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PREFACE

At its Fall 1980 meeting in Aix en Provence, France, the AGARD Structures and
Materials Panel (SMP) held a Specialists' Meeting on “*Boundary Layer Effects in Unsteady
Airloads™.

The meeting was conceived, organized and chaired by Dr Gabriel Coupry of France. It P~
was a fitting finale to his term as Chairman of the Subcommittee on Aeroelasticity as he
moved to his new post of Chairman of the entire SMP.

Mr Walter J.Mykytow of the United States also played a prominent role in the meeting.
He compiled and edited the comments of the Recorders, added his own comments from
many years as an outstanding aeroelastician, and prepared the Summary paper.

ad o

1 am sure that all the Members of the Subcommittee on Aeroelasticity join me in
dedicating this report to Dr Coupry and Mr Mykytow in appreciation for their many years
of leadership in aeroelasticity.

s

Py

JAMES J.OLSEN '
Chairman, Subcommittee
on Aeroelasticity
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INTRODUCTORY REMARKS ON BOUNDARY LAYEP
EFFECTS ON UNSTEADY AIRLOADS
by
Helmut Zimmermann
Vereinigte Flugtechnische Werke GmbH, D-2800 Bremen,
4 Germany

For a long time flutter calculations for aircraft were performed satisfactorily by
using unsteady airloans which were derived from thin-wing theory. For flutter cases in-
volving control surfuice motion, and for even more complicated control-surface-tab systems,
however, it turned out that the theoretical values for the coefficients of hinge moment
ne, lift ko, and moment me due to control surface motion had to be corrected with the
aid of more or less suitable experimental values. The theoretical value for the hinge
moment nc, as well as the force k¢, were too large in comparison with their corresponding
measured values (Fig. 1). This discrepancy was ascribed to the fact that the theory neg-
lected airfoil thickness and boundary layer effects.

With the emergence of the "advanced wing" designed to produce its optimum performance
in the transonic speed range, the "thin-airfoil forces" are, strictly speaking, no longer
appropriate for flutter calculations in this speed range. The "transonic dip" in the
flutter speed which occurs lzre is not predicted by linear theory. The reason that they
continue to be applied to flutter investigations is not only that linear theory has been
developed to the point of being able to handle a large number of aircraft confiqurations,
but also because of the difficulties in theoretically predicting steady and unsteady air
forces for the transonic range with sufficient accuracy and industrially suitable methods.

Whereas in linear wing theory the unsteady pressure distribution may be treated in-
dependently of the steady pressure distribution - which properly reflects the physical
situation in the subscnic range - there exists a strong interaction between steady and
unsteady pressure ir the tvansonic range, i. e. the unsteady pressure distribution, apart
from its Mach dependence, depends on the profile, its mean incidence, and its mean flap
angle. During the last few years a number of unsteady pressure distributions have been
measured in wind tunnels on conventional and advanced airfoil profiles for the transonic
speed rande. Furthermore numerical methods, mostly cf the Finite Difference kind, were
developed to solve the partial differential equations governing inviscid transonic flow,
the equations being the Euler equations, the full-potential equation, or the small per-
turbation equation, depending on the degree of simplification. These methods take into
account profile thickness as well as shock wave effects. If no provisions are made in
these calculations for boundary layer effects, then the following discrepancies between
calculated and measured press:re distributions are likely to arise.

The inclusion of profile thickness effects already in the subsonic range leads to an
overestimate of the unsteady wing derivatives ks, ky, ma, mp, ke and mc, whose values
(Fig. 1, Fig. 2) deviate further from measured ones than those obtained by thin-wing
theory. Only the hinge moment coefficient is improved by thickness effects. For the
transonic speed range the numerical methods :'‘entioned above are capable of predicting
shocks in the pressure distributions, at least qualitatively, whereas the thin-airfoil
theory makes no provision at all for the existence of imbedded shocks.

Because of this the numerical methods for solving the transonic equations are basi-
cally superior to the methods of thin-wing theory. The size and the location of the shock,
however, are not predicted correctly by inviscid theory, and wing derivatives are even
more overestimated than those for the subsonic range, (Fig. 3). The main reason for the
discrepancy between measured and calculated pressure is evidently due to the omission of
boundary layer effects, bringing us to the tcpic of onr meeting.

Most comparisons between experimental and calculated values have shown that the in-
fluence of viscosity on steady and unsteady pressure is not negligible for transonic flow,
and for rear loaded profiles. This is not surprising since there wou.d be no lift on an
airfoil in a frictionless flow. The fact that most theories for frictionless flows are so
successful in predicting 1ift depends on the Kutta condition which effectively replaces
the physical influence of friction in inviscid flow. One cannot, of course, expect that a
single condition like that is capable of modelling all viscous effects in a flew that is
as complex as the transonic one.

If one starts with a comparison of calculated and measured steady transonic pressure
distributions for an airfoil, it turns out the ralculated shock is larger and is located
farther downstream than the messured one, if the FD equations were set up in conservation
form, meaning that the requirement of conservation of mass was satisfied across the shock.
If conservation of mass is neglected the shock moves upstream and hecomes smaller and thus
shows a better agreement with measured valves, (Fig. 4). One physical explanation would be
as follows: if the numerical procedure does not autcmatically satisfy the rontinuitv
equation across the shock, mass is in general produced behind the shock. This can he
interpreted as a thickening of the profile behind the shock, thus pruducing a forword
shift and a decrease of the shock in the same way as a thickening f the houndary layer
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behind the shock. A similar result can be produced, as Yoshihara and Magnus have shown by
a "viscous ramp" behind the shock, whose inclination and height can be deduced from measured
shock values such that calculated shock values match the measured ones.

In these considerations the boundary layer is assumed to be adequately represented
by its displacement thickness on the airfoil. Is this approach to the problem correct?
What really happens in the flow in the vicinity of an airfoil? Because of the no-slip
condition at the airfoil boundary and because of viscosity vortices are generated which
are transported by convection and diffusion into the flow region around the airfoil and
into its wake. For unseperated flows with large Reynolds numbers - which are going to be
looked at here - vortices are distributed by diffusion only a snhort distance from the
airfoil wall, before they are swept away by the flow. Outside of this distance, and out-
side of the wake there are no vortices, i. e. the flow there becomes potential flow. The
region around the airfoil in which vortices occur are the boundary layer, and a relatively
thin wake. With the exception of the wake which is treated somewhat differently, the
following iterative method for calculating pressure distributions is in principle possible:

(1) Calculation of pressure distribution over the original or thickened profile

(2) Calculation of the boundary layer thickness produced by the previously calculated
pressure distrik ‘tion

(3) Addition of the boundary layer thickness to the profile

This approach of changing the profile by adding the boundary layer thickness presupposes
that the pressure across the boundary layer does not vary appreciable. This condition,
however, is not satisfied for transonic flows in the vicinity of the shock and the wake,
and is especially pronounced for supercritical profiles. For this case the boundary layer
equations must be extended to include the pressure gradient normal to the boundary layer.
This implies furthermore that the pressure distribution calculated for the thickened

profile by potential theory cannot be applied to the real profile without some recal-
culaticn.

For the purpose of the applications considered here the boundary layer may always
be assumed to be turbulent except for the nose region and the very thin laminar sublayer.
A deterministic description of the processes within the boundary layer is not possible.
It consists of eddies which have a micro- and a macrostructure. The physical relations

in viscous flow are described by a balance of vortex production, their diffusion, convection,

and dissipation.

The mean values of the flow quantities satisfy the Reynolds-averaged Navier-Stokes
equations, if the velocity fluctuations are represented by shear stresses similar to
those in laminar flow. The resulting viscosity depends on time and spatial coordinates,
and is much larger than the one defined for laminar flow. To determine these shear stresses
the turbulence is represented by various models. With the aid of these turbulence models
the mean square values and the cross-correlation factors of the velocity fluctuations are
related to the mean flow values. Since the Navier-Stokes equations contain only the mean
values of the velocities and shear stresses, the relations between shear stress and
velocity furnished by the turbulence models close the system of Navier-Stokes equations.

The turbulence is described by "eddy viscosity" models of different levels of
sophistication, such as

(1) algebraic relations derived from the mixing-length hypothesis

(2) the so-called k- ¢ model which employs two additional differential equations
describing the turbulence enerqgy k and the dissipation ¢ .

Since, as mentioned above, viscous flow is confined to a thin boundary layer and wake
for high Reynolds numbers, the Navier-Stokes equations supplemented by the eguations
derived from the turbulence models can be simplified to the boundary layer equations.

In these equations the change in pressure across the boundary layer is usually neglected.
If the turbulence is described by an algebraic equation the boundary layer equations

can be solved by integral procedures. For more complicated turbulence models finite-
difference methods are used for the solution.

For the purpose of modeling and solving boundary layer problems, which may also be
applied to the wake, a number of methods are available in the literature. There also
exist a number of solutions of the closed Reynolds-averaged Navier-Stokes equations
for the entire space.

Some of the publications are associated with persons who present papers at this
meeting, making it superfluous to enter into details or to quote publications.

T
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AN ASSESSMENT OF THEORETICAL MODELS
FOR VISCOUS AND TRANSONIC FLOW

Earl H. Dowell
Professor

Marc H, Williams
Research Staff

Princeton University
Princeton, N. J. 08544
USA

M. Ray Chi

General Electric Company
Evendale, Ohio 45215
USA

SUMMARY

Some current and proposed methods of treating viscous and transonic effects in theoretical aerodynamic
models suitable for aeroelastic applications are reviewed critically. Where possible, theoretical results
of such models are compared with experiment. Topics discussed include shear flow models (Princeton), sin-
plified models for treating separation (Sisto, Princeton, Chi), classical linear theory, a local lineari-
zation theory, a transonic linear theory (Eckhaus-Williams), a transonic nonlinear (small disturbance)
theory (LTRAN2}, the experiment of Davis, and the experiment of Tijdeman. It is concluded that (1) shear
flow models, which have proven very accurate in taking into account boundary layer effects for panel
flutter, are likely to be less so for 1ifting surface flutter; (2) an extremely simple model of separation
shows promise, (3) for many applications in transonic flow, transonic linear theory will be adequate; (4)
as the reduced frequency, k, increases nonlinear effects decrease; (5) the concept of an aerodynamic trans-
fer function remains useful even in the transonic regime; (6) for the transonic regime a composite aero-
dynamic representation in k using various aerodynamic models may be extremely useful.

LIST OF SYMBOLS

a one half of peak-to-peak displacement of wavy wall; also plate length
b plate width
CL, CM 1ift, moment coefficients
CL ) CM lift, moment curve slope
a a
CM flap hinge moment
F
Cp’ Cp pressure coefficients
c airfoil chord
Cp flap chord
d stagger distance
h plate thickness; also vertical distance between two neighboring blades
K (v+1) M1/8%)
k we/U,; reduced frequency
M Mach number
N exponent in power law for boundary layer velocity profile
P perturbation pressure
s blade pitch (leading edge distance) for cascade; also (thum/c)/Mi
t time
U, w 619w velocity components
X, 2 spatial coordinates
XpeH pitching axis location

*The work described here was supported by the NASA Ames, Langley, and Lewis Research (enters and also
the Pratt and Whitney Corporation.
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x shock location

o wavenumber; ; 2w divided by wavelength

Ay n/2 -y

oy mean incidence angle

Ao mean angle of attack; dynamic angle of attack

8 (1 - )2

8 boundary layer thickness

AC) denotes change in quantity

Y ratios of specific heats

A staffer angle (NASA convention)

X; a non-dimensionless dynamic pressure above which flutter occurs; see Ref. I-4
U air/plate mass ratio; see Ref. I-4

v ’ k Mi/SZ

¢ phase angle

[¢] inter-blade phase angle

T pitch to chord ratio for cascade, s/c; also thickness ratio of airfoil
w frequency

Subscripts

© freestream

L local; also 1lift
M moment

max maximum

pot potential

+, - upper, lower

0, 1 mean, dynamic
TE trailing edge

Superscripts

c where shock first forms
sc where shock reaches the trailing edge
INTRODUCTION

The paper rather naturally divides into three parts. Part I considers shear flow models as a possible
inviscid representation of the effects of the boundary layer on unsteady airfoil aerodynamics, Part II con-
siders a highly simplified, again inviscid, model of separation and its effects on unsteady aerodynamics,
and Part III considers the inviscid, transonic problem.

Some recommendations for further work are made, combining the various models discussed in Parts I, II
and III.

Because of the range of topics treated, the paper is of necessity concise. The authors will be con-
tent if the reader retains the essence of the conclusions and is encouraged to consult the principal orig-
inal sources.

PART I - SHEAR FLOW MODELS FOR BOUNDARY LAYERS

In Ref. I-1 a general theory of planar disturbances in inviscid parallel shear flows, analogous to
thin-wing theory in potential flows, has been developed. Integral relations between surface pressure and
deformation are obtained that are similar to, and can be solved by the same numerical methods as, those of
linear potential flow theory. Computed results are shown that illustrate the effects of a model turbulent
boundary layer on various lifting and nonlifting surfaces, including an elastic panel in low supersonic
flow and an airfoil control surface in subsonic flow.

The physical model employed is that of a small (linearized) perturbation about a mean flow which is
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strongly non-uniform normal to the aerodynamic surface and weakly nonuniform parallel to the surface.
Hence the mean flow is typically that of a turbulent boundary layer and is taken from measurement (or,

in principal, from a solution to the Navier-Stokes equations). In the equations for the perturbation

per se, however, the direct effects of viscosity are ignored. That is  _., it simply, the Reynolds
number is ftinite in the mean flow equations but infinite in th: | Crwurbation equations. There is a
Revnolds number effect (though weak) in the )nt+ | _Lwever, by virtue of the appearance of (known) coef-
ficients which are properties of the ncan tlow. Typically an N power law velocity profile is used to
describe the mean f1

For the full theory the reader is referred to Refs. I-1 and I1-2. Here we focus on results from the
model and assess their meaning. Of course, a strong motivation behind using such a model is its relative
simplicity. Indeed, with the fundamental theory which has been developed, numerical calculations to
obtain solutions are no more difficult than those for classical linear, potential flow theory.

Results will be discussed for three physical situations, for all of which corresponding experimental
Jdata are available.

e steady flow over a wavy wall at transonic Mach numbers
® flutter of a plate at low supersonic Mach numbers
e hinge moment on a NACA6sAD06 airfoil at high subsonic Mach numbers.

In Fig. -1 the perturbation pressure, p, on a wavy wall is shown for several subsonic freestream Mach
numbers, M , as a function of boundary layer thickness &. 2m/a is the wall wavelength, 2a the peak-to-
peak wall displacement and p the corresponding wall pressure as determined by classical, linear, poten-
tial flow theory. In Fig. I*Z"results of this type are compared to the experimental data of Ref. [-3.

The agreement is excellent. In Figs. I-3 and I1-4, a similar comparison is made for M, = 1.1. ForM >1,
there is a spatial phase shift between wall pressure and wall displacement as shown in Fig. I1-4. For

\{, < 1 there is no such shift. Again the agreement between theory and experiment is excellent. Perhaps
this is not surprising since the ratio, «d/27, boundary layer thickness to wall wavelength, is smaller
than one and hence a (nearly) parallel shear flow model would appear appropriate. Even so the closeness
of the agreement for ué as large as four is most encouraging.

Consider now a similar, but more complex, flow, i.e., the unsteady flow over an oscillating plate.
Here the comparison is less direct (for the aerodynamicist). Flutter boundaries are considered wherein
the shear flow model has been used in the theoretical calculations!-*. In Fig. 1-5, the dynamic pressure
at which flutter occurs, \f, is shown vs. Mach number for two values of boundary laver thickness to length
of the elastic plate, &/a.

The cxperimental results for &/a = 0 are obtained by extrapolation of data. Considering the complex-
ity of the physical situation, which includes the dynamics of the elastic plate as well as those of the
fluid, the agreement between theory and experiment is remarkably satisfying.

Now we shall turn to a lifting problem, namely the flow over a cont-ol surface. Although the model
may be used for overall pitching of an airfoil, for example, the control surface problem is more appropri-
ate physically because it more nearly meets the criterion fundamental to the validity of the shear flow
modell-1 of a slowly varying boundary layer thickness over the length of the control surface. Indeed the
shorter the control surface chord to total airfoil chord the better one may expect the shear flow model to
he, at least as long as the control surface chord remains much larger than the laminar sublayer thickness
of the boundary layer.

In Fig. I-6 static hinge moment for a NACA64A006 airfoil with a twenty-five percent trailing ecdge
chord is shown. The cxperimental results are from Ref. 1-5. Theoretical results are shown for various
boundary layer to airfoil chord ratios, §/c. The exact §/c 1s not known, but is probably near .05. The
agreement is not gquantitative; all one can say is that the shear layer model provides a correction of the
correct sign and magnitude. Clearly, above the airfoil critical Mach number, transonic thickness effects
dominate which are not presently taken into account by the shear flow model.

The conclusions to be drawn are more or less clear.

e Where aerodynamic surface profile thickness effects are small and the boundary
layer thickness is small compared to the characteristic wavelength dimension of
the aerodynamic surface, the shear flow model works very well.

o Where acrodynamic profile thickness effects are important, the shear {low model
does less well as cxpected.

e A useful line of research would be to combine shear flow and protile thickness
cffects into a single aerodynamic model. This is possible within the framework
of transonic linear theory wsing the method of matched asymptotic expansions on
the acrodypamic Gireen's function. There is an analogy to the procedure already
used to obtain a composite aerodynamic kernel function for unsteadyv, shear flows
by combining the kernel function for a steady, shear flow with that for an

unsteady, potential filowl-1,

PART 11 - A SIMPLIFIED MODEL FOR SEPARATED FLOWS
I1-1,11-2

. A two-dimensional small perturbation theoryv has been developed by Sisto Uuwvllll_ﬁ_ Williams
{[_ﬁ, chilT-? and others to take into account the effects of airfoil self-induced flow separation and fluid
compressibility on unsteady acrodynamic forces due tc the blade vibration of (an isolated airfoil or) a
rectilinear stalled cascade. Here we closely follow Chi's discussion!T-4 The steady mean tlow 1s assumed
to he subsonic and separates at an identical and fixed point along the airfoil chords. A kerncl (Green's)
function approach is employed to solve the problem for a given cavitation distribution in the scparated
flow region. Calculated results for 1ift and moment cocfficients show reasonably gooad correlation with
other theory and experimental results. Also application of the acrodynamic model to flutter prediction

of a representative fan stage shows qualitative agreement with measurements, whereas the classical attached
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flow aerodynamic model fails to predict any flutter at all.

The basic flow model is shown in Fig. II-1. The distinction between this model and the classical
attached flow model is that in the separated flow region on the airfoil the pressure is given (for
example, the local pressure is assumed equal to the freestream pressure) and the downwash on the airfoil
in the separated flow region is an unknown to be determined. Elsewhere on the airfoil, as in classical
attached flow, the downwash is known and the pressure is to be determined. As a result of the relatively
simple flow model, a kernel (Green's) function approach similar to, but more general than, its classical
nonstalled (non-separated) counterpart is developed. Because of its elliptic nature, the complex mixed
boundary value problem is transformed into two Fredholm integral equations. A standard collocation
method is used to solve the two resultant integral equations. The solution of one integral equation
yields the upwash distribution in the separated flow region. With the complete upwash inform?iign now
known, the other integral equation is solved for the pressure differential across the airfoil .

Fig. IT1-2 shows the aerodynamic damping in pitch versus the reduced frequency based on the airfoil
full-chord and upstream flow velocity at zero Mach number. Relevant cascade parameters are stagger angle
of 45°, solidity of 1, and inter-blade phase angle of 180°, All blades are at a mean angle of attack of
159 and the mean flow separates at the leading edge. Airfoil thickness ratio is 4%. The top surface of
each blade was a circular arc and the lower surface a flat plate. These parameters were chosen to match
Yashima and Tanaka's experimentII-5 in which an 11-blade linear cascade was forced to pitch about the
quarter chord in a water tunnel at a Reynolds number of approximately .5 x 10°. Flow visualization con-
firmed leading-edge flow separation occurred at a mean angle of 150. Yashima and Tanaka's theoretical
results, based upon a free-streamline theory in incompressible flow with leading edge separation, showed
torsional instabilities in the relatively low frequency range. The present theory agrees reasonably well
with their experimental data. It is noted that classical attached flow theory does not predict torsional
instability for these parameters.

Results have also been obtained for compressible flow over cascades and for flutter prediction of the
F100 engine®’~™., The latter is encouraging in that the separated flow model appears to describe the
essence of the flutter mechanism where, by contrast, the attached flow model failed to predict any flutter
whatsoever.

PART III - NONLINEAR EFFECTS IN UNSTEADY TRANSONIC AERODYNAMICS

The aeroelastician uses linear dynamic system theory for most aeroelastic analysis. The motivation
for doing so is clear. Extensive experience, understanding, and effective computational/experimental
procedures have been developed for linear systems. By contrast, although nonlinear methods of analysis
and experimentation are available, the results are far more expensive to obtain and also more difficult
to interpret. Hence linear models, where applicable, are very powerful, relatisely simple, and extremely
valuable. Thus it is highly important to determine the domain of validity of any linear model. For
example, in panel flutter or control surface flutter, it is known that structural nonlinearities may be
important. Here our concern is with possible aerodynamic nonlinearities in transonic flow. Of course,
aerodynamic nonlinearities may arise in other flow regimes, however it is transonic flow where they tend
to be most important. Indeed it is sometimes said that the transonic flow regime is inherently nonlinear.
Unqualified, this statement is incorrect. At any Mach number for any airfoil, if the angle of attack is
sufficiently small, the aerodynamic forces and shock motion will be linear in the angle of attack. More-
over as the frequency of the angle of attack motion increases, the range over which linear behavior per-
sists increases. It is our purpose here to study when linear or nonlinear behavior occurs using as our
principal analytical method the low frequency, transonic small disturbance (LTRAN2) procedure of Ballhaus
and GoorjianIII-1,I1TI-2_ Any other present or future nonlinear aerodynamic method could (and should) be
used for similar purposes.

In this respect it is of interest to display the results of Figs. III-la and III-1b, which show lift
and pitching moment divided by angle of attack for a NACA 64A010 airfoil at M_ = .8 for various reduced
frequencies. The mean steady angle of attack is o, = 00, and the dynamic angle of attack is oy = 1.0°,

Results from several theories and one experiment”l'3 are shown. Except for flow separation, not accounted

for by current inviscid transonic aerodynamic methods, DavisIII-3 observed no significant nonlinearities
in a; in his experiment. The various theoretical methods whose results are shown are

® classical theory (i.e., the airfoil thickness is set to zero and the
mean flow is uniform everywhere)

o Williams' .‘.heox‘ynl'd’lu'5 (linear in aj; theoretical or experimental
data are used to locate the steady state shock and its strength which
are determined by (o, and) the airfoil profile; the flow ahead and
behind the shock is taken as uniform in the current version of the
method, but the shock moves as a; varies

o LTRANZITI-1.TII-2 (nonlinear in (both a, and) a;; transonic small
disturbance theory; low frequency). See YangIII-4 for these specific
results

o TRACI (nominally the same as LTRANZ, but linear in @) with a less sat-
isfactory treatment of the shock). See Yang!lI-6 for these specific
results.

[ Magnus”['7 (solution of the complete, nonlinear, inviscid Euler
equations; non-potentials).

Also shown is a steady flow result provided by BlandI”-8 using the well known steady flow method
of Bauer, Garabedian and KornI!I-9, These results, though only for one Mach number and one airfoil,
remind one that what constitutcs abest theory depends upon the particular flow conditions, common defi-
ciencies of all available theories, e.g., omission of viscosity, and the ecye of the beholder. See
WilliamsITI-5 for other comparisons of his method and LTRAN2 with Tijdeman's experimentsIII-10 ¢




should be noted that comparisons of theory with experiment for chordwise pressure distributions show
the clear superiority of Williams' theory and LTRAN2 over classical theory. See Williams III-5.

The point of view taken here is that of the aeroelastician or dynamicist and the questions pursued
are correspondingly posed. Before beginning it will be helpful to make certain basic distinctions from
the dynamicist's perspective and to discuss in particular the shock and its motion which is sometimes a
source of confusion. It is a consequence of any consistent linearization of unsteady transonic small dis-
turbance aerodynamic theory in the dynamic angle of attack that a concentrated force (sometimes called a
shock doublet) will appear at the location of the steady state shock [11-4,1T1-5 The strength of this
force is equal to the steady state shock pressure jump and its width is proportional to the dynamic angle
of attack. By contrast elsewhere on the airfoil chord (away from the shock doublet whose center is at
the steady state shock location) the pressure magnitudes (in a transonic linear theory) are proportional
to the dynamic angle of attack and become smaller in proportion as the dynamic angle of attack is smaller.
Of course this latter behavior is also true in classical theory as well. The most important (though not
the only) distinction between classical, linear theory and transonic, linear theory is the presence of
the shock and its motion.

The behavior described above is also seen in a nonlinear dynamic theory as well, when the dynamic
angle of attack becomes small. Consider Fig. III-2 which was obtained using LTRAN2. It shows the chord-
wise differential (lower surface minus upper) pressure distribution for a NACA6JAQU6 airfoil at
M, = .86 for several angles of attack. Here, for simplicity, the reduced frequency is set to zero so
there is no distinction (numerically) between steady and dynamic angle of attack. As may be seen for
small angles of attack, say a = ,1259, ,250, the pressure distribution has a shock doublet centcred at
the mean (angle of attack} shock location, Xg/c = .584. The width of the shock doublet is indicated by
the vertical lines, the forward one is at the lower surface shock location and the rearward one at the
upper surface shock location. The shock doublet width is proportional to « for the smaller :; however

as a increases to 19 the lower surface shock disappears while the upper surface shock moves to the ‘railing

edge and remains there. Also for the smaller & the shock doublet magnitude is essentially equal : the
pressure jump through the shock at o = 0°, i.e., .43. Away from the shock doublet, the pressures ‘¢
proportional to o for small a. Finally note a matter of practical importance. For small v as t': och

doublet width narrows, any finite difference scheme nonlinear in a will have a resolution problc
a * 0. By contrast a method a priori linearized in a avoids this difficulty as it computes the s...ck
motion explicity, e.g., see WilliamsIII-4, R

We now turn to the five major issues which are listed below. These issues are first addressed for '1
one airfoil, NACA64A006, at one Mach number, .86, which is pitching about its leading edge. Subsequently
other Mach numbers are considered. For a more complete account of the present work, including a study of
the MRB-A3 supercritical airfoil, see Ref. I1I-11. The present calculations were carried out using a grid
mesh of 113 x 97.

NACA64A006 AIRFOIL AT M_ = .86 PITCHING
ABOUT ITS LEADING EDGE
I1r-11

The following principal issues were studied

® EFFECT OF DYNAMIC ANGLE OF ATTACK @ VARIOUS REDUCED FREQUENCIES
ON DYNAMIC FORCES AND SHOCK MOTION

o BOUNDARY FOR LINEAR/NONLINEAR BEHAVIOR

e EFFECT OF REDUCED FREQUENCY AND DYNAMIC AMPLITUDE ON AERODYNAMIC
TRANSFER FUNCTIONS

o EFFECT OF DYNAMIC ANGLE OF ATTACK ON STEADY STATE FORCES AND '1
SHOCK DISPLACEMENT

¢ EFFECT OF STEADY STATE ANGLE OF ATTACK ON DYNAMIC FORCES AND
SHOCK MOTION

e EFFECT OF DYNAMIC ANGLE OF ATTACK AT VARIOUS REDUCED FREQUENCIES ON DYNAMIC FORCES
AND SHOCK MOTION

It is desired to assess at what dynamic amplitude nonlinear effects become important and to determine
the relative linear vs. nonlinear behavior of 1lift, pitching moment and shock motion. Note that the
total 1ift (moment, shock motion) is characterized by CL = CL + CL where C. is defined to be the lift

(¢] 1 o
due to o and CL that due to %y for a given Oy In classical linear theory (but not transonic linear
1
theory) CL is independent of L
1

In Figs. TII-3 and I11-4 1ift, pitching moment and shock displacement amplitudes are shown as a
function of dynamic amplitude, aj, for reduced frequencies of k = 0, and .2. Lift and moment coeffi-
cient have their usual definitions and the moment is about the mid-chord. The shock displacement is
normalized by the airfoil chord. For k # 0 phases are also presented for 1ift and pitching moment. The
shock motion phase was also computed, however it tended to be less accurately determinedIIl-11, Since
it is not needed for our present purposes, it is not shown.

It is seen that 1ift tends to remain linear to higher dynamic amplitudes than moment which in turn
tends to remain linear to higher amplitudes than shock motion. Moreover the larger the reduced frequency
the greater the range of linear behavior. Phase information generally, though not universally, is a more
sensitive indicator of departure from linearity than lift, moment or shock amplitude information.




16

e BOUNDARY FOR LINEAR/NONLINEAR BEHAVIOR

It is highly desirable to provide a criterion by which the aeroelastician may assess when a linear
dynamical theory may be used.

Fig. III-5 has been constructed from Figs. III-3 and other similar x'esulls“l'll by identifying the
k,a) combinations for which the pitching moment deviates by 5% in amplitude or phase from linearity. As
expected at higher k, the pitching moment remains linear to larger ;-

Although Fig. III-5 provides very useful information, it requires a nonlinear dynamical theory to
construct it. The question arises, is there a similar, but perhaps more conservative, criterion which
may be used with a linear dynamical theory. The answer is provided by the shock motion. In Fig. IIl-6
a similar boundary to that shown in Fig. III-5 is constructed (again from the information provided by
Figs. III-3 and III-4) based upon shock motion rather than pitching moment. It is observed in Figs IIl-3
and III-4 that for shock displacement amplitudes of less than 5% the shock motion (as well as lift and
pitching moment) behave in a linear fashion. Hence a 5% shock motion boundary is shown in Fig. III-6.
Note that this boundary could be constructed from a linear dynamical theory. A second bLoundary (less
conservative) based upon the first detectable deviation of shock motion from linearity is also shown.
Finally, the boundary from Figs. III-5 is shown for reference. These results are consistent with those
of Ballhaus and GoorjianIII-1,I1I-2 who also suggested that shock motions of less than 5% chord correspond
to linear behavior.

Thus it is concluded that a simple criterion for departure from nonlinearity based upon shock motion
may be used. It can be evaluated by a linear dynamical theory in principle (which enhances its practical
utility), although the present results were obtained using a nonlinear, dynamical theory.

® EFFECT OF REDUCED FREQUENCY AND DYNAMIC AMPLITUDE ON AERODYNAMIC
TRANSFER FUNCTIONS

We wish to determine when linear aerodynamic transfer functions are adequate and, when they are not,
provide information for characterizing nonlinear aerodynamic transfer (describing) functions. To fully
accomplish this purpose requires aeroelastic studies using the present (or similar) aerodynamic data.
Here only the aerodynamic aspects are considered.

The aerodynamic transfer functions CL /al, CM /al, AxS /al are plotted in Figs. III-7 - II1I-9 vs.
1 1 1

k for a1 = .25, .5 and 1. As expected for k + .3, the aerodynamic transfer functions are independent of
ay, but for k *+ 0 they become discernible functions of ay.

For k > .2, linear aerodynamic transfer functions may be used with good accuracy. For k + 0 aero-
dynamic describing functions may be constructed and may be required in aercelastic anslyses.

e EFFECT OF DYNAMIC ANGLE OF ATTACK ON MEAN, STEADY STATE FORCES AND
SHOCK DISPLACEMENT

Tentatively it is concluded that the effect of dynamic angle of attack on mean, steady state forces
and shock displacement is small. For more detailed discussion of this issue, see Ref, III-11.

® EFFECT OF STEADY STATE ANGLE OF ATTACK ON DYNAMIC FORCES AND SHOCK MOTION

Next consider the effect of various steady flow fields on dynamic aerodynamic forces. From a dynam-
ics point of view, changing steady state angle of attack, a,, is in many ways analogous to changing the
airfoil profile or flow Mach number.

Fig. ITI-10 displays amplitude and phase of the dynamic lift, moment and shock motions vs. a, for one
reduced frequency, .2, and one dynamic angle of attack, a; = .50. a, = .25 + .5 is a rough boundary be-
tween modest and substantial effects. Clearly the effect o% mean angle of attack, a,, on the dynamic acro-
dynamic forces can be substantial, comparable to the effect of airfoil profile or Mach number. This, of
course, does not mean, necessarily, that there are nonlinear dynamic effects. It does suggest that the
characterization of the steady flow about the airfoil is important in assessing its dynamic acrodynamic
forces, be the latter linear or nonlinear in -

e MACH NUMBER TRENDS

Mach number is one of the most important parameters in transonic flow. Here its effects are studied
systematically for the NACA64A006 airfoil. We note that a similarity rule holds for low frequency, tran-
sonic flow which gives the following results for any family of airfoils,
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Hence the results for this airfoil may be used to obtain results for any other airfoii of the same tamilsy,
in particular, the 64A010.

e FLOW AT ZERO ANGLE OF ATTACK

It is instructive to consider first the flow over the airfoil at zero angle of attuck. [In particular,
shock), and the shock strength (pressure jump across the shock) are shown as a  function of freestroam
Mach number. These are determined approximately but consistently, by using the following definitions

The shock is located where the local Mach number is unity.
The pressure jump is from the pressure maximum just ahead of the shock
to the pressure at the first subsonic mesh point behind the shock,

Note that the critical Mach number where the shock first appears is Mf = 824, The shock pusition at
M, = .84 is o= .48 and it increases monotonically with M, reaching the trailing edge at Mt = vl ke
"o
shall call the latter the supercritical Mach number. As we shall sec M: and MTL bound the essentially
transonic Mach number range for this airfoil.

Also shown for reference are results from the full potential theory method of Bauer, Garabedian and
KornlI1-9 a5 obtained by BlandIII-11  Relative to LTRANZ, these results give a higher maximum local Mach
number, a smaller pressure jump and a more forward shock location,

e FLOW AT ANGLE OF ATTACK

In Fig. III-12a,b,c the lift, pitching moment (about midchord) and shock displacement (of the upper
surface shock) are presented vs. angle of attack, for steady flow, k 0. Note the behavior of M| = (88,
.9 is nonlinear at much lower angles of attack than for M, = .86, .92, For M - _8bv or - v the behavior
is linear to even larger angles of attack. Also note that the values of Cl , CM and Jxﬁ are much larger

o o ©
for M= .88, .90. indeed it is probably that at these Mach numbers even the nonlinear transonic small
disturbance theory is inadequate except possibly at very small angle: of attack.

In Fig. II1-13a,b,c the corresponding differential pressure distributions are shown for M = .8u, '
.88, .92, See¢ Ref, III-11 for M, = .8, .84, .9. The angle of attack was held constant at L2800 This is
slightly outside the linear range at M_ = .88 and well outside it as M= .9; for other M the behuvior is

linear at o = .250,
To avoid confusion in the subsequent discussion, let us define the following:

ACp jump across the shock = pressure jump across the shock at

= 0% -~ This is the pressure difference from ahead of the
sRock to behind the shock on the same surface {upper or lower).

AC = differential pressure -- This is the pressure difference
between the lower surface and the upper surface. It is zero
for v, = 09, of course, when the airfoil profile is symmetric.

Linear transonic theory says the differential pressure, AC,, near the shock for any o, should be
equal in magnitude to the pressure jump across the shock at 1, = 09, Note that linecar transonic theory

gives a reasonable value for the peak level of AC, in the vicinity of the shock even for M = .88 (und .91,
However at the latter Mach number, the shock displacement appears too large. See Fig. I11-13.

Also shown in Fig. II1-13 is the differential pressure obtained using the supersonic Mach number just
ahead of the shock and invoking classical supersonic theory via local linearization. Fer M = .92 vea-
sonable results are obtained ahead of the shock, which is at the trailing edge, and hence everywhere on
the airfoil except near the leading edge. For lower Mach numbers only a rough estimate is given by this
approximation for AG, ahead of the shock. For M > .92 local linearization is a useful tool, i.e., once
the shock has reached the trailing edge. See subsequent discussion on this point also.

e LINEAR/NONLINEAR BEHAVIOR

Using results such as those shown in Fig. IL[-12 and invoking the 5% shock displacement criterion,
a linear/nonlinear houndary may be constructed. Of course, as the shock reaches very near the tratling
edge, the 5% criterion would need to he modified. Results are shown in Fig. III-14 for h = 0 and ...
Note that for steady flow (k 0) the angle of attack must be very small when M= .88 and .9 for lincar
behavior to occur. However as we have seen before, the 5% shoct displacement criterion is conserviative,
That is lift and moment tend to remain linear in a to higher o than this criterion would suggest. XNever
theless the trend should not change using any other reasonable criterion. By contrast for h = . the
linear region is much enlarged. For M_ < M{ or M_ > MS® the linear region is for all practical purpoves
unbounded. In practice, in this region, other physical effects, e.g., viscosity, are likely to come into
play before inviscid, srall disturbance, transonic theory nonlincarities become important.

One very interesting and perhaps surprising result is that at M = .88 and .9 for k = .2 a mean, <teady
offset in C,, G, and Ax_ is obtained as well as the usual harmonic resultIUI-11. jiowever, the harmonic
component is linear in The range shown in Fig. I11-14 despite this stcady component. That is, the 5%
criterion is applied to the harmonic component of shock displacement.

