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Weighted least squares, and related stochastic approximation
algorithms are studied for parameter estimation, adaptive state
estimation, adaptive N-step-ahead prediction, and adaptive control,

in both white and coloured noise environments. For the fundamental

algorithm which is the basis for the ?afious applications, the step
. size in the stochastic approximation versious and the weigiling

coefficient in the weighted least squares schemes are selected

according to a readily calculated ~
— - o - . )

(_stability measure associated with the estimator, The selection is

St gl gains

-y

A,

guided by the convergence theory. In this way, strong global ﬁ.

convergence of the parameter estimates, state estimates, prediction ¢
or tracking errors is not only guaranteed under the appropriate

noise, passivity, aund stability or minimum phase conditions, but

also the convergence is as fast as it appears reasonable to achieve k

given the simplicity of the adaptive scheme.<<~_—-—~——w—~
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ABSTRACT

Weighted least squares, and related stochastic approximation
algorithms are studied for parameter estimation, adaptive state
estimation, adaptive N-step-ahead prediction, and adaptive control,
in both white and coloured noise environments, For the fundamental
algorithm which is the basis for the various applications, the step
size in the stochastic approximation versions and the weighting
coefficient in the weighted least squares schemes are selected
according to a readily calculated
stability measure associated with the estimator.lie selection is
guided by the convergence theory. In this way, strong global
convergence of the parameter estimates, state estimates, prediction
or tracking errors is not only guaranteed under the appropriate
noise, passivity, and stability or minimum phase conditioms, but
also the convergence is as fast as it appears reasonable to achieve

given the simplicity of the adaptive scheme.
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1. INTRODUCTION

Based on the very simple ideas of least squares parameter

estimation and stochastic approximation it is not difficult to

propose adaptive estimators, predictors and controllers which work

quite well in a range of environments., However, existing schemes

sometimes behave poorly in the absence of persistency of excitation
of the state estimates. In the presence of instabilities, or

what appears to be instability over a short time period, this lack
of 'persistence'may cause divergence of parameter estimates. To pin
down the precise conditions under which such schemes work well is
of considerable interest., For adaptive control, the task is made
difficult since it is unreasonable to add any a priori assumptions
concerning the closed-loop system stability.,

A key ohjective of this paper is to demonstrate for linear

stochastic sigﬁél models that :t is possible for the theory to guide
in the design of the adaptive algorithms so as to ensure parameter
and/or prediction error convergence with the convergence rate being
as fast as appears reasonable to achieve with simple adaptive schemes.
In earlier work {1, 2], the convergence of least squares and
extended least squares stochastic adaptive schemes are studied using
a martingale convergence theory. A sufficient condition of crucial
importance, exposed in this theory, is that a system related to the
signal generating system or frequently just the noise generating system
be passive (or have a positive real transfer function in the time
invariant linear signal model case). Simulation studies and the
theory of [3, 4] also suggest that this condition is close to being

a necessary one. Also fundamental Lo the parameter convergence

v e m e m e

theory of (1, 2] is a persistence of excitation condition. The
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theory does not exclude the possibility of instabilities arising in
closed-loop control which cause lack of persistence of excitation in
some modes, and thus divergence of parameter estimates, compounded by

ill-conditioned calculations. Least squares results have also been

reported in [3], and in [4] via an ordinary differential equation approach

[5]. The work of [1~5], without modification falls short of giving
a global convergence analysis for adaptive control,

More recently in [6], a specific adaptive control scheme has
been proposed for which global strong convergence results are derived
without any a priori stability assumptions. The theory builds on
the martingalé approach, and oun the earlier deterministic theory of
{7-10]. However, our simulation experience shows that the perform-
ance is inferior (e.g. 100 times slower) to that of the self-tuning

schemes of [11-14] when these converge. These self-tuning control

srhemes use least squares ideas but in common with the schewes of [1, 2],

their convergence theory requires a priori assumptions about their

stability. This is not fully satisfactory in a control situation,
An attempt to generalize the stochastic approximation approach

of [6] by harnessing the power of a least squares approach is given

in [15]. In this work, a stability measure is taken to be

a bound on the condition number of this estimation

error "covariance" matrix employed in the least squares approach.

When a somewhat arbitrary bound on this number is exceeded, then the

algorithm uses a stochastic approximation scheme tailored to the

error "coveriance" matrix at the switching time. The scheme uses

a priori prediction error estimates in the state estimator and is dramat-
ically inferior to the schemes of [6] for some coloured noise applications.

A revised version of {15] translates ideas from the technical report [16],

b e s SR
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the antecedant of the present paper, to treat the case of a posteriori

prediction errors in the state estimator. In one scheme it employs

the stability measure of [16].
A
In this paper, we tolerate a reduced weighting in the extended least !
g squares performance index when there is what appears to be insufficient

;

E

i

i excitation assessed over a finite time period. This reduced weighting
overrides any other weightiag scheme such as "exponential weighting"

S — P —

applied for the initial transient period, As a consequence, globul

convergence results are achieved for an algorithm near in some sense

to the standard extended least squares scheme. The convergence results

here are stronger than in the revised version of [15], giving convergence
rates and also than in the technical report [16] on which tihis paper
is based.

