0

0

~60

0

V 0

0 50- 0-

0
..... ....

0

CL 4 - . .... ... ...

300
300

0

40

20 0

0

0

10 . ... 0 DATA 0 .. .... ..

- PREDICTED FROM THERMAL /

0,
0 12 3 4 5 6

TIME, SEC

FIGURE 23. Comparison of Batdorf Surface Theory and Dome Fracture
Data (Uniaxial Fracture Statistics).
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FIGURE 214. Comparison of Batdorf Surface Theory and Dome Fracture
Data (Equibiaxiai Fracture Statistics).
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Appendix A

BATDORF VOLUME DISTRIBUTED FLAW THEORY

= principal stress in the x directionX

= principal stress in the y direction

j = principal stress in the z direction

4N = stress resulting from the principal stresse irection
normal to the plane of the crack

Cn = component of a N in the a y - az plane

9 = angle between the a axis and the crack normal

4 = angle between the a axis and a
y n

Then for shear insensitive cracks,

c = cos2 + a sin 2
n y z

=C x [K - (Kv - K z)sin-]

= a cos 9 + C sin9
x n

Ox J[ - (Kv - K )sin-] + [(1 - V

y z+ (Kv - Kz)sinb]cos2

and for shear sensitive cracks

2 nC = 17 cos-, + 9 sin2

= ;x[Kv - (K - Kz )sin
2 ]

9 9
N = a cos + a sin-eX n

=ax (K - Kz)sin-t] + (1 - K )

+ (K - Kz )sin 2]cos2G9
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= (a - n )sin cosTNxn

2
= ax[(l - K v) + (Ky - Kz)sin :v]sin e cos e

2 2 2
ON N +TN
e

where

rN = shear in the crack plane

G = effective stress normal to the crack planeN
e

K =r a
y y x

z z X

The limiting angle, ec, for which GN > cc or aN > ac is found by setting
UN act or aNe c

2 K c - [K v  - (K v - K ) sin -]

cos2 c V \ Z (shear insensitive)
:1i - [K v  - (K - K ) s in -]

2 K - [Kv - (K - K ) sin-V
Cos c V 7 (shear sensitive)

C 1- [Kv - (K - K )sin-]

where

K C C X

The solid angle over the stress ellipsoid for which JN > ac or CN >
is then determined from the expression, 

e -

2 =1 d sin e = 47 - 8 cos e dO

or

i - cos dt
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The following special cases have been worked out for both the shear
insensitive and shear sensitive cases:

Shear Insensitive Cracks

1 - c (K = K = 0) (uniaxial)

-K (K = 1, K = 0) (equibiaxial)

Shear Sensitive Cracks

4i- 1-Kc (Kv Kz = 0) (uniaxial)

c (K = i, Kz = 0) (equibiaxial)

Expressions for the quantity, §2/4Tr, have currently been derived only
for shear insensitive cracks in a general triaxial stress state. The
expressions derived for shear insensitive cracks are as follows:

(K > Kc > 1)

=1 -3 (, k)
-47 0

V ~ 1 F- C

IK - K

- c z
I - K

z

(i1- K clK -K

k (I - Kz )

(K z K < K )

= A( ,k)
4r

= sin-l€ -77c
z

k, 1(l - Kv ) (K c - K z)

k (1 - K c)(K v  K z )
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(0 < K 'K)

C- I

41

where

A ( ,k) is Heuman's Lambda function

Using the approximation,

A (,k) = (1 - k 2)sin + 2 k 2
0 7T

the above expressions for 2/47 become,

(K < K < 1)

"" -- C Z( K ) (Kc- K z  -K

c z

(I K < KK K K

S)- v , c z
(i - K )(K -K ) -sin

S(1 -K )(K 11 in~

V c z

(K < K <K)

V -- 
c 

-

4-, (1 K Kc ) (Kr Kz) Kz

c-g
(0 (< K c <(K K z I

= IZ

4z;

which can be readily reduced to the results obtained for the special

cases of uniaxial and equibiaxial stress states. The corresDonding
expressions for shear sensitive cracks involve rather messy hyperelliptic
integrals and are probably best treated via numerical integration
techniques.
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If the critical crack strength parameter, N, is expressed in the
form,