Of course, this mean, steady component is not explainable by any strictly linear theory. Whether ot
is an artifact of LTRAN? or is physically meaningful is a reasonable question. The authors are inclined
toward the latter view, but the question deserves further study. If these results are accepted, to use
the language of the dynamicist, the flow apparently bifurcates at some Mach numbers. Albeit the new
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equilibrium states exist only over a small range of Mach number.

It 1s interesting to speculate further as to whether such possible bifurcations can be related to
such qualitative physical phenomena as huffet or shock induced (as contrasted with natural) separation.
However much further stud; is required to address such issues. See Ref. !11-11 for the relevant numerical
results and further discussion.

® AERODYNAMIC TRANSFER FUNCTIONS

In the linear region it 1s of interest to display aerodynamic transfer functions vs. Mach number.
Perhaps the most familiar of these 1s lift curve slope, CL /ul. Its amplitude is shown in Fig. IIl-15a
1

from LTRANZ for k = 0. Also shown are results from full potential theory, classical subsonic theory and
local linearization. The latter is shown for M_ > Mzc, i.e., the shock is at the trailing cdge. It uses
the local trailing edge supersonic Mach number in classical (supersonic) theory. One corcludes that for
M_ « MU, classical subsonic theory gives reasonable results, and for M_ > M3¢ local linearization gives
reasonable results. For MY < M_ < M3¢  LTRAN2 gives markedly different results although it likely fails
for M_ = .88, .90. Note the di?ference between transonic small disturbance theory (LTRAN2) which falls
well off scale at M = .88 and .9 and full potential theory (Bauer, Garabedian and Korn).

In #1g. I11-15b results are shown for k = ... For reference the LTRAN? results for k = 0 are also
shown. Again 1t 1s seen that the classico! subsonic theory and local linearization theory give reasonable
results (better than for k = 0) for M_ < M{ and M_ - M3C respectively. Moreover LTRAN2 appears to give
reasonable results over the entire Mach number range though there is no better theory to validate it.

Note that from M_ = .9 to .Y there 1s a somewhat abrupt change. This is probably associated with the
change from a flow with a mean, steady offset to one which behaves very much like classical flow with a
local (trailing edge) sopersonic Mach number.

In Fig. II1-15¢ the phase of the lift curve slope is shown. Perhaps surprisingly, classical subsonmic
theory and local linearization do rather well. Note the abrupt change in phase as the shock reaches the
trailing edge. Recall the corresponding variation of lift amplitudes in Fig. 111-15b.

‘ Similar results {(not shown) were obtained for pitching moment.
CONCLUS IONS
The specific conclusions to be drawn from chis inviscid transonic study are:
e For M - M: , i.e., where no shock exists, the aerodynamic for.oes are linear over a substantial
range of angle of attack. This is also true for M_ - MS¢, § e., where the shock has moved to
the trailing edge. For M¢ < M < MSC 3 boundary of linear/nonlinear behavior may be constructed
which shows the angle of attack must be guite small for linear behavisr to occur for steady flow
However the region of linear behavior increases substantially for unsteady flow.
® In the range, Mi M < Mic, transonic small disturbance theory (LTRAN2) appears to fail for
steady flow for sume narrow band of M where it substantially overestimates the shock displace
ment. The corresponding resuits from full potential theory (Bauer, Garabedian and Korn) appear
reasonable. It should be noted that the region of linear behavicr as predicted by Bauer,
Garabedian and Korn would be substantially larger than that predicted by LTRAN. for steadv flow

e C(lassical subsonic theory and local linearization are useful tools for unsteady flows provided
their limitations are recognized. Indeed in an effort to close the prediction Mach number gap
in and near the range Mi c M M%¢ and to pruvide the aeroelastician with practical working
methods, it is likely that all existing methods will need to be employed in their respective
domains of validity. The use of full potential theory to estahlish these domains for steads
flow (and provide conservative estimates of these domains for unsteady flow) appears to be a
useful approach.

@ Acrodynamic transfer functions are expected to retain their utility cven when nonlinear dynamic
effects are important. This is for several reasons including,

(1) nonlinear effects diminish with increasing freguency,

12} at high frequencies classical linear theory is expected to be reasonably
accurate and indeed most inviscid theories will approach classical theon
as the frequency becomes largelll-4.1 -5

(3} the above suggests that several theories may be used to provide a composite
aerodynamic representation in the frequency domain. For example, one might
use Bauer, Garabedian and Korn for k = 0, LTRAN2 for k = .05 *» .2, Williams
for k = .2 *+ 1.0 and classical theory (which Williams' theory smoothly
approaches) for k - 1.0,

¢ No transonic method can be expected to give useful information to the aeroelastician unless
the mean steady flow it predicts and uses is accurate. Hence it is highly desirable to be
able to input directly the hest steady flow information which is available including that
from experiment. The latter would include implicitly viscosity effects on the mean steady
flow; in particular it would place the mean shock 1n the correct position.

11r-12

-

The reader may wish to consult the lucid survey article by Tijdeman and Seebass
context in which to evaluate the present results and vonclusions.

to provide




CONCLUDING REMARKS
Here we emphasize some of the broad conclusions to be drawn from the discussion in this paper.

® A shear flow model has been shown to be extraordinarily successful in accounting
for the effect of a boundary layer over a wavy wall (including the transonic
range). It also predicts very well the boundary layer effect on a fluttering
plate (the dynamic, aeroelastic counterpart of the static, aerodynamic wavy
wall problem). On theoretical grounds and also based upon limited experimental
evidence, the shear flow model is expected to be less siccessful for lifting
airfoils. However it still appears to give qualitatively correct results. It
is noted that for the lifting problem there are no experimental data comparable
to the definitive sets available for the wavy wall and plate flutter problems

® A simple separated flow model based upon a dynamic perturbation about a known
steady flow with a fixed separation point shows considerable promise in pre-
dicting measured unsteady aerodynamic forces and flutter data. The theory
includes the effects of compressibility, but in its present form is not a
transonic model per se.

® A boundary demarcating linear from nonlinear behavior can be determined for
inviscid, transonic flow which provides useful guidance to the aeroelastician
in selecting analytical/experimental approaches for flutter and dynamic response
work. In its simplest form this boundary employs a criterion based upon shock
motion as a percentage of airfoil chord.

® A similarity law for low frequency transonic small disturbance theory is avail-
able which reduces the numher of aerodynamic computations required and generali:zes
results for one airfoil to an entire family.

® Aithough two-dimensiona flows have been treated here, the general concepts and
approach should be useful for three-dimensional flows. In particular one ex-
pects the effect of three-dimensionality to increase the region of linear be-
havior and to reduce the Mach number predictability gap for transonic flows.
For example, the accuracies of transonic small disturbance theory, local linear-
zation and classical theory shou!d he enhanced by three-dimensional effects.

‘
!
1
1

® 't should be possible, within the framework of a linear dynamic theory about a i
nontrivial mean flow, to account for shear layer and separation effects as
modeled in Parts [ and [I in the transonic flow regime, as discussed in Part III.

® Aeroelastic studies using the aerodynamic methodology emploved here should be a
fruitful area of future work,
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NOTE ADDED IN PROOF:

It should be noted that the full potential result shown in Fig. 111-15a was obtained using

a non-conservative finite difference scheme. More recent full potential results obhtained using .
a conservative finite difference scheme are essentially identical to those of transonic small J
disturbance theory using a conservative finite difference scheme (LTRAN2). Hence the differences

shown in Fig. I11-15a should be attributed to the distinction between conservative and non-conser- !
vative finite differences and not to the distinction between small disturbance and full potential i
theory. To the extent the non-conservative finite difference method may be said to have some !
form of numerical (as opposed to physical) viscosity, the differences may be attributed to the
qualitative distinction between inviscid and viscous flow.
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OSCILLATING SUPERCRITICAL AIRFOILS IN THE TRANSONIC REGIME WITH VISCOUS INTERACTIONS

D. P. Rizzetta, Specialist Engineer, and
H. Yoshihara, Engineering Manager
Boeing Military Airplane Company
P. 0. Box 3999 M/S 41-18
Seattle, Washington 98124

SUMMARY

A method is presented for computing the unsteady transonic flowfield about thick supercritical
airfoils in the small disturbance limit. In order to compensate for the limitations of the small
disturbance assumption and also to account for the aft decambering effect of viscous displacement, the
airfoil geometry is modified such that the steady mean experimental pressure distribution is
recovered. In addition, effects of the unsteady shock-boundary layer interaction are simulated by
placing a moving wedge~-nosed ramp at the base of the shock to produce quasi-statically the reduced
shock pressure rise which is observed experimentally in the steady case. As a computational example,
a solution for the pitching oscillation of an NLR 7301 airfoil (NASA Ames model) at M = 0.75 is
computed. Comparison with experimental data indicates that even for relatively thick airfoils
reasonable unsteady surface pressure distributions may be obtained using this procedure.

1.  INTRODUCTION

Solutions of planar inviscid unsteady transonic flow fields about oscillating airfoils are commonly
obtained by time integration of the differential equation governing the velocity potential function.
This method is particularly attractive because it permits the treatment of nonlinear flow phenomena
including irregular shock wave motion. Development of the LTRANZ code by Ballhaus and Goorjian1 has
made available an efficient time-implicit finite difference algorithm for obtaining solutions to the
low-frequency smal)l disturbance transonic potential! eguation., This code is currently in extensive use
for computing unsteady transonic flows over arbitrary thin airfoils and has evolved as a useful too!
for performing aeroelastic calculations and flutter analysis.

Unlike more conventional sections, the flow field about a thick supercritical airfoil is not readily
computed using an inviscid small perturbation analysis. In this case, not only are the small
disturbance assumptions violated, but viscous effects tend to play a significant role in determining
the resultant surface pressure distribution. While a more exact set of governing equations may be
employed for the flow field solution, the computational effort involved is prohibitive for practical
aeroelastic applications. [f the primary purpose of a calculation is to establish with reasonable
accuracy the unsteady surface pressure distribution, this may be obtained in an efficient manner using
a purely inviscid small disturbance calculation technique which is suitably modified to account for
the effects of thickness, viscous displacement, and unsteady shock-boundary layer interaction. It is
the intent here to describe such a calculation and to provide a computational example for comparison
with experiment.

2. GOVERNING EQUATION

If x and y are streamwise and normal Cartesian coordinates respectively normalized by the airfoil
chord ¢, and t is the time nondimensionalized by the inverse of the circular oscillation frequency W,
then the small disturbance equation to be considered is:

2 1 a PR
= (- gl :
kM¢tt+;kM ¢ut_[“ M)¢x (a)M ¢,‘ }x+¢yy' (1
Here ¢ is the perturbation velocity potential function normalized by cU where U is the freestream

velocity, M the freestream Mach number, ¥ the specific heat ratio, and K =WC/(J is the reduced
frequency. The corresponding local instantaneous pressure coefficient is then given by

Co=-a(d rha), ("
For an airfoil surface defined by ytz f!CX,t) the condition of flow tangency becomes
+ + +
. = 3)
¢7 - ‘Fx.’kft k] (

where Eq. (3) is evaluated on y = 0 . Across the trailing vortex wake defined by y = 0 for x >1, we
impose the contact jump conditions

[¢Y3 = O (ccmrmwfr oF ;..,,) (a)
[¢! s k ¢t] s O (:ou’uu'fy or Fll!lu!l) 5

where the brackets denote the jump in the enclosed quantity from above to below the vortex sheet, At
the outer boundaries the following are applied:
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¢ = O AR LPSSREAM , (6)
¢Y = QO FAR iersrdcy, (7)
q>x+ k¢t = O #FAk powwsTREam .

Finally, description of the problem is completed by the initial conditions
P (xy:0) =g (xsy), ¢ (x,%0) = hix,y) (9)
where g and h are prescribed functions.
For the case of steady flow, a quasi-inverse problem is defined by replacing Eq. (3) with
0 = §on Om ey B m -Gl XX,
Oy = fron GEx 2N, Q= =Cofamm XXl
Equation (1) may then be integrated in time to achieve the steady state and the resulting airfoil

slopes can be extracted. Since the design calculation is performed only downstream of the leading
edge region, the question of uniqueness of the solution does not arise.

(10)

Equation (1) and its associated boundary conditions is similar to that considered by Ballhaus and
- Goorjian in the LTRAN2 code which was developed to treat only low frequency unsteady disturbances.
The formulation adopted here includes higher order time derivatives of the velocity potential in the
governing equation and unsteady airfoil surface and wake conditions. Solutions to this problem have
been obtained with the code ExTRAN2 which results from a simple modification of the original LTRANZ.
The ExTRAN2 code employs a first order accurate (in time) noniterative alternating direction implicit
algorithm to advance the solution for 4) from one time step to the next at each grid point in the h
computational flow field. Detai1§ of the algorithm may be found in Reference 3. A number of results
generated by the ExTRAN2 code 2,3 nave indicated that it is both stable and reliable. Furthermore,
the additional terms in the potential equation and boundary conditions were found to be important for
oscillations of moderate frequency2a3.

3. VISCOUS MODELING

The significant consequences of the viscous displacement on a supercritical airfoil are two fold. The
primary effect is the shock-boundary layer interaction whereby a 'wedging" displacement of the
boundary layer causes a reduced shock pressure rise and an upstream displacement of the shock, both
relative to the inviscid case. I%r steady flows, a simple procedure has been developed for modeling
shock-boundary layer interaction™” . A wedge-nosed ramp is placed at the base of the shock in an
inviscid calculation in order to produce the experimentally observed reduced shock pressure rise and
hence a more acceptable shock location. More recently?, this procedure has been implemented in an
unsteady calculation to produce the reduced shock pressure rise in a quasi-static fashion, thus
accounting for the unsteady shock-boundary layer interaction.

The second important viscous interaction is the aft decambering which arises due to the difference of
the displacement thickness2s on the two sides of the airfoil. In a steady case the aft displacement
ramps can be determined if suitable experimental pressure distributions are on hand. This is
accomplished by prescribing in a finite difference inviscid calculation the measured pressures as
boundary conditions aft of the leading edge region. Elsewhere the geometric slopes are prescribed.
Such a calculation then yields the required aft ramps which in the present case of the thick
supercritical airfoil would be composed, rot only of the viscous displacement layers, but of the aft
“compensation” ramps offsetting the consequences of the small disturbance approximation.

In the oscillating case, the aft pressures are closely invariant to the angle of attack. Thus in the
present unsteady case, the above steady ramps evolved at the mean incidence are frozen onto the
airfoil,

In addition, because small disturbance assumptions are violated near the leading edge of blunt
airfoils, the upper and Tower surface slopes in this region are adjusted to provide better agreement
with experiment at the mean angle of attack.

The above procedure was applied to an NLR 7301 airfoil at M = 0.75 and o4 = 0.37. The original
airfoil geometry shown in Figure 1 corresponds to that of a NASA-Ames test model® which is
approximately 16.8% thick. Figure 2 indicates a comparison between the initial and modified value of
the airfoil surface slopes, where the original result was obtained by a cubic spline fit to the
coordinates of the Ames test model.

A comparison of numerical results at the steady mean flow condition with the experiment of Davis/ is
presented in Figure 3. Here the unmodified solution includes slope alterations near the l,ading edqe,
but not those resulting from the design calculation. With the aft displacement ramps and the shock
wedge, a reasonably good agreement is obtained for the steady mean flow.

H——-——-—_—-_______________
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Unsteady effects of the shock boundary-layer interaction as described above are simulated by placing a
wedge-nosed ramp at the base of the moving shock in a quasi-steady fashion. 1his technique was
previously implemented in steady calculations to produce the experimentally observed reduced post
shock pressure rise?s3, A simple modification for extending this simulation to unsteady flows is
found in Reference 2.

For the results presented here, we have adopted the following ramp geometry which is depicted
schematically in Figure 4. The leading edge of the ramp is located ahead of the sonic point at a
distance equal to 2% of the chord. This offset is commonly used in steady calculations in order to
properly influence the numerical shock profile which typical has a width of three mesh intervals.
Preceding the ramp leading edge is a 2% chord cusped-nose precursor in which the slope varies linear
from zero to the ramp angle, ® . The function of the precursor is to moderate the impact of the
sudden change in slope experienced by an isolated mesh point as the nose of the ramp moves across the
computational mesh during corresponding unsteady shock motion. Following the precursor is the main
ramp body with a length of 5% chord which varies the slope guadratically from © at the nose to zero
at the downstream end.

The value of © is taken as that for maximum turning for an attached oblique shock and may be derived
from the jump conditions of the low freguency (or steady) form of £q. 1. In the course of the time
integration of fq. 1, © and the location of the sonic point are obtained from the solution at
time € . These two parameters completely define the ramp geometry which is then used to advance the
solution to the next time step, t + at _ Thus the angle and location of the ramp are free to
adjust to unsteady shock wave motion in wanner much like the physical boundary layer., It should be
noted that the length of the ramp and amcunt of offset will vary in accordance with the nature of a
particular solution, as well as with the computational mesh spacing.

4,  RESULTS

Results presented in this section were generated on a 101 X 97 Cartesian grid defined by -200 <X ¢
200, -397.8 £y <€397.8, with 39 points lying on the airfoil surface. A smooth nonuniform
computational mesh which is symmetric about y = 0 was employed. Minimum grid spacings were taken
as 8X,,. = 0.02 near the leading edge and4Yw:i» = 0.01 at y = 0. The initial profile is given by the
steady state solution at the mean angle of attack, which is shown in Figure 3.

An unsteady solution was obtained for the angle of attack _prescribed as ok = 0.370 + 0.50 sinT
and K = 0.6, which duplicates the test conditions of Davis/. A time step was selected as at =
0.01745, corresponding to 19 of oscillation per time step at the reduced frequency. The choice of a
very small time step was based solely upon accuracy considerations rather than for stability
requirements. After three periods of oscillation, the soluticn was found to achieve a stationary
stote. This computation required approximately 5 minutes of central processing time on a CDC Cyber
175 computer.

In Figure 5 we first compare the calculated pressure distributions at quarter cycle intervals with the
measured results of Davis/, who obtained measurements only on the upper surface. The agreement seen
here can be seen in more detail in Figures 6 and 7 where the amplitude and phase of the first harmonic
of the pressure variations are plotted. It is to be noted here that the amplitude of the unsteady
pressure variation of Figure 6 is small compared to the mean pressure values.

Finally, in Figure & we show the calculated lift and moment coefficients over the pitching cycle. The
latter is referenced to the center of oscillation at X = 0.4.

5.  CONCLUSTONS

A method has heen presected for analyzing the unsteady flow over a thick supercritical airfoil
oscillating in transonic ¢ ow, The method utilizes an efficient method for time integrating the smal)
disturbance patential equation, imitations of this simplifying assumption as well as viscous effects
are then overcome hy <yitable qeometric modifications of the airfoil following a design calculation.
In addition, the nsteady shock-boundary layer interaction has been simulated using a simple
computationa! artifice. The method is predicated on the use of steady experimental results to tailor
the modelling of the displacement ramps to be used for subsequent unsteady analyses. A solution has
been compared with experimental data and was shown to produce reasonable agreement which is acceptable
for flutter analysis and aeroelastic applications.
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METHODES DE CALCUL DES COUCHES LIMITES INSTATIONNAIRES
par
J.Cousteix, R.Houdeville, J Javelle
ONERA/CERT
Département d’Aérothermodynamique

2 ave E.Belin
31055 Toulouse Cedex

Plusieurs méthodes de calcul des couches limites turbulentes instationnaires ont été mises au
point et étudides en utilisant des niveaux de fermeture différents. Les plus complexes mettent en jeu
un systéme d'équations de transport pour les composantes de 1'énergie cinétique de turbulence, son taux
de dissipation et la force de cisaillement turbulente. Les plus simples consistent 3 résoudre les équa-
tions globales de la couche limite. Pour certaines applications, une version linéarisée de cette derniére
méthode a été développée. L'application de ces techniques et leurs limitations sont discutées a l'aide de
comparaisons 3 des résultats expérimentaux.

Le probléme de formation de singularités dans les calculs est abordé par l'analyse des propriétés
des équations globales. Le recours aux méthodes inverses est &galement discuté. '

SUMMARY

Several unsteady turbulent boundary layer prediction methods have been studied by using various

levels of closure. The most complex methods are constituted by a set of transport equations for the com-
ponents of the turbulence kinetic energy, its dissipation rate and the turbulent shear stress. The simplest
methods consist in solving the global boundary layer equations. For certain applications, a linearized
version of this latter method has been developed. The application of these techniques and their limitations
are discussed through comparisons with experimental data.

The question of occurence of singularities in the calculations is tackled by analyzing the pro-

perties of the global equations. The recourse to inverse methods is also discussed.

NOTATIONS

o & o

I

Coordonnée longitudinale

Coordonnée perpendiculaire & la paroi

Coordonnée transversale .
Composantes de la vitesse suivant 2, j /’Z

Fluctuations turbulentes de la vitesse

Coefficient de frottement Cf/Z = TD /QU.?

Frottement de paroi

Masse volumique

Epaisseur conventionnelle de couche limite

S
Epaisseur de déplacemen 6 = 4" (,__ (‘]
pa r p ment 1 ] ( u) é s

(2 (4 ?u
Epaisseur de quantité de mouvement 0= ( - E)

0 éC_uc Ue Ja

Parametre de forme H= 61/6

Indice relatif 4 1'écaulement extérienr

Nénote une moyenne d'ensemble
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1. INTRODUCTION

Nous avons abordé le calcul des couches limites turbulent2s, et plus spécifiquement ici en écou~
lement instatiomnaire, en adoptant deux points de vue aux exigences souvent trés éloignées. Le premier
consiste i essayer de prédire aussi finement que possible les caractéristiques de l'écoulement moyen et
aussi quelques unes de la turbulence. Le second est beaucoup plus pratique puisqu'il vise a fournir des
méthodes tré&s rapides et commodes, capables cependant de rendre compte assez bien des effets les plus im-
portants.

Nous avons ainsi été conduits 3 mettre en oeuvre deux classes de méthodes qui ne s'oppusent pas
mais qui sont plutdt complémentaires. Dans la premi?re, on résout les équations locales de la couche li-
mite a l'aide de modéles de turbulence s'appuyant sur des techniques modernes mettant en jeu des équations
de transport pour certaines grandeurs caractéristicues de la couche limite. A 1'aide de comparaisons i
1'expérience, nous analyserons donc les qualités er défauts de ces méthodes en insistant notamment sur les
problémes soulevés par le caractére instationnaire de 1'écoulement.

D'autre part, nous avons développé des méthodes qui reposent sur la résolution d'équations inté-
grales de couche limite. Il est clair que ces méthodes ne peuvent pas décrire aussi précisément que les
précédentes les différents aspects de 1'écoulement mais leurs performances trés intéressantes nous ont
amené a essayer de cerner leur domaine de validité en les comparant 2 l'expérience et aussi aux méthodes
précédemment évoquées.

Enfin, nous aborderons le probléme de Ja formation de singularités dans le calcul de couche li-
mite instationnaire. Bien connue en stationnair: depuis les travaux de Goldstein, cette question n'a pas
encore reqgu de réponse aussi claire en instationnaire. Nous verrons comment on peut essayer d'apporter
quelques éléments d'information en analysant les propriétés des équations globales de la couche limite,

2. METHODES DE CALCUL MISES EN OEUVRE

Nous abordons ici la description d'une méthode de champ destinée au traitement général des couches
limites turbulentes b’ limensionnelles instationnaires en écoulement incompressible. La méthode proposée
conduit 3 la résolution de systémes d'équations locales comportant, en plus des équations de continuité et
de quantité de mouvement, les éguations de transport de certaines grandeurs turbulentes. On trouvera dans
les références /1/ et /3/ les éléments pour leur dérivation A partir des équations générales de Navier
Stokes. Elles sont regroupées plus loin : paragraphe 2.1.5.. Toutes les variables y sont définies comme
moyennes d'ensemble.

Diverses hypothéses permettant de fermer le probléme en exprimant le frottement turbulent ont été
analysées et leur validité contrdlée par une confrentation a }'expérience. 11 est & souligner que malgré
la complexité apparente de la modélisation et de certains schémas de turbulence pruposés, nous disposons
13 d'un moyen de calcul rapide et précis, a large champ d'applications.

2.1.1. Schémas de turbulence

La résolution des équations locales nécessite l'introduction d'un schéma de turbulence permettant
d'exprimer le frottement turbulent - (uﬁl§ . Les hypothéses les plus simples de fermeture constituent les
modéles largement utilisés de longueur de mélange. Des schémas plus complexes introduisant les équations
régissant 1'évolution des composantes (gﬁv} y o > s (\/ d du tenseur de Reynolds, de 1'énergiv cinétique

de turbulence : i 2 X
- ’ ’ ’
l<—-5(<1L>»<V§*<“’ >)
et de son taux de dissipation : , 2
£ 22 (24,
L, 9 Xk

ont été également confrontés entre eux et a 1'expérience.

. Modéle de_ longueur de mélange :

La seule composante du tenseur de Reynolds exprimée est -(\ﬂV} , sous la forme

(F1) - v =P %LL

Qt est une viscosité turbulente calculée partir de la longueur de mélange par

(F2) D« PP au

Pres de la paroi, Q est proportionnelle i 3,3 : %-X } H X =yl
A l'extérieur, {/5 est constante : ? -CS R C = L, URY

Cette fnn$€ation peut_&tre compliquée par 1'adjonction de 1'influence du gradient Jde pression

moyen local, dans ou dans
le systeme d’équations traité se réeduit ici aux équations (K1), (E2) ; 1'hypothese de termeture
aux relations (FJ) et (Fl) accompagnées de la loi choisie pour la lTongueur de mélang: .

On joint dans ce modele aux équations de continuite et de quantite de mouvement les cquat ions de
transport pour et & . Le frottement turbulent est encore exprimé par

e
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(F1) —quvy = %_U_
ol la viscosité tourbillonnaire est déduiti des grandeurs%k et € :

(F3) - C/L % ; 9: Cu . 0,08

Le probléme est alors entiérement défini par ces deux relations jointes aux équations (EI) a (E4).

. Modéle a_trois équations_de transport

L'exprescion (F1) pour)le frottement turbulent est abandonnée au profit d'un traltement par une
équation supplémentaire pour (lLV>. La grandeur 9t apparaissant dans les termes modélisés de diffusion
reste définie par (F3). Le systéme local i résoudre est constitué des équations (E1) a (E5).

. Modéle A cing équations de_transport

2 Lef deux schémas précédents utilisent upe hypothése empirique pour 1'évaluation des composantes
W) et¢v'™®y , hypothése de proportionnalité i :
3 2
<u>=[< B <V)=O,1.‘(
Elle est remplacée dans ce modéle complet par um traitement des deux équations de transport sup-
plémentaires pour ces grandeurs turbulentes.

On trouvera dans la référence /3/ une discussion complére dcs différents schémas utilisés dans
les calculs de couches limites turbulentes.

2,1.2. Traitement prés _de la paroi

2 Tous ces schémas sont établis pour des valeurs élevées du nombre de Reynolds turbulent
Rt: k /¥E . Cette hypothise est mise en défaut préds de la paroi ol un traitement particulier s'avére donc
nécessaire. La solution qui a été retenue consiste 3 ne débuter le calcul par équations de transport qu'en
un point ot les effets de la viscosité deviennent négligeables. La région de paroi est traitée par un
schéma de longueur de mélange, modifié pour tenir compte des faibles nombres de Reynolds de turbulence

ep?
(F'2) 9p - FEQPU 1
F est une fonction correctrice de sous couche Visqueuse : F« 1- €xp(- __z___(Tc) )
T est le frottement total, visqueux et turbulent. 36)(

L'utilisation de cette fonction proposée par Van Driest, a été généralisée sous la forme indiquée
par (MICHEL et al. (1969) /4/).

I1 s'est avéré nécessaire d'introduire cependant dans certains termes des équations de transport
des fonctions correctrices empiriques du nombre de Reynolds de turbulence : fonctions 21y +lpy appa-
raissant dans (E4) et (E5), fonction f appliquée a Yt (Réf. /3/,/5/) :

. _ L
(F'3) ot - f)LC}L 5

2.1.3. Termes_supplémentaires - Constantes_ajustables

les équations proposées différent de celles déduites des hypothéses de couche limite classiques
par 1'adjonction de termes supplémentaires dont 1'influence a été contrdlée dans le cadre d'une confronta-
tion entre ces calculs et 1'expérience. Il a déja été montré en stationnaire /6/,/7/, que ces termes ces~
sent d'étre négligeables dans les régions a fort gradient de pression. Un a observé ici leur importance y
compris dans des configuration§ a fngle gradient moyen. Le rile pré..adérant semble par ailleurs devoir
étre attribué au terme :. (W) (V' ))%LL pris en compte dans 1'équation pour 1'énergie cinétique
de turbulence. X

Ces termes sont reportés a la suite des équations locales complétes. Figurent également les va-
leurs attribuées aux constantes apparaissant dans ces équations. Dans 1'étude des schémas a trois et cing
squations de transport et dans le cas d'une configuration expérimentale décrite plus loin, les constantes

Ty - sz = 0.09,02%4=ct O de 1'équation pour la tension ¢4V) ont été modifiées pour obtenir un meil-
leur accord avec les données expérimentales. Les valeurs de Cq et CZ; sont en effet dérivées de la valeur
attribuée a la constante de modélisation du terme linéaire de la corrélation pression vitesse dans 1'é-
gquation pour le tenseur de Reynolds., Cette valeur est a ajuster pour chaque type d'écoulement turbulent
traité, de méme que la constante O du terme de diffusion, grossicrement modélisé.

La discrétisation adoptée pour la résolution des équations locales est inspirée des travaux de
PATANKAR et SPALDING sur les discrétisations de type volume fini /2/.

Ses qualités essenticlles sont un large domaine de validité, la simplicité de mise en ocuvre et
la rapidité, découlant du caractire non itératif du calcul. A cette fin et dans le cas de systimes a plu-
sienrs equations de transport, chaque éguation est mise sous la forme générale (E) ct résolue séparcément.

} 20 N0 R ; d ‘ d
() X L u® V2L S0,0,.) . 3 (U0, %)

dt dx
les différents termes apparaissant dans (E)7sont alors évalués selon un schéma implicite, le
caleul tinal de la quantité @ le long de la normale a la parcoi se réduisant cependant a la résclution

aimple d'un systéme tridiagonal.

Le caleual s'effectue en mode direct. Les Jonnées nécessaires englobent des conditions initiales
sur tout le domaine géométricue, des ronditions 3 chague instant sur la frontiere ament de ce domaine ains)
que l'évolution compléte de la vitesse extérieure,




Les régions 3 écoulements de retour instationnaires sont inaccessibles par ce type de calcul. On
présente au paragraphe 4 d'autres méthodes susceptibles d'aborder ces problémes.

EQUATIONS LOCALES

au NV

Continyite : 52 * % =0 (£1)
Quantité de mouvement : == - ?L ‘b <tfz) v >) 3 (v B—u —<U/V’)) (E2)
Dt € 3z = a aa

Transports de :

Dk _ 6 U v
3 - quvh a €& _(<u> < >) + ED{‘(} (£3)

De._Cuaib €N _[C £, Dl
pt T ANy {acﬁzk @{el (1)

Devs . [ C kdu . . DI
pt {rm ) % frz’ T (m‘

2
Dy | R<u’v')3_u+(2[3|<-3<v'§)a_u ,(DB_U i, C L)@’i +£6,50f<u’f1 (€€)
ot ba 3 f

2
Davy . B<W)D_ ¢ (B<u,) ka) ou ¢ Dgu C f)<v> JEE, @fu)l (F¥)

(€5)

pt §
Dla)- 2 5 (9 ab
% %
Constantes
0} - 1. oe-4.3 Cra-1.57 Ce; -
o: 039 o -G - 4. Crier O3 C>4 - 0.435 Ce; =45
ajustees dans
chaque configuration
Termes supplémentaires
/2' X4
Quantité de mouvement : _32 (<u-’z>—<V >) Transport de <uy (ZP\( 5<V>¢D<‘L)) ou
x
K4 2 h /
Transport de k : -((uﬁ) ~-<V)) g—u Transport de My b (B(u)—D(V)-epk)g_u
x r

La méthode 1ntégrale proposée repose sur la résolution d'un systéme d'équations globales de la
couche limite. Les équations de base sont les équations de quantité de mouvement et de continuité intégrees

entre 3:0 et 3:5

3 Ve . 4 2w, (3-31)
dx Ue e dx

Le calcul de la couche limite, en mode direct, consiste a déterminer 1'évolution suivant X ot t
des grandeurs caractéristiques de la cor che limite 3 partir de conditions initiales et aux limites eon sup-
posant cnnnue la distribution Lhc( ) lnq m(nnnut-s apparaissent donc dans le systéme precedent
Cf, 61 (H 61/6 5 et 5/3 Il eat donc nécessaire d'ajouter des hypotheses supple-
men(mres dites de fc'rm(-tur( qui sont des relatmnﬁ entre les caractéristiques de la couche limite. Cuon
relations de fermeture sont obtenues aprés établissement et analyse de soli:ions de similitude (analogues
dans leur esprit aux solutions stationnaires de Falkner et Skan du laminaire). On suppose que les vitesses




1<

’
déficitaires obéissent a une loi de similitude de la forme(uc-u.)/ur.r (Yn v /B(I,t) Lo
cette fagon les équations locales de couche limite qui sont Jdes vquationy aus 5 Patticiios on X,

y Coette eguaatl ooq,
?ite de similitude peut alors 8tre résolue en exprimant le frottement turbulent a latde d'un s~ onena de
turbulence : nous avons choist un modele de longueur de mélange. La solution de cette equatoon doosimil. -
tude est une famille de profils T 9 dependant Jd'un parametre. Ly prramee, Ut line pour cara terised
la forme de chaque profil ’ , est le facteur de Ulauser G- ’ Jp / F'J o el vae des
propriétés de cette famille de protils conduit alors au jeu des’relatidne J2 el tory e cesaate w1
solution des équations globales de la couche limite. Ces relations sont

= une loi pour le rapport 5{/5 : ‘/&

A -y h(9) ¥ (54

= une loi pour le trottement de parci :

. .
1 =.).1(_{u Rg, + D (G) X - 0,41

- une loi pour le coetticient d'er-\q-rainemenl

. Ce - YP(G) - 1/u, 38/t
ou F1 . D . P sont des fonctions Jdu parametre ctitenues dlapres Dleaatien dos proprictes des osobos
tions de similitude. Ces fonctions ont éte déterminées point par point pour plusieurs valeurs o G et
ont été représentées analytiquement par les formules

F‘_ = 0,03 C - (3,6 + 76,80 (1o~ U 10T G
D* - ¢ - a2 MY e oo

P = 0,074 G =~ 11,0957 /G
Remarquons que, par rapport au cas stationnaire, la methode diftere par la presenc
instationnaires dans 1'équation globale de quantiteé de mouvement et Lans lespression do o ott et
d'entrainement.

La méthode dont le principe vient d'Stre expose pour un ecoulement brdimensionne! incempressini
a été étendue au cas d'un écoulemenc faiblement compressible (H(i Sur o parol dthermanc. biie o egaloment
été étendue au cas d'un écoulement tridimensionnel en vue notamment d'applications au caloud de Dok
limite sur des pales d'hélicopteres.

Signalons aussi qu'une version linéarisée de la méthode a ete mise au point pour le valoni d'e-
coulements périodiques. Elle consiste 3 développer les équations et les relations de termeture en series
harmoniques. En supposant que les harmoniques supérieurs sont faibles, on aboutit d’unc part a o eu
d'équations pour les composantes moyennes et d'autre part a un jeu d'équations pour les amplitudes ot les
phases.

Finalement, nous rappelons que les relations de fermeture présentées 101 sont valabies tant gu'sl
n'existe pas d'écoulement de retour. Pour ces derniers cas un autre jeu de relation est utilise REF. 8.,

3. APPLICATIONS - COMPARAISONS A L'EXPERIENCE

3.1. Couche limite turbulente en

écoulement pylsé avec_gradient de_pression moyen defavorable Rif. 13,
Une couche limite turbulente soumise i un écoulement extérieur pulse se deveroppe sur lo plancher
d'une veine d'essais de section rectangulaire. La transition est déclencheée artiti ieliement dans v (od-

lecteur. En aval de la région d'étude, la rotation d'une vanne vrée Ta pulsation de Moo slement par va-
riation de la rerte de charge totale du circuit.

Un corps profilé induit sur le plancher de la veine un gradient moven longitmfing., de prossi o
ajustable. 11 s'est avéré nécessaire d'aspirer une partie du débit supérieur pour eviter un phen mene iy
blocage au bord de fuite du corps central. Une seconde aspiration latérale previent le deo Dlenerr dos
couches limites latérales et recule les effets tridimensionnels @ la tigure 3 reprodore de maniore sim-
plifiéde ce dispositif expérimental.