The specific contributions of the paper are summarized as follows.

The first contribution is to give a global convergence theory for

weighted least squares schemes and related stochastic approximatior

schemes. The important by-product of this contribution is to give &

simple scheme for weighting coefficient selection to ensure global
convergence in clesed-loop adaptive control, At the heart of the
weighting coefficient selction schemes is a persistance of excitation/

stability measure already available in the calculations. The second

contribution is to show how earlier global convergence theory re.sults
of [6, 15, 16] can be strengthened to give convergence of the pre~
diction errors, to the appropriate white noise term. 1lun contrast to
earlier work, convergence rcates are implicit in the present theory,

as are convergence rates for parameter estimate differences. Another

distinctive feature of the theory of the present paper is an implicit

lower bound on the convergence rate of the prediction or tracking




error to the white noise term even in the absence of persistency of
excitation. A third contribution is to show that under persistently
. exciting conditions, zero bias parameter convergence is established.

A final contribution is to show how the theory can be generalized

. for N-step-ahead prediction/control schemes without using an inter-
leaved bank of parameter estimators as in [17]. .
In Section 2, the weighted extended least sﬁuares algorithm
is introduced and in Section 3, its plobal convergence properties
are studied. In Section 4, the case of N-step-ahead prediction/
control is considered and in Section 5, some concluding remarks are

made,

e



2.1

2,  SIGNAL MODELS, ADAPTIVE ALGORLTHMS AND CONVERGENCE CONDITIONS

Signal Model Class. Consider the signal model

z = 0 X + vk (2.1)

where 2y is the measurement p-vector sequence, and X is the state
n-vector, and 6 is the unknown n X p parameter matrix. The noise
Vk is a zero mean white process or more precisely is assumed to

satisfy for some ov

Ev|F i1 = 0, EEl[v, I*|F, 1] 5 o] (2.2a)

k
Unsuwp i) (v, [I? <= (2.2b)
koo 0

where Fk denotes the minimal O-algebra generated by Vi, Vi, «.s, vk’
Xgs Xy eees Xy Zgs 21 eeey 2 and O,

If the states X of such a model are known, then parameter
estimation can be achieved in terms of X . Otherwise, a standard
approach is to replace X by an estimate §k' For this we need a

more specific description of a model for X, . Consider the state

model
xk.+1 = (F+Gle’)xk + Gz\)k + f(uk: zk) (2\3)

where F, G, G, f(+, +) are known, possibly time-varying functions.
This model (2.1)-(2.3) encompasses a number of useful special

cases. For example, it covers the autoregressive moving average model

class with exogenous inputs (ARMAX) of the form, given here for the

scalar measurement case as

+ z c,V + v (2.4)

LRSI )&x‘;\*:*,'z 4“,"3’_9‘3“""\'4“ B R e e e e e P S
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with exogenous inputs u, . Details in [2] arenot repeated here save that we

k'
can define

K= 12y oo Zn 1 o0t Yen Vil 00 Vieer)

e = [a) es e an bl ree bm Cl oo Cr]

It is also true that (2.3) encompasses multivariable ARMAX models

- (with unit delay) in which the various scalar parameters and scalar

variables are replaced by matrices and vectors respectively., That

such models can be used to represent a very general class of linear

systems with unit delay is shown in [18]. We are not here constrained

to a unique representation, or a minimal representation of a multivariable

system, although such models are c¢f course preferable for some applications.
Another example of the class of model encompassed by (2.1)-(2,3) is

the transfer function model class where for polynomials 4, B, ¢, D, in

the delay operator q_l, z) = BA-luk + CD_lvk. Details are omitted

here, ‘

The model (2.1)-(2.3) also has application to adaptive Kalman

filtering where a co-ordinate basis is specified, as discussed in [2].

State Estimation. With the state space model (2.1)-(2.3), given

some estimate Ck at time Kk, a state estimator is

~

¥4l = ka + G‘yk + ngk/k + fk(uk, zk) (2.5a)

Zefk T AT Ve YT B (2.50)
For the scalar ARMAX model (2.4),

X = 12y oo By Yeer  Yeem Zee1 /el "t Beer fker )

State Estimation Error Equations. From (2.3)-(2.5) we have
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;k+l = (F+GOM% + c(él:?c‘) (2.6)

where G = G; -G, and ik = X T X Observe that f(+, *) does not

influence (2.6).

Parameter Estimation. The global convergence theory of the

next section requires that parameter estimates are given from

A _ ~ A A A_.l AN N _1-.
B = 81 T Xk Wi FRBR-1®) Ph/k-1 (2.7a)
Y S R L L (2.75)
where %k > 0 satisfies
ﬁ-l A... < + AAA (2 8)
k=1 ‘ﬁc 1 ¥ e .