N aE a n o n  E 
a n n K n

n c n n

n=l n=l

Then the following expressions can be developed from the special case
relations for Q/47:

Shear Insensitive Cracks

n
a n1

nP -V (2n (uniaxial, pure tension)

~n--I

4 n

- 2 (n + l)(2n 1) (uniaxial, pure bending)

n= 1

-- - ----(n a _ B (n, 3 (equibiaxial, pure bendnin)

n=1

Shear Sensitive Cracks

n

ZnP = - Vn (uniaxial , cure tension)
°s(n +l1) n eubail uebnig

n=1n 1OP Vn 'n (uniaxial, nure bending)

n
= 1](

ZnPs _ n a o an B -, _(equibiaxial, pure bending)

n;1

where

= maximum tensile stress
m

B = Beta function
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The coefficients, an , in the series above can be determined from
material specimens by fitting a least-squares polynomial to the fracture
data.

ZnP - N + b

1=1

where

N = total number of specimens tested

n = number of soccimens that failed at a maximum tensile stress,
, or lower

b. = least-squares polynomial coefficients for fracture data
1

If the four-point bending tests ilave been used, for example, then

the an coefficients can be expressed in terms of the bn coefficients of
the least-squares fit to the fracture data.

b
a = 2(n + 1)(2n + 2) n(uniaxial, shear insensitive)
n

b

d = 2(n + ) 2- (uniaxial, shear sensiuiv,)
n T

The probabilit% survival of a material volume element is then

ZnP = - V na 0
n Kn-ldK

for triaxial stress states. The maximum principal stress, -X , can be
determined from a finite-element stress analvsis of the zeonetrv in

nuestion and the an cneff ic ients ire determined from fracture test datA
obtained in a more ,'oLeint - ,tress state (e.g., uniaxial). The prcba-
bility of survival for the -leometrv in question is then equal to the
product of the survival probabilities for the individual ume elements
in the fitite-elemeit model.
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Appendix B

BATDORF SURFACE DISTRIBUTED FLAW THEORY

If 6 =constant 0, in the expression for c(Appendix A), then

-K2

and for C

sin 2 si (shear insensitive)
7 1-(1K

Sill(sea sensitive)

,rp 2df" d- fd%'d=;

1-KK

V

rip d ( K shear isensitive)

2~~ ~ ~~ si2(ha snii

K C C

-'nP (sbear isansti4e
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If the critical strength parameter, M, is expressed as tne serik..

> = a Kn
n 1 c

then

edK
P I n C dA (shear insensitive)

n=l fK v

n+1

"lip = 2 a 7rl fK '2dK-Cn Ca IA (s ear sensiti-:j:
s n~l x K2 2 - K,-K K -

4,

The integral for the shear insensitive case is of the form,

x f xndx

f K.r

= a - bx + cx

and

a = -K, b = (I +- K.., , -i

Evaluatin4 chese inteZrais,

I sin-' cx-)]b

2 - I

(3h -ac)

2 8c-

[Ac 1J3ab 5b 3

c 16c 3
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and
(2n 1 ) b (n - !) a

n n 2c n-i :I c n-2

There fo re,
There=f 

n d 
(shear insensitive)-,.nP a 1 IdA

n=l

The corresponding integral for the shear sensitive case reduces to
the form

G1+ 1 =Gm 2 1 k sin2x dx

4, where

x =sin~f

k
2  

K

K 1 -K

y

t K

Evaluating these integr1ls

Co

i 2i

= -(k)

G3 = - (I + K-)

G4 =--Ky-(k) + (I + Kv)Y(k)
3 y 3 v

and

(2n + 1) (2n + 2)-~~~ ~ K--n (n 2

n+4 (2n + 3) v Gn (2n + 3) 2n+-G

(ri + I) I (2r, 4- 3)

2n+3 (n + 2) , -n1-1 2 (n J ) ("

Therefore

- ndA (shear snsitive)
'.nPl
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