Les mesures de vitesse instantanée ont ¢té effectudes soit par anememetiae 0 i haud, soit pat
anémométrie laser dans les régions aval ou apparalssent périodiquement des coonlements e oyotoar . e
analyse statistique de ces données permet de séparer les composantes mMovennes —au sens e movennes o en-
semble~ des parties turbulentes. Des comparaisonsentre les resoltats de calinls appliques o ette oot g
ration expérimentale et ces données tres completes ont pu étre reéalisees.

les figures | et 2 présentent les évolutions longitudinales, experimentaies ot cavoiives, e

valeurs movennes, des amplitudes et des déphasages par rapport a4 la vitesse extericete 1 ocace fe S tepass
seur de déplacement { et du parametre de forme H . Trois des methodes detites plas bant ot ote x-
ploitées : une version linéarisée de la méthode integrale, la methode antegrale ainsg qu'an o mete be o gl
A cinq éguations de transport. Cette derniere condult G une prevision tres correcte des oarm teristignues
de 1'harmonique de g( . L'accord concernant le parametre de torme, entre Dexperience ot oan calbonn par o
méthode integrale reflete mal en consequence imprecision de celle-oy ans Ty preds ton do o mpettenen?
de { et 6 o Mais des rendances de o ces trots methodes josgutanx tepons g e cafemente deoret 8 et
acveptables néanmeins. N

La figure § presente a4 ane station aves groedient de presscion moven modere dea o tes e oAt s
de 1a méthode de champ, pour trois schemas de tarbulemno e, oncernant Ploveints o dane Ta pore beons
épaitaseurs St et 6. L'apport de modéles a equationsg de transport compiets v appatait tres sensible, A
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la méme station nous preésentons figure 4 les courbes d'amplitude et de dephasage par rapport a la vi-
tesse extérivure du premier harmonique de la vitesse au sein de la couche limite, pour ces memes caleuls.
Des caractéristigues tondamentales en écoulement instationnaire telles que 1'"overshoot™ du protil d'am-
plitude, le vomportement du déphasage de la vitesse prés de la parvi, sont vorrectement predites par un
modele de fermeture elabore,

Un trouvera enfin sur la figure 5 un exemple des évolutions dans une pertode du profal de frot-
tement turbulent réduit pour trois modeles de turbulence :

1) - 1 équations de transport,
2) - 3 équations de transport avec termes supplémentaires,
3) - 5 équations de transport.

Les tendances du calcul sont conformes aux déformations observées du profil experimental.

3.2. Exemple _d'application_de_la_méthode_intégrale_en_tridimensionnel

Pour illustrer cette méthode, des calculs ont été effectués dans lesquels la couche limite se
développe sur une pale hypothétique d'un hélicoptére se déplagant a vitesse constante perpendiculairement
3 1'axe de rotation du rotor.

Deux vas de vitesse extérieure ont été étudiés, en utilisant un résultat propose par Me CROSKEY=~
YAGCY /REF, )4/ ¢

L, Qe
Lee oo
w . _Qc.
u.‘ uo-

Cas 1

h,Xo,N
§
-

_UIL.Q_C(-X_X),coa\P
Uoe Uo-
Le profil est mince et place 3 faible incidence. lLes coordonnées X et X sont confondues.

b b

Q

— -

x

Un calcul quasi-stationnaire est comparé a la méthode intégrale instationnaire pour co deux cas
de répartition de vitesse extérieure et deux sections en Z i une section située prés du rotor:(Z/C==Hl
et une station située en extrémité de pale : CZ/C—= 23,1). Les résultats sont présentés pour le soint ap-
partenant au bord de fuite.

Sug les figures B et 9 sont tracédes les évolutions en fonction du temps du paramitre de
forme H= Si 1. Le niveau moyen de est plus faible dans le cas 1 que dans le cas IT. Le tacteur
essentiel dans cette différence de comportement est la valeur du gradient de vitesse extérieure ; les
effets instationnaires sont d'autant plus sensibles pris de 1'axe du rotor, qu'ils sont associés a des
gradients importants. La valeur du nombre de Reynolds joue également : dans la configuration 11, on note
que est plus élevé dans la zone voisine de = 270° | pres de 'axe du rotor, lorsque la vitesse
devient trés faible et donc aussi le nombre de Reynolds.

entre la vitesse extérieure relative et la ligne de courant relative a la paroi. bn bout de pale et
dans le cas I, cet angle demeure trés voisin de 26ro § ses dévolutions n'ont pas eteé tracées. Flles ros-
tent faibles méme prés du rotor. Il n'en est pas de méme dans le cas 11, surtout au voisinage Jde 1'axe du
rotor (Figures 6 et 7).

Les effets tridimensionnels dis a la couche limite sont abordés par 1'intermédiaire de 1Mangle
¥ ¥

On notera que dans la configuration I, les calceuls instationnaires et goasi=stationnaires donnent
des résultats trés voisins. Dans le second vas, le calcul quasi-stationnaire prevoirdait un deécollement de
la couche limite pour voisin de 30° contrairement au calcul instationnaire ; ceci peut s'expliguer par
1'effet favorable du gradient lb qui se rajoute au gradient spatial et dévite le décollement.

*"
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3.3. Plague plane soumise 3_un

écoulement sinusoTdal

La configuration la plus complétement &tudiée est celle d'une couche limite de plaque plane sou-
mise i un écoulement extérieur sinusolidal. Nous comparons sur les figures 10 et 1! les resultats ob-
tenus a l'aide d'une méthode intégrale et d'une méthode linéarisée aux quelques données expérimentales
disponibles. La comparaison porte sur l'évolution en fonction du nombre de Strouhal de 1'amplitude et du
déphasage par rapport a la vitesse extérieure du premier harmonique de 1'épaisseur &1 . Notons que le
nombre de Strouhal n'est pas le paramdétre unique Jde la selution ¢ le nombre de Reynolds et 1'amplitude de
la fluctuation de vitesse jouent également un rile. Les calculs unt été réalisés pour une fréquence de
4 Hz, une vitesse moyenne U, de 50 m/s et une amplitude de 0,125 U,.

Il semble que pour des nombres de Strouhal intermédiaires allant de 1 3 5 les divers calculs se
comparent de fagon satisfaisante 3 1l'expérience. Une dispersion apparalt par contre pour des valeurs supé-
rieures. La difficulté majeure du calcul réside alors dans la modélisation de la turbulence dans la sous-
couche visqueuse ol se trouvent confinés les effets instationnaires aux grands nombres de Strouhal. & ¢o
praobléme se rajoute aussi celuil de linteraction entre la pulsation forcée et la turbulence, la fréquende
imposée pouvant se trouver dans la gamme des fréquences caractéristiques de la turbulence.

une_perturbation_sinusoidale (propagation a célérité finie)

Les figures 12 et 13 montrent une comparaison aux expériences de M.H. PATEL 15/, (vs expe-
riences ont été réalises sur une plaque plane semi-infinie avec transition déclenchée & 0,075 n du boad
d'attaque. Les donneées expérimentales résultent de mesures par anémométrie a fil chaud ainsi que Jdo
mesures par prises de pression statique placées a la paroi,

La pulsation de vitesse extérieure se propage dans ces expériences avec une celérité tinie
‘amplitude de fluctuation crolt de plus suivant & . La vitesse extérieure se met sous la torme

g = Weg & “-q("‘)- "‘i“(“’(t’x/Q))

Ues = 19,8 m/s

Q = 0.77.Ues ¥
tej = o,n,z,(.n_u,ns)

Patel donne :

Des fréquences allant de 4 a 12 Hz ont été utilisédes. La plage de mesures explorde en & onauit

a3 des résultats qui couvrent une gamme de nombres de Strouhal de 1,65 4 6,65,

Différents calculs ont été réalisés au moven d'une méthode intégrale, vu a 1'aide de sa version
linéarisée. Jusqu'au nombre de Strouhal le plus élevé (6,65}, un bon accord avec l'expirience est obtenu,
sauf en ce qui concerne les déphasages des épaisseurs 51 et © par rapport a la vitesse extétivute.
Ces écarts peuvent en partie s'expliquer par la difficulté de déterminer de tels déphasages avee precision
par l'expérience. Une dispersion est 3 uoter cependant dans les résultats théoriques aux grandes valeors
du nombre de Strouhal.

Il faut enfin remarquer qu'il se pose dans cette configuration les problemes d'origine Jde la

couche limite turbulente pour définir le nombre de Strouhal ¢t de conditions initiales pour commencer le
caleul aux faibles f{réquences réduites.

4. SINGULARITES EN MONE DIRECT - METHODE INVERSE

4.1. Rappel _des résultat

en_écoulement stationnaire -

lﬂl

En écoulement bidimensionnel stationnaire, il a été montré gue le svsteme des cquations globales
devient singulier au veisinage du point d'annulation du coefficient de frottement paridtal. Cette singula-
rité, analogue 1 celle de Goldstein pour les équations locales, se traduit en particulier par le tait oo

j L Jdevient infinie. Cette singularité peut Stre iltlustrée o 1'aide de lequation medcle
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des équations de fluide parfait et des équations de type couche limite, résolues en forte interaction ont
pu &tre développées méme en présence de zones avec écoulements de retour /10/. Les méthodes inverses trou-
vent aussi leur application dans les méthodes de "design' : on impose une caractéristique de 11 couche
limite et on déduit la distribution de pression qui permet de calculer la forme de la paroi a l'aide d'un
calcul inverse de fluide parfait. Le mode inverse est encore indispensable si on cherche a contrdler par

comparaison a l'expérience la validité de relations de fermeture pour une couche limite avec écoulement de
retour.

L'analyse dJdes propriétés des équations globales instationnaires appurte un éclairage nouveau au
probléme de la formation de singularités dans les calculs de couche limite en mode direct. Un a montré
/11/, [/12/ que le systéme des équations instationnaires posséde deux directions caractéristiques qui, avec
une hypothése simplificatrice assez mineure, s'expriment par

A (1. 0,628 (H-1))H
Dg= (1. 062 (n-1)\H
ol ) est la direction caractéristique reduite l: Jt/ \kdt

Pour le domaine ") i , on tire donc les conclustons suivantes @

Puisqu'il existe toujours deux directions varactéristiques reéelles distinctes, le systome est
hyperbolique.

La premicre valeur caractéristique vst toujours positive. Elle reste méme assez voisine de |

elle est comprise entre U,b2 et 1.

La deuxieéme valeur caracteristique vst positive pour Hg Hc; elle est négative pour }i)Hc
¢ Heu 200,

Ur, en stationnaire, l'analyse des equations montre que la valeur critique H :‘*c détinit la
singularité. A un tris léger ajustement pre- des relations de fermeture, ce point correspond d'ailleurs a
annulation Ju coeffivient de frottement (oo stationnaire comme en instationnaire).

Contrairement au s stat.onnaire, 1l oapparatt done que le point H=He n'est généralement pas
singulier en instationnaire. Le changement de signe Je la deuxicme valeur caractéristique a la traversee
de ce point se signale seulement par une influence Jde T'aval sur 1'amont quand devient supérieur a

e (Fig. 14 ). Cette intluence est tout a tait claire car elle est lide A la présence d'écoulements de
retonr.

En instationnaive, Lo présence eventuelle d'une singularité de la solution n'est donc pas lide au
point Ha Hc.. Le svsteme possede des solutions taitles avee discontinuité qu'on peut étudier analvtique=~
ment apres avolr remarque gue les Cguations se mettent sous forme quasi-conservative, condition nécessaire
drexistence de solutions taibles. vette forme est
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peut imaginer suivant le choix des données, deux solutions ont été étudiées. Dans les deux cas, la grandeur
dont 1'évolution est impusée est la direction de 1'écoulement du fluide pdrfait le long d'une fronticre
situde 3 1l'altitude éi . Soit & Le([e direction, On montre /10/ que si cette frontiére est confondue
avec l'épaisscur de déplacement aé , on a une condition d¢ tangence le long de cette fronticre o'est-
a-dire que la direction °(<3, L est donnée par :

0‘{3;3;_): —a&_ (£9)
ox
Si la frontidre est confondue avec la paroi (l = O) , on montre /107 gu'on obtient une contition
de soufflage telle que : J

~
o .-.o)..a& . ot Ole (£10)
J or = Ue or
Les deux meéthodes inverses analvgees consistent done 2 supposer soit que o (3 <)%> ©ST Cunnue en
fonction de X et t , SOt que Q’g:O) est connue en fonction de X3 et

Ainsi, on ajoute une evquation (égquation (EY)  ou dquatien  (E10)) au systéme des équations de
couche limite mails on considire que u,(xﬁ est uhe lnconnue.

Dans chacun des cas, l'analyse des propriétés du systime d'équations montre qu'il s'agit d'un pro-
bléme totalement hyperbolique et que les directions cardctéristiques sont toujours positives. On en conclut
donc que pour la couche limite résolue isvlément en mode inverse, des conditions aux limites sont seulement
nécessaires a 1'amont et l'intégration peut &tre cffectude d'amont en aval. D'autre part, on a montré que
suivant la deuxieme méthode (Gfu J)impnsé) 1'existence des lignes de discontinuité est i exclure. Suivant
la premicére méthode, le calcu! atre que les pentes des directions caractéristiques varient peu suivant
les valeurs du facteur de forme W ce qui devrait limiter le risque de lignes de discontinuité.

4.3. - Application_d'une méthode_inverse_-_Comparaison_a_1'expérience

L'un des premiers objectifs d'application de ces méthodes inverses a été notamment de contrdler
les relations de fermeture en instationnaire avec écoulement de retour en s'appuyant sur des comparaisons
a 1'expérience.

Les résultats expérimentaux /13/, déji évoqués au paragraphe 3.1., sont constitués de sondages
détaillés de la couche limite a différentes stations et ont comporté notamment la détermination des
moyennes de phase de la vitesse. Ainsi, on connalt de fggon précise 1'évolution de la couche limite en
fonctiun du temps et en particulier, la distribution 1(35/

Pour atteindre le but recherché, il ap att donc un peu plus simple de mettre en ceuvre la pre-
miere méthode inverse (celle ou 1mpnsotx %ﬁ =0 1/ x) qui revient en fait & prescrire l'évolution
de l'épaisse e placement { T, 2 ;ts calculs ont été effectués en considérant la distribution
mesurée de 3& 5 comme une dunnée du probleme. Cette distribution a été représentée par un développe-
ment harmonique des valeurs mesurées ; seul le fondamental a été retenu. Ces données, reprisentées sur la
figure 16 ont eté introduites point par point,

Sur les figurces 17 et 18, on compare les résultats du calcul et de 1'expérience cencernant
les distributions du facteur de forme et de la vitesse représentées a 1'aide d'une analvse harmonique. Un
bon accord général est obtenu, v compris dans la région située en aval de XL = 435 nm ol apparaissent
périodiquement des courants de retour. Bien que l'une des caractéristiques de la couche limite soit intro-
duite comme donnée, la comparaison de !'évolution du facteur de forme n'est pas triviale car les relations
de fermeture utilisées lailssent arbitraires les valeurs de deux caractéristiques de la couche limite.

Précisons encore que les résultats des calculs effectués sulvant le mode direct (avec la meéthede
complete ou [indarisdée) montrent un bon accord jusqu’a la station X = 435 mm. Mais insistons sur le fait
qu'une tentative de calcul en mode direct au~deld du point & = 435 mm, sans tenir compte de condition
aval. avait dchoué trés rapidement par suite d'apparition de fortes instabilités numdériques.

CONCLUSIONS

Un dispose d'un ensemble de méthodes de calcul permettant, scit une description globaie do 1'eoous
lement par résolution des équations intégrales, soit une description fine du champ de vitesses et mime d
vertaines grandeurs caractéristiques de la turbulence par résolution d'un jeu d'équations de transport.

A 1Taide de coupiraisons détailldées a4 U'expérience, il a été montré que pour atteindre ane ame!
ration sensible par rapport aux méthodes les plus simples, il faut faire appel 0 un svstome dlegquatien. de
transport dont Je niveau de complexitd est dleve. Si on se limite aux modiles plus simples, la provision
des epaisseurs de couche limite, sans Stre mauvaise, n'ast pas améliordée par rapport o ce gu'on ohtient
par la méthode intégrale. De ce point de vue, la méthode intégrale donne des résultats tont @ tart o eps
tahles compte tenu en plus du gain de temps de caleul. De plus, avee les modeles d'cgunations di transport
les plus s.mples, la description des profils de vitesses presente des détauts, notamment sur de dopasse-
ment que presentent les profils d'amplitude.

Pour les grandes valvurs du nembre de Stroohal, fsuperienres o v Jes quclgoes resultats oxnporg-
mentaux existants sembient mentrer que Tes modefes b prociser aver equations de fCransp ot tediguent s
tendances correctes sioon oen page dlapres Lo ophase de i dpaissenr de deplacement . Cependanty fes expes
riences ne sont pas saftisamment svstemat iques poar apporter des comodustons detinttive .. Ve oremargm
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analogue peut ét aite pour les nombres de Strouhal faibles (inférieurs a 1) pour lesquels on manque
aussi de données périmentales.

Sign ° enc~re qu'il serait trés instructif de disposer d'intormations expérimentales sur 1'é-

volution du cowi.” .nt de frottement pariétal. Les seules indications dont on dispose actuellement peu-
vent &tre obtenue par la mesure des profils de vitesse et 1'hypothise que la loi de paroi établie en sta-
tionnaire reste * “able en instationnaire.

Grace a l'analyse des propriétés des équations globales de la couche limite, nous avons pu meltre
y prop g

en évidence les conditions dans lesquelles des singularités peuvent apparaitre dans les calculs de couche
limite en mode direct. On a pu ainsi apporter un éclairage nouveau & cette question en montrant que le
probléme bidimeasionnel n'était qu'un cas trés particulier d'un probléme plus général. Bien que 1'analyse
ne soit pas identifiable & celle des équations locales de la couche limite, on peut raisonnablement penser
que des difficultés analogues peuvent exister quand on résout ces équations. En fait, 1'existence de deux
directions caractéristiques dans le systéme des équations g. bales est le reflet, aprés intégration, de
l'existence d'une infinité de directions caractéristiques (qui sont les lignes d'émission) dans le systime

des équations locales.

La mise en oceuvre du mode inverse de résolution des équations de couche limite permet d'échapper

aux singularités du mode direct. On montre donc que ces singularités ne remettent pas en cause l'utilisa-
tion des équations de couche limite.

Enfin, on a pu contrdler par comparaison & l'expérience que des zones avec écoulement de retour

au moins de faible étendue peuvent étre correctement calculées 3 1'aide de la méthode intégrale.
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VISCOUS EFFECTS ON UNSTEADY AIRLOADS OF
OSCILLATING CONFIGURATIONS

by
‘W. Geissler
DFVLR - AVA Guttingen
Institut fUr Aeroelastik
Bunsenstr, 10, 340 Gbttingen, Germany

Summary

Viscous effects on small amplitude oscillating wings and bodies can be considerably influential on unsteady airloads needed
for aeroelastic investigations.

The steady and unsteady Kutta- Joukowsky condition, boundary layer displacement effects, gap flows on wings with oscillating
controls and vortex formations on rotor blade tips, on wings with highly swept leading edges and on bodies at incidence severely
influence the unsteady pressure distributions and overall forces.

Numerical calculations of unsteady airloods bosed on a sophisticated potential theory have been compared with carefully
measured experimental data to obtain detailed information of the viscous effects involved.
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1. Introduction

Recent developments of prediction methods fer unsteady airloads on three-dimensional oscillating wings 1] ond bodies (2}
take into account the exact boundary condition of the real surface of the configuration as well as the exact Bernoulli Equa-
tion within o body-fixed, oscillating frame of reference. In addition to a lifting surface theory several odditional parameters
such os thickness and camber of the airfoil section, mean steady incidence, mean flap deflection and gap geometry can now
be ccnsidered.  Comparisons with detailed experimental results enables a decision to be made about the quality and quantity
of the viscous effects involved. A further step is the intoduction of a special flow model representing for instance boundary
layer displacement thickness, separation of the free vortex layer type or even rear body separation.

In the following paper a discussion of different viscous flow phenomena is presented by drawing comparisons between theory
and experiment. The problems are closely related to aeroelastic instability investigations and are therefore limited to small
amplitude oscillations, Problems related to high amplitude oscillations of helicopter rotor blades, i.e. dynamic stall, are
not examined here. The investigations are further limited to subsonic flows, although some of the viscous phenomena ob-
served in subsonic flow have similar or even identical effects in transonic flow.

2. Potential theoretical method and the Kutta-Joukowsky condition

For the numerical solution of the potential theoretical problem a panel-type method is used, dividing the real surfaces of the
3-d wing or body into a corresponding large number of surface elements, The unknown singularity strengths are then obtained
as the solution vectors of a large linear system of algebraic equations. In the wing case, a combination of sources and dou-
blets is used. A source distribution alone would not give satisfactory results: the overall ift of the wing would then be zero
with a flow around the trailing edge of the wing. It is well known from flow observations that in a real viscous flow the fluid
particles leave the trailing edge smoothly and a singular behavior of the pressure at this station is therefore avoided. To mo-
del this viscous situation of smooth flow off the trailing edge, the Kutta- Joukowsky condition has to be taken into considera-
tion. This condition is therefore a phenomenological one which accounts for the main effect of viscosity in a non-separated
flow.

Different possibilites exist to fulfill the Kutta- Joukowsky condition numerically: in the present calculation scheme the pres-

sures at the two control points adjacent to the trailing edge are made equal. This condition has to be fulfilled simultaneously

for all "Kutta points". Fig.l shows a landing configuration with a well-defined gap between wing and control. In this case,

Kutta points exist not only on the oscillating control-trailing edge with a corresponding control-wake, but also on the wing

trailing edge with a corresponding wing-wake. Difficulties occur in the numerical treatment of the Kutta- Joukowsky con- '
dition at the trailing edge of the wing due to the strong interference effects in this region. Experimental investigations [3' i
of this configuration with oscillating control and with open and closed gap have shown the severe influence of the gop flow

on the steady and unsteady pressure distributions and overall lift for this configuration. These problems are significont for

the treatment of active control problems.

3. Boundary layer displacement effects

If the flow is still attached, it is relatively simple to heed a higher order effect of viscosity due to the displocement effect of
the boundary layer. This effect can be represented in different ways:

1) by adding the displacement thickness, i.e. by thickening the profile,

2) by modifying the boundary condition allowing non-zero normal velocities prescribed by the boundary layer
displacement. }

In the sresent method the first alternative is chosen. Fig.2 shows the eftects of profile thickness and boundary layer diplace
ment in a section of a swept, tapered wing with a NACA 0010 symmetrical airfoil. Included are pressure distributions ob-
tained by lifting surface theory (dashed lines) and experimental resuits [4]. The results for the real parts show that the intro-
duction of profile thickness and boundary layer displacement reveols good agreement with the experimentol rewults whereas
the representation of thickness alone over-predicts the pressure distributions of the real parts. Similar results have been pre- 4
sented in |5] for subsonic and transonic flows. Only small influences of boundary layer displacement can be found in the
imaginary parts of the pressure distributions.

The calculation procedure for taking into account boundary layer displacement thicknes: is pertormed in three different steps:
1) calculation of the steady pressure distribution on the wing surface,

2) calculation of the boundary layer for each wing section with the steady pressores ot step 1) by means of o
two-dimensional boundary layer code {6],

3) addition of the boundary layer displacement thicknew. and calculation of steady and unsteody pressure dis-
tributions on the thickened wing.

In most cases it is sufficient to stop this calculation process after the tirt cycle 1t is no problem however to repeat the col-
culation for additional cycles.
4. Vortex flows

Two different types of 3-d separation described already by Maskell 17! and others may occur o arbitrary  3-d contigurations
the free vortex-type separation and the bubble-type separation

The free vortex type is alreody represented by the wake behind a0 wing. free vortex layers located within o pressure field
have the tendency to roll up forming concentrated vortices. These vortices can be observed within the flow about vatious
configurations creating interference effects on the steady and unsteady pressure distributions at the hody wrtoces




Three configurations have recently been investigated experimentally (Fig.3):
1) the tip-vortex on o blade tip (rectangular wing with NACA 0012 airfoil section),
2) the leading edge vortex on a 3-d wing with highly swept leading edge (NORA-experiment),
3) the body-vortex on a blunt body of revolution at incidence (ellipsoid of axis ratio 3),

These three cases have also been investigated numerically by the potential theoretical method colculating steady as well as
unsteady pressure distributions on the different oscillating body surfaces. The comparisons between theory and experiment
will be discussed next.

4.1 Tip vortex

The sketch in Fig.4 shows the configuration which has been investigated experimentally in the low speed flow regime [8].
This blade tip has @ NACA 0012 airfoil section and a rounded tip. Steady and unsteady pressure distributions have been
measured in eight chordwise sections where four sections are concentrated in the very tip region (0 <1 < 0.1). The blade
was oscillating in pitch about the quarter chord axis. The cases discussed here were measured at a frequency of 8 Hz and
Uoo = 50 m/s (w* = 0.402, based on chord).

Figs.4-6 show theoretical and experimental chordwise pressure distributions for three different incidence cases (o = 0°/
40/69).

The plots on the left-hand side show steady and unsteady pressures at an inboard station with quasi 2-dimensional flow. The
right-hand plots show the situation in the very tip region. In all cases the differences between theory and experiment are
very small at the inboard section. Remarkable differences however occur in the tip region. Such differences appear in o
steep negative increase of the steady and particularly the real paris of the unsteady pressures with increasing incidences.
These effects are due to the tip vortex formation shown in Fig.3 affecting mainly the y-velocity component on the wing
surface (outboard velocity on the suction side due to the tip vortex).

A simple quasi-steady correction based on the measured steady pressures can be made to modify the calculated unsteady pres-
sures. From the steady pressure coefficient

c = 1-vy 2 v 2 m
p xs ys
with Voo and V , o8 the steady velocity components relative 1o the surface (non-dimensionalized), one can calculate the '

experimental v s—velocities under the assumption that the x-components remain unchanged by the influence of the tip vor-

tex. The measured and the calculated v, ~components are therefore approximately equal.

Plotting vys at various stations x/¢ versus the angle of incidence and determining the slopes of the v (o) curves, one
s

brains the quasi-steady velocities ;yi by introducing the Bernoulli formula for the calculation of unsteady pressures (1],

CI='2('U*5.”+V ;.‘+V ;.;) R
p i xs xi Tys yi
- B B " (2) 1
c = -Z(w*w.’ tv. v, A v 200V

[ i xs  xi ys yi 1
The underlined terms in £q.(2) are now modified by the measured data, whereas all other terms remain unchanged. One ob-
serves from £q.(2) that the real parts ?:p' are modified by the product Voo Vyi, which is large where the influence of
the tip vortex is large, The correction of the theoretical curve is represented by the dashed line in Figs.5 and é (suction
side only). The correspondence with the measured data is satisfactory. The influence on the imaginary parts however is
very smoll. The reason for this seems to be that the tip vortex is moved by the pitching oscillations approximately in o plane
normal to the wing surface. This leads to negligible phase shifts in points on the surface. j

Another interesting viscous effect on the unsteady pressures can be observed mainly at the inboard section (Figs.4-6). Start~
ing with a laminar boundary layer calculation |6] from the stagnation point, the program signals tronsition ot specific points
on the suction and pressure side of the wing (points indicated by an asterisk in Figs.4-6). In the upstream proximity of these
points a jump in the measured real and imaginary pressures can be observed which is large on the suction side. The influence
on the steady pressures however is very small.

The effects of a boundary layer displacement correction is shown in Fig.5 . The changes of the pressure distributions show
the previously discussed tendencies. The effects are relatively small.

4.2 Swept-wing vartex interaction

Figs.7 and 8 show colculated and measured steady and unsteady chordwise pressure distributions on a 3-d wing with a highly
swept leading edge undergoing pitching oscillations. The experimentol results were obtoined from the NORA experiments [9].
Only the subsonic case (Mag, - 0.6) hos been compared with the incompressible theory. The complicated profile of the
NORA-model (droop-nose} has been taken into consideration. Agoin a good correspondence between theory and experiment
can be observed in the zero-incidence case (Fig.7). With increasing incidence however severe deviations from the colcu-
loted pressures are observed in the steady ond unsteady experimental data (Fig.8). In this case both the real and imaginary
pressures are affected. These effects which have been found for all experimental results within the measured Mach number
regime must be referred to a leoding edge vortex shown qualitatively in Fig.3 . Aside from the tip vortex effects, there ore
now remarkable phase shifts due to the fact that the leading edge vortex is moved by the pitching oscillotions mainly porallel
to the wing surface. The phase shift between the wing motion ond the vortex motion is clearly represented in the imaginary
pressures .
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A correction of the unsteady calculated pressures using the measured steady pressures in the vortex region is now more diffi-
cult due to the missing information of the mentioned phase shift.

Fig.9 shows calculated and measured steady pressures at four chordwise positions at the leading edge plotted with respect to
incidence. The slopes of the curves are obtained from the amplitudes of the unsteady experimental results, The theory shows
the expected linear dependency of o . The experimental curves are linear only at very small incidences. The steep gradi-
ents of the experimental curves show the downstream shift of the leading edge vortex with increasing incidence.

It is important to note in Fig.9 that the absolute values of the measured pressure coefficients and the siopes of the ¢ (a)
curves obtained from the measured unsteady pressure amplitudes fit together quite satisfactorily. This is again an
indication of the quasi-steadiness of the vortex influence on the unsteady oirloads of the osciilating wing.

4.3 Body-vortex interaction

Different types of viscous phenomena can be observed on blunt bodies of revolution at incidence. Aside from a bubble-type
separation at the rear part of the body which occurs even ot zero-incidence, body vortices are formed at small to moderate
angles of attack. This latter type is a free vortex layer separation which has been investigated experimentally (10}, [11]
and numerically [12], [13] by several authors.

The three-dimensional laminar boundary layer calculation on ellipsoids at incidence by means of a finite difference method
is described in {13] . Fig.10 shows the development of the calculated boundary layer thicknes: on the entire body sur-
face along different equipotential lines. The boundary layer thickness shows a steep maximum at a certain position on the
leeward side of *' = body. Further downstream from this position the numerical calculation becomes unstable. The line of
instability points is interpreted as the seporation line, i.e. the origin of the two counterrotating body vortices. Fig.10
shows a side- and top-view of the calculated separation lines on an ellipsoid of axis ratio 4 .

The ponel-type method for oscilloting blunt bodies at incidence ({2]) takes into account the exact boundary condition on

the real body surface and uses a body-fixed frame of reference. With this concept it should be possible to obtain a good
correspondence between theory and experiment even on bodies with considerable bluntness. Intensive experimental studies
have been performed on on ellipsoid of axis ratio 3 at pitching oscillations in the low-speed flow regime (14| . The follow-
ing comparisons between theory and experiment are made for the case: f = 8 Hz , U = 40 m/s (u* = 1.257 , based
on total body length). ®

Figs. 11 and 12 show steady and unsteady pressure distributions along the leeward line of symmetry of the body at zero- *
incidence (Fig.11) aond at o = 30° incidence (Fig.12) . Two other theoretical methods are included in Fig.11: the

slender body theory with a singular behavior at the leading and trailing edges of the body and @ method [15]| based on the

application of spheroid functions for the solution of the governing Helmholtz equation. The panel method, which uses o

pure source distribution, yields a very good correspondence with the experimental results at the front part of the body.

Hardly any deviations can be observed in the steady pressure distribution at zero-incidence except at the very rear part
(x/L > 0.95) of the body. Larger deviations however can be seen in the real and imaginary parts of the unsteady pressure
distributions. In the high-incidence case (Fig.12) the correspondence between potential theory and experiment is again
extremely good at the front part. The steady pressures show the expected deviations due to the blunt body separation at the
rear. Some additional viscous effects can be observed further upstream showing a remarkable peak in the imaginary pressure
which is shifted upstream with increasing incidence. Both real and imaginary pressures reveal deviations from potential the -
ory downstream from this pressure peak. These viscous effects must be referred to the influence of the body vortices. !n the
case of a very thick ellipsoid of axis ratio 3 at moderate angles of attack, the strength of the body vortices and their efiect
on the surface pressure distribution is relatively small. It is interesting to note that these viscous effects can only be observed
in the unsteady but not in the steady pressure distributions. Unsteady pressures due to small amplitude oscillations are a very
sensitive indicator of viscous effects. The differences between experiment and a sophisticated potential theory very clearly
show these effects of viscosity.

More details of the influence of the originating body vortices can be found in Figs.13 and 14 . Steady and unsteady pre:
sures are plotted against the circumferential angle © with the angle of incidence o as o parameter. Fig.13 shows the sit-
vationat x/L = 0.088 . In oll incidence cases the differences between theory and experiment are very small. Further
downstream at x/L = 0.196 the differences are again smal! for the lower incidence coses. Remarkable deviations fror
potential theory are observed however for the @ = 30° case at the position © =7 1439 . Both real and imaginary pressure
parts are affected. The position x/L = 0.196 approximately coincides with the location of the pressure peak within the
imoginary part in Fig.12 . It must be pointed out again that the steady pressures in Fig.14 show only small differences
compared to potential theory.

The reason both real and imaginary pressure parts are influenced by the body vortices can again be explained by the particular
location of the body vortices with respect to the axis of rotation. Fig.3 shows the situation qualitatively. The pitching os-
cillation of the body about a pitching axis parallel to the y-axis causes an oscillatory motion of the boa, vortices along the
body surface. A phase shift between body motion and vortex motion influences the unsteady pressures on the body surfoce
accordingly.

5. Rearward body separation
On blunt bodies at incidence, two different viscous phenomena at the rear part of the body con be distinguished: i

1) Thealternating separation of the body vortices at very high incidence (a = 30°) . The frequency of this
alternating separotion is determined by a special Strouhal number.

2) Separation of the turbulent boundary loyer forming a rearward separation region and o wake behind the body. ¢
This phenomenon occurs even in the zero-incidence cose.

These two viscous phenomena occur also on non-oscillating bodies. As long ax the forced oscillation frequencies of the body 1
are small there is no influence on these two separation types. On the other hand there is a severe influence of the rear-body
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separation on the unsteady airloads. It is very difficult to make allowances for these influences. One possibility would be
to perform a boundary layer calculation (Gt least in the two-dimensionol, axisymmetric case) to determine the turbulent
separa’'on point. Downstream from this seporation point the wake could be approximately replaced by a rigid body. Such a
modeliing of the separation region achieves the proper correction of the steady pressures. It should also correctly influence
at least the omplitudes of the unsteady pressures. Further intensive studies of these complicated flow situations with respect
to unsteady airlocds are necessary in the future.

6. Conclusion

Potential theoretical calculations of steady and unsteady airloads on oscillating wings and bodies have been compared with
corresponding experimental results. The deviations between theory and experiment yield direct information about the type
and magnitude of the different viscous phenomena involved.

It has been mentioned that the Kutta- Joukowsky condition as a phenomenological condition includes the major viscous effect
for lifting configurations without flow separation. A higher order effect of viscosity including the boundary layer displace-
ment is taken into account.

Three-dimensional flow separation can be of the free vortex layer type or of the bubble type. Vortex systems have been in-
vestigated about the following configurations:

1}  blode tip with tip vortex,
2) leading edge vortex on wing with highly swept leading edge,
3) body vortex on axisymmetric body at incidence.
In all three cases the effects of the vortex flows on the steady ond unsteady airloac’s may be clearly localized. If the vortex

location is known a priori as in the blade tip case, a quasi-steady correction of the unsteady airioads using the measured
steady pressure distributions can be successfully used to represent the major effects of the vortex flow on the unsteady airloads.

Measured unsteady pressures are found to be a very sensitive indicator of viscous eftects, while focal deviations from poten-
tial theory signal boundary layer transition. The origin of the body vortices on blunt bodies at incidence con be localized
clearly where influences on the steady pressures are still very small.

A simple model representing the rear body separation region should give a corresponding correction of the steady as well as
unsteady pressures within these regions.
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SOME REMARKS ON BOUNDARY LAYER EFFECTS ON UNSTEADY AIRLOADS
by
R. Houwink
National Aerospace Laboratory NLR
Anthony Fokkerweg 2
1053 CM AMSTERDAM
The Netherlands

SUMMARY

These notes of an oral presentation discuss steady, quasi-steady and unsteady boundary layer effects
on unsteady airloads on oscillating airfoils. The discussion is illustrated by experimental and theoreti-
cal data for wing sections with oscillating flap. The notes reflect results of current investigations at
NLR to obtain insight in boundary layer effects, and to include these effects in prediction methods for
unsteady airloads.

LIST OF SYMBOLS

oo}

< chord length ratio of boundary layer effect vector to
¢ lift coefficient inviscid l1ift vector (Figs B,%)

. .- P . R 3 n s
¢ hinge moment coefficient {positive tail up) ¢ Reynolds number based on chord
n U, free-stream velocity
Cp pressure coefficient Xy transition point location
k = g%— reduced frequency ao mean.angle of attack
o
§ 1
e o mean flap angle
1 . . i
kc =5 1 unsteady 1ift coefficient due to 61 flap amplitude
1 flap deflection §*  boundary layer displacement thickness
M, free-stream Mach number Cp
c. AC_ = E—l unsteady pressure coefficient
2 M . .. P 1
n = = — unsteady hinge moment coefficient .
¢ nd . index
1 due to flap deflection . .
1 first harmonic component of response to

sinusoidal motion

1 INTRODU™TION

The background for the interest in boundary layer effects on unsteady airloads at NLR is the predic-
tion of operational limits with respect to flutter, buffet and buzz. Typical flow regicns of interest
(subsonic and transonic attached flow, separated flow) encountered by an airplane within its 01~ bound-
aries are shown in figure 1. The basic aerodynamic problem studied at these flow conditions, is the deter-
mination of unsteady airloads on wing sections and control surfaces in harmonic motion (e.g. jdemant).