For weighted least squares versions, then for some B¢ >> 0, Yk >0

I\P\A

B, = Bk-l. LA +kak 1 k)

kkk"'(Yk +xkklk) klxk’Bk-le (v xeBy %) Bkk

(2 9)

~ ~

(Recall that for standard least squares, Yk is a constant Y and

k/\l\ - A
= () x,X}) 1 which is independent of Y.) For stochastic
0 i1

~

n~ ~ k
= = - = (Co. =1
approximation, Bk = Bk—l =B > 0., Typically B =1 and Yk = (gxixi)

A

The actual Yk selection is specified later in this sectionm.

A

Parameter Estimation Error. Defining 6k = 6-0k, then from

(2.7), (2.5b), (2.9), simple manipulations yield

Zep-r = OHH 01 Ve 2 = 07X FBx Y (2.10a)

% k-1 = (l-l-ykkak lxk)zk/k (1- kak K k) /k (2.10b)
B, .x

8, =6, ;- k-l k 2 B 2.11

O ™ Bt o ~ Pk /r-1 ek—l Yk k-1% k k/k (2.11)

et kkl‘
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Minimum Variance Control.. We consider the case when the plant

*
output z, is to be controlled to track a specified trajectory Z, .

In minimum variance control, by choosing the control so that the one-

"~

step-ahecad prediction estimate zk+1/k is the specified trajectory
%
41’ then the tracking error is the one-step-ahead prediction
error, which is of course "minimized" iu a least squares sense by

the state and parameter estimation procedures. Thus the control u

is selected so that the implicit equations

A‘A *
O X1 (W) = 24 (2.12)
are satisfied.

An explicit solution for wu,_ 1is readily found and is often

k
unique. For example, for the ARMAX model (2.4), if bl # 0, at some
time k then u is unique and simply calculated., If b1 = 0 as when
there is a known delay N > 1 in the plant, then N step~ahead

prediction may be called for. This is studied in Section 4.

Passivity Condition . It is known {2], that the parameter

estimation error equations and state estimation error equations

can be organized*as a feedforward subsystem with states §k and a
feedback subsystem with states 5k’ and an external noise input vk.
Moreover, the feedback system, in the appropriate organization, turns
out to be passive, as defined in [20]. Since, it is known that a
strictly passive system back to back with a passive system has input/
output stability behaviour for its subsystems [20], it is not surprising
that in the convergence theory of tbe next section, one of a set

of suificient conditions is that the feedforward subsystem be strictly

passive. The relevant feedforward subsystem is

A

o %k (2.13)

ne>

- 1 - -

*The details are included in remark 4, following the proof of Theorem 3.1




2,5

and we require that this be input strictly passive, and output strictly passive,

or equivalently for some Kk 20, € >0, and all m

n m
(75 ay (py - €9;) 2 =K, (X) Ppla, ~€Py) = =K (2.14)

For the time invariant case, an equivalent condition is that
{4140 [21-(F460") ] 16} =
{[I'-e’(zl--l")'-lcl-l - %1} 1is strictly positive real [21] (2.15)

and for the ARMAX specialization} (see Appendix for proof)

[C-l(z)-%] is strictly positive real [21] (2.16)

where C(z) = 1 + C 2L --Crz-t

1
. The conditions (2.14) have the interpretation of a

passivity condition for a system with input Y and output (pk - Eqk),

and for a system with input Py and output (qk- Epk) respectively. The

theorew of [20, page 178] tells us that passive systems followed by a mono-

tonically decreasing gain are also passive, So that here with Yk > 0 mono~-

tonically decreasing,a consequence of the above passivity condition (2.14)

is that for some Kk > 0, € > 0 "and all m.

m

m
gquk(pkqu)z -K, g PpY, (4 ~€py) = - K (2.17)

A discrete-time version of this derivation is in the Appendix.

*For the scheme of [6], the condition is [C '(z)~- %] is strictly positive

real where O<a<l is a scale factor on the parameter update step size.
There does not appear to be a corresponding simplification here.
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gggggg. For open-loop, one-step-ahead prediction error convergence to
the noise Vk’ it is not surprising that a bound on the plant output
and states is required. Such a priori restrictions are intolerable for
closed-loop adaptive control but they have their parallel in order to
keep the control signals bounded. The parallel conditions are the same
as for the case when the plant parameters are known, namely that the
desired trajectory zi be bounded and that the plant be minimum phase,

or more precisely, that the plant have a bounded-state, bounded-input,

and a bounded-output, bounded-state property. Equivalently, the plant

inverse system must have a bounded-input, bounded-state and a bounded-
state, bounded-output property, which is guaranteed if it is exponentially

asymptotically stable and is uniformly completely observable and

X reachable (see discrete-time versions of results in[22]). Thus we

introduce

Open-loop Prediction-Bounds. For some K and all m > m; for

some m‘

k4

1 12
=0 =l s (2.18)

oz

Closed-loop Adaptive Control-Bounds. For some ¥ and all

Ao o AN A W Wi 5 B e e e o

m > m, for some m,

i mg e 11 s« (2.19)
1 = m m m

; £ L K

! m(Z) Il v Ilzsmg kaHZS;g Il 2 I* +« (2.20)

This latter condition is referred to as a "minimum phase'" condition.