Various problems hamper the prediction of unsteady airlcads for free-flight condition=z:
- wind tunnel data are affected by wall interference and scale effects (in particular of Hoynol
- inviscid subsonic and transoric flow theories breakdown due to the neglect of viscous »ffec
separated flows, as well as in attached flows with strong nressure gradients {(».¢. gt transonic 0w
conditions, control surface deflections).

In the latter case, for instance, the applicability of linear theory break:. lown because “he errors
due to the neglect of both thickness and boundary layer effects de not cancel ench cther, (ike nomany | oW
subsonic flow appl.cations. For a better theoretical prediction of unstendy air.oais, toth «rfeorn
be taken into account.

Tu these notes first some general information on boundary layer offorto
thizkness and boundary layer on unsteady airloads on Lwo airfoil
lating flap are illustrated by experimental and theoretical resalts

caupied steady inviscid flow-boundary layer computations [using the Tomet b dr r Sy
are soown of a coupled unsteady Inviseid transonic flow-steady toundary Layer Lo
LTRAN. = NLE aoded and Green's jag—ontrainment method¥',

HOUNTANY LATER EFRECTS OIN CTEADY FIOW

tmportant. aspeets of o Lonpdary inyer of e ns alirCaiga ooty VD w o b R R ]

e Beoamenry
AR o)

EER CA

-
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3 UNSTEADY BOUNDARY LAYER EFFECTS
3.1 General remarks

The unsteady flow is characterized by the change of all flow quantities with time relative to the
mean steady state (Fig. 2). The boundary layer affects the unsteady airloads both by its mean steady state
and its unsteady change.

- The mean steady state of the boundary layer affects the mean steady state of the entire flow, depending
on geometry, incidence ag,, Mach number Ms, Reynolds number Re. The unsteady airloads depend on this mean
steady state, in particular at transonic flow conditions.

- The unsteady change of the boundary layer (in particular of the displacement thickness) influences the
effective motion of the airfoil. This effect depends on the mean steady state of the flow and (for
harmonic motions) on the vibration mode, amplitude and reduced frequency of the motion.

Besides motion-dependent effects, the boundary layer may cause unsteady effects independent of motion (e.g.

turbulence, unsteady shock-induced separation), which usually interfere with motion-generated effects. In

the following only motion-dependent effects are discussed.

In the case of unsteady flow due to & harmonic motion, the boundary layer effect on the unsteady air-
loads will consist of:
- influence on magnitude and phase angle of the first harmonic components (both in separated and attached
flow),
- non-linear effects as (influence on) higher harmonic components and dependence of airloads on amplitude
(in particular in separated flows).
These effects are important for aercelastic behaviour (e.g. for flutter boundaries, limit cycle motions
etc.).

In the following, some of the boundary layer effects discussed are analysed by theoretical and
experimental results for the NACA64AOO6 mirfoil (in subsonic and transonic attached flow) and the NLR 7301
airfoil (in transonic separated flow) with oscillating flap. The analysis will be split into:

- quasi-steady analysis of steady flow data to determine the effect of the boundary layer for ihe given
vibration mode and amplitude (1° flap deflection) at infinity slow motion,

- subsequently, analysis of unsteady airloads to determine the effect of reduced frequency on the boundary
layer and thickness effects.

It should be noted that the experimental data are affected by wall interference effects. However, in
view of the dominating effect of the boundary layer in quasi-steady cases considered in the next part, it
is believed that such a comparison gives at least & qualitatively correct picture of the effect of the
boundary layer.

3.0 Discussion of examples for attached flow

The present results for the NACA6LAQD6 airfoil concern a subsonic case (M_ = 72.8) and a transonic cuse
with shock wave (M_ = 0.85), both for ~ero mean incidence and flap angle {a, = §, = ). The data shown are:
- experimental data from Tijdeman! (T.e = 2x108, transition fixed at 10 % chord)

- in the quasi-steady analysis, theoretical results from the BGKJ program (quasi-conservative full-potential
theory) with and without boundary layer computation

- in the unsteady analysis, theoretical results from the LTRAN? - NLR code (improved low-frequency trans.nic
small perturbation theory)

-~ results of linear theory.

Steady and quasi-steady analysis

Figure 3a shows the effret of the boundary layer on the steady pressure distribution in the Lrans anL e
KT

case at one degree tiap deflection. Figure 36 shows the quesi-steady pressure distritution (A0, = -+
derived from figure 3a. The boundary layer leads to a more upstream location of the shock w vv"wf§w~1 B
its mean steady state) and to a lower AC_ level (effect of both its mean steady state and its quasi-u'oawly
change). Globally, the boundary layer rﬁgucws the effect of thickness, and dominates the wall-interfere:
eftects, This is also reflected in the overall 1ift and moment coefficients [ASARD notation’ shown in
tat.le 1. Note the stronger effects of thickness and Loundary layer [n the transonic case.

Figure 4 shows the distributions of displacement thickness &% on upper and lower side at one fepre.

flap deflection, for M_ = 9.8 and M_ = 2.85. The differcnce A8*, corresponding to the quasi-stealy chang:
at one degree amplitude, Jdecambers the airfoil like a "viscous flap" onposite to the geometric Tlay m* o,
This effect ia propably due to the strong quasi-steady pressure peaks at the Clap leading edpe and, i the
transonic case, at the shock wave (Fig., 4},

nntendy analysis
Figure % shows experimental and theorstical mean steady pressure distribations £or fhe transouic case

The results of inviscid transonie theory (UTHANS - NLR) show a slight ly stronger and more downstream shook
wave, [(partly} due to the neglect of the bhoundary layer,

Figures + oand 7 show the offeects of thickness "difference betweern linear and fransonic theory’ and
bonndary layer (main part o ditfference betweon transonic theory and experiment l oo the unsteady 1% and
niuge moment. confficionts, Yath for the nutaonic and the transonic case, Inothe VifY coef s et e,

Fig, #) the offect o f the boundary Inyer is strone, it depends on frogquency and Mach number ani oo
Pposite the bhickness o0fecs 0 The hinge moments in figare 7 oshow a4 Tferent wffest of the boundary ayer

mainly redacing the magnitide, and ondy slightly dependent on M_oand k.




e

The different houndary layer effects on Lif't and hi:

- the effect on the hinge moment is dominated by un approximatoiy jawi-. R . .

- the effect on the 1ift is a combination of the above "viscous fiap” orfest wat te anctenty off

the interaction of the boundary layer with the uns'raldy pressares apa'ream o fte Slap Lin part feulnr

at the shock wave in transonic flow, possibly a "viscous ram ™ offeer ires genernlly s

large phase lags, depending on k, and so introduce phase lags and freyiency fependence in the bounds
layer effect on the overall unsteady airloads.

", C s Tour e

The boundary layer effect can be illustrated cven more ciecarly ty o nsidering a vector ples of the
unsteady airloads, for example in figure 8 for the lirt in the trarsonic - use, The

difference vector of
the experimental and theoretical results, which mainly represents the offect of the toundary layer, show.-
a strong decrease in megnitude and an increasing phase lay, with i reas value of k., Iu figur- + thi
effect is shown both for the transonic an! the subsonic case | Pitferent way, by the ratl
of the difference vector to the inviscid 1ift vector (for the trans voderived Prom fCheare
stronger boundary layer effect in the transonic case is lareely due Lo the s ok owave,

Prediction methods

Aualogously to steady flow, a feasitle predictiecn ot the above ¢ RN oot
flow can te expected from coupled unsteady inviscid flow-toundary layer R v
Grenon®). In applications of this procedure for transoui- flows with (RN ra
effect at the shock wave (as modelled and wpplied suceestully by Younids " !

can be accounted for properly.

At NLR, as a first step towards such a procedure the DTRAN. - N1 . ! G
entrainment method of Green for a stealdy turbtulent toundary layer. Figare © crosws spe oo, ¢ L
an unsteady pressure distribution for the NACACUSADD alrfoil at trun .
with oscillating flap (8,= 17, kx = 3.0k}, Accounting for the toundary inyer i

I T O S . 1=

.
leads to a considerably better agreement with the experimental ata,
Remarks on further investigations

In order to support the development of prediction methods, further cxneriment ol wot toe ¢ oy

tigations are necessary on:

- modeling of local unsteady strong interaction regions and the unsteady wak.

- non-linearity of the boundary layer offeot

- unsteadiness of the boundary layer response to unsteady pressure distrita® fone, © woopeig 1i
of applicability of quasi-steady boundary layer prediction methods.

Besides the above investigations on btoundary layer effects, also further stuly 0 wa. ..t rfor o e

is necessary to facilitate the interpretation of theory-experiment comparisons.

The above remarks also apply to strongly separated flows, where the ingreiients oo o) i
methods are hardly available. An example of unsteady airloads in separated frans i Cow 0 oo d
the next chapter.

3.3 Discussion of example for separated transonie flow

The present results for the NLR 7307 airfoil coneern  a transonic cmoe = 00 1= - = "
a separated tounda layer Jdownstream of a shock wave on the upper surface. The experirent ol ey
Y ! i

related Lo Re = . x10% with transition fixed at © % chord. Figure 15 shews the mes, ot eyt
bution, Iu figure 10, the quasirsteady pressure distribution on the neper deoat e S AN
tinn shows the dominating effect of the flow separation, by the strong oaling on “le rear sart 0 e o r
fail and by the negative pressure peak at the shock wave (indieating an upatrenm m o © v v e g
Aownward fiap deflection).

Flpures 12 and U show the effects of thickness and boundary layer oo (e . Seoen .
moment. coefficients, The jnviseld transonic theory results weres computed for o a comparad oo 1S L
tower angle of attack, haviog the same shock wave lTocntinn, [n thin way the offoes 8 0w ooy -
Field Tthe thickness offect) on the unsteady airdoads (o neeountof for anproximat oly (oo rre o

seprrated boutidary layer appears o canse 8 strong ovariat ton of fhe unsteady niricngc wl i Uee paos 0
inomagn tade At phase angie. The present bebinviour of the Tt s oquite
SF b NATAC WA qirfoll caciiiating in ritebh, reperted by Cavie "

Ly v e ot g

Phe penks Do omagnitude and ot rony ynriat o
Mo ane bhe v i :

sl Tnternoct o,
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TABLE 1
Quasi-steady airloads on NACAGLAOO6 airfoil with oscillating flap

Thin-airfoil Theory of Ref. 2 Experiment
theory Incl. thickness Incl. thickness Inct. tunne!- Uncorrected
+ bound. layer [ wall correction
L) k m k m k m k m k m
e c c d c 4 c [ C c 4
0.8 2.03 0.69 2,44 0.80 1.88 0.65 1,66 0.61 1.32 0.61
0.85 2.31 0.79 3.61 1.29 1,94 0.60 1.82 0.75 .4 0.75
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PRISE BN COMPTE D'FFFETS DEF COUCHE TIMITE INSTATIONNAIRE
DANS UN CALCUL BIDIMENSIONNEL TRANSSONIQUY )

par
ALCouston, 1 Angehnt, J.C. le Balleur, P.Girodroux-Lavigne

Otfiee National D' tudes et Recherches Aerospatiales tONFRA)
20 Ave de fa Division Leclere
92320 Chatillon (France)

tlaice visqueux des €coulements instationnaires sur profils d'ailes est recher-
AN teveloppées 4 1TONERA, d'une part pour le fluide parfait en théoric des petites
. - vigquescdTautre part pour le calcul et le couplage des couches visqueuses en régime
i t P plag q 2

¢ - Iution non-visqueuse, calculé par une méthode intégrale, détermine la vitesse
Cartait sur les parois. Les deux probleémes, résolus par des méthodes implicites, sont
CavdUtort”, sarantie de validité du modele visqueux et de régularité des solutions
coremert, e couplage nta toutefois été traité numériquement que sur des configurations
Clatoves aotamnent aux profils avec gouverne.

INTRODUCTION OF UNSTEADY BOUNDARY LAYER EFFECTS

D Two=Dgis Borial TRANSONTC CALCUT ATTON

SUMMARY

A computation of viscous unsteady tl.ws over wing profiles is researched using two methods
vlaborated at ONERA, on one hand for the inviscid flow, within a transonic small disturbance approach,

on the ottier hand for the calculation and coupling of viscous layer, within a strong interaction analysis.

The difference between the viscous and inviscid solutions, caleulated by an integral method,
determines the inviscid normal velocity at the wall. The two problems, solved by implicit methods, are
linked thr ugh a "strong” coupling, guarantee of validity for the viscous model and of repularity for
separated flows solutions. For the time breing, the coupling has been applied numerically only to non-
separated flows confligurations, namely for profiles with trailing cdge flap.
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corde

géométrie du profil -~ h (X,t)

fréquence réduite - k =We/ U

temps

coordonnées du repére relatif

coefficient de frottement

coefficient de portance

coefficient de moment au quart avant

(moment positif entralne Je hord de fuite vers le bas)
coefficlient de moment de charniére

(moment positif entraine le hord de fuite vers le bas)
coefficlent de pression instationnaire

coefficient de pression stationnaire

nombre de Mach amont

nombre de Reynolds

coordonnées du repére absolu

paramétre de forme

épaisseur de couche limite

braquagce de la gouverne

(positif si le bord de fuite est vers le bas)
épaisseur de déplacement de couche limite

épaisseur de quantité de mouvement

déflection induite par la couche limite : ® (X,v)
masse volumique

phase ou potentiel de perturbation

pulsation

irculation

INEICES

stationnaire ou Incompressible

moyen ou stationnaire

indice temporel

relatif au braquage de pouverne

relatif au premier harmonique

critique ou relatif a 1'épaissenr de déplacement
relatif 3 1'écoulement visqueux

variable intermédiaire
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I. INTRODUCTION

Les méthodes de calcul linfaires sont le support essentiel de la prédiction des &coulement:
. instaticnnaires ponr les adérodélasticiens., Toutefols, ces méthodes ne sont pas applicables dans le
domaine transsonique ou 1'on obscrve d'important s non-linéarités introduites par la présence d'ondes
de choc. Ces derni¢res années, diverses méthodes ont ét¢ proposées pour calculer les Ecoulements
tridimensionnels de fluide parfait cn trunssonigue. .Ces méthodes de résolution s'appuient, soit sur
i 1'équation des petites perturbations transsonigues [1,2,3,4], soit sur les &quations d'Euler [5,06].
v Ves dernicres nécessitent des temps de calcul importants ce qui limite fortement leurs possibilitis

d'application bien qu'en principe elles soient plus rigoureuses.

!

ﬁ Au vu  de confrontations avec l'expérience, on remarque que 1'hypothése qui consiste a uduliger

! les effets de la viscosité pour ne considérer que le fluide parfait introduit, particuliérement .n
régime transsonique, des erreurs importantes. Alnsi la position de l'onde de choc ¢t son intensité
sont étroitement li&es aux caractéristigues de la couche limite. Un calcul en fluide visqueux des
écoulements instationnaires doit dés lors @tre recherché.

Une premiére approche consiste a adjoindre au calcul en fluide parfait un calcul de couche lirity
et 3 assurcr entre eux un couplage partiel, qualifié de couplage faible,c'est-a~-dire ne respectant ;o
totalement la réciprocité des influences visqueuses et non-visqueuses. Cette approche, cohdrente aves
la théoriv de la couche limite classique et les régimes de faible interaction visqueuse, conduit i e
simplification numérique majeure en raison du découplage partiel des deux calculs. En instationnairce,
des améliorations notables ont déja été apportées de cette fagon [7] aux calols en fluide parfait

eme d'inpor-

Néanmoins, en stationnaire ou en instationnaire, ce type d'approche contient en lui
tantes limitatijons, qui ont été détaillées par ailleurs [8,9,10,11,12,13]. Rappelons ici sculement

(i) la restitution imparfaite et parfois inconsistante des domaines d'influence du fluide vis-
queux inhérente au couplage faible, notamment pour les intéractions visqueuses en supersonigue ou
transsonique aux pieds des ondes de choc,ainsi que pour les problémes de décollement ou de bord
de fufte.

i (ii) la présence possible de singularités icréalistes dans les solutions de -ouche limite, géné-
ralement en liaison avec 1'apparition de courants de retour. Bien que de natures différentes en
stationnaire et en instationnaire, ces singularités sont artificielles, n'indiquent pas unc limite de

B validité des approximations de couche mince, méme au niveau le plus restrictif des équations de Frandyl,

mais traduisent avant tout la nécessité d'un calcul de forte intéraction visqueuse.

Ces singularités peuvent notamment etre éliminées 19,12) par des méthodes de résolution inverses, ot

encure par un couplage rigoureux au fluide parfait, qualific de couplage fort.

les limitation précédentes imposant le développement de calculs de forte interaction visqueuse,
deux grandes voies d'analyse sont possibles [8), La premiére consiste en une approche globale, résol-
vant un systéme d'équations unique valable dans tout le champ d'écoulement (équations de Navier-Stokes
completes ou tronquées). Nous nous intéressons ici a la seconde possibilité, 1'approche par couplage
fort, dans laquelle un calaul en fluide parfait peut €tre maintenu, grace & la résolution séparée mais
coupl¢e d'un probléme visqueux complémentaire, qui généralise le concept de couche limite, et qui dé-
termine en pratique les conditions aux limites du fluide parfait.

Nous considérons en wtre ici un couplage fort dans lequel des approximations de type couche
mince, attachées ou décoll s, peuvent Stre valablement invoquies pour le probléme visqueux. A <
niveau d'approximation, le alleur a montr¢ [8,9,11] qu'une formulation déficitaire pour recomposer la
solntion visqueuse réelle, & partir des deux calculs couplés visqueux ot non-visqueux constitutifs, per-
met ron seulement d'éviter les limitations des méthodes de couplage faible, mais cncore celles des md
thodes classiques de couplage fort, dans lesquelles sont mises en jeu des Gquations de trandt] | ainsi
qu'un couplage par raccordement sur une frontiére externe ou encore par addition d'une Cpaisscur de
déplactment. La formulation déficitaire dn couplage adoptiée ici suppose en pratique le recouvrement
des domaines de csleuls visque ¢t non-visqueux, le r8le do caleul visqueux se bornant & évaluer,
dans les régions ¢ 0 nebkes limdtes, 1'deart qui existe entre la solution de fluide parfait calenlceco,

ot la solution isquen: réclle, Cette analvse 18,11 apporte d'une part la commodite nmér e Gl
doeaind e ealenl Ao b i partadt S lappuvant sur les parois, ot surtont dlantre part la prisc onocom-
pres e IS T Yo cradients de pression normand internes aux couches visquenses,

. : * . vttt Ve eeme e Tisdter Do ocofit des calonls a conduit aoadepter nne

. : [ o o i, Dees Tore, moyennant an chodx appropric des dquations do
et . : Sticitadre ae o cenduit pas o des Cquations intcéurales visgueuses
acc e faihle,y mads exd pat centre la o rdalisation anser ique

ogque Ta defindition e cwethede intdprale caloglant
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Lahit et o Loy Ldae turt, Ces caleuls s'appuient dfune part sur la méthode impl. ite des directions
aitertevs 1os vant ['eguation du potentiel des petites perturbations transsoniques €' instatjonnaires,
develo, oo pur woes BN, ANGELIND, MULAK {1,2]). 1ls s'appuient d'autre part sur une ncthode intégrale im-
plicite do valonl des conches limites et sillages turbulents, alnsi que sur des techniques de couploye,

! developpees pat e sALLEUR et CIRUDROUX-LAVIGNE [8,9,12,13]. Prusentement, bien que le calcul visqueux
instuticangdite pulsse &tre poursuivi dans les zones a courants de retour grace a4 une résolution de Lype
inverse [1Z4], v couplage fort n'a ¢té réalisé numériquement que sur des configurations non-décollies,
ainsi qu'avec un traltement simplific du sillage visqueux. lLes exemples d'application sont relatifs &

des deoulements transitolres, ainsi qu'a des profils avec gouvernes oscillantes, en rdgimes sulcritiques
wu supercritiques.

[1. FLUIDE PARFALY

- gt o des petlbes puerturaatlons transsoills

Les ¢quations d'Euler instationnaires qui régissent 1l'écoulement de fluide parfait se ramé-
nent ua 1Yéquation compléte du potentiel des vitesses si 1'écoulement est iscntropique et irrofationnel.
'nypothese do petites perturbations transsoniques et instationnaires permet de simplifier encore le
;tebléme et fournit apres normalisation 1'équation (1)

2 2 2 2
EudP L gumi 29 :L[(,vu;)w S A () ]+ 2’9 0
ot Ix It ox dx 2 ‘Jx v
WV ed
2 2 2
A:[(Yn)uw *3(1-'4@)] me,
Lette equation représente la conservation de la masse approchée au sens des petites perturbations [!].

Son caractere non-linéaire autorise, au sens des solutions faibles, le calcul d'ondes de choc, ce qui est
en contradiction avec l'hypothése d'écoulement isentropique irrotationnel. On doit donc se¢ liriter s
écoulements transsoniques avec chocs de faible intensité si 1'on recherche une bonne approsicati = ..
équations d'Fuler.

Conditions aux limites sur le profil

L'équation (1) est associée i des conditions aux limites. Sur le profil,l. : .
nelle de la condition aux limites attachée aux hypotheéses de petites perturbations »'cirit
(002 dn W

—_— v —

DY fg1 Ox R
ob h (x .t ) est la fouctiop Jdécrivant la géométrie du profil. On soulignera qu'au voisina.
d'attaque des profils une condition plus complexe est utilisée afind'amdliorer le compurten.:
lution (1],

Yest 4 ce niveau, comme nous le justificrons plus loin, qu'intervient lo coupia.
parfait-couche limite. le fluide parfait est prolongd jusqu'a la paroi et la couche limite int.ir-:

comne un apport de masse au travers de celle-ci. $i 1'on considére que l'équationt]) ..t ',
Nuite approchds au sens Jes petites perturbations il est clair que 99/ dy FOprasente sy
var o untte de Donguear s o dedit done ajouter o (Za) e débit d'injection de la couche limato,
troeinnt b omaniere ampnfarre par & (x t) on aura

(D‘P)_ 3L ®(x 1), ko U

ov Fi‘ ox pX}

(’est au travers de cette condition aux limites (2b) que s'effectuera le couplaye fort ent:.

T nene Timite et le fluide parfait,

Ctadtement daosillape

bDans toute solutivn du probléme a potentiel des vitesses on doit Jdéfinir Je - aut Jde patentfv
™ (ou circulation) au travers d¢'un sillage qui se développe a 17aval du bord de faite . Do sant do
tentivl doit traduire la contfnuite du coefficient de pression Cp. Dans le cadre des petites porturba

transsoniques [1] on a mo tre que

C
P + Qf_; inL_ ~o .
2 Jx dt
on a donc
k 2[:_ + QI:. -0 (N
dt ox

Cette équation hyperbolique traduit le transport de la circulation de 'ament vers 1laval L
long du sillage, nous la consldererons comme valable dans le cadre des approximations visqueuscs actuel-
les. Par contre on doit tenir compte du deébat d'injection (ou de fuite) 1id au sillage visgueus dTune

>
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Schiema numerigue

La resolution de 'equation 11 ent obtenue par e cxtenst o de La methode dmplocite dos
directions alterndes (ALD L) déerite par AP LSl L schema nuraer tque vl g Otd ddtai by en
[T, it permet de décrire 'dvolution te
travaillant simultandment sur deux vartables @ Y0t )0 e potentiel de perturbation ot Z(0) = & %%)
la dérivie temporelle de ce potenticl.

iporcile din o phenomine d'un temps 08 g un temps oo+ 1YB en

Lo domaine de caleul gqui permet la discretisation spatiale est cartésicn. Les conditions aus

timites {pour le profil et le stllage) sont dorites sur une coupure parcllole a la vitesse o inting.

e

e de caleul qui oen résulte est reprosenté de mani@re condensée on figure 1. La parti

on pointillée concerne la participation du couplage visqueux qul sera décrite ultéricurement. o notera
Cen taisant abstraction du couplage visqueonx) gque le fluide parfait se décompose schématiquement en trots
"pas" priucipaux

- une poselntios tmplicite sur la variable P peur toutes les lignes de maillage ¥ = Cste Ll
pas incorpare le traitement conservatif du terme non-liveaire responsable des discontinuitds de vitesso,
ce ostade les conditions aux limites au niveasu Ju profil sont connues (elles n'intervic ment qu'au te
nAt ).

s

. . . . ne . . .
~ une résolution implicite sur la variable ¥ cnodireetion ¥ (pour toutes les liynes Jde
maillage XzCste de Tamont vers Tlaval). o pas qul se comporte comme un correcteur prend on

o . fo¢ \n*! . . . P ~
compte la condition au limite (—— . pour corriger la variable intermédiaire 9
DY Jprobil

- une réactualisation de la variable Z zk= b sessaire au caleul de 'iteration saivant:
Le caleul se fatt point par point et ne adcessite pas de résolution matricielle.

Considérons maintenant le probléme de U'itdration qui cagendre le couplage fort entre Jos doux
caleuls. Comme on peut le voir (fig.1), il n'est pas nécessaire d'itérer sur Plensemble du flurde partait
1

. . . . . . . B . - . n.
mats sceulement sur la résolution implicite en direction Y. En etfet, la variable de covplage st & . ': i

noet
or, elle n'intervient qu'au niveau de la condition aux limites (g‘f ) dEfint ¢ par 'dquation (2a)
Lors du pas en X svul ®" va intervenir ¢t ¢'est une donnde du pas de temps pricident. Gotte
remargine pour importante quelle soit, car clle réduit notablement les temps de caleul, n'a aucun caractin
de géndralitd puisqu'elle découle seulement de 1'utilisation de la technique des directions alterndes
(A.D.1.) pour le calcul du {luide parfait.

RIS

SUTTN T cerra

Cons e ienerens i, pat oun repaie enoenrvilicne, Gasnnt o ba oo cou Bien o b T
sovenoe duosiblaces ot dans oo repdre L,y les de L vite: P, P La pression ot Lo
columigue sconr 1 iconlement non visguens. Soit uy, s |3 Leurs homo'oyies v Ta - clut o

de thaide visquens,

Les analyses de couplage fort supposent habituellement que les dquations dv floide partart

~ont o résoluen pour v 80x,t), § Stant 1'ipaissenr phvsique deola couche Tieite ot gque Tes oquats
Prandtl sont rdsolues pour y < §ix,t), de sorte que l'approximation sur la pression s'v derit
Plx, y,t) = Pix,t) = p(x, §,t). Cotte tormulation, qui ignore totalement les gradients de pression

normaux internes aux couches visqueuses, conduit de surcroit, en dépit du couplage fort, 3 des insaftisan-
cos majeures dans la modélisation du fluide visqueux en supersonique ou transsonique, gqualifices d
compurtements supercritiques des couches limites.

Nons adoptons, icit, la formutation donndée par Le Balleur [8,9], qui met a profit le prolongement
du calcul en fluide parfrot A 1'iatérieus de la couche visqueuss pour éliminer les deux limitations pro-
codentes, et notamment les solutions faibles discontinues associves aux couches supereritiques. Cette

formulation élimine, .1 “tre, les golutions faibles indésivables des méthode intéprales inverses de

couche limite instati. 1121, Elle élimine, »ntin, toute importance majeure au cheix, relativement
arbitraire, de la froa: xterne des couchies visqueuses yz &(x.t) .

quations intoprales

La diftérence entre les équations des solutions visquorses et non-visqueuses est o intéprce selon

v, avec 'hypothise d'un raccordement des solutions lorsque  , —s o0 o Lew approximat jons de couche

mince portsat d'une part sur 1'éVimination des termes visqueux autres quo ce aiodes dguations de Prandtl, )
ot d'autre part sur 'hypothdse que le champ de pression visqueus Plx oy t) . bidimensaionnel en ,
espace, s identifie cn premidre approximation an champ de pression non visqueux plx v t) .on obtient l

alers [8, 11, %]
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Continuité

o [ow2® 8 20, s*opu], [ae , 8%e 2., e 20 |5, 3,
u ot P ot Tpe |t ox PR TR R P S
Entrainement
L [28-8) 8.5 dp] [as-8%, 3-8%* 3.7 _
| 3T T T | T 9 pu o* | °
avec

6.(1 ,t)[ pu] (e,0.t) = J

[6‘(:,!) +9(-,l)][pu1](x'o") = fu
6?(x,l). u(x,0,t) = J ‘E](x,y-ﬂ dy

[
(
[
o x.t) o (x,0,t) = r["lﬁ'l](,,,,n)"'
[e-
[

pu_p;](eru!) dy

-;}(iryut)dy

8 (x .t ) p {x,0,1) - Jj”

E{x,t) :E’Jg(fﬂég:]‘hé
wi{x,t) ) %éf

Cylx,t) = [ ‘:;i } {x,0,t)
Ce{ x,t) :pzuz"-G("o">

Dans ces équatjons intégrales, les grandeurs non-visqueuses p,u,v et leurs dérivées partielles sont re-
levées en (x, 0 ,t ) . Par ailleurs apparalssent des termes liés 2 1'accélération d'entrainement Y, ,
en raison du fait que les équations sont écrites dans le repére x0y , mobile par rapport au repére X 0 Y
du fluide parfait.

La formulation déficitaire [8,11] des équations visqueuses apparait dans la définition des c¢pais-
seurs intégrales, qui prend en compte les variations selon y de ph.%t)ct u(x.y.t) dans la solution de flui-
de parfait, et par voie de conséquence de p(x.y.t) . Les approximations du calcul autres que P{x.y.t)

p(x.y.t) sont ainsi &liminées des équations de continuité et de mouvement. Ces dgnmmamations consis-
tent en une modélisation de relations de fermeture liant les épaisseurs autres que 5% et 0, ainsi que les
termes visqueux CyetE, modélisation issue d'une famille de profils de vitesses “/h représentative des
couches limites attachées ou décollées, en stationnaire comme en instationnaire [49,12]. Dans cette modé-
lisation, les profils R/pbon[ déduits de U/y moyennant 1'hypothése, admissible en ‘coulement turbulent
adiabatique, d'une identité des enthalpies totales visqueuse et non-visqueuse

$1 on suppose par exemple que pfx.0.t) et v(x.0.t) sont donnés par le calcul de fluid2ﬂ¥arfait

potentiel, la condition aux limites vix.0.t) , ainsi que deux épaisseurs visqueuses indépendantes x.t)
et ©(x.t) , sont calculées au moyen des équations intégrales de continuitd, de mouvement et d'une
équation de moment (entralnement ou énergile cinétique). lLe choix de 1'Gquation dg moment, ict de 1'cqua-
tion d'entralnement est relativement indifférent dans 1'hypothése de Prandtl gﬁl: 0. 11 devient par

- 17
contre important [8,11,13] en cas de gradieat normal g_p_ intense.

y

pour un écoulement de fluide parfait potentiel statjopnaire, la continuité de la pression elx 0)

sur la ligne de sillage entralne la continuité de la vitesss uw(x.0) et de la masse volumique p(x 0)
Dans ces conditions, on peut montrer que les ¢quations intégrales du sillage sont formellement fdentiques
aux équations de couche limfte, 3 condition de remplacer v(x.0} par<v{x 0)»> , la discontinuite de

vitesse normale qui traduit dans le fluide parfaft 1'effet de déplacement visqueux,




Les épaisseurs visqueuses mises en jeu sont alors celles définies pour un sillage, par intégration selon
y entre - ® et + o ,Lc terme de frottement Cy disparaft. Les relations de fermeture doivent &8tre issues
de profils %}dc sillage, mais elles sont identiques pour un sillage symétrique ou dissymétrique.

kEn premiére approximation, ces équations «nl aussi été présentement retenues en instat jonnaire
moyennant l'hypothése, convenant aux basses fréquences, que la continuité de la pression p{x.c t)
qui implique toujours la continuité de P(x.0.t) , conduit i une discontinuité de vitesse < u(x.0.t) >
relativement négligeable.

Dans le mode de résolution direct, a p(x.0.t) et u(x.0.t) donnés, les équations visqueuses,
découplées du fluide parfait, forment un systéme hyperbolique, calculable d'amont en aval en 1'absence de
courants de retour, constituant un probléme aux limites en x en présence de courants de retour |9].

Dans le mode de résolution inverse a v/ u(x.0.1) donné, le systéme hyperbolique des équations visqueu-
ses découplées peut par contre &€tre résolu d'amont en aval dans tous les cas [12].

Discretisation numérigue du systime d'équations visqueuses

D'un point de vue pratique, les équations de couche limite sont &crites en choisissant comme
variables de calcul
- l'épaisseur de couche limite &
- le paramétre de forme @ = 6}‘/6
- 1'angle d'inclinaison du vecteur vitesse par rapport a la paroi ®

Dans ces conditions le systéme visqueux peut s'écrire sous la forme

28 26 ]
ot Ox 0P op
1 2a o soa|  — ; 1 b, ot E Ox
Tcij 63—{ + Aij é‘a_,' - Bi o+ m im Ju + Sim Su
® ® ot dx
i=1.2.3 j=t, 2.3 mz= 1.2
oti les termes C;j.A{j. B, Dipet €y sont calculés a partir des grandeurs du fluide parfait et des

relations intégrales de fermeture du systéme de couche limite.

La discrétisation s'effectue dans le plan {t.x) en utilisant un schéma implicite en(n+1.i)
du ler ou du 2&me ordre ¢n x , et du ler ordre en temps. Dans le cas du schéma du ler ordre, on écrit
par exemple pour § :

nel nel
57" = 6?.}6‘(99_) = 8" . A (gg)
Ox /i t/
d'ol
o)7L 8 (28, 811-8]
t/i T At \ Dk At

Pour le schéma du 2éme ordre, nous avons

n n+ . ntt n nsd
SRS (L AL B T CON

' x

d'on

ALt e
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On obtient des formules identiques pour d9Q& 3t . Le schéma du ler ordre en x est préféré dans les
zones 3 maillage grossier, pour sa plus grande stabilité. Si nous rejetons alors au 22me membre tous
v .
les termes connus aux noeuds (net.i-1) et (n.i) , le systeme local s'écrit au noeud

(ne1.i) sous la forme condensée

2
Ix

®l_Ja -
A _—
nsa’ .

®

—

La résolution, en chaque noeud du maillage de ce systéme permet, aprés intégration locale des

Lo - . . . . 1 L
dérivées 2% et gﬁ! , de connaitre les distributions 6(: ), a (l) a 1'instant t"° ainsl que
~

vx . x . 1 . .
l'évaluation visqueuse ® (x) al'instant t"' . Une itération par une méthode de Newton résout

de fagon implicite les termes non-linéaires contenus dans A?j et 8

Méthode numérique en couplage (forte interaction)

Le couplage s'effectue, 3 un pas de temps fixé, de fagon itérative. Un calcul de fluide parfait
fournit & 1l'instant t" 1la distribution u(x,t") et p{x,t") 3 la paroi, le calcul itératif
s'effectuant sur la déflection @ (x ,t") selon le schéma de la figure 2

I1 faut cepenaant noter qu'il ne suffit pas en général d'itérer pour atteindre la convergence,
1l'erreur -® en chaque point x pouvant trés bien osciller sans jamais converger, et méme tendre vers
1'infini. Le comportement du calcul itératif couplé dépend 2 la fois des caractéristiques de l'écoulement
calculé, ainsi que des pas de temps et d'espace At etDx utilisés dans la méthode numérique. La figure 3
nous montre que, méme pour une plaque plane sans incidence, un calcul convergent peut diverger si on aug-
mente le pas de temps ou si l'on diminue le pas d'espace. La résolution du couplage fort par une simple
itération de point fixe nécessite donc pour le moins d'introduire une sous relaxation afin d'assurer la
stabilité du schéma itératif.

Cette constatation est en tout point analogue au probléme du couplage itératif en stationnaire.
Pour l'instant, il n'a pas encore été possible de définir une sous relaxation optimale, automatique, com-
me en stationnaire, et le coefficient de sous relaxation est estimé par tdtonnements.

IV . RESULTATS NUMERIQUES
Cas stationnaires
NACA 644006 - Moo = 0.50 &m = 2°

La figure 4 présente pour un cas stationnaire et subcritique le saut de pression normalisé pour un
braquage moyen de la gouverne Om = 2°. On compare ici les résultats obtenus avec et sans couplage
visqueux a un calcul de plaque plane. A 1'amont de la charniére les effets 1iés A 1'épaisseur du profil
se¢ traduisent par un accruissement de la portance, ces effets sont partiellement compensés par les effets
visqueux. Par contre sur la gouverne les effets d'épalsseur sont faibles alors que les effets visqueux
introduisent une sensible diminution de la portance. On retrouve cet abattement en considérant le moment
de charnicre qul diminue d'environ 20 7 par effet visqueux. Cette dernigre remarque ainsi que le compor-

tement dn B kpau bord de tuite correspond qualitativement aux résultats expérimentaux obtenus par
S beman [14,15]. Toutefois une comparaison directe & ces essals ne nous semble pas si nificative
it Lo wftet s de parots sont importants {(la hauteur de veine dans la soufflerie n'est que denviron

Yty T [N
a4 1t soulixner que ce calcul ne tient pas compte de 1'évolution visqueuse dans le sillage et
Gt e Tesuatals ont dté obtenus avec un maillage de 4000 points dont 110 sur le profil. Le temps de
oo Coo aadre et gendérer 4 partir du transiteoire le champ de pression stationnaire ¢quivaut dans ¢
S oot o pour le calcul couplé. Le méme champ stationnaire en {lulde parfait ne demande

PPN oo Dbt 76, I'ne sensible amélioration des temps de calcul est concevable en recherchant
se ptataata o oan niveau du couplage par une approche similaire 4 celle présentée en réf [10]. A 1'heure
4t iie aaoase tentat ive d'optimisation n'a été faite pour diminuer les temps de calcul, 1'intérét pre-
Gier le cotte tade dtant de démontrer ce que 1'on peut attendre d'un calcul avec couplage fort.
N Ap= 0" Sm= 0"

fes tigures O et 6 permettent de comparer les calculs visqueux et non-visqueux, ainsi que les
enuais eftectucs par TLIDEMAN [15). lLa prise en compte de la couche limite entralne un meilleur positi-
tfonnement du hoe, ainsi qulune dimfnution de son intensité due, 4 la fois 4 une baisse du niveau de Kp
ot : G e ot e b nvean aval
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Les deux figures ne se distinguent que par le maillage utilisé sur le profil, 60 points pour la
figure 3, 110 points pour la filgure 6. Un raffinement du maillage n'introduit pas de changements notables
sur les résultats : cette conclusion ne saurait cependant €tre généralise sans expériences numériques
complémentaires dans la mesure ou les paramétres de forme de couche limite sont ici modérés et que les
nm-lindarits visqueuses apparaissant aux voisinages des décollements ne sont donc pas pleinement mises
en jeu., On peut cependant noter, pour le calcul visqueux, un bLon comportement au niveau du choc, celui-
ci se rapprochant des points expérimentaux ; par contre, on observe des valeurs de Kp 1ég@rement supéricu-
res juste en amont du choc, aussi bien pour le calcul couplé que pour le calcul fluide parfait.

L'influcnce de la prise en compte du sillage dans le calcul couplé est mise e¢n évidence sur la
figure 7, et se caractdirise principalement par un recul de la position du choc, les Kp apris choc av voi-
sinage du  bord de fuite remontant au niveau des points expérimentaux.

11 ne faut pas ici accorder une trop grande importance a la comparaison des calculs, effectués en
atmosphére illimitée, avec les résultats expérimentaux obtenus en soufflerie, avec des parvis poreuses
situées a 3 cordes du profil. Les effets de parois qui sont ici négligés dans les calculs, cxpliquent pro-
bablement le positionnement trop arriére du choc.

Les distributions sur le profil du frottement €4 , de 1'Cpaisseur de déplacement 5% ot ac 1'épaisscur
de quantité de mouvement®(figure 8) nous montrent, d'une part une variation rapide de cus paramitres au
niveau du choc, et d'autre part que ces distributions dépendent peu du maillage utilisé. Avant de géncra-
liser cette remarque il serait toutefois souhaitable de faire des calculs couplés sur des couches limites
plus fortement destabilisées.

fas instaticnnaires

NACA hAAOUL Moo= 854 - k= .358 - 8 =1

Les figures 9 & 12 présentent les pressions instationnaires mesurées et calculées pour un cas avee
zone supersonique et onde de choc. Les calculs sont comparés aux essais de 1ijdeman [14,15] aux figures
9 et 10 sous la forme du premier harmonique du coefficlent de pression normalisé par 1'amplitude du di-
battement de la gouverne ( ici 8i = 1"). Lci encore la comparaison aux essais est difficile car les
effets de parois sont non-négligeables comme l'ont montré a partir de corrections semivexpérimentales les
calculs de Magnus [16].

un remarquera toutefois que le calcul en fluide parfait, f{igure 9, différe des essais par 1'inten-
sité des Cp instationnaires dans la région traversée par le choc.la prise en compte des phénomines vis-
queux sur le profil diminue sensiblement 1'intensité du pic et de plus le déplace vers 1'amont, figure
10.Ceci s'explique facilement a partir des pressions instantanées présentées en figure 11, kn effet,
tout comme en stationnaire, la présence de la couche limite déplace sensiblement 1'onde de choc ot diminuc
son saut de pression. Toutefois les pressions instationnaires restent trop importantes au droit du chog,
ce qui implique que l'onde de choc est de trop forte intensité. Afin de vérifier si cette différence ne
provient pas du sillage visqueux, celui-ci a été introduit dans le code de calcul avee les hypothises
simplificatrices indiquées plus haut probablement peu restrictives, au moins pour les faibles friquences
réduites. La figure 12 présente la comparaison des calculs visqueux avec et sans prisc en compte du silla-
ge. On remarque que la prise en compte du sillage n'apporte pas une modification importante des pressions
instationnaires aussi bien en module qu'en phase. Tout au plus on note que le choc se déplace vers 'aval.
la zone supersonique est donc plus importante ce qui modifie les phases sur la partie amont du profil et
entralne une légére augmentation des modules au niveau du choc., Co» différences sont attribuables I la
modification du champ stationnaire moyen et ne sont probablement pas une conséquence  de 1'évolution ins-
tationnaire du sillage.

l.e comportement de la phase & proximité du bord de fulte est plus régulicer si 1'on tient compte
du sillage visqueux comme on le présente figure 12. Toutefois cette différence ne peut pas entrainer une
modification importante des coefficients de portance et de moments car les modulvs des pressions insta-
tionnaires sont failbles a proximité du bord de fuite. Les différences qui subsistent entre les ossais de

Tijdeman [14,15]) et Ivcaleal (Fig,10) sont done probablement imputabics aux ofters e poareia, boobon
““r@ Fhﬁuriv—vxp(rivnru passeralt doue fei par Ia prise en compte simmltande  dog parais Caovee dour per-
xrv)r.'l[uvn) et des offers visqueax. Malheurcusement s'i} oest possible, comme e montre Macoe L) g
simules des parois 4 fentes,on doit s'appuver sur des coetticients vEperimentaus , coctbicbents gque iTen
est loin de wattriser en instationnaire,

. la comparaison des coctficients globaux de portance ot de moments cutre L tlutde partair oo L
fluide visqueus permet de faire ressortir Fimportance de 1a viscosit
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NACA 64 A006 g Cmg Cng
Mp = -85
k =.358
& =1° Module Phase Module Phase Module [ Phase
Fluide Partait 3.57 - 42° 1,73 164° J0815 - 157°

Fluide visqueux
sans sillagcb 316 - 40° 1,40 168° L0489 - 156°
Re = 2,49 10

Fluide visqueux
avec sillage 3,23 - 40° 1,45 165° L0570 - 158°
Re = 2,49 10

—d

Ce tableau montre clairement (ce qui recoupe des observations précédentes, ref,l) que sl la pha-
se des coefficients globaux est peu affectée par les effets visqueux les modules sont sensiblement diffo-
rents. Par exemple on observe de 30 a 40 7 de réduction sur le module du moment de charnicre Cng » correc-
tion non négligeable si 1'on envisage une application au contrdle actif généralisé (C,AG, ou C.U VL)

On peut également indiquer que 1'on se trouve ici en présence d'une couche limite relativement peut char-
pée. En effet, les paramétres de forme que 1'on présentera plus loin sont encore assez différents de ceux
d'une couche limite fortement destabilisée, Dans le cas de profils plus chargés, comme les profils super-
critiques, on doit donc s'attendre 2 des effets visqueux sensiblement plus importants, Il n'ust pas cxclu
d'ailleurs que dans des cas plus sévéres (en présence de décollements) les phases colent egalement Lris
affectées par les effets visqueux. pe plus. si le décollement s’&tend au deld du bord de fuite on ne pourra

pas Ignorer les effets visqueux dans le sillage. En effet, le comportement de la zone déeallée 4 1'aval
du profil doit alors jouer un réle tros important dans la déterminat fon du champ des pressions aussi

bien stationnaires qu'instationnaires.

Considérons maintenant plus particulidrement, 1'¢volution dis
parametres de couche limite. Dans les régions ot les effets non-iindaires sont faibles, on constate
que les grandeurs de couche limite varient, en une abscisse donnée, de fagon sinusoidale en fonction
du temps, mais avec, d'une part, un déphasage, fonction de i'abscisse, par rapport au mouvement de gou-
verne et d'autre part, un déphasage entre les grandeurs visqueuses elles-mémes. Ceci est illustré par
la figure 13, o0 nous avons tracé 1'évolution sur une période du paramétre de forme H; ot de 1'¢paisseur
de déplacement &% » au bord de fuite, Par contre, cette méme figure nous fait constater que |'dvolution
de H; et , dans la région oi se déplace le choe, n'est plus sinusoldale. Ceel est probablement une con-
séquence des phénomenes non-linéaires dans cette région comportant notanment IMapparition ¢t da dispari-
tion du choc a 1'abscisse considérde, La comparaison des figures 11 et 13 montre que H et §Taugmentent au
fur ¢t & mesure que le choc se déplace vers lMamont, en se rapprochant du point considére, passent par un
maximum quand le choc atteint ce point, puis décroissent au fur et i mesure que lTe choe s'eloigne vers
1"amont et disparaTt,

Les distri tions Wi {2} 1 dittérents instants sont representees sur o la tipure 14, Une compa-
raison avec les Cp  instantunds (figure 11) met en c¢vidence la varjation rapide de W, au droait odag b
(d'autant plus rapide que ['intensité du choc est éleviée) et une variation beaucoup plus lente ot 1oy
licre en 1'absence de choe (@ t= 180").0n retrouve c¢palement sur ces courbes le deéphasape dépendant e
1"abscisse dans  1'évolution de H;  sur une période du mouvement de pouverne.

CONCLUSTONS

L'objectif de cette étude dtait ' tadicr les pessibilités otfortes vn oy de Vg
Instationnaire par une methode Je couplage fort dans laquelle Te caleul visqueus est realise P
méthode intégrale implicite, et le caleoul du fluide parfait par une methode implicite € de dires Cions -
terndes) pour 1y résolution de fequation des petites perturbations trans<oniques ot pnstat ionmaite .

Les conclusions peavent Stre poosentees sous la torme des remarques suivantes
- le probleme numerique e an respect du couplage fort a pu &ere vesolu par itérations sar dos oai-
culs visqueux ot non-visqueux, o chaque pas de temps, a condition d'introduire ane sous-telandation of a-

bilisatrice, tonection notament do pas de temps ot da pas d'espace, Pour Pinstant auoum cptimisation

de vette relaxation o' vt entreprise, ce qui penalise les temps de ocaloul, penalite qur ne pourra Stre
redutte que par qne analyse thecrgue du couplage au niveaan local,




- Le calbeul couple a permuis Jde gendérer les champs des pressions stationnalres (comme [imite J’un
transitoire) et lnstationnaires sur un protil NACA B5A006 cquipd dlune pouverne oscillante en subsonique
et transsonique.

- L comparaison de ces caleuls avee le tlulde parfait a permis de mettre en dvidence limportanc
des effets visqueux sur le profil et dans le sillage. En régime transsonique la position de onde doe oo
et son intensitd semblent tris sensibles d la prise en compte des effets visqueux.

ol

-

1o

- La prise ¢n compte des effets visqueux va bien dans le sens d'un meilleur accord aveo les essais.

Cette amélioration toute qualitative souligne Lo besoin d'essais exempts d'effet de parois ou pour lo
moins d'essals entre parols pleines qu'il serait done possible de traiter de manicre rigourcuse dans le
caleul,

- La prise en compte des effets  visqueux réduit notablement les modules des pressions instation-
naires dans la region balayée par le choejce qui est en bon accord avec les observations expeérimentales.

- La prise en compte des effets visqueux est tout particulierement sensible sur le module du coct-

ficient Jde charniére bien gue celui=ci dans le cas considére ne soit pas sous Maction directe du choc.
= Dbans lvs cas considerdés on a pu montrer que le caleul coupldé semble peu sensible an maillage.
Des valouls compleémentaires sont toutefols souhaitables pour vérifier si cette conclusion reste valable
G L 'approche du deécollement ou pour des intéractions onde de choc=couche limite plus sdévires,
= les possibilités d'étendre le conplage fort par utilisation d'une méthode inverse ou semi=-inv.

dolvent 8tre ¢tudides afin de pouvolr traiter des dcoulements avece décollements,
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EXPERIMENTAL FLUTTER AT HIGH SUBSONIC SPEEDS AND
ITS THEORETICAL PREDICTION, TAKING INTO ACCOUNT
WING THICKNESS AND REYNOLDS NUMBLEK

. C. Garner
Royal Ajircraft Fstablishrient, Structures Department
Farnborough, Hampshire, GU14 6TD, England

and
B. W. Payne
British Aerospace, Aircraft Group
Weybridge/Bristol Division, Weybridge, England

with
Appendix by J. C. A, Baldock
Royal Aircraft Establishment, Structures Department
"The Reason for the Large Increase in
Critical Flutter Speed with Mach Number"

SUMMARY

Half-rodel flutter test: of a symmetrical high-aspect-ratio wing at strear Mach
numbers M_ between 0.75 and 90 are described. Equivalent air speeds at flutrer,
calculated with aerodynamics from subsonic lifting-surface theory, are in fairly uocd
agreement with the measured values up to M_ = 0.86. 1In the range 0.86 - M - ©.%0 the
measured flutter speed increases rapidly until the flow is stable, contrary to the ire-
dictions with the linear thecretical aerodynamics. However, the use of approxinate
theories compatible with steady and quasi-steady aerodynamics from transonic srall por-

turbation {(TSP) theory lvads te the correct qualitative behaviour of flutter specd. With
inviscid TSP aerodynamics the rapid rise in flutter speed is anticipated by about 0,0< ir
M_ , but allowance for the tcundary layers is shown to halve this discrepancy. The rost
crucial aerodynamic force coefficient is identified and its behaviour and influence are
analysed. Further calculations illustrate the effects of mean incidence and Reynclds
number on flutter speed. Typical chances in the oscillatory aerodynamic load distribu-
tion are discussed.
LIST OF SYMBOLS ‘
A structural inertia matrix
b determinant of scaled matrix B (see Appendix)
B, C aerndynamic damping matrix, aerodynamic stiffness matrix
cin) local chord of wing
c geometric wing chord
€1 S22 scaled elements of matrix € (see Appendix)
Cy, steady lift/(%omuis)
Cp(u) steady pressure coefficient (p - pm)/(gpmui)
Cp Cp + icg ; oscillatory pressure coefficient in Eg. (1)
Cpo mean pressure coefficient Cp(xOJ
E structural stiffness matrix
f frequency of oscillation (Hz)
F ratio in Eq. (3)
G local mean flow parameter in Eq. (6)
K complex quantity in Eq. (4) from linear theory
M stream Mach number
P alr pressure
g column matrix of complex displacements
Q complex aerodynamic force matrix in Egq. (14)
01, 02 force matrices in Eq. (12)
Qij (){_‘| + iuQ;j ; generflized force coefficient in tg. (10)
R Reynolds number U c/v
E ] real part of
s semi-span of wing .
s area ~f wing planform
t t ime
T, T transformation matrix and its transpose
T stagnitinn temperature (¥)

air speed

cquivalent air speed in bg. (16




LIST OF SYMBROLS (concluded})
1 x ordinate in streamwise direction
ac position of aerodynamic centre
ﬁ xL(n) local ordinate of leading edge
l y spanwise distance from centre line; see also the Appendix
z downward vertical displacement
: incidence of wing (radians, unless otherwise stated)
Q9 mean value of 1
Y amplitude of pitching oscillation (radians)
. ¥ ratio of specific heats of air (= 1.4)
’ rq, Fq loadirg functions (see Ref 7)
; ASP Cpi_ Cpu ; steady loading coefficient
N iCp lCé + ixcg ; oscillatory loading coefficient in kqg. (11
7 criti~al damping ratio (%)
o non-dimensional spanwise distance Yy/s
f(n) local displacement ir nose-up pitch about flexural axis ir.udy -
v kinematic viscosity of air
v frequency parameter w3/U_
L non-dimensional chordwise distance 1n Eq. (8)
Eac(n) position of local aerodynamic centre
N air density
Yo standard air density at sea level
o density ratio pm/co
b complex oscillatory velocity potential on wing surface
circular frequency of »sscillation 2-f; proportional guantity in the Appendix
f subscript denoting mean flow at « = g
£ subs~~ipt denoting undisturbed stream
[of subscript denoting unmatched calculation
“ f subscript denoting matched flutter condition
; i subscript denoting force mode
) j subscript denoting mode of oscillation
i : subscript denoting lower surface
) u subscript denoting upper surface
i lin subscript denoting linearized theory
1 INTRODUCTION

The prediction of flutter boundaries in the transonic speed range suffers from
inadequacy of aerodynamic data in several respects. In the first place, the completely
linearized data from subsonic oscillatory lifting-surface or doublet-lattice theory
become increasingly suspect as the onset of supercritical flow is approached. Their
defects are apparent from the evidence of two-dimensicnal transonic theory. A second
consideration, which can only be transitory, is the non-availability of a general method
of solving the three~dimensional equations of unste oy transonic flow. Tho present pa ot
explores the results of flutter predictions based on approximate three-dimensional nethoeds.
A third importart factor is the influence of the boundary layer. As many workers have
pointed ~nut, to include the effects of wing thickness withoat those of the boundary laver
may improve the qualitative picture of the pressure Jdistribution while the aerodynarac

force coefficients may become | ss representative »f the real flow.  The approximate
theoretical methods can incorpe ate boundary-layer of fects on a quasi-steady basis, so
that some account of Reynolds norber will be taken. A fourt!s consideration is the
influence of the mean flaw nn th acrcdynamic foroe patrax foroa aiven Mach npumber and
frequency parameter, while the perturbtations boat o rean flow remasn Linear.s Thas
charactertstic will be illustrated in the procdicty: Corlutter specd as o a funct s H

mern incidence.

The facal point of the present steady 1o the wind=tanned anvest baatoon corricd cat o
a high-~aspect-ratio flutter model in the DA B 0t - » S0 Tannel cocer the panae f Ml
numbers from 0.75 to 0,90, An account 0 this investiaatiom in Dectian .o he
theareti~al backaround is des- ribed sn ety n 2} ot tiutter plations e dro-
cussed in Cection 4. The Appendix exolains how O pfvsionl und L forhie ot
haracteristics »f the model is gained froe o barary o caelensat o of the probler an
araphical display.
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It should not be assum~d that the present results are typical of modern wings
designed for supercritical | .:. The essence of the experiment is its simplicity. The
planform is uncranked, tt. ¢ "¢ 1 section is symmetrical and uniform, and the model was
tested at zero lift. w € esperiment was designed to produce flutter and to provide
a straightforward test of .. :cicel methods, the flutter actually disappears at the top

end of the Mach number range. Thcrefore, special interest attaches to the ability to
predict this disappearance by the available theoretical means.

2 WIND-TUNNEL FLUTTER TEST

The experimental programme stemmed from a proposal to design, build and test a wing
model to help to assess the accuracy of flutter predictive methods at high subsonic speed.
The model was designed for testing in the RAE 8 ft x 8 ft Tunnel at Bedford, and as this
was to be the first test in this tunnel of a flutter model, particular care was taken to
reduce the possibility of model failure which could damage the tunnel compressor blades.
Static and fatigue loads were given careful consideration and the decision taken to use
mainly fast-frequency-sweep testing, to reduce test time, instead of the discrete-
frequency method customary at that time. Ref 1 discusses the model design and testing
and Ref 2 the theoretical studies and analysis of the wind-tunnel results.

2.1 Design of Model

The model was designed, in the first place, as a simple representation of the port
half of a high-aspect-ratio clean wing, designed for a BAe rear-engined project. The
simplifications included the use of straight leading and trailing edges, no camber and a
constant streamwise NACA 64A010 section (see Fig 1). Stiffnesses were scaled so that a
flutter speed could be found within the tunnel operating limits and within the Mach
number range 0.75 to 0.90.

The design finally used was based on a single box spar centred at 40% chord which
provided the majority of the bending and torsional stiffness of the model. The external
shape of the wing was achieved by shaping balsa wood glued to the spar with fibreglass
strengthening. The spar root terminated in a solid block which was mounted on a two-~
flexure support system which allowed the wing to pitch. Excitation was applied to the
root block through an electro-magnetic vibrator. The wing projected through a fixed non-
representative body provided to contain the support and excitation system and to achieve
suitable flow in the tunnel test.

The tests described were all carried out at zero mean incidence, but there remains
the possibility of further tests at small incidence.

2.2 Bench Tests

Throughout the manufacture period, bench tests were carried out in order to test
the structural data to be incorporated in the mathematical model to be used for the
flutter predictions.

The spar was bench tested before the addition of fibreglass and balsa cladding.

Both bending and torsional stiffness tests were carried out, followed by resonance tests,
and small adjustments made to the data calculated from the drawings. On completion of
the model, further stiffness and resonance tests were carried out. Structural influence
coefficients were measured over a grid of 45 points (9 x 5) used for both load applica-
ion and deflection measurement. Resonance tests were conducted with the model mounted in
the support rig, which was itself attached to a massive bench structure, and the first
five normal modes of the model were measured together with the pitch mode on the root
mounting block. Final adjustments were then made to the structural mathematical model.

The overall changes made from both the spar tests and the complete model tests were
as follows:

All mass data factored by 1.20
Bending stiffness factored by 0.90
Torsional stiffness factored by 1.20 ,

Measured modes are shown in Fig 2 and the calculated modes obtained by using the empirical
factors are shown in Fig 3., Modal frequencies are listed in Table 1,

2.3 wWind~-Tunnel Test Procedures

The wind-tunnel tests took place at Bedford in May 1976, and covered the Mach number
range 0.75 to 0.90. Model response was measured by flexure strain gauges mounted on the
model at the root and at 60% span. At first results were obtained from automated analysis
of fast frequency sweeps with the aid of fast Fourier transform techniques, although some
spot checks were made by using response at discrete frequencies together with vector-plot
techniques. It was found, however, that the lowly-damped root-mounting-block pitch mode,
excited by tunnel turbulence, dominated the response throughout the sweep, thereby reduc-
ing considerably the levels at which the model mode responses could be recorded. The
response of the model to tunnel noise alone was also recorded at each stagnation pressure,
and it was found that, although the root~mounting-block response again dominated the
signal, those signals contained adequate definition to permit analysis., This change in
excitation allowed some additional tests with the mounting block rigidly locked.

s i, 1T A

1




74

2.4 Wind~Tunnel Test Results

A list of the Mach numbers at which tests were carried out together with the
inferred flutter speeds and frequencies is given in Table 2. Typical plots of experimen-
tal modal critical damping ratio, ¢ , and frequency, £ , versus airspeed are shown in
Fig 4 for a Mach number of 0.803. Two roots are traced over the speed range tested, and
root 1 is seen to be approaching flutter at an extrapolated speed of 278 m/s.

Tests showed clearly that the effect of the mounting-block freedom was negligible
and results for both conditions of mounting block, free and locked, are plotted together
in Fig 5, in which the variations of flutter speed and frequency with Mach number are
shown. The sudden upturn in both critical speed and frequency is seen in the Mach number
range between 0.87 and 0.89.

3 THEORETICAL AERODYNAMICS

In past decades flutter prediction has relied increasingly on the completely
linearized aerodynamics of the lifting-surface or doublet-lattice methods. 1In the
present investigation the lifting-surface theory of Davies® has been used. 1In industrial
applications it has been common practice to make allowance for aerofoil section, boundary
layers and other effects not represented in the theory, by applying empirical factors,
based on wind-tunnel or flight experience, to the force coefficients. BEmpirical correc-
tions of this kind stand a reasonable chance of success when the qualitative changes
between the calculated and the real load distributions are minor ones. At high speeds,
however, this is no longer the case.

From two-dimensional considerations it is apparent that, with the development of
local supersonic regions and eventually shock waves, transonic flow introduces major
changes in the character of the steady aerodynamic loading. The consequences for the
oscillatory aerodynamic loading are even greater. The topic has been reviewed by
Tijdeman4, and Fig 10.7 of Ref 4 illustrates the large effects on the incremental
pressure distribution due to a change of incidence mainly on account of the displacement
of a well-developed shock wave. An example of the measured frequency effect on the
oscillatory pressure distribution is given in Fig 10.11 of Ref 4, and this is a further
illustration of the deficiencies of linear flat-plate theory. Theoretical progress in
unsteady two-dimensional transonic flow is reviewed in Part IV of Ref 4, where Fig 13.5
makes the point that inviscid transonic theory can introduce qualitative improvement at
the expense of large guantitative inaccuracy. By theoretical allowance for the boundary
layer and by correction of the experimental results for wall interference the agreement
between them is improved considerably. Viscous effects can be expected to grow rapidly
as transonic conditions develop and to influence the location of shock waves. Empirical
factors to the force coefficients are unlikely to succeed in this flow regime.

It cannot even be said that there is an available method for solving the eguations
of inviscid three-dimensional unsteady transonic flow. There is a pilot program by
Weatherill ¢t al”, which has been run for a rectangular wing in pitching oscillation, and
it can only be a matter of time and costly effort before there will emerge a general
method for solving a finite-difference approximation to the transonic-small-~-perturbation
equations for oscillatory flows past finite wings. 1In the interim there is a place for
approximate methods, two of which are used in the present investigation. One is an
adaptation of strip theory to be considered in Section 4.3. The other, to be discussed
in Sections 3.1 and 3.2, has been described in Refs 6 and 7.

3.1 Description of Theory

The basic equations of the approximate method are derived in Ref 6. The underlying
principles and the key equations are summarized in Section 3 of Ref 7. The local pressure
coefficient is expressed as

c_ = (p-pm)/[%omUi) = C . (1)

= _lwt
+ ALC
P { p° }

p0

where p_, o and U_ are the pressure, density and velocity of the undisturbed stream,
Cpo corresponds to the mean flow and w« 1s the circular frequency of oscillation. It is

sufficlient here to say:

(1) that a one-~dimensional form of Bernoulli's equation is used to relate the local
values of the oscillatory pressure coefficient Cp , the mean value Cpo , the

complex oscillatory velocity potential $(x,y) and its derivative a&/ax H

(1i) that the ratio of 23®/3x to its value as frequency tends to zero is set equal to
the corresponding ratio from linear theory”;

(111) that the ratio of the gquasi-steady rate of change of surface pressure to the corres-
ponding quantity from linear theory is assumed to be the same for each mode of
deformation, so as to equal the ratio for the mode of rigid pitching calculated with
the aid of steady pressure distributions over a range of incidence covering the mean
flow condition.

The final expression for the oscillatory part of the pressure coefficient at a given
secticn of y = ns is
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- = ive(n)Ge) E F(E')R(C')Um
Cp(f,) = F(g)K(g) + = l[ G(E')UO(E') deg' (2)
(3C_/da) __ (from steady data)
P a=a
where F(g) = (3)
a(ACpﬂau (from linear theory)
. 4 2y
K(g) = 5: % for the upper surface , (4)
v = wc/U_ 1is the frequency parameter , (5)
2 1/v
Glg) = [l + kyMpro(E)] ’ (6)
(y=1) /v ¥
2 2
Uple) = 0 11 ~ ————s [1 + kvaCpo(E)] -1 ' (7)
(v = 1)M_
£ = [x-x (m]/cm) , (8)

and other basic quantities are defined in the List of Symbols.

The approximate method has achieved sufficient success in reproducing supercritical
experimental pressure distributions to justify its application to the present flutter
problem. As described briefly in Section 5 of Ref 7, the method has been programmed so
that different modes, frequencies and mean incidences can be handled in the same calcula-
tion. Although the running time is relatively short, a lot of preliminary effort is
needed in preparing the PLATEDATA and WINGDATA files.

The PLATEDATA file contains the results of previous calculations from lifting-
surface theory for the appropriate modes, frequencies and Mach number.., In the present
work there has been a slight complication in that the method of Davies™ is used in place
of Ref 8. An extra program has been written to convert the pressures at the loading
points into the gquantities rq and rq required in equations (18) and (20) of Ref 7,

which determine the respective quantities a(Acp)/aa ir Eq. (3) and K(g) in Eg. (4). A

further complication has arisen in the representation of modal data. The PLATEDATA files
for the present work comprise the values of rq for steady flow at a uniform incidence

and for each value of the frequency parameter Vv the values of the real and imaginary
parts of rq for the following eight modes:

-z = " (m=0,1,2,3 and n=0,1) . (9)

The program is then run to give the generalized force coefficients as a pair of 8 x 8
matrices corresponding to the real and imaginary parts of

- l - c
Qij = mf}‘( Zi)(ACp)de , (10)

where zy is the downw.rd vertical displacement from Eq. (9) for the appropriate mode
and (AEP)j is the complex loading for the appropriate mode of oscillation =z = z4 when

the surface pressure coefficients Epu and Epi defined as in Eq. (1)} are differenced

to give

14
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aC_ = C_, -C AC' + iaC" . 11
P pt ~ “pu - p P an

A 5 x 8 matrix T' is formed to express each of the first five flexible modes of the
flutter model to a sufficient approximation as a linear combination of the eight modes in
Eq. (9). Then, if Q denotes either of the 8 x 8 matrices, the required matrix for the
flutter calculation i}

02 = T OlT R (12)

where T 1is the transpose of T' .,

The WINGDATA file contains the steady-state data, either theoretical or experimen-
tal, at the given Mach number for an appropriate set of incidences. 1In the calculations
of Ref 7 the choice lay between an early version of the transonic-small-perturbation
(TSP) method for isolated wings and measured static pressures on the wind-tunnel model
concerned. In the present investigation a later version of the TSP method is used, which
incorporates two important new developments. The first, not relevant to the invgstiga—
tion, is the extension to treat wing-body combinations developed by Albone et al The
secondi to be discussed in Section 3.2, is the allowance for boundary layers due to
Firmin Thus the inviscid steady flows for the isolated wing can be calculated with
improved accuracy, and it is no longer necessary to have detailed experimental pressure
plotting in order to represent viscous transonic flow in the WINGDATA file. Moreover,
the effect of Reynolds number can be considered.

The present applications of the program of Ref 7 to the flutter model of Fig 1
cover Mach numbers and frequency parameters in the ranges 0.80 s M_ < 0.89 and
0 <V g 0.855. Figs 6 and 7 illustrate the effects of these parameters on the inviscid
oscillatory chordwise loading at an outboard station n = 0.809 , when the wing at zero
mean incidence is pitching about the axis through the root leading edge. With reference
to Eg. (1l1) the distributions of AC'/u1 and AC"/(a1 V) are plotted, where @y is

amplitude of oscillation in radians. In Fig 6 both distributions depart further and
further from typical subsonic shapes as M increases from 0.80 to 0.88 and Vv is fixed
at 0.428. As the shock wave develops in sgrength and moves aft with increasing M_, so
do the peaks until, at M_= 0.88 , aC! /u reaches about 70 and AC;/(a J) reaches

about 100. At the higher stream Mach numbers of 0.885 and 0.89 the peak values are still
large but decreasing; the evidence suggests that, although the shock wave continues to
strengthen slightly and move aft, its smaller rate of movement with respect to a
accounts for the falling peak values with increasing M_ .

The effect of frequency parameter, illustrated for M_ = 0.86 in Fig 7, stems
primarily from the lifting-surface calculations of Ref 3. Fhe high aspect ratio of the
wing is responsible for large changes while the frequency parameter is fairly small,
especially in AC!")/(a1 ¥) . It looks as if the trends in both the real and imaginary

quantit les with increasing V have reversed over the forward part of the chord between

v=0 and v = 0.855 . 1It is likely that the results for this highest frequency para-~

meter suffer in accuracy because no account is taken of the decreasing shock-wave motion
as frequency increases. But the frequency effects outside the shock-wave region should

be realistic.

3.2 Effect of Boundary Layers

In the present investigation the 71SP method of Ref 10 is used for both inviscid and
viscous steady flows. The inviscid TSP calculations are more reliable than those used in
Ref 7 on account of an improved relaxation scheme for solving the finite-difference
equations of the flow field. The viscous TSP calculations allow for the boundary layers
by modifications to the boundary conditions near the wing and wake. The modifications
are introduced into the iterative scheme in steps as the calculation proceeds, but after
each revision of the boundary-layer development the changes in boundary condition need to
be under-relaxed to achieve convergence in the pressure distribution.

At the outset it is necessary to prescribe the location of transition from laminar
to turbulent flow. The laminar or turbulent boundary layer is calculated from an attach-
ment line. For use in the region between the transition front and She trailing edge the
lag-entrainment method of Green et glll has been extended by smithl2 to three-dimensional
flow. Firminl0 makes a further extension of the turbulent-boundary-layer method to
calculate the wake.

There is no question that bojundary-layer effects are important. Ref 10 allows for
these reasonably well provided that the shock waves are not too strong and that the
boundary layers remain attached. There are residual uncertainties about the accuracy of
the boundary-layer theory in the region of any shock-wave boundary-layer interaction and
as the trailing edge is approached. Moreover, the treatment of the wake does not allow
for the strong vorticity near the wing tips or any subsequent rolling up into discrete
trailing vortices. But, judged from the comparisons with experimental pressure distri-
butions in Ref 10, the method has achieved a satisfactory measure of success.

Although there is little understanding of unsteady boundary layers in transonic
flow, it is feasible now to allow for Reynolds number in three-dimensional steady f!ow
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subject to the transonic-small-perturbation approximation. Hence, by numerical differen-
tiation with respect to incidence, the quasi-steady effect of the boundary layers can be
calculated and used in the method of Ref 7. The primary effect is on F(g) in Eg. (3)
through the quantity 23C_/3c at o = ag but through their dependence on C¢C 0 both

G(¢) and Uo(s) in Eqs. (6) and (7) are also changed by the boundary layers. All three
functions influence Ep in Eq. (2) and thereby the generalized forces in Egs. (10) and (11).

The results in Figs 8 to 10 illustrate the character and magnitude of the viscous
effects. 1In Fig 8 the 1lift slope 3CL/3u and aerodynamic centre Xao are calculated

f-om the inviscid TSP solutions and are compared with the linear theoretical values for
stream Mach numbers between 0.80 and 0.89. The effect of the 10% thick aercofoil section
on acL/aa increases from 13% at M_ = 0.80 to 27% at M = 0.875, above which the percen

tage falls. The rearward shift in aerodynamic centre due to aerofcil thickness increases
from 0.02¢ to 0.18S as M_ increases over the range. . The influence of the boundary
layers at the wind-tunnel Reynolds number of 3.4 x 10° with transition at 5% chord is
shown in the range 0.86 <« M_ < 0.885. The lcss in lift slope due to viscous effects is
seen to increase with increasing M_ until it exceeds the large increase due to aerofoil
section. The aerodynamic centre is found to lie somewhat closer to inviscid TSP theory
than to linear theory. For M, = 0.86 an extra calculation is made for a typical full-

scale Reynolds number of 3.5 x 107 with transition still at 5% chord, and the results for
both acL/aa and xac/E lie roughly midway between those for R = 3.4 x 10% and for

inviscid flow.

Flg 9 shows the symmetrical steady pressure distribution at M_ = 0.88 when o =0
and the quasi-steady lower-surface distribution

ang/au = - acpu/aa when ay = 0

for sections inboard at n = 0.210 and outboard at n = 0.809 . The curves derived from
the viscous TSP solutions for R = 3.4 x 106 are compared with those from inviscid TSP
solutions and from linear theory which gives - Cpo = 0 . The TSP curves all show the

expected qualitative changes from the distributions given by linear theory. The behaviour
of acpg/aa and the peaks associated with shock-wave movement are of primary importance

as regards the calculations of oscillatory pressure. The inclusion of the boundary layer
is seen to spread the recompression near the shock wave and to halve the peaks in
2C 2/au at both sections. The shock wave is distinctly stronger at the outer section,

which is the more important in relation to flutter.

For most of the stream conditions considered, the TSP solutions are carried out for
only three incidences « = 0, %° and 1° . Because of the symmetry of the aerofoil

section these provide values of C . (and C a } for the five incidences

a = -1°, —%o, 0, 50 and 1° , from which to evaluate anl/an (and acpu/au ). In the
particular case of inviscid flow at M_ = 0.86 additional solutions are obtained for

a = l¥°, 2°, 250 and 3° , so that the effect of mean incidence can be studied. It is
interesting in Fig 10 tc compare the relative effects of the changes from inviscid to
viscous flow and from ag = 0 to ag = 2° . The chordwise distributions of the real and

imaginary parts of the oscillatory locading at n = 0.809 due to pitching motion about
the axis through the root leading edge at V = 0.428 show contrasting changes. The
effect of viscosity is to weaken the peaks near midchord and to displace them upstream,
while the increase in mean incidence from 0 to 2° strengthens the peaks and displaces
them downstream. The consequences for flutter are surprising and will be discussed in
Section 4.5.

4 FLUTTER CALCULATIONS

The wind-tunnel flutter test, described in Section 2, has yielded the experimental
values of the equivalent air speed at flutter in Table 2 for the range of stream Mach
number from 0.75 to 0,90. The aerodynamic theory, outlined in Section 3, is used to
provide matrices of generalized force coefficients for the five modes included in Table 1.
The solution of the flutter egquations is discussed in Section 4.1.