For the ARMAX model and noise restriction (2.2), then (2.20) holds
trivially for the case of adaptive control with B(z) = b1 z-1
+b 2'2 + e bmz-m minimum phase, or equivalently with all zeros

2
within the disc |z| < 1. In contrast, (2.18) holds if A(z)

= 1+alz‘l+ e anz"n is minimum phase and u

Other cases are not spelled out in detail,

is bounded in L .
k 2




Weighting Coefficient Seléction. For the one step ahead

prediction algorithm, we make the following selection of Yk with

A A A

= x! €
Gk kak-lxk and € > 0 some small number,

}

alest

cr 8o
1 1f S = ko <

(ko ~1/2 if ke% 4 {k:O‘k < K, kﬁyl}

K

-1/2 Ao, ,
CYk if kEf?; = {ks kﬁj?i.j?a}

k «
K>>0, 0<¢C, K<, rk 4 by " x "2 , E& = max (k’rk)
j=0

>

= AR -3 T €
Yk = min{Yk’ Yk‘l}, Yk Yk 6},’ 6k rk

For the adaptive control algorithm the above selection is

used except that (2.2le) is replaced by the following.

A S P ~ _
Yk minffkrk s Y }’Y-Ykak,6k=1

k-1 k

A

(2.21a)

(2,21b)

(2.21c)

(2.21d)

(2.21e)

(2.21e")

The selection of 'Yk is made so as to satisfy certain summability

conditions for the application of mastingale convergence theorem and
thereby derive the result that tr {ek B;lekﬁk} converges and
(]

~ 2

%,V
% Ykll?k/k k" < a,s. The monotone nature of Yk has already been
alluded to in the discussion of passivity condition, esaentially it

keeps the passivity condition same as for the standard least gquare

algorithm. Additionally. chis setection satisfies the condition

= (1/2+€)
lim inf Y
o Kk 2

minimum phase restriction on the plant, closed loop system stability

> K,> 0. This condition ensures that under a

is achieved for the minimum variance controller. These properties of

A

Yk are summarized in the following lemma, the proof of which is given

in the appendix.
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Lemma 2.1 The Yk’Gk selections in (2.21) satisfy the following.

o

i 8, Y kkklxk< Ky < (2.22a)
=(1/2+¢) (2.22b)

liﬁ inf Y rk > K2 >0

MK BraX S Ky <® s KESL YL, Ko > [yl (2.22c)

Remarks. 1. The distinction between the predietion ,1gorithm
and the adaptive control algorithm has been necessitated due to the
fact that whereas ;k =1 is a possibility for the prediction algorithm,
the analysis technique of this paper does not permit such selection for
the adaptive control algorithm, unless additional assumptions like
persistency of excitation are made. Of course, the §k selection
involving (2.21e') could be used for both prediction and control
applications.
2. 'For the prediction algorithm, if after a finite time

—

i, Gk satisfies ak j_-% , then ;k becomes a constant after such time.
Thus the algorithm behaves as standard least square algorithm under
persistency of excitation .
3. Under minimum phase restriction on the plant for
adaptive control algorithm and stability restriction for the open
loop prediction algorithm, it will be shown in the subsequent section

-1/2

that Yk is bounded from below by k without requiring any
persistency of excitation condition .
4. The ?k selection could be simplified by eliminating

(2.21b, without changing the convergence analysis of the subsequent sections.




3.1

3.  CONVERGENCE ANALYSIS

The convergence results are presented as two major theorems,

now stated and proved,

Theorem 3.1: Consider the plant (2.1)-(2.3) and the weighted extended

least squares estimation schemes of Section 2 with the Qk’ak’yk

satisfying (2.21) + Then

with the plant constrained by the Passivity Condition of Sqction 2,

o

(1) lim sup tr{6'B 15

} §, <= a,s,
T Kk k' Ck

11ma‘13k. 0 ==> lim ek =8 a.s.
ko k koo

[+ ]
(i) Z Ilﬁk_lll—ldkllék - ék-jllz < = a,s, for all finite j.
0

o 2

(111) ng I 2k " Vk” <w® a,s,
w2
ng “ Xy ” <® a,s,

In addition, for the adaptive control algorithm, one also obtains

- -
2
(iv) (2): Tk" zk/k-l - Vk” < ® a.s,
. 2
or (X)Tk" zk* - \)k” <® a,s.

where T =Y

K K i k€5{;5§' and T, = Y r ~1/2 +€

k k k otherwise

L . ,
Proof: Result (1), First define for >0 and k given in (2.17)

U




(3.1)

Vk =

where Py =e’£k +J§51:§k, q = 61:}?1( Observe that Vk 2 0 by virtue
Simple manipulations

o K
tr{eﬁBklek}6k+{2g[YkP£qk"EYk(llqk 12+ 11 e, )] + 3

of (2.17), guaranteed by the Passivity Condition.

now yield,
EWV|Fy g < Viop + BA2vppa P ) - exlla 12+ ey 19017y ]
(3.2)
where

a ~ ..1~ ~ A-l ~ "~
A = - - » ”»
k= EORRT8 - 0,1 B By ¥ A (R TV T b &

’ tr{'éa (’ﬁ-l _%"'1 )6 - ?2 (;‘B ;( )"'zu ; ""Y\ 'é;';( a} s
kY% T %k-1""k T Yk RPk-1%%7 2k /k Pk /T TR R IK Ok

The latter equality follows from a substitution for 6k-1 from (2.11b).

Applying the inequality (2.8) and definition for QY gives that

Ak = -nk where nk is defined below. Also, from the definition of

and (2.11a)

EN

B2V Py ] = MEDEEX [Py ] = -8y

g, * 2y, (xB, %) l+x B .x )t 2

k K *kk-1%) W 2B 1% Elllvk I 'Fk-l] (3.3)
with

A AT s A ~ ~ 2
e = kakxknk_lxkn zk/k"
Application of these results in (3.2) gives
(3.4)

BV IR )] S Yoy = onBULa 17+ e P17 ) + Bony

or with ¥ = v, +ev ([ q [I*+ o [D)4n,

A A ) )
EWV P _q] < Vg = ev Ulay 12+ ey 1) + Bty _y (3-9)




RS,

The martingale convergencé theorem {pages 33,[23]}, now tells us

0
that for arbitrary Gk =0, B, 20, | Bk < o, thén almost surely

k
(o]
Vk converges and z Yk“qk ”2 < o Z Ykllpk "2 < ©, Application
0 0
here is straight forward since the strict passivity condition ensures

that G 20, and the Y, selection to ensure (2.223) and the noise

k k e
restriction (2.24a) ensures that z Bk < @, Thus under the conditions
0

of the theorem

o0} [+ o] o«
~ 2 _ 2 2 2
[+
:\ 2’\ ~ ~ ~ 2 (306)
gdk{k Bl el 7 < s

Also V. converges almost surely.

k

The first part of result (i) of the theorem follows since the

additive terms comprising ¥ are all positive and thus for each,

(1) g(1)
k k

k

denoted V , lim sup V < ®», The second part of (i) follows

ko
from the first part.

Result (ii). From (2.11)
A _l A ~ 2 A~ 2 A A ~ 2
S Bl P = Oy I < S @il 2 @.7)
The result thus follows from second part of (3.6).

Result (iii)., Part (a) is merely (3.6) which has thus been

established. Result (iii b) follows since the system (2,13)
rewritten as

Tt = (i RO I + Grly v v,
has a bounded-input, bounded-state property by virtue of its
asymptotic stability following from the strict positive real con-
dition on (2.13), as in (2.15), and the fact that Yy monovonically

decreases from (2.21e). A crucial intermediate step is i

k . k
oo k-1 =% k-1
(Z) || Y1:+1(1'+G°') v, o sg | Pee0" || % < =
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for some K and all k, otherwise the arguments are standard.
To obtain the result (iv) for adaptive control, premultiplying (2.11)
by x; and taking its norm yields,

A3AI\

A A’ ~ A N 2 ~ 2
A S CRE Y A ¢ N k) [

Applying (2.22¢), noting that GkE 1, for the adaptive control algorithm

and the application of second inequality of (3.6) results in
0, 2 < g6 T
7, O B lYk kak i Mzl
® A A A 2
and thus ng” xk(ek - ek-l)” < ® ga,s, (3.8)

Result (iv a) follows from (iii a) anu (3.8) since

2
= \)k"

~ - 2 2
”zk/k—l h Zuzk/k k" + 2“x (9 k-l)" .

Result (iv b) simply designates that in adaptive control, the trac:ing

~ ~ 1

* .

error z, is equal-to zk[k-l .
'A%
Remark 1. In terms of the parameter and state estimation errors,

the prediction and the adaptive control algorithms are alike. However,

for the prediction algorithm it has not been possible to deduce the

2k/k-1
This is due to the fact

convergence of a priori predicticn error from that of the a

-~

posteriori prediction error zk/k'

-~

that 2z

A -~

= (1 + kakBk 1 k) zk/k and the Yk selection does not

The presence of the factor

k/k-1 "

ensure any a priori bound on Yk k k=15
;k— in Yk for the control algorithm just enables to obtain the result
that

tim sup 12 < o
g;“Pp ) Xy

(See also next theorem.)




2. The passivity condition is automatically satisfied for

the case when ﬁk =X is known as for example for ARMAX models with
white noise. Simulations and the theory of [4,5] suggest that other-
wise it is close to being a necessary condition. The condition was
first exploited in [1-4] and is not discussed further here.

3. The result (i) is a generalization of {1, 2] for the
closed loop estimation using weighted least squares algorithm. The
results (ii), (iii) are novel and have no correspondance to earlier
results for the case §k = 1.

4., As noted in section 2, the state and parameter esti-
mation error equations can be re-organized as a feedforward system

~

with states ;k back to back with a feedback system with states ek as

S = " = 0'x 1
Gaq = (FHGOX + Gqy y py = OTx, g

~

B = Ay = By By iyt ) g = B
The result Ak 52 0 in the proof of result (i) above leads to the
conslusion, via a passivity theorem also in [1,2], that the linear
time varying feedback system with inputs (pk+vk) and output (?qu)
is passive. Siuce Gk is monotonically decreasing, the same system

but with output ékyqu = Y, is also passive.