The selection of flow conditions for the calculations is considered in Section 4.2.
The primary aim is to evaluate the influence of the boundary layers on flutter speed at
the Reynolds number of the experiment. A further objective is to examine the scale
effect in increasing this Reynolds number to a value typical of full scale. As the
flutter testing was all at zero mean incidence and there is the possibility of conducting
further tests at small non-zero values of mean incidence ay + @ subsidiary aim is to

assess the importance of a, as a flutter parameter.
Section 4.3 concerns the use of the three-dimensional TSP solutions in conjunction

with strip theory as an alternative to Ref 7. The comparisons and discussion of the
flutter characteristics follow in Sections 4.4 and 4.5,

i
;
t
'




4.1 Metnod of Analysis

The flutter equation to be solved is
Ay + 0 UBg + o UXCq +Eq = 0, (13)

where A is the structural inertia mairix and E is the structural stiffness matrix for
the first five flexible modes discussed in Section 2.2. The complex generalized force
coefficients are first calculated as in Eq. (10) and are then transformed through Eq. (12)
to a complex 5 x 5 matrix Q . The aerodynamic damping matrix B and the aerodynamic
sti/fness matrix € for prescribed values of M_  and vV are given by

scQ = C + i7B . (14)

The complex column matrix ¢ represents the magnitudes and phases of oscillatory
displacements in the five modes with frequency

£ = U_S/(2rc) . (15)

A flutter condition occurs when Eq. (13) is satisfied for an undamped root with compatible
values of the frequency parameter VvV and the stream density p, » velocity U_ , Mach
number HM_  and stagnation temperature TO .

In the present analysis U_  is matched to the given wind-tunnel value of
Ty (= 298 K) and the prescribed value of M used to obtain the aerodynamic force
matrices in Eq. (14). Then, for the prescrised value of V , the density p, and hence
the eguivalent air speed

Vo = U /(e /rg) o (16)

where °o is the standard air density at sea level, is increased until at Pu = P + say,

Eq. {13} gives an undamped root of frequency fc , say. If fc exists, the corresponding

frequency parameter Gc is then calculated from Eq. (15) and will, in general, be found

to Aiffer from the assumed frequency parameter o . A matched critical flutter condition
1s obtained when

<
]
<
]
<

£ say . (17)

A simple graphical procedure is used to determine this condition, the corresponding
density Po = Py and hence the equivalent air speed at flutter

v = Umvpf/po - (18)

b

It is found that the most influential modes are fundamental bending (37 Hz) and
fundamental torsion (326 Hz) desiynated as modes 1 and 4 in Table 1, while flutter was
measured at about v = 0.4 (90 Hz) . Aerodynamic force matrices (C + iVB) for these two
modes with M_ = 0.88 and 5 = 0.428 are illustrated in Table 3. There are large varia-
tions between the calculated results

(a) from linear theory (Ref 3),
(b) by using Ref 7 with inviscid TSP data,
(c) by using Ref 7 with viscous TSP data.

The predicted values of Vf for M_ = 0.88 vary widely from 270 m/s with (a) to a value

in excess of 400 m/s with (b). As the matrices seem to indicate, the viscous case (c) is
found to give an intermediate flutter speed Vf = 326 m/s . The Appendix shows how a

simplified binary analysis ir terms of modes 1 and 4 can elicit the dominant aerodynamic
influences.

4.2 Results

The range of the stream conditions in the present calculations is indicated in
Fig 8. Lifting-surface calculations by :vhe method of Ref 3 have been made for
M_=_0.80, 0.84, 0.86, 0.88, 0.885 and 0.89 for various frequency parameters in the range
0 <« v g 0.855, the particular value Vv = 0.428 being used for each M, as it is close

to the expected value at flutter. Table 4a gives the critical flutter speeds Vf and
frequency parameters Gf from the calculations with lifting-surface aerodynamics at

selected Mach numbers including M_ = 0.75 from the earlier calculations of Ref 2. 1It is

T
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only above M_ = 0,86 that the trends in themeasured flutter speed in Table 2 become very
different from the monotonic behaviour, a decrease as M_  increases, shown by these
preliminary caiculations.

The inviscid TSP calculations for o« = 0, 50 and 1° have been made for each of the
six values of M_ from 0.80 to 0.89. Table 4b shows that the flutter calculations for
zero mean incidence based on inviscid TSP aerodynamics yield no flutter in the range of
the experiments at M_ = 0.88 ; nor is it found at M_ = 0.885 and 0.89. The viscous TSP
calculations for the wind-tunnel Reynolds number R = 3.4 x 10 are confined to
M_=0.86, 0.88 and 0.885 . This is the region of greatest interest, where the shock
waves are well-developed and their locations are influenced by boundary-layer growth. The
corresponding flutter calculations in Table 4b give a critical equivalent air speed at
M_ = 0.88 , but it has disappeared out of range at M_ = 0.885 . An analysis of these
results is made in Section 4.4.

To extend the information on boundary-layer effects, a further calculation with
viscous 7 ‘P aerodynamics has been carried out for M_ = 0.86 at the Reynolds number

3.5 x 107 typical of full scale. Predictably this gives a flutter speed in Table 4b

intermediate to those for R = 3.4 x 106 and for inviscid flow. Also for M_ = 0.86
the steady inviscid TSP solutions are extended to o = 1%¥°, 2°, 2%° and 3° to provide
aerodynamic data for flutter calculations when the mean incidence is varied in the range
0 < ag < 20 ., The surprising result in Table 4b is that the equivalent air speed at
flutter goes outside the experimental range as ag is increased from 1%0 to 2°. The
effects of Reynolds number and mean incidence are discussed further in Section 4.5.

4.3 Strip-Theory Analysis

The TSP calculations, which form the basis of the Ref 7 approach, produce as a by-
product spanwise lift and moment distributions due to rigid incidence. This information
has been used to form simplified-strip-theory in-phase lift and moment flutter deriva-
tives, along the span, and by means of Ref 13 to obtain the corresponding out-of-phase
derivatives. Flutter calculations were carried out for comparison with the Ref 7
results and the experimental values.

Results of the calculations for zero mean incidence are listed in Table 4c and are
shown plotted in Fig 11. The derivatives from the inviscid flow give the curve shown as

a full line, whose shape is influenced by an upper flutter point for M_ = 0.86 . This
shape of curve is also apparent for the viscous case, in which no flutter instability was
calculated for M_ = 0,88 . Strip theory is seen to predict successfully the upturn in

flutter speed with Mach number, but the estimation of flutter speeds at lower Mach
numbers is seen to be low by approximately 15%. This mis-match is partially explained by
the over-estimation of the aerodynamic forces as a result of using the rigid incidence
load gradings from the steady TSP data. The estimation of flutter frequency is in ervor
by some 50%, but improvements in the out-of-phase derivatives can reduce this error.

The flutter trends are better indicated by the local aerodynamic centre cac(n) than
by the overall quantity xac/é in Fig 8. The upper diagram of Fig 12 shows a strong

early influence of supercritical flow on £4c Over the inner part of the wing, while the
strong influence over the outer part is considerably delayed in Mach number. The inboard
values of 50 have the greater effect on x,./T , but it is the rearward shift outboard
that first deters and finally precludes flutter., Study of the lower diagram of Fig 12
therefore explains the adverse effect of viscosity on flutter in the present investigation
and suggests that an increase in mean incidence may be favourable.

4.4 Comparison with Experiment

The experimental results in Table 2 comprise equivalent air speed vf and frequency
of oscillation ff at critical flutter conditions. In the calculations the primary

objective is to predict Ve - The quantity ff is derived in the process and provides a
secondary check.

The curve of Vf drawn as a full line in Fig 13, calculated with completely

linearized theoretical aerodynamics, shows two characteristic differences when compared
with the experimental data. Up to M_ = 0.85 the downward theoretical trend is too
small, while above M_ = 0.87 the same gentle trend continues where a steep increase in
flutter speed has been measured. The remaining points in Fig 13 are taken from Table 4b
and correspond to aerodynamics based on Ref 7 as described in Section 3.1. With inviscid
TSP data, the initial downward trend has become consistent in slope with the measurements;
moreover, as with the strip-theory aerodynamics in Fig 11, the approximate allowance for
the effects of supercritical flow have resulted in the prediction of the steep increase
in Vf . But the lateral displacement of about .02 in M_ 2 between the inviscid TSP and

experimental curves shows that the calculated disappearance of flutter is premature. When
the TSP data incorporate the calculated boundary layers with Reynolds number 3.4 x 106

and transition to turbulence at 5% chord as in the wind-tunnel tests, the lateral dis-
placement is reduced to about 0.01 in M_ . Discrepancies are thus extremely small, and
it may be said that the viscous TSP aeroaynamics achieve an excellent measure of agreement
with the experiment.

1

2
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One aspect of the flutter tests that has called for explanation is the large
increase in flutter frequency at M = 0.889 in Table 2. Fig 14 presents the informa-
tion on ff against M_ to correspond to Fig 13. The remarkable agreement between

linear theory and experiment in the range 0.84 < M_ < 0.88 is perhaps fortuitous.
Although the frequencies based on TSP calculations”in this range of M_ are 10 to 15%
high, the discrepancy is reduced slightly when viscous effects are taken into account. It
is also reassuring that, in supercritical flow where Fig 13 shows the rapid increase in

vf , Fig 14 shows the upward trend in ff towards the high measured value of 120 Hz,

whether or not the viscous effects are included in the TSP calculations. The matching
procedure in the calculations (Section 4.1) is such that ff is derived indirectly and
can be quite sensitive to changes in the solution.

Since the structural characteristics in the calculations are independent of stream
conditions, the disappearance ot flutter at the higher supercritical Mach numbers is
aerodynamic in origin. The Appendix describes how a simple explanation ew~rges from
Niblett'sl4 graphical representation of a binary approximation to the fl' .cer equations.
It is first verified that the overtone bending modes 2, 3 and 5 in Table 1 can be elimin-
ated to leave binary flutter in modes 1 and 4 with similar characteristics, as shown in
Table 5. Typical aerodynamic force matrices for M_= 0.88 after this simplification
are given in Table 3. It is in fact one of the smafler coefficients 044 (= ~0.008 in

Table 3b) that plays the dominant role; this aerodynamic stiffness in the torsion mode is
strongly influenced by the rearward shift in aerodynamic centre Xac 23S M_  increases

in Fig 8, and more especially by the corresponding behaviour in local aerodynamic centre

Eac over the outer part of the span in the upper diagram of Fig 12. The direct stiff-

ness and damping coefficients in the fundamental torsion mode, 054 and 024 , are
plotted against M_ in Fig 15. While the variation in 024 against M_  is no greater
with TSP theory than with linear theory, it is the fall in -Qa4 inherent in the tran-

sonic flow conditions that matters. Moreover, the delay of this fall by about 0.01 in M
when viscous effects are included brings the improved prediction of flutter speed in
Fig 13.

To check the simple explanation in the Appendix, the flutter calculations for
M_ = 0.84 with inviscid TSP aerodynamics have been repeated with identical aerodynamic
data, except that the values of 044 are replaced by those for M_ = 0.88 . The calcula-

ted flutter speed Vf = 255 m/s then increases to a value in excess of 400 m/s, just

like the result for M_ = 0.88 with inviscid TSP aerodynamics. It is reasonable to
suppose that the same mechanism was at work in the experiments.

4.5 Effects of Reynolds Number and Incidence

Having calculated critical flutter speeds for the wind-tunnel test conditions as
far as available transonic theoretical techniques will permit, we now sample the effects
of Reynolds number and mean incidence not covered by the experiments. As a preliminary
we apply the arguments of the Appendix and consider what might be expected in the light
of the calculated aerodynamic centres. Fig 8 shows that a factor of 10 on Reynolds
number at M_ = 0.86 brings the value of Xac roughly half-way towards the value for

inviscid flow; a similar effect is expected in the local aerodynamic centres in lower
diagram of Fig 12, where the bottom curve corresponds to the wind-tunnel conditions, and
a rearward shift of about 0.02 in Eac is envisaged. The effect of incidence in

inviscid flow over the outer part of the span is a somewhat larger rearward shift of
0.05 in Eac as a is increased from 0 to 2°., Thus, for the particular model, an

increase in either Reynolds number or mean incidence should have a favourable influence
on flutter speed.

The Reynolds number R = 3.5 x 107 is chosen as typical of full scale, and
boundary~layer transition is retained at 5% chord. The results of the flutter calcula-
tion are included on the right-hand side of Fig 16. The factor of 10 on Reynolds number
at M_ = 0.86 raises flutter speed by only 1% and gives a marginal increase in flutter
frequency, as Table 4b shows..The collected information with Vf plotted against logloR
in Fig 16 puts the various results for M_ = 0.86 and ey = 0 into perspective and
shows that strip-theory analysis (Section 4.3) underestimates the measured flutter speed
where the use of Ref 7 leads to a much smaller over-estimate.

It would have been interesting to have calculated the effect of mean incidence in
viscous flow, but even at a = 1° the state of the boundary layer on the upper surface
just aft of the shock wave is thought to be critically close to separation. Therefore
the calculations are restricted to inviscid flow. Mean incidence was varied from
ag = 0 to 2° in steps of 0.5°, and the curve of Vf against a, on the left of Fig 16

is found to be roughly parabolic in shape. The increase in flutter speed is even larger
than might have been expected from Fig 12 in contrast to the small effect of Reynolds
number. The result emphasises the importance of the dependence of unsteady aerodynamic
data upon mean flow conditions at transonic Mach numbers, The equivalent flutter speed
has increased from 278 m/s to about 475 m/s beyond the range of the experiments as ag
increases from 0 to 2°, that is as the mean 1ift coefficient C increases from

L
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0 to 0.29. Practical restrictions on CL in wind-tunnel flutter testing are therefore
to be regretted.

5 CONCLUDING REMARKS

The flutter tests confirm both the usefulness and the shortcomings of completely
linearized aerodynamics. 1In subsonic flows, calculated wing forces are cften more
realistic when both thickness and viscosity are neglected than when only one of these
effects is taken into account. 1Indeed, the flutter calculations are reasonably success-
ful in giving flutter speed within t8% for stream Mach numbers M from 0.75 to 0.88.
On the other hand, the predicted downward slope of equivalent flufter speed against M
around 0.8 is less than half the slope from experimental data. Moreover, this gentle
slope continues beyond M_ = 0.86 with no trace of the observed sharp rise in flutter
speed and the rapid disappearance of flutter.

The effect of supercritical flow on the flutter model at zero lift is unlikely to
be typical of 1lifting wings designed for this speed range. The investigation is viewed
as a demonstrator of the order of magnitude of transonic effects on flutter, and more
especially as an indirect test of aerodynamic calculations in the absence of pressure
measurements. It would be interesting to make a comparable study for a supercritical
wing at the design condition.

The simplest scheme of transonic calculation is to use the incremental spanwise
loading and distribution of aerodynamic centre from TSP theory in conjunction with strip
theory (Section 4.3) to modify the completely linearized aerodynamic force coefficients.
Although the calculated flutter speeds are less good quantitatively, it is significant
that the qualitative trend is now correct. This use of strip theory underestimates both
the flutter speed at subcritical M_ and the value of M_ associated with the sharp
rise in flutter speed, but this essential characteristic of the flutter tests is
modelled.

The aerodynamic calculations by means of Ref 7 utilize the complete pressure
distribution as distinct from the local lifts and moments from TSP theory. The allowance
for frequency is fully three-dimensional and compatible with lifting-surface theory. When
the steady and quasi-steady data are taken from inviscid TSP theory, the measured flutter
speed i1s predicted within 4% when M_ < 0.855 , and the downward slope of the curve is
also correct. Although the calculated sharp rise 1is premature by about 0.02 in Mach
number, this discrepancy is roughly halved when viscous TSP theory is used instead with
Reynolds number and transition position corresponding to the wind-tunnel conditions.

The availability of a steady three-dimensional viscous TSP theory (Ref 10) in con-
junction with Ref 7 makes possible a flutter calculation for full-scale Reynolds number.
A factor of ten on Reynolds number gives a marginal increase in flutter speed at
M_= 0.86 . By contrast, the effect of mean incidence in inviscid flow at this Mach
number is found to be large fur the particular wing.

The calculated 25% increase in equivalent air speed at flatter as mean incidence is
increased from 0 to 1.5° suggests that an extension of the experimental investigation to
non-zerc mean lift is desirable. There are opposing factors however, first that viscous
TSP calculations at the higher incidence are likely to be unreliable at M_ = 0.86
because of shock-induced boundary-layer separation, and second that the stiffness of the
flutter model 1is insufficient to prevent considerable static deformation. The fact
remains that the 1ift dependence of transonic flutter characteristics needs attentive
study.

It has been possible to isolate the particular aerodynamic force coefficient that
has the greatest influence on flutter speed, and the quantity (054) is akin to a direct

pitching moment. The gentle trend of decreasing flutter speed against M_ in the sub-
sonic and low supercritical ranges is associated with an increasing lift slope. But the
trend towards stability against flutter with increasing supercritical Mach number and
with increasing mean incidence is allied to a rearward movement in local aerodynamic
centre over the outer portion of the span.
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Appendix
THE REASON FOR THE LARGE INCREASE IN CRITICAL FLUTTER SPEED WITH MACH NUMBER

by
J. C. A. Baldock

The reason for the large increase in flutter speed has been investigated by using

Niblett'sl4 'graphical representation' of binary flutter. This technique requires the
flutter problem to be in two degrees of freedom with matrix equation

Aj + o*vBy + vicq + Eg = 0, (a-1)

where V Um/pm7po is the equivalent air speed,

c = pw/po is air density relative to standard air density at sea levelf
g corresponds to a set of normal modes.

The representation shows variations with V as parameter and requires constant
matrices A, B, € and E and a constant value of o . Techniquesl® are available for con-
densing a flutter condition from many degrees of freedom to a similar condition in two
derived degrees of freedom, but they have not been necessary with this example. As will
be seen, the two-degree-of-freedom system with the normal modes of fundamental bending
and fundamental torsion gives a variation in flutter speed with Mach number similar to
that with the basic five-degree-of-freedom system used in the main flutter calculations.

The form of Eg. (A-1) is different from the one in the main report in that Eq. (13)
represents the model conditions in the wind tunnel where U_, M_  and stagnation tempera-
ture T are constant and equivalent air speed V 1is varied by changing the air density.
With Eq. (A-1) the effects of air density and equivalent air speed are separated. The
aerodynamic matrices B and C are regarded as constant although they are functions of
frequency parameter v as well as M_ . For fixed M_ the aerodynamic matrices for
V = 0.428 nearest to the critical frequency parameter have been used for all V . As a
further simplification an average value of o has been used throughout. Table 5 shows
that for inviscid flow the equivalent binary solutions give a similar variation of
critical equivalent air speed Vf with Mach number.

In the 'graphical representation' of binary flutter, the real and imaginary parts
cf the characteristic equation at flutter are separated; with a suitable choice of
coordinates, it is shown that flutter is given at the intersection of a conic and a
straight line. Fig 1Z shows a typical representation. Coordinate y is proportional to
\' and coordinate w is proportional to the square of frequency. The conic labelled
"¢ = 0" is given by scaled coefficients of the matrices A, C and E , and the point
marked FC gives the conditions at 'frequency coalescence' flutter, 7e with o = 0 in
Eq. (A-1). Flutter at finite o¢ 1is given by the intersection of the other conic ard a
line, called the ‘'damping line' because it depends largely on the coefficients in the
aerodynamic damping matrix B . The flutter point moves along the damping line towards
the o = 0 conic as the relative density o¢ 1is decreased. Properties of the conics can
be related to the scaled aerodynamic coefficients, and some of those relevant to the
present problem are shown on Fig 17; viz, the slopes of the ¢ = 0 conic at y = 0 are
equal to the scaled direct aerodynamic stiffness coefficients 11 and Cyy + and the

differences between the conics is proportional to ob , where b is the determinant of
the scaled matrix B ,

The graphical representations for M_ = 0.84, 0.86 and 0.88 are shown in Figs 18
to 20. The most obvious differences between the graphs lie in the finite o¢ conics, and
especially in the upper slopes of the conics at y = 0 . As Mach number increases, there
is some increase in the upper angle between the "o = 0" and "finite o" conics, indica-
ting some increase in o¢b , but the largest differences are in the upper slopes of the
o = 0 conics, which equal Cy2 (Fig 17). The modes are numbered in increasing

frequency, so that mode 1 is the fundamental bending mode and mode 2 is the fundamental
torsion mode, Therefore €39 is the direct aerodynamic stiffness term for the torsion

mode. The enormous increase in the turning-point values of y with finite ¢ , arising
from the increased upper slopes, is not entirely matched, however, by similar increases
in y for the flutter point; due to the low position of the damping line the inter-
sections take place in the lower parts of the conic. The net result is that, for this
particular application, the clue to variations in flutter speed lies in the inter-
sections of the damping line and the o = 0 conics.

The dependence on Mach number of the intersection with the o¢ = 0 conics
resembles that for the turning value of y for the o = 0 conics (FC in Fig 17). There-
fore this turning value of y for 'frequency coalescence' relates closely to flutter
speed. The turning value is given by the comparatively simple expression from Ref 14:

(e - e )
- 22 11 ) (A-2)

1
(e *+ egy) [‘Cu - Cpp) + 2(= ¢ 56y)) ]
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When the values of these scaled coefficients for increasing M_  are inserted, it becomes
clear that €92 is the most significant coefficient, variations in €11 €12 and <,

tending to have smaller effects. Therefore PP has been found to have two effects
relating to the increased flutter speed through its influence on the turning value of vy
for the o = 0 conics and on the upper slopes of these conics.

Coefficient €52 corresponds to the direct aerodynamic stiffness in the wing

torsion mode, ard its value obviously relates to the spanwise distributions of local 1lift
curve slope and local aerodynamic centre, especially over the outer part of the span.
Coefficient Cyp v representing the force in the bending mode due to the torsional motion,

will depend mostly on the values of the local lift curve slope. As M increases from
0.84 to 0.88, €2 is increased by about 22%, but the value of €55 fs reduced to 18%

of its value at M_ = 0.84 . This reduction is associated primarily with a rearward
shift of local aerodynamic centre which mcre than compensates for the effect of increased
1ift curve slope. Coefficient S5 from the force in the torsion mode due to wing bend-

ing is reduced to 43% of its M_ = 0.84 value as M_ 1is increased to 0.88. A reduction
in this coefficient would also Be expected from a rearward shift in local aerodynamic
centre. It is concluded that the rearward shift in Eac with increasing M_ in the

upper diagram of Fig 12 is playing a large part in the increasing flutter speeds in
Table 5.

The significance of the direct aerodynamic stiffness coefficient in the wing
torsion mode could no doubt have been found by an automatic process of repeated flutter
solutions with arbitrary variations in each of the aerodynamic damping and stiffness
coefficients in the original five-degree-of-freedom calculation. The advantage of the
graphical representation of Ref 14 is that the computation required is very much less.
Moreover, the bird's-~eye view of the problem is valuable for its indication of the
flutter mechanism and for guidance on the effect of various coefficients in combination,
which would usually result from physical changes in the aerodynamics.
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Table 1

CALCULATED AND MEASURED MODES AND FREQUENCIES

Mode Mode frequency (Hz)
number Mode description
Calculation .xperiment
1 Fundamental bending 37.3 36.8
2 First overtone bending 116.7 113.4
3 Second overtone bending 253.9 269.0
4 Fundamental torsion 323,6 326.5
5 Third overtone bending 446.9 406.5
Table 2
EXPERIMENTAL FLUTTER RESULTS
coggﬁglon M. Vf (n/s) 7o ff ;f
E.A.S. (Hz) (derived)
Free 0.749 304 1.237 116 0.57
Free 0.803 278 1.064 100 0.46 )
Locked 0.803 278 1.064 100 0.46 '
Free 0.843 260 0.955 89 0.40
Locked 0.852 257 0.935 88 0.39
Locked 0.871 257 0.917 86 0.37
Free 0.874 260 0.925 85 0.37
Free 0.889 334 1.171 120 0.51 3
Free 0.900 >352 >1.219 - - 1
Table 3

AERODYNAMIC FORCE MATRICES FOR MODES 1 AND 4
M_ = 0.88, v = 0.428
oo

(a) Linear theory (Ref 3)

0.210 o.493> + i/ 0.604 0.007)
-0.024 -0.034 (-0.010 0.070

(b) Ref 7 with inviscid TSP data

0.304 0.730\ + iv/ 0.955 0.130
(-0.013 -o.ooa) ( 0.019 o.os3)
(c) Ref 7 with viscous TSP data
0.236 0.553\ + iv/ 0.697 0.043
(-0.018 -0.021) (-o.ooz 0.054)
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e 4

CALCULATED EQUIVALENT AIR SPEEDS AT FLUTTER

(a) Lifting-surface aerodynamics

Aerodynamics ag (deq) Vf (m/s)
Lifting-surface Any 296
0.80 Any 282 0.46
0.86 Any 273 0.38
0.89 Any 268 0.37
(b) Aerodynamics by means of Ref 7
Aerodynamics M ay (deg) Vf (m/s) ;f 1
Inviscid TSP 0.80 0 272 0.47
0.84 0 255 0.45
0.86 0 278 0.46
0.86 0.5 283 0.46 ,
0.86 1.0 308 0.46 3
0.86 1.5 350 0.48 '
0.86 2.0 (475) (0.51)
0.88 0 >400 -
TSP (R = 3.4 x 10%) 0.86 0 261 0.43
0.88 0 326 0.45
0.885 0 >450 - 1
TSP (R = 3.5 x 107) 0.86 0 264 0.44
(c) Strip-theory aerodynamics
Aerodynamics M ag (deg) Ve (m/s) Gf
Inviscid TSP 0.80 0 241 0.70 o4
0.84 0 225 0.65
0.86 0 288 0.56
TSP (R = 3.4 x 10%) 0.86 0 232 0.63
0.88 0 - - ‘
Table 5 ‘
COMPARIEON OF FLUTTER SPEEDS FROM FULL SOLUTIONS AND EQUIVALENT BINARY SOLUTIONS
Values of Vf {m/s)
Inviscid TSP
M_ = 0.84 M_=0.86 M_ = 0.88
Full solution 255 278 >400
Binary solution 265 294 398
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ANALYSIS OF TURBULENT FLOW ABOUT AN TSOLATED
AIRFOIL. USING A TIME-DEPENDENT NAVIER-STOKES PROCEDURE
by
S. J. Shamroth, Vice-President

H. J. Gibeling, Research Scientist
SCIENTIFIC RESEARCH ASSOCIATES, INC.
Glastonbury, Connecticut 06033, U.S.A.

SUMMARY

A compressible time-dependent Navier-Stokes calculation procedure which includes a transition turbulence
model is applied to the isoclated airfoil problem. The procedure solves the Navier-Stokes equations by the
consistently split linearized block implicit method of Briley and McDonald in a body fitted coordinate system.
The procedure 1s described and results are presented for flow about an airfoil whose incidence changes from
6 degrees to 19 degrees at a Reynolds number of one million and Mach number of 0.2. In addition, the unsteady
flow about an airfoil held at a constant 19 degree incidence is examined and compared to data.

INTRODUCTION

The continued rapid development of computer hardware accompanied by rapid advances in numerical tech-
niques have led to a very significant broadening of the practical choices available for analyzing viscous
flow fields. Prior to recent computational advances predictive methods for viscous flow were confined
primarily to empirical correlations or integral boundary layer solutions; however, computational techniques
now allow routine solutions of the two-dimensional laminar and turbulent boundary layer equations. More
recently attention has focused upon complex viscous flow fields which are not suited to analysis by two~
dimensional boundary layer approaches and one important problem of this type is the general flow about a
two~dimensional isolated airfoil.

The isolated airfoil flow problem is a classical problem of practical importance which arises in a
varlety of flow applications. Much of the initial impetus for predicting the isolated airfoil flow field
was generated by the need to determine the lift characteristics of various airfoil shapes as a function of
the incidence angle. Although initial studies focused upon the case of an airfoil at constant incidence,
later studies fnclude airfoils with time varying motion, and more recent efforts have begun to consider the
aerodynamic flutter problem where aerodynamic and aeroelastic phenomena interact to determine the flow field
solution.

If the airfoil flow field is well-behaved; i.e., if the boundary layer remains unseparated, then good
predictions of 1ift for airfoils in steady flow can be obtained from a purely inviscid analysis. Obviously,
an inviscid analysis does not contain a loss mechanism and if aerodynamic losses are required, they can be
obtained from an empirical correlation or from a boundary layer type analysis. The prediction of the airfoil
flow field at higher incidences where boundary layer separation occurs 1s more difficult.

When the viscous layer on the airfoil surface exhibits regions of significant separation, a purely in-
viscid analysis will not suffice even if only 1lift predictions are of interest. In the presence of signifi-
cant separation, the observed pressure distribution will differ considerably from that predicted from inviscid
flow considerations. The actual pressure distribution corresponds to that around a body equivalent in shape
to the alrfoll plus a displacement correction (for viscous displacement effects), and in the presence of
large separated regions the displacement correction is not small. In such cases an analysis which is more
complete than a purely inviscid analysis is required. One possibflity for solving the separated airfoil flow
field problem 1s the boundary layer strong interaction approach. 1In this approach an inviscid analysis and
a boundary layer type analysls are solved so that the viscous displacement effects resulting from boundarv
layer growth influence the inviscid pressure distribution. Although this approach can give good results for
some cases, it does have certain drawbacks. Usually, the approach requires an iteration between the two solu-
tions and in the case of subsonic flow the iteration is a global one; i.e., the inviscid analysis Is solved
for a given displacement surface. The inviscid pressure distribution is then imposed upon the boundary laver
equations and these equations are solved to predict the boundary layer development fncluding a new displace-
ment surface and the process is repeated. This iteration process may be diff{cult to converge under some
circumstances, for example when large regions of separation occur or when the flow is transonic. Furthermore,
assumptions may be required to treat the boundary layer equations in separated reglons and normal pressure
gradients must be assumed negligible in the viscous flow region. The drawbacks associated with boundary
layer strong interaction techniqur: have led some investigators to seek an alternate means of predicting air-
foll flow fields; one such alternate approach is a sulution of the full Navier-Stokes equations.

One early application of the Navier-Stokes analysis to the isolated airfoil flow problem was performed
by Mehta and Lavan (Ref. 1) who solved a stream function vorticity formulation of the laminar incompressible
Navier-Stokes equations to predict flow about an impulsively started afrfofl. Although this method required
considerable computer run time, its excellent results convincingly demonstrated the practical benefits which
could be realized from Navier-Stokes solutions. In another early investigation Lugt and Haussling (Ref. )
utilized an incompressible stream function-vorticity approach to investigate flow about an abruptly started
elliptical cylinder. More recent incompressible stream function-vorticity analyses have focused upon various
aspects of the airfoil flow field problem. For example, Mehta (Ref. 3) used a n'merical scheme considerably
more efficient than that of Ref. 1 to solve incompressible laminar flow about an afrfofl oscillating through
incidence regimes in which stall occurs. Wu and Sampath (Ref. 4) and Wu, Sampath and Sankar (Ref. %) applicd
the Wu-Thompson integro-differential formulation (Ref. 6) to both the impulsively started airfoll and the
oscillating airfoil problem. 1In a similar vein Kinney and Cielak (Refs. 7 and B) have investigated unsteady
airfoll flow flelds and Lugt and Hausaling (Ref. 9) have Investigated the time scale required to establish
the Joukowski condition in incompressible flow. Finally, Thompson and his caworkers (e.g. Ref. 10) have cal-
culated the flow about a varlety of airfoll shapes and Hodge and Stone (Ref. 11) have investipated «talled
alrfoils uaing an incompressaible primitive variable approach.
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Although arguments can be made in favor of one of these procedures versus the other, it is clear that
as a group these efforts have demonstrated that application of Navier-Stokes formulations to the airfoil
problems are both feasible and practical. However, these procedures all have been limited by assumptions
of (1) incompressibility and (1) laminar flow. In regard to the first of these items, the preceding analyses
all are incompressible and none except possibly that of Hodge and Stone can be extended readily to the com-
pressible case. In regard to the second limitation, all these analyses assume the flow to be laminar,
although presumably this assumption can be relieved in a straightforward manner if simple eddy viscosity and
forced transition concepts are accepted.

The problem of eliminating the incompressible assumption from the full Navier-Stokes equations for air-
foill flow fileld calculations has been the subje.i of a number of investigations. Verhoff (Ref. 12) applied
MacCormack's fully explicit method (Ref. 13) to the airfoil problem; however, since the procedure is fully
explicit, a small time step Is necessary to maintain numerical stability as a result of the locally refined
mesh in the boundary layer and long computer run times result. In this regard conditionally stable schemes
such as fully explicit schemes are not an optimum choice when mesh refinement is required for boundary layer
definition; in these schemes the maximum allowable time step size is limited by the spatial step size leading
to large run times. The time-step limitation problem, which is severe even in laminar flows, ‘s magnified
considerably in turbulent flows where a much finer spatial resolution is required in the boundary layer. On
the other hand, unconditionally stable schemes (iIn a linear sense) such as some of the implicit schemes do
not uffer from this characteristic. Both Deiwert's (Ref. 14) and Levy's (Ref. 15) analyses are based upon
MacCormack's more recent hybrid implicit-explicit-characteristics scheme (Ref. 16). By virtue of an enlarged
stability bound this new procedure is more efficient than the original MacCormack procedure (Ref. 13) for
airfoil calculations; however, it does present formidable coding problems. Implicit schemes, although more
complicated to code than explicit schemes, do not present the formidable coding problems associated with the
hybrid scheme. An implicit solution of the full Navier-Stokes equations has been developed by Gibeling,
Shamroth and Eiseman (Ref. 17) who applied the Briley-McDonald (Ref. 18) numerical technique to the airfoil
flow field. A similar approach has since been used by Sankar and Tassa (Ref. 19) to study an oscillating
airfoil in a compressible low Reynolds number fluid. In another approach Steger (Ref. 20) used the thin
shear layer equations in conjunction with the coordinate generation procedure of Thompson, Thames and
Mastin (Ref. 21) to predict laminar flow about an airfoil, The equations solved in Ref. 20 are a reduced
set of equations which retain only the viscous stress terms important in thin shear layer flows.

Although these various approaches have focused upon the compressible problem, they have been confined to
laminar flow whereas most flow fields of practical interest are turbulent. In principle a laminar procedure
can be extended to turbulent flow in a straight forward manner {f eddy viscosity and forced transition con-
cepts are accepted. However, in the general airfoil flow field the eddy viscosity assumption which relates
the eddy viscosity to the mean flow via an algebraic equation is expected to be inadequate. The eddy vis-
cosity assumption is particularly suspect in regions of strong pressure gradients and may be inappropriate
in regions of separated flow. In addition, an important component of the flow field development may be the
transition process since early transition may inhibit separation. 1In this regard a forced transition model,
where the transition location is uniquely related to some mean flow parameter such as a boundary layer in-
tegral thickness, may lead to serious errors in the predicted results. Thus, a more general turbulence
model is sought. Finally, the airfoil flow field contains regions of laminar, transitional and turbulent
flow and, therefore, any model used must be appropriate for all three flow regimes. Such a model has been
applied by Shamroth and Gibeling to the airfoil flow field problem (Ref. 22). The model used combines a
turbulence energy partial differential equation with an algebraic length scale equation, and in Ref. 22 the
model was used to predict airfoil flow fields at both zero and six degrees incidence. Although the predicted
results at these incidence angles were encouraging, they did not address the problem of the stalled airfoil
in a high Reynolds number turbulent flow. The present paper focuses upon the airfoil at high incidence
angle as it considers flow about an airfoil in ramping motion as well as flow about an airfoil at high
incidence.

ANALYSIS
The Coordinate System

The presence of bounding surfaces of a computational domain which do not fall upon coordinate lines pre-
sents significant difficulties for numerical techniques which solve the Navier-Stokes equatfons. If a bound-
ing surface (such as the alrfoil surface) does not coincide with a coordinate line, serious numerical errors
may arise in the application of boundary conditions and considerable effort mav be required to reduce these
errors to an acceptable level. Although this problem arises in both viscous and inviscid flows, it is more
severe in viscous flows where no-slip conditions on solid walls can combine with boundary condition trunca-
tion error to produce numerical solutions which are both qualitatively and quantitatively in error. Thus
coordinate systems are sought in which each no-slip surface of the specific problem falls on a coordinate
line. Such a svstem is termed a body-fitted coordinate svstem. Several approaches are available to form a
body-fitted coordinate system. Among the coordinate system candidates are conformal coordinate systems such
as that used by Mehta (Ref. 3), systems based upon solution of a Poisson equation such as those developed bv
Thompson and his coworkers (e.g. Ref. 21) or Haussling (Ref. 23) and a constructive svstem.