5. An additional cosntraint namely the Minimum Phase/
Stability condition of Section 2, can be introduced t jyuarantee

bounded signals and lower bounds on Ty as follows.
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Theorem 3.2: Under the conditions of Theorem 3-1 and with the

Minimum Phase/Stability conditions of Section 2, holding, then the

estimation schemes of Section 2 yield the bounds

1k~ o i
lim sup Z“xi" <o a.s. (3.9a)
0
lim inf Y >0, limyx B .x a.s., (3.9b)
n k K b k17K
oo ~
zk"(l/2+€) ”kuIZ < @ a.s. (3.9¢) %
!
1§ 1/2 5
Lim = Ellxi“ =0 a.s, (convergence rate k™'7) (3.9¢c) {
k> 7 0 ¢
T - (1/24€) 2 (1/2+¢) & 9
Lk 1z ey = Vil ™ < L k Mz vyl = =0

a.s, (3.9d)

In addition, for the adaptive control algorithm

[e ] - - k ;
T K (1/2+€) ”E:'vk” 2 ®, 1imk (1/2+€)Z ”Ez' \)1“2 =0 a.s.(3.9)
0 k-0 0 '

1 2
li'{‘(_)iuf’ 'E%" xill <@, 11‘“ SUP 2” Uy " a8

l ! [X-X1

P/woo. Considering first the prediction algorithm, exploiting the

A

lower bound on Y, of (2.22b), and the Kronecher lemma [23], then result

(i1i) of Theorem 3.1 yields

k ~
lim [max k, rk]-(l/2+e) tl xi||2 =0 a.s. (3.10)
koo i=0

Now since ||x1||2i 2]| xi"2 + 2| xi"2 , the application of (2.18) results
in

o RN AI AL IS K o o o 1 SO b f2 e

1P SR
1;(2) (A i";gllxill + K (3.11)




3.7

for some K, 0 < K < o, Simple manipulations then imply (3.9a). 1In

;

¥

e

brief, in view of (3.11)

P+ (ernyy 2O

k LI ko~
2.-(1/2+€ 2 S
max 3 1 %12 D Tl 2 G Ny

1=0
K

LI

a2l =

1=0

k
This inequality implies that lim sup %ﬁ " iinz <™ a.,s.
Sl 0

for otherwise taking limits for a subsequence there is the contradiction
that 0 > ©» . This bound in (3.11) establishes (3.9a) for the prediction
algorithm, For the adaptive control algorithm the lower bound on Tk
namely Tk;# 3_-E2 , for some Eé <o from (2,22h) the Kionecher lemma
[23], and result (iv) of Theorem 3.1 yield
R I 2

t:g [max k, r,] iEOHzi/i_l-Vin =0 a.s.
For the adaptive control algorithm, it will be established in the segual
that,

Lijg)f < &

0 i=0

These two inequalities establish (3.9a) for the adaptive contro: algo-

rithm by repeating the above argument verbatim., This along with (2.22b)

of Lemma 2,1 implies the first part of (3.9b). That (3.9a) implies
the second part of (3.9b) follows from the lemma A2 of [17] in view of

the boundedness of Yk‘ Now the first part of (2.10b) implies that

. 2 N 2 T T
02 ey = VN 220y = 9 17+ 20 B )0 I E gy ]

%
@.
=

X

L 2
Z” zi/i-l - Vi" + K (3.12)
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3.8

The application.of the result (iii) of Theorem 3.1, second part of

2 (o

w1~ Vi

a.s. The result (3.9d) then follows by applying the first part of (3.9b)

0
(3.9b) and the second part of (3.6) imply that z Yk||5
~ 0

and the Kronacker lemma. Result (3.9e) holds as a consequence of (3.9d)

~

since for the adaptive control algorithm, the tracking error z: equals

, o 2 ~ 2 ~ 2

the prediction ervor 21 Jk-1" Also, llxkll §_2||xk|| + 2||xk|| R

and the first part of (3.9f) follows from (3.9a) and (3.9¢). The second
part of (3.9f) is a consequence of the minimum phase condition (2.20)

while the rest follows from (2.1) and (2.2b).

It remains to show that (3.12) follows from the theorem assumptions.
A consequence of the minimum phase condition (2.20) and the bounds

(2.2b), (2.19) in the following inequality

g k k k k '
. 1 2<.0¢ 0" 2 1 2 1 ¢ 2
o E % Hzill < 31'("'% ”zi"'\)iH + 31{ (z) ”Zi‘” + 3k. % “\’1H g

gives far some K

H k k
::w K ~£ . _ 2
; UV N RO A EEIT SRS
Also, llii |2 is bounded in terms or !lpi-+%qi II? = ||0‘3'<i + Oixi 1|2
= ll?i/i vy |2 as in the passivity condition statement, and
~ ~ 2, 2
1,y 1 < 205 12 #2ll, 1 = 203,y 12l 17 <
Q'IEi/i_l-vi "2-+6||v1 I, giving that ||§i H’ is lLiounded in terms
of I‘Ei/i-l'-vi "2 and “\)i I|2. Now since l‘:i = < 2I|xi ||2 + 2“;:i “2,

application of (3.13) and this bound gives (3.12).

Vw
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Remarks 1. The results (3.9c,d) of Theorem 3.2 and their
antzcedent results (iii, iv) of Theorem 3.1 are stronger than the

previous results [6, 15] which do not give explicit convergence of

v .
zi/i—l to g *Oor the implicit convergence rates. Here, in
addition to the convergence of ;i/i-l to Vi » an implicit lower
bound of 11/2 on the convergence rate of the prediction/tracking
error and the state estimation error is established independent of

any persistency condition .

A

2. It is easily seen that if the matrix Bk

k A
(%i X,X,) decreases at a rate L or faster then Y, will remain §
=0 i1 k k . t
nearly constant for the prediction algorithm and nearly k  for the

or

adaptive control algorithm, This is in view of the result that

A

ka
lim sup é{x x.<® , However as the bound is not uniform, it is not
oo koii

possible to conclude that Yk will exactly be a constant under such

conditions.

3. It remains an open question as to whether or not

" Qk" can fall to converge to zero without a weighting coefficient

selection and in the absence of persistency of excitation.

4. The techniques of this paper as well as those of [6, 15]

prove the various convergence in the Cesaro sense. In a subsequent

la)

paper (28], the uniform boundedness of Xy and the uniform convergence

of prediction error is established for a related algorithm using the

projection methods of [29, 30] .
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4.,  N-STEP AHEAD ADAPTIVE PREDICTION/CONTROL SCHEMES

If there is a delay of N units between the application of a
control signal to a plant and any response to that signal, then in
controlling that plant, it makes sense to work with an N-step ahead i
prediction of the output of the plant. In minimum variance N-step-ahead ?
control, the measurements {zk} are predicted N steps ahead as |
;k+N/k(uk)’ being expressed as a known function of the centrol signal ;

at time Uy The control u, can then be chosen so that this prediction

®

is the desired N-step ahead output trajectory ZaN®

That is, uk is

chosen to satisfy

* ~
Zean = Zean/k (U (4.1)

Thus for N-step-ahead prediction/control, consider a state space

model encorporating an N-delay as

Xean = FXpneg T G107x + Gomy + f(uk, zk) (4.2a)

z, = ] x + My My =W + Qowk__1 + e QN—Zwk+1—N (4.2b)

with w satisfyirg (2.2).

Consider the scalar input/output model Az N Bu, + Cw

k+ k k+N

with 4, B, ¢ polynomial operators in the delay operator q—l with
degrees n, m, p, where A, C are monic. With the long divisions

C = AF + q-NG, 1=CF + q-Na defining F, F monic and of degree (N-1)
and (¢, ¢ monic with degrees (n-1),(p~-1), and definition

nk = ka, zk = yk + nk, then simple manipulations yield

Defining, for the scalar variable case
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AT % AT DY - SRl
FE I = i o

O

Ei: e xk+N = [Zk zk"‘l oo uk uk-l eee yk yk"l ooc]
— N1 —— N1 —H— p —>

then a re-organization as in (4.2) is straightforward. Using the theory

of {18], the multivariable case can be covered likewise.
Also, transfer function models can be organized as in (4.2).

With the above model (4.2), an adaptive estimator is

Mo ™ Flyeey ¥ 18 ¥ Gz + B (s 2p) (4.3)

where ék is calculated as in (2.7) - (2.9) in terms of §k of (4.3).

Lo AN

A prediction zk+N/k = ka*+N. and control Uy is selected to satisfy

X AN
Zean ™ OpXan (v

With the definitions q, = (6k“k)’ P = (%5£§k+6’§ as earlier,

K
then (4.2), (4.3) yield

Rean ™ Flgnoy * 6(p +40,), p =87X +¥q, (4.4)

and the passivity condition of interest is as follows.

Passivity Convergence Condition. The system with state equation

(4.4) is output and input strictly passive, or equivalently in the

time invariant case

{[1- g-z" (N-1) (zI - F)'l(;}'l

- %1} 1is strictly positive real

For the input/output model this condition is that, see also [17].

{[I--z"({q-l)a(z)]“l - %} is strictly positive real.

Convergence Analysis. To generalize the theory of this paper

to the N-step-ahead prediction scheme above, a crucial step is to

~ -~

view Xps ek, as decompesed with N fictitious values as




~(N N
;{121) N. S"cl((N), 5&1) 61?') with the properties ;(k = izl (i),
5 = ) 50 for all k, where
=1

(1) T L 0pp gD

% O-1 + B /k-1 (4.5a)

() _pan(d) |, ()an .