The approach used in the present effort {s a constructive approach {n which the required airfoil is by
definition a coordinate line and in which grid point placement {s specified by the user. The procedure was
developed originally for the fsolated afrfoil problem bv Gibeling, Shamroth and Fiseman (Ref. 17) and ex-
tended to the cascade by Efseman (Ref. 24); the application of the procedure to the airfoll problem is
described i{n Ref. 25. The coordinate svstem generated by the constructive process has several advantages.
The syvstem allows packing of grid points in regions where high grid resolution fs required. In general, the
high resolution regions are required near the airfoil surface (where the boundary laver is found) and in the
vicinity of the airfoll leading edge where rapld streamwlise changes are present. In addition, although the
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grid has a branch cut emanating from the airfoil trailing edge, metric data is continuous across the branch
cut. Furthermore, although the grid is nonorthogonal, the amount of nonorthogonality is not large. Finally,
as applied to the airfoil problem the metric data remains smooth from grid point to grid point. A sketch of
the coordinate system is shown in Fig. 1 and a fuller discussion is presented in Refs, 24 and 25.

Mean Flow Equations

A solution of the compressible, time-dependent Navier-Stokes equations in conjunction with a suitable
turbulence model would serve to predict the flow field for both laminar and turbulent flows. The form of the
equations expressed in the more common coordinate systems can be found in standard fluid dynamic texts and the
equations themselves have beea derived in geperal tensor form by McVitte (Ref. 26) for inviscid flow and by
Walkden (Ref. 27) for viscous flow.

One possible approach for solving the equations in general nonorthogonal form 1s the strong comservation
approach such as that used by Steger (Ref. 20) and Thomas and Lombard (Ref. 28). A second possible approach
solves a set of equations in which the metric coefficients do not appear within derivatives (quasilinear
form). In both cases the independent spatial variables are transformed from the Cartesian coordinates (x,y)
to a new set of coordinates (£,n) where

€= &(x,y,n

n*7nix,y,1)

T~f
(69
The stong conservation form of the equations then becomes
G
ow/D ,,."_[u“_&.,f_&]._’_{m,fﬂ;._'zz]
ar o€ o 0 i} ani o ] 0
L _0_[ Fiéx . 6§, )’ _.0__( Fimx . 6,ny )]
Re| 9§\ DO 0 M\ O [5)
(2)
where
0 &n, -,
P pu PV Y o
welpu), Fefput+p], - PRv el Ta] S Ty
pY puv py +p Ty Ty
(3)
The quasilinear form of the equations is expressed as
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It should be noted that in both approaches the dependent variables are the density, p, and the Cartesian
velocity components.

The problem of proper equation form in non-Cartesian spatial variables has been discussed by several
investigators (e.g., Refs. 22 and 28). If the strong conservation form of the equations is to be used then
care must be taken to evaluate the metric data by a method which is consistent with a control volume approach
(Ref. 28). Usually this requires numerical evaluation of the metric data even if an analytic functional
relationship for the transformation is available. The analytic representation of the metric data, &
etc., when combined with the strong conservation form of the equations leads to significant error
for as straightforward a calculation as low Reynolds number flow about a circular cylinder (Ref. 22). 1In a
private communication (Ref. 29) Thompson has suggested that the discrepancy shown in Ref. 22 would be de-
creased or eliminated by use of numerically evaluated metrfc coefficients. Thus in the case of a time-
independent Jacoblan, either approach can be expected to yleld satisfactory results. The quasilinear form
was used In the present effort.
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The Turbulence Model

Since the present effort addresses the problem of turbulent flow, it is necessary to specify a tur-
bulence model suitable for this problem. One complicating factor in hypothesizing and applying a turbulence
model for the isolated airfoil flow field is that the flow is not turbulent everywhere. Far from the air-
foil the flow is inviscid and irrotational. In addition, even near the airfoil surface the flow is laminar
in the vicinity of the airfoil leading edge. Thus any proposed model must be capable of dealing with
laminar, transitional and turbulent flow. Although a turbulent calculation could be obtained by assuming
an eddy viscosity model, eddy viscosity (or equilibrium mixing length) models are not appropriate for flows
containing large separated regions (e.g. Ref. 30)., 1In addition, if an eddy viscosity model were to be used,
then the transition location must be specified and the various transition location correlations may not be
appropriate for the very strong pressure gradients found in flow about airfoils at incidence.

The approach taken in the present effort assumes an isotropic turbulent viscosity, uT, relating the
Reynolds stress tensor to mean flow gradients.

_ du; du-) 2 du
_oUTG . _ ). =k
P FTK"‘j + 3, 8']]
(5)

The turbulent viscosity is related to the turbulence energy, k, and the turbulence energy dissipation rate,
€, via the Prandtl-Kolmogorov constituti e equation

My = pCsz/e fly/8)
(6)

where Cu is a turbulence structural coefficient and f(y/8) is a factor used to ensure small turbulent vis-

cosities at locations far from the airfoil. The function f(y/8) 1is taken as

f(y/8) = 10 y<8

f(y/8) = ¢ ~My/3-10) y>8 '

n
Tie present approach utilizes the turbulence energy equation, an algebraic length
scale equation and a functional form for Cu in which Cu is dependent upon turbulence Keynolds number. When

where b is a constant.

this model is used in conjunction with the mean flow equations, both the mean flow and turbulent viscosity )
emerge from the solution.

The turbulence energy equation has been given by many investigators (e.g. Ref. 31) and can be written as

1
dpk dpuk dpuk [ ok
ot 'T(F*F_T>a__ ]
ax ay Xy ok Xy
te 1z
( auy; auk) du; ek ok
+ — + 55— - pE - 25— S
T
ax, oxy / 0xy 6xi ax]

(8) A

The turbulence energy dissipation rate e, is related to a length scale £, the turbulence energv k, and the .
structural coefficient Cu via the equation T
|
372 i
e K !

» |3
(9)
The length scale is taken as a minimum value of two lengths; a wall length and a wake length. The
wall length is assumed to be given by a conventional wall damped Prandtl's mixing length, via
+*
yg /2T

tewyfi-e J |
o 1;
with a maximum value of 0.09 8. 1In Eq. (10) x i{s the von Karman constant taken as 0.43, y+ is the dimension- ;

less distance from the airfoil surface and & is the boundary layer thickness. The wake length scale was taken |

as 2=.055 where § is the wake thickness. 1In regions of separated flow the length scale is modified so that '

22¢min where .
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where h {a the local height of the separated regfon. l
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Finally, the coefficient Cu is evaluated following the procedure of McDonald and his coworkers (Refs.

32-34) which has been very successful in predicting boundary layers in forward and reverse transition. This
approach relates Cu to a new coefficient a; where

1
e
0, *C, /2
(12)
and 8 is taken as a function of a turbulence Reynolds number, Rr’ of the form
H(Ry) f(R,)
°|'°o[ IOO]/ I.O+6.660°[—|?0—--;
13)
where
a, = .0It5
oz
f(R,) = I00. R R <1
f(R,) "68 IR, +6143 R, 240
14

and a cubic curve is fit for values of RT between 1 and 40.

It should be noted that with the current turbulence model the turbulence equations are solved in conjunc-
tion with the mean flow equations throughout the flow field. The analysis predicts some regions having a tur-
bulent viscosity much larger than the laminar viscosity (turbulent regions), other regions having a turbulent
viscosity on the order of the laminar viscosity (transitional regions), and finally, some regions having tur-
bulent viscosity less than the laminar viscosity (laminar regions). No transition location is input into the
analysis.

The Numerical Procedure

The numerical procedure used to solve the governing equations is a consistently split linearized block
implicit scheme originally developed by Briley and McDonald (Ref. 18) which is embodied in a computer code
termed MINT, an acronym for Multi~dimensional Implicit Nonlinear Time-dependent. The basic algorithm was
further developed and applied to both laminar and turbulent flows in a variety of studies (e.g. Refs. 22,
35, 36). A recent comprehensive description of the method is given by Briley and McDonald in Ref. 37.

The method can be outlined as follows: the governing equations are replaced by an implicit time dif-
ference approximation, optionally a backward difference or Crank-Nicolson scheme; the backward difference
approach was used in the present calculations. Terms involving nonlinearities at the implicit time level are
linearized by Taylor expansion about the solution at the known time level, and spatial difference approxima-
tions are introduced. The result is a system of multidimensional coupled (but linear) difference equations
for the dependent variables at the unknown or implicit time level. To solve these difference equations, the
Douglas-Gunn (Ref. 38) procedure for generating alternating-direction implicit (ADI) schemes as perturbations
of fundamental implicit difference schemes is introduced in its natural extension to systems of partial dif-
ferential equations. This technique leads to systems of coupled linear difference equations having narrow
block-banded matrix structnures which can be solved efficiently by standard block-elimination methods. Details
of the procedure are given in Refs. 18, 22 and 37.

Boundary Conditions

An important component of the airfoil analysis concerns specification of boundary conditions. The

present analysis requires boundary conditions to be set along the lines E=£min, £=Emax’ n=nm1n and

" Nax’ With the coordinate system sketched in Fig. 1, £=Cmin (line EN) and &=€max (1ine DF) are downstream

boundaries. In the original formulation (Refs. 17 and 22) first derivatives of all quantities were set to
zero along these lines and function conditions for all variables were set on the outer boundary HINKF. On
the airfoll surface no-slip conditions were used in conjunction with an inviscid momentum equation (which for
no motion reduced to zero pressure gradient) as boundary conditions and either the turbulence energy or its
derivative was specified at the surface. The results presented in Refs. 17 and 22 were obtained with these
boundary conditions. More recently the bnundary conditions were modified based upon a suggestion by Brilev
and McDonald (Ref. 36). Following this suggestion, static pressure i{s specified along with velocity deriva-
tives along the downstream boundaries (lines EH and DF) and along the aft portion of the outer boundary

(line segments HJ and KF). Total pressure, angle of incidence and the densfty derfvative are specifled along
the outer boundarv segment JNK. This approach was used successfully by Shamroth, Cibeling and McDonald

(Ref. 39) in a Navier-Stokes solution to the cascade problem and has since bec {ncorporated into the airfojl

N
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analysis. The ramp motion and nineteen degree incidence results presented here were obtained with this
latter set of boundary conditions.

Grid Spacing and Artificial Viscosity

! The solution of the Navier~Stokes equations
e for an isolated airfoil at high Reynolds number
- presents a formidable grid resolution problem.
If the regions having rapid changes in dependent
A variables are to be adequately resolved and if the
outer boundary is to be placed in a region only
modestly perturbed by the airfoil flow field,
: then considerable grid stretching must be used.
D In the present calculations:the grid was very
-+ highly resolved in the vicinity of the airfoil
---- — where the first grid point was placed 0.00002
_— ¢ chords from the airfoil surface. 1In contrast, the
grid spacing in the outer region of the flow was
of the order of 0.6 chords. Similarly grid points
were concentrated in the airloil leading edge
region. Hence, high resolution was obtained in
™ F regions where the dependent variables changed
rapidly.

Fiyure 1. - Sketoh of coerdinate svstem, . . 3
A second problem which arises in high Reynolds

number flow is the spurious oscillations associ-
ated with the so-called "cell Reynolds number
problem". In the present approach these oscilla-
tions were damped by adding a normal diffusion term to the equations in which the diffusive coefficient
was set bv the criterion that the cell Reynolds number be less than or equal to 2. The cell Reynolds a

aumber is detfined as wuy Axi/“a where uy is the velocity component in the ith direction and Axi is the grid

spacing in the lth direction. [If the cell Revnolds number at a given location is less than 2, no artificial
diffusion term {s added at that location. In the present calculations the cell Reynolds number in the
direction normal to the airfoll surface is less than two in the vicinity of the airfoil and, therefore, no
artificial diffusion term need be added to the momenta equations in this region. Therefore, the major
diffusion process in the calculation is not altered by this artificial damping term.

RESULTS
Low Incidence Cases

A preliminary assessment of the code was made by calculating flow about a NACA0O12 airfoil at zero degrees
incidence. The Reynolds number for this case was 10° and the Mach number was 0.147. Two calculations were
made: the first calculation used a coordinate grid of 41x30 points to calculate flow about one-half the
symmetric airfoil flow field. The second calculation did not assume symmetry and utilized a grid which gives
better resolution in the vicinity of the airfoil. The grid in this case consisted of 81 pseudo-radial lines
and 39 pseudo-azimuthal lines with the first pseudo-radial grid point located 0.00002 chords from the airfoil
surface and the last pseudo-radial grid point (the outer boundary) located approximately four chords from the
airfoil surface. The low incidence calculations were initiated from an approximate inviscid solution with
a1 sinple overwrite near the airfoil surface bringing the flow field to a no-slip condition. Convergence was
obtained in approximately 150 time steps.

The predicted pressure distribution for the full airfoil calculation along with the results of Mehta
(Ref. 3) and the data of Gregory and O'Reilly (Ref. 40) are shown in Fig. 2. As can be seen in Fig. 2, the
results of the present calculation are in good agreement with the data except in the aft region of the air-
foil. In this region the difference between Mehta's results and the data may result from Mehta's analvsis
(Ref. 3) being laminar and the data being taken in the turbulent regime. A laminar boundarv layer is more
susceptible to separation than a turbulent one and indeed, the prediction of Mehta does show separation up-
stream of the trailing edge whereas the data show the boundary laver to remain attached over the entire
suction surface. Therefore, the discrepancy between the data of Ref.40 and the analvsis of Mehta could be
the result of the computed laminar boundary layer separating and modifving the trailing edge pressure dis-
tribution. Likewise, although the present prediction includes a turbulence model, the grid resolution in
the vicinity of the airfoil surface still may not be sufficiently fine; consequently a discrepancy in the
predicted surface pressure distribution may result. This possibility is given weight in Ref. 22 where an
improvement in the aft region surface pressure distribution with Increased boundarv laver resolution is
noted.

Following the zero incidence calculation attention was focused upon prediction of the airfoil flow
field at six degrees incidence. Once again the Reynolds number was 106 and the Mach number was 0.147. The
predicted pressure distribution is compared with the data of Gregory and 0O'Reilly (Ref. 40) taken for a
Reynolds number 2.8x106 in Fig. 3. As shown in Fig. 3 the major discrepancy between data and analvtic
prediction occurs in the leading edge region where the analvsis fails to predict the correct suction peak.
This discrepancy is at least partfally a result of grid resolution. The strong favorable pressure gpradient
region leading to the suction peak occurs in a veryv limited region of the flow ficld between 05x/¢30.01,
This region extends over only one percent of the airfoil chord and onlv one tenth of one percent of the
entire grid extent. In Interest of computer run time economy the grid was limited to 81x30 points (a total
of 2430 grid points) and even though points were packed into the leading edge region, onlv four pscudo-
radial lines were placed within the favorable pressure gradient repifon.  Thus even with a total of 2430 grid
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points and significant leading edge grid pack-
ing, resolution i{n this repion was marginal. It F
is expected that increased resolution would result
in better agreement with the data.

In regard to other aspects of the flow fleld
the predicted suction surface traneition location
occurs at x/c =108, The datu of uregory and
0'Reilly gives transition at x/c¢ = 0.04 for a
Reynolds number of 2.8x10° and x'c = (.08 for a
Reynolds number of 1.46x10%.  Thus the predicted
transition locatfon is in excellent agreement with
data. The transition location predicted on the
pressure surface is x/c = 0.30; thus the pressure
surface boundary layer remains laminar considerably
longer than does the suction surface boundary
layer, as expected. In addition, as shown indet '{l
in Ref. 22, the analysis gives many of the experi-
mentally observed flow phenomena including rapid
acceleration around the leading edge, different
development of pressure and suction surface boundary
tavers and different development of pressure and
suction surface turbulence energy fielas.

Airfoil in Ramp Motion

the NACA0Qi2
case the

The next case considered is
airfoil in ramp motion. In this
Reynolds number was taken as 106 and the Mach
number as 0.147. A solution was allowed to
develop for an airfoil at six degrees incidence
and when the {low approached steady state the
incidence was changed from 6 to 19 degrees via
the equation

a=a0+(Ag) (1.0-cos w(t-t )] t<t< (e +M) /uw ' ;

where
a =6%, 8a=13°, w=5, £ =1.20
o

For t>(t0+H)/w, the incidence was held constant at
a=a_+Aa
[

The results of the calculation during the B
ramping period are presented in Figs. 4 and 5.
Figure 4 shows the pressure coefficient distri-
bution at various Incidence angles. At six
degrees the pressure distribution is typical of
that found for a steady airfoil; the suction peak
has been smeared and diminished due to insufficient
streamwise resolution as discussed previously. As
the incidence changes from 6 to 9 degrees the
rapid motion, particularly in the trailing edge
region, causes high pressure to appear on the
lower side of the airfoil and low pressures to
appear on the upper side. It should be noted that
the velocity of the airfoil trailing edge relative
to the inertial frame reaches a maximum value of
0.4 U_ and, therefore, large deviations from the

steady solution are to be expected. The situation
becomes more pronounced at 12.5 degrees; however,
by 14 degrees a tendency to return to the usual
static alrfoll pressure distribution appears.
Finally, at the last incidence angle, 19 degrees,
(t=1.93), the basic pressure distribution is &p-
proaching the type expected for a steady airfoll
with no evidence of stall. The location of the
separation points is presented in Fig. 5. At the
initiation of the ramp motion no scparated flow
was present; however, separation appeared scon
after the ramp motion began and the tralling edge
separation point moves continuously upstream as
shown In the figure. During this process the 1
separated region remains very thin and has only a

minimum viscous displacement effect upon the

outer nominally inviscid flow.
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Figure 5. - Location of separation points
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Location of
separation

After cessation of the motion the flow con-
tinues to develop and the pressure distribution
undergoes radical changes as shown in Figs. 6 and
7. The major changes occur in the airfoil leading
edge region where the suction peak appearing on
the airfoil upper surface continues to drop in
magnitude from a value of approximately 6.8 at
t=1.83 (just after the cessation of airfoil motion)
to a value of approximately 1.2 at t=5.38. A unit
increment in t represents the time required for a
particle moving at free stream velocity to tra-
verse a distance of one chord. The drop in the
suction peak and the accompanying decrease in
airfoil 1ift exhibited in Figs. 4, 6 and 7 are
consistent with the development of airfoil stall.
The calculation also predicts a minor movement of
the airfoil front stagnation point towards the
geometric leading edge. In addition to the loss
of 1ift, the analysis predicts a pressure pertur-
bation to initiate at t = 3.7 (see Fig. 6) and
then move downstream at a speed of approximately
36% free stream velocity. Although quantitative
comparisons between this prediction and data are
not available, the predicted flow seems physically
realistic.

The Stalled Airfoil -
19 Degrees Incidence

Upon reaching 19 degrees, the motion ceased
and as discussed in the previous section the air-
foil flow field was allowed to develop at 19°.

A comparison of the calculated results and the
measured dzta of Young, Meyers and Hoad (Ref. 41)
for an airfoil at 19.4° incidence is presented in
Fig. 8. Figure 8 compares the predicted and
measured values of the zero velocity. line. Below
this line the flow is directed toward the leading
edge and above this line the flow is directed
toward the trailing edge. The predicted values
are shown as a function of time. During the
ramping process the separated region present was
too thin to be shown on the scale of Fig. 8 and
the results shown are at times well past the ces-
sation of the ramping motion which ceases at

t = 1.9. The results presented in Fig. 8 show
the growth of the backflow velocity zone with time,
and at the latter times shown the backflow zone
position has converged over most of the airfoil
as continued growth is confined to reglons in the
vicinity of the airfoil trailing edge. As can be
seen the comparison between predicted zone location
and that measured by Young, Mevers and Hoad

(Ref. 41) is -~ery encouraging.

A vector plot of the velocity field as
measured by Young, Meyers and Hoad is shown in
Fig. 9. These results show a large separated
region to be present over the airfoil upper sur-
face with separation initiating in the immediate
vicinity of the airfoil leading edge. A vortex
appears to be centered at roughly the eightv per-
cent chord location. The data (not shown on this
figure) indicated that the wake closure point was
located well downstream of the ailrfoil trailing
edge and above the airfoill suction surface.
Another feature is the appearance of a very
strong shear layer in the alrfoll trailing edge
vicinity where the suction surface and pressure
surface flow fields meet. Finally, the calculated

Pressure coefficient, Cp

results indicate that flow is entrained into the
recirculation region from two sources. One source
is the flow region above the recirculation zone.

24 | L | [ S— L Lt ]
0 0.1 0.2 0.3 0. 2.9 0.6 0.7 0.8 0.9
Streamwise location. x/c
Figure 6. - Pressure distribution for 19° airfoil

after cessation of airfoil motion
(airfoil motion ceases at T=1.83).

1.0 The second source is the flow which originates on
the airfoil pressure surface, then passes into
the mixing layer which forms at the airfoil trail-
ing edge and finally is entrained into the re-
circulation region from below.
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Predicted velocity vector fields are shown in Figs. 10 and 11. These figures represent the flow field
at times t) and t) At where At is the time required for a free stream particle to move a distance of one
chord length. As can be seen in the figures, the analysis predicts the formation of a large separation
region which initiates verv near the airfoil leading edge; this is in agreement with the data shown in Fig. 8.
Other similarities between data and analytic prediction can be found in the vortex formation and in the strong
shear layer which appears at the airfoil trailing edge. In addition, the calculated flow field was charac-
terized by significant flow unsteadiness in the leading edge region which limited the permissible maximum
time step. This characteristic of unsteady leading edge flow also appeared in the experimental study.

In regard to other features the analysis showed the vortex to be moving downstream at a velocity of ap-
proximately 0.2 U_; however, no regular shedding pattern was observed in the experiment. Some comments on
this are in order. First of all the calculation has not vet been run long enough to determine if a regular
shedding will result although the first vortex being formed definitely appears to be in the process of shed-
ding. Secondly, although the experiment did not detect any regular shedding pattern, it is possible that an
irregular shedding did occur. Finally, the turbulence model used may cause a spurious prediction of shedding.

P _T=4.43 A second feature to be considered is the
T=5.03 backflow velocity. The maximum reversed flow
: velocity measured in the experiment was of the
—--T=5.38 order 0.25 U_. The maximum backflow values
shown in Fig. 10 are approximately 0.50 U_.
Although this value is high, modifications

-8.0

o in the choice of the separated zone turbulence
Y _6.0! length scale could decrease this quantity. In
o T‘ calculations performed during this study modi-
S | fying this length scale significantly changed
= =40, the backflow velocity without significantly
5 r~ changing other flow features. Finally, it should
b ) 0&_ be noted that the length of the separated zone
U . N

2 N T T T~ s is still increasing as the wake reattachment

v = - - -:?::\\\ _ point is continuing to move downstream (see

] 0 e . \‘h“‘*“;; Fig. 8). As the separated zone becomes longer,
A iK :::::: it is possible that the predicted backflow
E 2.0 | | | | L L | | J velocity will decrease.

0 0.1 o. 3 0.4 0. .6 0.7 0. 0.9 1.
2 e >0 8 0 Calculated vorticity contours at the two

Streamwise location, x/c times are shown in Figs. 12 and 13. The vor-
_ . . . o . X ticity contours presented correspond to normal-
Figure 7. P;essure dls§r1bu;10§ §o§119 ilrfoll ized values of -100, -25, 10, -5, 0, 5, 10,
? ;e; i;ssat'on of airio TTit8§§ 25, 100. In both figures the vorticity on the
airfell motion ceases at i=l. : ailrfoil pressure surface is confined to the

boundary layer whereas that on the suction sur-
faces occurs in two locations. One region of

[¢) Data of Young, Meyers and Hoad vorticity is located in the wall layer close to
(NASA Technical Paper 1266 the airfoil surface; the second region is a
AVRADCOM Technical Report 78-50) 'tongue-like' region extending from the vicinity
Tf“'o of the airfoil leading edge into the 'free

- ;;g:g stream'. This contour line represented by the
e —— T=5.4 value 5 is a region of a local maximum vorticity.
-~ T=5.6 As can be seen by comparing Figs. 12 and 13, the
_— - T=5.7 tongue-like region of vorticity appears to break
— T=5.9 off and be convected downstream as a local con-

centrated region (See Fig. 13). This may be in-
terpreted as the initiation of a shed vortex.

A third area of high vorticity concentration
occurs at the airfoil trailing edge where the
sharp mixing layer is present. The two contour
lines in each figure which are upstream of the
airfoil are the locus of zero vorticity and
these lines separate regilons of very low posi-
tive and very low negative vorticity present in
the calculation.

A closer examination of the predicted flow
field shows the emergence of an inner counter-
Figure 8. - Development of baCRflot velocity clockwise rotating separation zone which occurs
zone for airfoil at 19°.
under the main suction surface separation zone.
As can be seen in Figs. 9-11, the major separated
region is a large region of clockwise rotation. However, a detailed vector plot of the mid-chord portion of
the suction surface presented in Fig. 14 shows a secondary separation region of counter-clockwise rotation
developing very close to the surface. This region is characterized by having flow in the immediate vicinity
of the airfoil surface directed in the downstream direction and the region is completely embedded within the
primary separation zone. A final velocity vector plot is shown in Fig. 15 which details the leading edge
region. The stagnation point location, the flow separation at the stagnation point, the acceleration about
the leading edge and the initiation of flow separation are all shown clearly.

Plots of static pressure contours are presented in Figs, 16 and 17. The results correspond to phvsical

times tl and t1+At1 where Atl i3 the time required for a free stream particle to travel one chord in distance;

these (tems are identical to those used for the velocity vector plots, Figs. 10 and 11, and the vorticity
contour plots, Figs. 12 and 13. The contours plotted represent values of (p—P“)/(Pw~pa) where p i8 the

local static pressure, P, is the undisturbed free stream static pressure and p: is the undisturbed free stream
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Figure 9. - Experimentally measured velocity
field, a= 19.4°.
Meyers and Hoad)

(Data of Young,

Figure 10. - Computed velocity vector field,
o =19°, t = t,.

Figure 11. - Computed velocity vector field,
a = 19°, t = £, +At, At = 1.0.

5.000

Figure 12. - Vorticity contours,
a=19°, t = £

Figure 13. - Vorticity contours, a = 19°,

t = tl + At, At = 1.0.
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Figure 14. - Velocity vector plot, detail of
suction surface, a = 19°.




Figure 15. - Velocity vector plot, detail of
leading edge region, a

Figure 16. -~ Static pressure contours,

stagnation pressure. The two pressure contours
are remarkably alike with the major difference
being a convection of the pressure field in the
downstream direction. The convection velocity is
approximately 0.25 U_. Contour lines of (p~p_)/

(p:-p_) are plotted for values 1.0, .8, .5, .3,

0, ~.3, -.5, -.8, -1.0. The increase in static
pressure as the flow approaches the front stag-
nation point is clearly shown in both figures. 1In
addition no sharp suction peak occurs on the air-
foil upper surface. Rather a gradual pressure
drop occurs over the front portion of the suction
surface and this is followed hy a pressure rise.
The pressure field 1s consistent with a stalled
airfoil.

Measurements of the resultant standard devia-
tion of velocity as given by Young, Meyers and
Hoad (Ref. 41) are presented in Fig. 18. The
results represent lines of constant (u'2/U£+v'2/
Ui)ll2 and include all non-steady contributions;
i.e., contributions due to large scale unsteadi~
ness as well as turbulence. Furthermore, only
the contributions of two fluctuating velocity
components were measured, Finally, the free
stream value of the resultant standard deviation
measured in the tunnel is approximately 0.04.

1f it is assumed w'=u'=av' then the maximum value
of k=(u'2+v'2+w'2)/2ui is approximately equal to

0.09. As shown in Fig. 18 measured regions of
high resultant standard deviation occur in the
vicinity of the free mixing region; a second
region of high resultant standard deviation values
occurs at the airfoil trailing edge. Predicted
values of k are shown in the contour plot of

Fig. 19, The contour line values plotted are
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.
The locus of the line having the maximum turbulence
energy at each streamwise station 1s also shown

in Fig. 19. It should be noted that this line has
the same general shape as that experimentally
measured; it is nearly parallel to the free stream
over most of the airfoil and then turns downward
at a streamwise location in the vicinity of the
trailing edge. The magnitude of k on this line
varies between 0.02 and 0.03; however, the measured
velocity resultant standard deviation includes all
unsteadiness and the calculation includes only
that unsteadiness associated with turbulence.
Furthermore, the measured free stream resultant
standard deviation was 0.04 and the free stream
turbulence level used in the calculation was
0.001. Therefore, the measured data and pre-
dicted values are consistent and even appear to be
in reasonable agreement.

CONCLUSION

The present paper describes the application of
a time~dependent, compressible Navier-Stokes cal-
culation procedure to the isolated airfoil problem.
The analysis solves the full Navier-Stokes equa-
tions 1in conjunction with a turbulence energy
model to predict the flow field development.
When applied to airfoils at relatively low inci-
dence, solutions obtained within 150 time steps
showed good general agreement with data and exhi-
bited many of the experimentally observed flow
phenomena. Discrepancies between the calculated
results and data appear due primarily to grid
resolution and turbulence modeling effects. The
analysis also was applied to ramp motion between
6 and 19 degrees and to an airfoil held at 19
degrees incidence. Although no comparisons were
made with data for the ramp motion case, the com~
puted flow field appears to be physically realis-
tic. The 19 degree case was compared with experi-
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Figure 17. - Static pressure contours,
u-l9°,t=t1"‘At.
At = 1.0,

Locus of maximum value *Fé;gi

Figure 18. - Measured resultant standard
deviation of velocity (Young,
Meyers and Hoad).

Locus of maximum value

——— - ——

Figure 19. - Turbulence energy contours,
a = 19°,

mental data and the results were very en-
couraging as the calculated flow field was in
good qualitative agreement with the measure-
ments. In particular, both the calculation
and data showed the appearance of a large
separated region initiating in the immediate
vicinity of the airfoil leading edge, leading
edge unsteadiness, a strong shear region at
the airfoll trailing edge and the same general
level and location of the maximum turbulence
energy region. In addition, it should be
noted that the calculated wake closure point
was still moving downstream and further develop-
ment of the calculation may lead to improved
agreement.
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tXPERIMENTAL STUDIES OF SCALE EFFECTS ON
OSCILLATING AIRFOILS AT TRANSONIC SPEEDS

Sanford S. Davis
Aerdodynamic Research Branch
Rerodynamics Division
Ames Research Center, NASA
Moffett Field, California 94035, U.S.A.

SUMMARY

) Experimental data are presented on the effect of Reynolds number on unsteady pressures induced by the
pitching motion of an oscillating airfoil. Scale effects are discussed with reference to a conventional
airfoil (NACA 64A010) and a supercritical airfoil (NLR 7301) at mean-flow conditions that support both weak
and strong shock waves. During the experiment the Reynolds number was varied from 3 x 108 to 12 = 10% at
a Mach number and incidence necessary to induce the required flow. Both fundamental frequency and complete
time history data are presented over the range of reduced frequencies that is important in aercelastic
gpplications. The experimenta) data show that viscous effects are important in the case of the supercrit-
ical airfoil at all flow conditions and in the case of the conventional airfoil under strong shock-wave
conditions. Some frequency-dependent viscous effects were also observed.

LIST OF SYMBOLS

Cp static pressure coefficient, Re chord Reynolds number
(P - PINF)/QINF
} . T period of the motion, sec
Lp(x,t) instantaneous pressure coefficient
t time, sec
Cp u(x) first harmonic complex amplitude of
* the unsteady pressure, per radian U free-stream velocity, m/sec
c chord of wing, 0.5 m X distance along airfoil, m
exp(-iwt) cos wt - i sin ot a complex amplitude of the unsteady angle
of attack
f frequency, Hz, fT =1
@ mean angle of attack
Iq(t) qth moment of the instantaneous
pressure coefficient a(t) instantaneous angle of attack
Io,a first harmonic compiex amplitude of w radian frequency, 1/sec

the upper surface loading, per radian
Complex notations:

k reduced frequency, wc/2U

Im{ ) imaginary part of [ }
M free-stream Mach number

Mag[ ] magnitude of [ )
P(x,t) instantaneous pressure, N/m?

Ph{ 1 phase of [ |, deg
PINF free-stream static pressure, N/m?

Re[ ] real part of [ ]
QINF free-stream dynamic pressure, N/m?

1. INTRODUCTION

Scale effects have been considered an important element in aerodynamics research for many years. In
early experimental studies of steady transonic flows in the 1940s, the Reynolds number, as it affected the
state of the boundary layer approaching a shock wave, was recognized as a critical parameter (Ref. 1). In
the 1950s the boundary-layer-trip technique was developed to simulate high Reynolds number flows in the
wind tunnel (Ref. 2). With the development of thicker and more highly loaded airfoil sections in the 1960s,
more complicated scale effects due to local flow separations were discovered (Ref. 3}, and extensive experi-
mental programs were developed to quantify these viscous interactions (Refs. 4, 5). Even today, a con-
certed effort is under way to understand the effect of Reynolds number on modern supercritical airfoil
sections (see Gessow's introductory remarks to a recent NASA conference, Ref. 6).

In the field of unsteady transonic aerodynamics, the scale effect has hardly been seriously considered,
efther experimentally or analytically. In the original chapter on boundary-layer effects in the AGARD
Manual or Aeroelasticity (Ref. 7), the authors of that work found no studies that considered the coupling
of a boundary layer to the unsteady-pressure field. In Jones' review of unsteady aerodynamics in 1963
(Ref. 8), the need for such research was reiterated; current review articles continue to cite the need for
such research (Refs. 9, 10).

Recently, numerical solutions to the Navier-Stokes equations were applied to unsteady transonic flow
problems (Refs. 11-13). They were used to model passively excited oscillations where good qualitative
agreement with experiment was demonstrated. Computations for a forced oscillation problem, including
viscous effects, were reported in Ref. 14. A1l these codes, mostly concerned with mild transonic inter-
actions where simple turbulence models suffice, are Timited by long executing times, even on powerful com-
puters. Future applications of the numerical method, guided by experimental data, better turbulence models,
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and the availability of faster computers will certainly contribute to our understandinj of scale effects on
unsteady aerodynamic response.

Experimentally, Tijdeman (Ref. 15) analyzed some of the NLR oscillatory data for scale effect. He
accounted for the boundary layer by including the displacement effect in the calculated pressure distri-
butions. For subsonic flows, his results show that thickness and boundary-layer effects tend to counteract
one another in the sense that measured unsteady-pressure distributions tend to follow classical flat-plate
theory. For transonic flows, his analysis showed that the boundary layer had a profound effect on both
the mean shock-wave Jocation and the characteriztic unsteady-pressure peak at the mean shock locations.
Tijdeman showed that inviscid theories are inadequate for predicting unsteady transonic flows, but his
data, measured in an atmospheric wind tunnel, did not address the effect of Reynolds number directly.
Similar comparisons and conclusions were reported by Grenon et al. (Ref. 16) in their oscillating flap
studies.

In this paper experimental data from tests in the 11- by 11-Foot Transonic Wind Tunnel at -Ames
Research Center are used to illustrate the importance of scale effects on the unsteady aerodynamics of
both conventional and supercritical airfoils. First, the integrated upper-surface unsteady-pressure dis-
tributions are used to assess global variations (Sec. 3.1). More detailed information is presented with
the aid of the fundamental frequency pressure data (Sec. 3.2), and ultimately with the instantaneous time
histories (Sec. 3.3). Many of the effects involve complex unsteady viscous interactions that are not yet
completely understood nor easily modeled; as a result. theoretical comparisons will be restricted to
linearized, inviscid, unsteady aerodynamic theory.

2. EXPERIMENTAL APPARATUS AND TEST CONDITIONS

The experiment was conducted during the early part of 1978. The 11- by 11-Foot Transonic Wind Tunnel
is a continuous flow facility that can be pressurized between 50 and 200 kPa for inaependent control of Mach
and Reynolds number. The test wings — an NACA 64A010 conver.cional airfoil section and an NLR 7301 super-
critical airfoil section — were mounted between two floor-to-ceiling splitter plates installed in the
3.35- by 3.35-m slotted test section. The 0.5-m-chord by 1.35-m-span wings were fabricated from a4 light-
weight graphite-epoxy composite material. A sketch of the Lest apparatus 1s shown in Fig. ], and a complete
description of the test hardware, motion generators, and models is given 1n Ref. 17. Tne chord Reynolds
number range was approximately 3 « 10 to 12 . 10%. No boundary-layer trips were used 1n this test.

The data reported in this paper form a small portion of the extensive Jdata base that was .u'le.ted
during the test. Some of the data were previously reported 1n Refs ¥ and 19, and a 415cuss10n 4t the '
method used to acquire and validate the unsteady data is presented 1n Ref 20 The Jata subse! relating ty
scale effects is presented in Table 1. Two broad categories dre represented  cunditions | to 4 represent
attached flows and conditions & and 5 are examples of separated flows As wil' be shown presenti,, both
classes of flows can exhibit scale effects, with the separated flow data 1ndr ating 4 more erratt  Lehayior

3. PRESENTATION QF DATA AND DISCUSSION
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yith Reynolds number when compared with the attached-flow data. Due to this complex behavior, further
information must be gleaned from the unsteady-pressure data itself.

3.2 Unsteady-Pressure Distributions

The first harmonic complex unsteady pressure is defined by the following expression:
C (x) = i (1 C (x,t)exp{-iwt)dt
a Pra T Jo pt¥s Xp{-lw

An analysis of the in-phase and out-of-phase (Re and Im) component of Cp,a Will show that the distribu-

tions for attached-flow conditions are qualitatively consistent with the simplest theoretical models that

include viscous effects by consideration of the boundary-layer displacement. The separated flow, however,
shows important unsteady effects that are attributed to both the steady-flow scale effect and the unsteady
viscous response of the boundary layer.