2l S0 P OII N Qg U < T (4.5b)
and

TPETIRRECREIEY

Exploiting the fact that X Yio Bis Xpo 6 S Fk-Nc Fk-i for

i=1,2 ... N and thus 5(1) aF then Véi) = tr{aéi)‘ﬁgl’ééi)}ak

k-1 k-1’

(1) - yd) u
has the property E[Vk-lle-i] Vioye E[wkﬂ_ile_i] 0. Working

(1) ; @yp
with E[V, ll’k_i], rather than E[V, IFk_ll, then the earlier
analysis approach yields that under the passivity condition above,

for i = 1’ 2’ LI ] N.

i T Aex @ (s
lim sup vlg ) < a.s, ng[H xkeé )||+||X|E Y [12) <= as. (4.7)

ko

Also, (Z)Tk" :’Ek‘(él((i) - 51(:&) |2 <« a.s., and consequently

o+

~(1) 2
g Tl 2 ey = Qg Viea-1 I# <= aus. (4.8)

From (4.7) and (4.8), and application of the triangle inequality, then

[e )
~ 3 i i \
liﬁ'wsoup tr{OkBkJBk}Gk< , g Tkll 2 N~ "k |2 < = a.s. (4.9)

an¢ the global convergence results for one-step-ahead-prediction control
of the previous section apply for the N-step-ahead prediction/control
case with Vi replaced by 0 and Zklk replaced by zk|k-N' Ty in (4.8)

and (4.9) can be replaced by k_(l/2+€) as in the proof of Theorem 3.,2.

[PV —
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Remarks 1. The predictors above are siﬁpler than those in [17] involving

a bank of N inteflaced parameter estimators. Here, the decompogition
of ‘6 into 6(1) e G(N) etc. is purely a construct in the converg-
ence theory with no consequences for implementation. Also, the results
are mildly simpler than in [{19] upon which this section is based.
2. The above results are also applicable to the probiem of

establishing convergence in the presence of colored noise but where the
state estimates are uncorrelated with the noise. A second important
application is for output~error schemes which use a parallel model to
achieve a state estimate uncorrelated with the noise. A subsequent

paper studies this case in detail [27].




5. CONCLUSIONS

The paper has presented a weighted least squares approach in
parameter estimation, N-s&ep-ahead prediction and control. The
weightings are selected according to a stability measure and guided
by a global convergence theory. A feature of the approach is that we
achieve open-loop adaptive prediction and identification results, and
with the same theory, clgsed-loop adaptive rcontrol resﬁlts. Thus, in
our adaptive control schemes, under persistently exciting conditioms,
there is consistent parameters estimation, and asymptotically optimal
state estimation achieved while tracking. Also, the results have

application to the adaptive control of general linear nonminimum

phase plants [25] and output error recursions in colored noise [27].
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Appendix
) -1
Proof: That (2.13) specializes as [C ~(z)-%] for the ARMAX

model (2.4).

= ~’6 =
where N (ekxk) and P

yield (p ﬂk) =

(2.4), (p, ~%q)) = @ ik =

output of a system C(z) driven by (pk+%qk .

The system required to be strictly passive is one

(%ék . +8'x )+ Simple manipulations

k + e'ik = z - vk and for the ARMAX model

"
1§1ci (\)i 1 i 1/1- l) is seen to be the

Standard manipu-

lations then yield that the system with input 9 and output Py

is[C-l(z)-%l.

Proof: That (2.17) follows from (2.14).

m

In simplified no-

tation, with g Siak > = for some « 2 0 and all m, and v, > 0

(y_l = 0) monotonically decreasing, then g Ykpl'(qk

m+l k-1

(=vyy) Loy 2oy kb ) vy )k =
kzo k "k-1 1=0 E k m k=0 k k-1

] !

P
m k=g X k
mtl
-Yox. Here the

first equality is from summation by parts, and the inequality

m
follows from the assumptions. Thus [ YiPry 2 ~ygk. VWV
0

Proof of Lemma 2.1. Noting that Y, < Y, T

~

I v2s
keyk 1%

zykkkklk

~

ZY
key,k B 1%

iA

(A

<

-€
k'

PR <o (AL)
0

PO o (A2)
0

v 3R 2

g : (9 8ol ¢ < (A3)

where the last inequality follows from the lemma Al. Thus (2.22a) is

established with Kl being the maximum of the three sums on the right hand

side of the above inequalities., To prove (2.22b) note that Y, will have

k

smaller value when k€j5f5§ compared to its value in % for large value

1
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(A-1)

of k and thus

— =(1/2+€)

Lim inf Y, > T, [min ¢, k172

resulting in

;k(1/2+e) > X, s K, = min [C, L2

2 1> 0

liE inf Yk
Now for ngfhsg

y

- ~ -=1 _-1/2 1/2y = -€
kkak—lxk < max [Kk °, k K'°] Yk

<K

where K3 can be chosen such that KB_Z IlﬁOH , thus established (2.22¢)

and completing the proof of lemma 2.1.

vV
Lemma Al For any arbitrary € > 0, with r, defined as in (2.21d)
one obtains

0 A A —

) x;xk rk-(HE) <@ (A4)

0

Proof: The proof of the lemma is given in [28] and is presented
here for easy reference. Select an integer m such that'g_3<%g and
2

denote N é Zm , then the following algebraic manipulations yield the

desired result
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" eso rk(1+1/N)

Zmrk

< ——— e

(1-1/N)(rk1/N_r 1/N

k-1 )
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A
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