The data for attached-flow conditions 1-3 are shown in Figs. 3-5, respectively. For each frequency,
the mean, in-phase, and out-of-phase components of the unsteady-pressure distribution are presented.
Figure 3 shows that the subsonic flow (a = 0, M = 0.5) has minimal scale effect. The only difference
between Reynolds numbers is the siight dip in the in-phase component at wing station x/c = 0.5. Subli-
mation photographs showed that transition occurred at this location at Re = 2.5 x 10%; at Re = 10 x 108,
transition was very close to the leading edge. In any event, the state of the boundary layer has no effect
on the unsteady-pressure distribution, which assumes the classical shape that was predicted many years ago
from linearized subsonic theory. The same airfoil at transonic speeds in Fig. 4 (a = 0, M = 0.8) shows
that scale effect is also quite minimal. Aside from a slight upwind movement of the mean shock position
that affects the chordwise location of the unsteady-pressure peak, the effect is minor. Sublimation photo-
graphs at this condition showed that transition occurs at the shock wave at Re = 3.3 x 10%; while leading-
edge transition was observed at Re = 12.6 x 106, The last attached flow condition, shown in Fig. 5 for
the NLR 7301 supercritical airfoil, exhibits more severe scale effects. Although the region of rapid com-
pression (probably not a shock wave at this supercritical design cond‘tion) moves only slightly, the
unsteady pressure is quite different at the three Reynolds numbers indicated. These differences are prob-
ably due to the large extent of supercritical flow on the upper surface that is affected by the change in
effective airfoil shape due to the unsteady boundary-layer growth. The difficulty in distinguishing dif-
ferences by examining the integrated values shown previously is obvious because of the varying contribution
to the loads from positive and negative lobes of the unsteady pressures.

The data for shock-induced separation are more difficult to analyze. These data are shown in Figs. 6
and 7. Figure 6 shows the large effect of Reynolds number for the NACA 64A010 at o = 4°, M = C.8 (condi-
tion 4 in Table 1). The mean flow differs not so much in the shock position as in the extent of separated
flow downstream of the shock. This separated flow has a marked effect on the in-phase unsteady pressure at
the shock wave and beyond. The out-of-phase pressures are not very much different at the two Reynolds num-
bers shown. The mechanisms whereby the in-phase pressures are more sensitive than the out-cf-phase pres-
sures have yet to be explained. Figure 7 shows similar data for the supercritical airfoil at a Mach number
beyond its design point (condition 5 in Table 1). The mean flow differs from the previous case in the
absence of any discernible training-edge pressure recovery downstream of the shock wave. This indicates
1 more severe flow separation. The data for the unsteady components of the pressure distribution also show
a siymificant sensitivity to Reynolds number. For the in-phase component, especially, variations in the
neyative contribution to the load change rapidly with Reynoids number. This large variation gives rise to
the confusing trends in the unsteady loads shown in Table 3. Again, it should be noted that the in-phase
components appear to be more sensitive to Reynolds number than the out-of-phase components.

[t is ¢lear from the preceding discussion that a more fundamental data set needs to be examined to
< lari1ty, the underlying physical mechanisms behind the scale effect. The final sequence of data will snow
now the Reynolds number effects the instartaneous unsteady-pressure time histories.

i1 Instantaneous Pressure Data

The measured unsteady-pressure coefficients Cp(x,t) are presented in Figs. 8 to 12 for the five flow
Canditions listed in Table 1. At each chordwise station (identified by a numerical key), data. are shown at

two Heynulds nymbers. The mean portion of the instantaneous pressure coefficient was sugpressed for clarity.

. Tne reference line for each trace is the corresponding tic mark on the airfoil contour. As explained in
Ref. (), the dynamic data have been processed to eliminate all asynchronous signals. Thus, all of the dips
ind bulges shown in the data are truly periodic. Whether they can be traced to a particular fluid-
nechanical event at that instant is argumentative, but they are included here for completeness. The input
motion 15 the same for both Reynolds numbers and can be used as the phase reference (ut = 0 when . = “max)
For the most part, data are shown at the low, reduced frequency k = 0.05.

“he subsonic flow {condition 1) is presented in Fig. 8, and, as expected, scale effect is minimal.
‘ne ssual trend of decreasing amplitude with increasing chordwise location is obvious. The distorted sig-
na'l at Re - 2.5 - [0 in traces 9 and 10 is apparently caused by the transitional boundary layer. The
novhe  on traces 15 and 16 at low Reynolds number has no discernible fluid-mechanical origin.

“he effect of increasing the Mach number to 0.80 is shown in Fig. 9. The presence of the shock wave
1ppdrent by its distortion of the pressure signal of both Reynolds numbers, causing a severe local scale
atbeot However, both upstream and downstream of the shock wave, the Reynolds number does not have a sig-
st gnt pffect The qlobal ramifications of these local effects were tabulated in Table 2.

“ata from the superoritical atrfoil at 1ts shock-free design condition are shown in Figs. 10a and 10b.
Ata gre presented at two frequencies to show the complicated cross-coupling between frequency and scale
efte b that was not present in the previous cases. In Fig. 10a data at the low reduced frequency of
.  ohow very s1gnifioant scale effects in the supercritical flow region. At Re = 12.6 - 10° there
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is a higher amplitude, more distortion, and significant phase shifting. Whether these effects can be
explained by simple boundary-layer displacement corrections remains to be answered. In Fig. 10b there is
a surprising trend toward reduced harmonic distortions at higher Reynolds numbers (traces 5-9), although
there are still significant phase shifts attributable to scale effect. At the "shock wave" (which appears
during the cycle), the effect of Reynolds number is apparent. Consistent with the previous attached flow
data, there is minima) response near the trailing edge at both frequencies.

Data pertaining to the second flow regime (e.g., shock-induced separation), are presented in Figs. 11
and 12. In Fig. 11 the scale effect is most prominent at the shock-wave location (traces 8 and 9). The
fundamental frequency data shown in Fig. 6 indicate that the in-phase component is most severely affected
by the Reynolds number. The large change in the unsteady pressure is apparent. Upstream, there is a sig-
nificant increased phase lag with increasing Reynolds number. This phase lag persists into the separated-
flow region aft of the shock. Unfortunately, no data are available at k = 0.05.

In Fig. 12 the well-separated flow over the supercritical airfoil does not induce large unsteady dis-
turbances downstream of the shock. This seems to ameliorate the scale effect in the leading-edge region,
but not at the shock itself. Data at k = 0.05 show similar trends.

This cursory examination of the unsteady-pressure traces indicates the sensitivity of the flow patterns
to geometry, frequency, mean-flow conditions, and Reynolds number. It is clear that predictive schemes must
include, as a minimum, physical models of all of these parameters.

4.  CONCLUDING REMARKS

Examination of some of the data from a series of tests on oscillating airfoils in the Ames 11- by 11-
Foot Transonic Wind Tunnel showed that scale effects could be a very important factor in the unsteady aero-
dynamic behavior of the airfoils. Configurations with mean flows that support fully attached boundary
layers and weak shock waves have unsteady response characteristics that are mild functions of Reynolds
number. These configurations can probably be modeled with currently available computational tools. An
exception, perhaps, is airfoils that possess mean flows with extensive regions of supercritical flow. The
detailed pressure distributions contain substantial scale effects, but the overall loads may not be so
severely affected.

Configurations with mean flows having detached boundary layers are enigmatic. As reported in Refs. 18
and 19, the contribution to the unsteady load may be caused by a delicate balancing of positive and nega-
tive lobes in the unsteady pressures (see Fig. 7). For these conditions, shape changes caused by scale
effects may have severe ramifications. The erratic behavior of the unsteady loads shown in Table 3 is
illustrative of this effect. The major technological application of unsteady aerodynamics is to aeroelastic
analysis and design. The sensitivity of flutter boundaries and stability margins to scale effects must be
considered in those situations.

In the mathematical modeling of unsteady transonic aerodynamics, it is ciear that the Reynolds number
needs to be included as a primary parameter. Progress in computational research during the past decade was
characterized by the inclusion of nonlinear thickness effects, and it is hoped that this and other experi-
mental data, along with new computational efforts, will advance our knowledge well beyond the inviscid
approximation.
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9.6
TABLE 1.- RANGE OF FLOW CONDITIONS CONSIDERED
Flow condition Airfoil M s Motion

1 NACA 64A010 0.500 0 Pitching :1° at 0.25 ¢

2 NACA 64A010 0.796 0 Pitching z1° at 0.25 ¢

3 NLR 7301 0.752 0.37 Pitching +0.5° at 0.40 ¢

4 NACA 64A010 0.789 4.0 Pitching +1° at 0.25 ¢

) NLR 7301 0.807 0.38 Pitching :0.5° at 0.40 ¢

TABLE 2.- MAGNITUDE OF UNSTEADY LOADING ATTRIBUTED TO UPPER SURFACE — ATTACHED FLOW
Mag IO’Q
Re x 10-6
k=0 k=0.025 k=0.05 k=0.10 k=20.15 k=0.20 k=0.25 k=20.30
Flow condition 1 (M = 0.500)

2.5 3.7 3.67 3.59 3.27 2.97 2.83 - -

5 3.8 - - - - 2.45 - -
10 - - 3.43 3.19 2.91 2.74 2.58 -
Inviscid theory 3.64 3.42 3.22 2.91 2.69 2.52 2.44 2.38

Flow condition 2 (M = 0.796)

3.3 5.5 - 4.87 - 3.19 2.84 2.24 -
6.7 5.7 - - - - 2.67 - -
12.6 - 4.62 4.41 3.80 2.90 2.68 2.16 2.16
Inviscid theory 5.25 4.61 4.12 3.46 3.07 2.84 2.71 2.63

Flow condition 3 (M = 0.752)

3.2 - - 6.46 - - 2.98 - -

6.2 - 6.56 6.19 4.80 - 3.67 - 2.01
11.5 - 6.05 5.62 4.63 3.65 3.12 - 1.94
Inviscid theory 4.76 4.2% 3.88 3.22 2.97 2.75 2.62 2.54

TABLE 3.-

MAGNITUDE OF UNSTEADY LOADING ATTRIBUTED TG UPPER SURFACE - SEPARATED FLOW

Mag IO,rx

Re x 1075 e
k=005 & =0.20

Flow condition 4 (M = 0.789)

6.2 - 4.48
11.9 1.67 5.57
Inviscid theory 4.12 2.84

3.3 2.39 1.53
6.3 0.44 0.69
11.7 1.08 0.88
Inviscid theory 4.13 2.82
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Fig. 2. Variation of the unsteady loading attributed
to the upper surface with Reynolds number,
low-frequency data, k - 0.05.
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SOME REMARKS ON THE UNSTEADY AIRLOADS ON OSCILLATING
CONTROL SURFACES IN SUBSONIC FLOW

by

H. Férsching
DFVLR - AVA Ggttingen
Institut Rir Aeroelastik
Bunsenstr. 10, 3400 Gottingen, Germany

Summary

Parameters which are neglected within the framework of linearized potential flow theory, but which are highly influential in
the development of unsteady airloads on oscillating control surfaces in subsonic flow are discussed. Bosed on theoretical and
experimental results the effects of gap width and slot geometry, finite thickness, flow viscosity, and incidence of both wirg
and control surface are explained. Some topics for further research work with regard to active control applicdtions are in-
dicated.

Nomenclature

X, ¥, 2 Cartesian coordinates

L Lift per unit span

Ma Mach number

Ma Wing moment per unit span

MB Control moment per unit span, about hinge axis

Y Flow velocity

b Wing semi-span

3 Wing half-chord

g Chord of control surface

< Unsteady pressure coefficient = (p - Peo Y/ q

h Amplitude of bending deflection

Poo Static pressure of undisturbed 2{"Iow

q Dynamic pressure = 1/2 p V

A cp Pressure difference between upper and lower surface
f Frequency of oscillation

k Reduced frequency = wc / V

ka . kb Unsteady aerodynamic lift coefficients due to L and Ma
mo.em Unsteady aerodynamic moment coefficients due to L and Ma
n Unsteady aerodynamic moment coefficient due to MB
t Time

a Amplitude of pitch oscillation

ag Steady meon incidence of wing

(] Amplitude of control surface rotation

Bo Steady mean incidence of control surface

€ Gop parameter (gap width / wing chord )

o Air density

T Control surface chord parameter = 2¢ / <g

w Circular frequency = 2nf

1. Introduction

The knowledge of the unsteady aerodynamic loading on oscillating wings with control surfaces is of special concern in aero~
elastic investigations and indetermining power requirements in active control systems for lood alleviation and flutter suppres-
sion. In view of the long-recognized inadequacy of linearized methods for the prediction of unsteady airloads on oscillating
traiiing-edge control surfoces, questions can be raised about the possibilities of further theoretical improvements. One ten-
tative response would point to the ottendent possibility of introducing into the theory such effects as boundary layer, tran-

sonic shocks near the wing srface, or local variations of flow properties due to thickness and slot geometry. Indeed, from

experimental studies it is known thot these effects, which are neglected within the framework of linearized potential theory,
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are highly influential in the development of unsteady airloads on oscillating controls.

This paper elucidates the situation of our present knowledge of the unsteady airloads on oscillating controls, and indicates
some topics for further research work, particularly with regard to active control application, and to investigation of the
flutter stability of high-performance aircraft during operation at large angles of attack. Based on theoretical and experi-
mental results it is indicated how profile thickness, gap width and slot geometry, incidence of both wing and control and,
finally, flow viscosity affect the unsteady airloads on oscillating wing-control systems.

2. Parameters influencing the development of unsteady airloads on oscillating control surfaces

2.1 General remarks

If an aerodynamically unbalanced control is deflected so as to produce a discontinuity in mean surface slope along its lead-
ing and side edges, linearized lifting surface potential theory shows that the lifting pressure difference is logarithmically
singular along any subsonic leading edge, and that the spanwise lift distribution has a logarithmically infinite derivative at
the sides. In analytical predictions based on linearized lifting surface theory, this peculiar behavior of pressure distribution
around oscillating controls is taken into account by choosing corresponding pressure functions in applying kemel function
collocation methods, and by providing an accumulation of panels around the leading and side edges when panel procedures
are applied. As long as the wing is at zero angle of attack and the control surface oscillates around this steady position, anc
when the gap between the wing and control is closed, experiments have shown that the measured unsteady airloads are in
reasonable agreement with theoretical results. But we also know from experiments that the type of pressure distribution in
the vicinity of the leading edge of an oscillating control, and thus the related overall unsteady aerodynamic hinge moment
coefficients, are extremely sensitive to even small changes in geometric shape. Whereas satisfactory correlation has gener-
ally been found between linearized "flat plate® theory and experiment for the unsteady two-dimensional aerodynamic coef-
ficients of oscillating wings (at zero incidence) in subsonic flow, this is not the case for the relating coefficients of oscillat-
ing control surfaces, as shown in Fig.1 . It is seen that there is a discrepancy between linearized “flat plate® theory and
experiment by roughly 100% , and that the theoretical values are too large.

For this unsatisfactory situation several parameters are known to be of primary influence. As previously mentioned, the geo-
metry of the slot between the main surface and the control, and with it the definition of the effective location of the hinge
axis in context with an aerodynamically unbalanced control surface, is of considerable importance. Other important geo-
metric effects may be seen in the gap width, in the finite thickness, and in the static incidence of both the main surface and
the control itself. Furthermore, the influence of flow viscosity expressed in boundary layer effects or Reynolds number ef-
fects, etc., may be of importance. Although our knowledge about these effects upon the development of unsteady airloads
on oscillating wing-flap systems is stil! rather poor, some general statements con be made from what we have learned so far
mainly from wind tunnel measurements.

2.2 Effects of gap width and slot geometry

Concerning the effects of the slot geometry between wing and flap, the leading edge radius, the eccentricity and chordwise
location of the hinge, the slot extension and the gap width are of decisive importance. In practical ealculations, as shown
in Fig.2, the question whether the translatory part of the control surface motion should be treated as a closed or open slot
poses considerable difficulties. Whereas in the real part an open slot yields no pressure singularity at all, a closed slot in-
duces a pressure singularity of the order 1/(x - Xhinge ) - [t can be seen that the character of both pressure distributions is
completely different.

A strong p essure sensitivity can also be observed in connection with the gap width between the main surface and the control.
This was shown for steady flow by M.Landahl [l| many years ago, and is illustrated in Fig.3 . Starting with a logarithmic
singularity at the hinge line, the pressure very quickly changes there to a zero pressure difference at the trailing edge of the
fixed wing and a sauare root singularity at the flap leading edge. It is seen from Fig.3 that this change of pressure singu-
larity appears even for gap parameters ¢ which are only 0.1 to 1% Evidently this is also the case for an oscillating flap
with an open gap, as can clearly be seen in Fig.4 . The typical change of the pressure singuiarity and the increase of pres-
sure on the flap indicated in Fig.3 is also shown in Fig.4 , yielding a corresponding increase of the unsteady hinge mo-
ment. This has in fact been observed in wind tunnel measurements, when the gap width has been systematically increased,
see Ref.[3] .

Therefore it becomes obvious that, in treating the unsteady aerodynamic problem of the oscillating wing with control, we
have to deal basically with an aerodynamic interference problem of two lifting systems when the gap is unsealed, as is the
case with real aircraft wings. The same condition of course holds true also for a wing with a leading edge flap.

On the other hand, in wind tunnel model measurements, the slot geometry between wing and control surface is usually made
up of two concentric circles, i.e. there is no eccentricity and practically no aerodynamic balance. Thus, the gap parometer
€ is usually smalier than 0.3% . In reality aircraft wings with control surfaces exhibit rather asymmetric slot geometries
which may considerably affect both the steady and unsteady airloads on the lifting system. In particular this is the case when
the wing and/or the control surface have a steady mean incidence, as will be shown later.

There is a need for more defailed theoretical and experimental investigations of these effects of slot geometry and gap width.
With the possibilities given by the application of panel procedures it may be expected that at eost potential-type theoretical
solutions of the two-dimensional problem will be elaborated in the near future, as already pointed out by Dr. Geissler in his

paper.

2.3 Effects of finite thickness and steady incidence

If the control surface is not coplanar with the fixed wing but is rather oscillating about o steady mean incidence, drostic ef-
fects on the development of the unsteady pressure distributions have also been observed. Apart from an increase in the load
distribution with increasing mean flap incidence B, , the type of pressure singularity is also changing. In particular, the
imaginary part of the pressure distribution, which is non-singular if the wing and the flop are coplanar, has been found to
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become discontinuous or even singular at the hinge point location ar nor - zer. vedc tlap oo adece, whe the gag o 1 e
see Ref. [2] .

On the other hand, it is well known from theoretical investigations on 0 series ot 2ty ds with tirite theCrress that e e
velopment of the unsteady flow on oscillating airfoils may be changed remarkably by thickress ettecr, ,ee Wet 4 o
fact is obvious in Fig.5 , where the unsteady two-dimensional aerodynamic it Ny ~onert Coetiic i@t b3 Juakowsk o i
file pitching about its mean chord in incompressible flow are illustrated  Far wings of mouerate thickress  smaller tha
10¥ ) and in the reduced frequency range of interest O 1 < k < 2 the thickness effect «. Fig 5 15 relativel, wnall v

of the order of only a small percentoge .

It is not adequately known to what extent finite thickness affects the development of Lnsteady aicloads sn Lscillating cortr_:
surfoces, and hence the related two-dimensional unsteady aerodynamic coefficients widely used in strip analyses. The sare
holds true for the influence of the steady angle of attack which is also neglected in the process of linearizatior ot the poter
tial equation within the fromework of small-perturbation theory . In fact, inviscid linearized small-perturbation |ifting sur-
face theory has served the aeroelastician well in a majority of the aircraft design applications, and it hos been carried now
to a high level of mathematical and numerical development. For oscillating wings without controls in subsonic tlow the ef-
fects of thickness and steady angle of attack on the unsteady girloads seem to be of only minor importance. However, there
is evidence that the effect of these parameters is indeed important, in conjunction with the slot geometry on+ the open gap
on the unsteady airloads of oscillating control surfaces. This conclusion hos been dro-vn from wind tunnel measurements on
on oscillating wing-flap system in two-dimensional incompressible flow, which have been performed recently at DFVLR in
Gottingen [4], some results of which are shown in the following figures.

Fig.6 illustrates the profile geometry of the investigated airfoil with flap. The airfoil has a NACA 0012-profile, the flap
has a chord ratio of 30% , and the control hinge is at 75¥ of the wing chord. The slot geometry is asymmetric and hence
typical for a slot usually found in real aircraft. Fig.6 also siows a comparison between the calculated and measured chord-
wise unsteady pressure distribution for the case that the airfoil with flap is at zero incidence (g =0 ond B, =0), the
wing is at rest and the flop js undergoing harmonic oscillations about its hinge axis, and the gop is -losed. As can be seen,
there is a reasonably good correlation between linearized *flot plate” theory and experiment, although a small slot effect
becomes obvious even when the gap is closed.

However, when the flap oscillates about steady mean incidences 8, * 0 ond the gap is not closed, drastic changes in the
unsteady pressure distributions occur, as itlustrated in Fig.7 . The same condition has been observed when the angle of at~
tack aq * 0, asillustrated in Fig.8 . Finally, Fig.9 shows the effects of steady mean incidence of both the wing (ag)
and the flap (8,) upon the unsteady aerodynamic pressure distribution, together with the effect of the open and closed gap.
It is clear that the closed gop yields o completely different pressure distribution and even a flow separation at the trailing
edge of the flap. There is practicolly no agreement with linearized "flat plate” predictions here, particularly on the fixed
wing and surprisingly even when the gap is closed.

A striking feature of all these pressure distributions near the flap leading edge is that two rather pronounced pressure peaks
always appear when the gap is open, thus indicating that the aeradynamic wing-flap problem in this case is in fact an aero~
dynamic interference problem.

Perhops the most important practical consequences of these incidence and slot geometry effects with regard to active control
applications are manifested in the related control hinge moments, as illustrated in Fig.10 . It can be seen that the unsteady
hinge moment coefficients n. are changing completely when the gap is closed. Linearized "flat plate" theory yields rather
unrealistic results and the relatively good agreement in the imaginary part at small raduced frequencies must be considered a
mere coincidence.

2.4 Effect of flow viscosit_x

It is often argued that thickness effects are roughly compensated for by boundary layer effects, explaining the good agreement
frequently found when comparing experimental aerodynamic results with the theoretical ones which neglect wing thickness
and fluid viscosity. To what extent this argument is really true is not definitely clear, and as long as no results are available
from systematic wind tunne} measurements in a wide range of Reynolds numbers, this reasoning should be applied with care.

In fact, there is some evidence that the boundary layer or the Reynolds number effect is of minor importance in treating un-
steady aerodynamic problems of oscillating wings without controls at least in subsonic flow at small incidences. Application
of transition strips is @ common practice to simulate a turbulent boundary layer and o transcritical Reynolds number in wind
tunnel model tests. However, from the very few test results available for oscillating control surfaces ot various Reynolds num-~
bers, we know (see Ref.{5] ) that hinge moments of oscillating flaps are decisively dependent upon the Reynolds number.
Test results at moderate Mach numbers show deviations from potentia! theory calculations up to 100%, even in the case of
zero mean angle of attack (see also Fig.1) . It is difficult to say to what extent these discrepancies may be attributed to
flow viscosity effects. For oscillating control surfaces, we must keep in mind that effects of gap geometry and incidence are
at least of the same order of magnitude, as shown in the previous discussion. On the other hand, it must be assumed thot an
interaction takes place between the boundary loyer and the very complicated flow processes at the flap leading edge for
those (open) gop geometries as they indeed exist on siotted aircraft wings, in particular when the wing-flap lifting system is
operating at non-zero incidences. All these effects are widely unknown and there is an urgent need for detailed theoretical
experimental investigations.

As Dr. Geissler has mentioned in his paper, there is work underway at DFVLR to gain more insight into these rather compli-
cated aerodynamic problems. By applying a potential velocity panel procedure, an elaboration of theoretical results for the
unsteady airloads on oscillating control surfoces is attempted, taking into account the effects of finite thickness, gap geom-
etry and incidence. On the other hand, systematic wind tunnel measurements of two-dimensional unsteady aerodynomic
hinge derivatives in the Reynolds number range 105 to 107 arein preparation in a new type of compressed-air wind tunnel.
It is hoped that these investigations will provide a better understanding of the unsteady airloads on oscillating controls in
context with real aircroft wing-control geometries and Reynolds numbers.




3. Conclusion

From the discussions it became apparent that those parameters neglected within the framework of linearized potential flow
theory may be highly influential in the development of unsteady airloads on oscillating control surfaces in subsonic flow. In
particular, the effects of slot geometry and gap width, finite thickness, steady mean incidence of both wing and flap, and
flow viscosity have been shown to be of decisive importance. Since most of what we know today about these effects has been
learned from wind tunnel studies, efforts should be made to elaborate at least potential-type theoretical solutions. Applica-
tion of panel procedures may serve in this intention well.

Almost nothing is known about the influence of flow viscosity, and there is an urgent need for systematic wind tunnel investi-
gations on this subject with a wide range of Reynolds numbers. Since the development of unsteady airloads on oscillating
control surfaces in all its detail is still not thoroughly understood, much research work on this practical important topic of
unsteady aerodynomics is necessary in the future, especially with regard to active control applications.
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OSCILLATORY FLOWS FROM SHOCK=-INDUCED SEPARATIONS ON BICONVEX AEROFOILS
OF VARYING THICKNESS IN VENTILATED WIND TUNNELS

D. G. Mabey

Structures Department, Royal Aircraft Establishment, Bedford, UK

SUMMARY

Previous tests of biconvex aerofoils at zero incidence at transonic speeds have
sometimes shown a narrow Mach number range within which the flow is periodic. Within thisg
range large surface pressure fluctuations are developed at a discrete frequency, s
of onrder 1, which would strongly influence the buffeting of any aerodynamic component
with this section. Similar instabilities at transonic speeds have also been observed on
other aerofoils for thickness/chord ratios greater than about 10%.

Recently the flow instability boundaries on a series of biconvex aercofcoils with
thickness/chord ratios varying from 10 to 20%, set at zero incidence, were measured in a
small transonic tunnel. The region of flow instability with laminar boundary layer/shcck
wave interactions was a little wider than the corresponding region with turbulent

boundary layer/shock wave interactions. A criterion for the occurrence of the instability

was developed from the measurements.

Some interesting examples of dynamic wall-interference effects were observed in the
slotted working sections with hard slats, which were greatly reduced in the alternative
slotted working sections with slats made from sound-absorbing laminate. Interesting

examples of dynamic interference were also observed in special comparative tests in closed

working sections formed by hard or laminate walls.

LIST OF SYMBOLS

A empirical expression for wi/U
CL lift coefficient
c aerofoil chord ‘
CA' Cy aerodynamic and elastic hinge stiffnesses (eqn 4)
d total plenum chamber depth/tunnel height
f frequency of instability (Hz)
H tunnel height
I flap inertia
K transonic similarity parameter (egn 1)
Ke equivalent transonic similarity parameter
2 distance from terminal shock wave to trailing edge
M free stream Mach number
Mcrit critical Mach number
Me equivalent Mach number associated with Ke
Ml Mach number just upstream of terminal shock
P rms pressure fluctuation
q free stream kinetic pressure
R Reynolds number based on ¢
t aerofoil thickness
T time
U free stream velocity
X, Y coordinates (Fig 2)
n angle of incidence (degrees)
Y ratio of specific heats
W circular frequency, 2rf (radians/second)
1 INTRODUCTION

Recently there has been renewed interest in the use of thick wing sections (with
thickness/chord ratios, t/c , greater than say 10%) for civil aircraft ocperating at high
subsonic speeds (say from M = 0.75 to 0.85). Thus a wing section 15.1% thick will be
used at the root of the A310B aircraft. These thick sections allow reduced wing struc-
tural weight or increased aspect ratio, and may also be conveniently combined with
advanced sections which incorporate some deqree of supercritical flow.

1

[OUSS

TURETN VI S



One possible difficulty with such thick sections at transonic speeds and low angles
of incidence is the occurrence of periodic pressure fluctuations at frequency parameters,
wc/U , of order 1. Some time ago Lambourne ! collected limited evidence for such rela-
tively low excitation frequencies at transonic speeds on a number ¢. conventional aerofoil
sections with thickness/chord ratios higher than 10%. Recently Roos and Riddle? found a
low level of discrete excitation at a frequency parameter of about 0.4 on a supercritical
wing of thickness/chord ratio 11%. At the design lift coefficient (of about Cp = 0.5) the
discrete excitation persisted over the wide Mach number range from M = 0.60 to M = 0.87
(see Ref 2, Fig 22).

Thick biconvex aerofoils set at zero incidence are interesting because these produce
discrete excitation over a narrow range of Mach numbers at transonic speeds. Thus McDevitt
et al® found a narrow region of oscillatory flow in an 18% thick biconvex aerofoil (see
Fig 1), which persisted over a wide range of Reynolds number. The region of oscillatory
flow was wider when the Mach number was decreased (dM/AT < 0) because of flow hysteresis.
This oscillatory flow is generated by the upstream and downstream movement of the terminal
shock and oscillatory vortex shedding in the wake. The phenomenon has subsequently been
predicted“*s, from a numerical solution of the full Navier-Stokes equations with an appro-
priate turbulence model. However no simple prediction method or adequate physical explan-
ation for the self-excited shock wave oscillation is yet available.

The present note provides the measured instability boundaries for biconvex aerofoils
with thickness/chord ratios varying from 10 to 20%. Analysis of the measurements suggests
features of the pressure fields which might produce flow instability on conventional aero-
foil sections. The measurements may also stimulate further theoretical studies.

2 EXPERIMENTAL DETAILS

The slotted transonic working section of the RAE 4 in x 4 in tunnel (H = 101 mm)
was used for thes% tests (Fig 2). Tests were made with both hard and laminate (sound-
absorbing) liners »7, Most of the tests were made with a total dimensionless plenum
chamber depth, d = 0.67, as illustrated in Fig 2, but a few comparative tests were made
with a total plenum chamber depth of d = 4.0. A few special tests were made with hard
and laminate closed working sections.

The biconvex aerofoils were made of wood and spanned the tunnel centrally. For the *
aerofoils with thickness/chord ratios of 10, 12, 14, 16 and 18% the chords selected were
§ = 32 mm and 50 mm. For the aerofoils with thickness/chord ratio 20% the chords were
reduced to 25 mm and 41 mm to reduce the blockage. For brevity this reduction in chord is
ignored in figures where measurements for thickness/chord ratios of 20% are included.

For simplicity no pressure transducers were_generally installed in a model. Instead,
six pressure transducers used in previous tests®:’/ were mounted on one sidewall close to
the model and ahead of it (Fig 2). Five transducers distant 0.5H upstream of the model
were used to check the wave form of the tunnel resonance excited by the unstable flow on
the model. Note that one transducer was in the top plenum chamber. A single transducer
adjacent to the model centre line, but displaced 0.25H below it, was used initially to
detect the onset of flow instability. Later this transducer was supplemented by another
closer to the model (y/H = - 0.05), and by another actually flush mounted on the 18% thick
aerofoil with ¢ = 50 mm at 78% chord (y/H = 0).

The tunnel total pressure and total temperature cannot be independently controlled.
The tunnel total pressure is always a little lower than ambient static pressure and the
tunnel total temperature lies in the range from 10°C to 15°C. For the small aerofoils used
in the present tests (¢ = 32 mm and 50 mm) this only gives Reynolds numbers of about
0.4 x 106 and 0.6 x 105 respectively. These low Reync:lds numbers ensured that laminar
boundary layer/shock wave interactions were achieved on the smaller aerofoils. Turbulent
boundary layer/shock wave interactions were ensured by fixing transition 2.5 mm downstream
of the leading edge with a narrow band of ballotini (small glass spheres) of dia. 0.25 mm.

3 RESULTS
3.1 Determination o. w instability boundaries and resonances

Fig 3 shows some initial test results with free transition and a laminar boundary
layer/shock wave interaction for the 18% thick aerofoil with a chord of 32 mm. Fig 3a
shows that the Mach number ranae for flow instability is easily measured on the sidewall
below the model (at y/H = - 0.25), although the pressure transducer is located a signific-
ant distance (0.78c) below the aerofoil. The lower Mach number limit to the range of flow
instability is rather ill-defined because of flow hysteresis similar to that observed by
McDevitt (Fig 1). The curve for the laminate slats is about 0.02 lower in nominal Mach
number compared to the hard slats. This displacement is probably caused by the increased
boundary layer growth on the relatively rough surface of the laminate slats compared to
the smooth, hard slats, for the increased boundary layer growth should increase the local '
free stream Mach number for a fixed nominal Mach number.

The pressure fluctuation measurements upstream of the model given in Fig 3b show
that the flow instability on this aerofoil at a Mach number of 0.78 excites a stronger
resonance in the working section with hard slats. This is because the discrete frequency
of the excitation has been made to coincide with the fundamental transverse resonance
frequency of the working section by the deliberate choice of a chord length of 32 mm. The
resonance frequency (1100 Hz) had been excited previously by a loud speaker mounted in
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the plenum chamber and predicted according to a new theory’/. This resonance condition is
particularly interesting, because although Fig 3a shows that the strength of the excita-
tion is virtually unaltered by the change from hard slats to laminate slats, Fig 3b shows
that the strength of the resonance is significantly reduced. Fig 3b thus provides an
example of the superiority of sound-absorbing slats for dynamic tests of aircraft models
at transonic speeds.

Fig 3b also illustrates an interesting feature of the sound-absorbing slats. The
resonance frequency (1070 Hz) is a little lower than with hard slats (1100 Hz). The lower
resonance frequency is attributed to a small increase in the effective acoustic height of
the working section, due to the movement of air into the laminate. Lower resonance fre-
quencies with laminate liners were observed previously both with these liners in _the
4 in x 4 in tunnel’ and with comparative ‘'mock-up' liners in the RAE 3 ft tunnel®.

Fig 4 shows some typical results for the same aerofoil with fixed transition. Fig 4a
shows that the Mach number range for flow instability is still well defined, although the
level of pressure fluctuations is only about 20% of that measured previously with free
transition (e¢f the change of scale between Fig 4a and Fig 3a). Fig 4b shows that at this
reduced level of excitation, no resonance mode can be detected, even in the working
section with hard slats.

Fig S illustrates an interesting oscillation observed with free transition on the
10% thick aerofoil with a chord of 32 mm at a higher Mach number, about M = 0.90. Fic¢ ta
indicates that the range of Mach number for flow instability (0.88 < M < 0.91) is much
the same with hard slats as with laminate slats.

However the oscillation frequency changes radically between the hard and laminate
slats. With the hard slats the frequency observed (1000_Hz) coincides with the fundamen-
tal transverse resonance frequencies previously measured’ with acoustic excitation. How-
ever, this gives too low a frequency parameter (0.77) compared with previous measurements
on a nominally identical model with free transition in a much larger slotted tunnel”.
When the hard slats are replaced by laminate slats the frequency observed is much higher
(1370 Hz), and the higher frequency parameter (1.05) is in better agreement with the
previous measurements ° (see Fig 7). We may infer that with the hard slats the shock
oscillation is locked to the tunnel resonance frequency and is therefore best regarded as
a forced oscillation. This hypothesis is supported by the relatively high pressure ‘
fluctuations measured upstream of the model with the hard slats in comparison with the
low pressure fluctuations measured with laminate slats (Fig 5b). The measurements in
Fig 5 thus represent a severe, though admittedly rather unusual, example of dynamic
interference.

Similar but smaller increases in the oscillation frequency were also noticed for the
12% aerofoils with chord 50 mm (with both transition free and fixed) and these have been
indicated later (Fig 7). For the thicker aerofoils (t/c > 14%), alteration of the slats
did not change the oscillation frequency. Hence most of the measurements are probably
free of dynamic interference, except when the oscillation frequency actually coincides
with a tunnel resonance frequency, as previously discussed (eg Fig 3).

3.2 Boundaries for flow instability

Fig 6 shows the flow instability boundaries measured on biconvex aerofoils of both
groups.

For the short chord aerofoils with free transition the boundary layer/shock wave
interaction is laminar at these low Reynolds numbers and there is a range of Mach number
of about 0.04 over which the flow is unstable. For the thinnest aerofoil, with t/c = 10%,
the measured range of instability is in excellent agreement with that observed with free
transition by Karashima’. With fixed transition the flow is stable for t/c = 10% (just as
in Karashima's tests) and is also stable for t/c = 12%. For t/c > 14% the flow is
unstable over a smaller range of Mach number of about 0.02.

For the long chord aerofoils, giving the higher Reynolds numbers, the boundaries for
flow instability with transition free and transition fixed are quite similar. No insta-
bility was observed for t/c = 10%., However, with t/c = 12% there was a well marked
instability with free transition and a weak instability with fixed transition; oil flow
tests established that with free transition there was a shock induced separation at about
xg = 0.7c, which was eliminated with fixed transition.

when due allowance is made for the scatter in the measurements, inevitable because
of flow hysteresis, the results for both groups of aerofoils are in good agreement for

thickness/chord ratios above 12%. However for the lowest thickness/chord ratio (10%) the
instability is only found for the short chord aerofoil with a laminar boundary layer/shock
wave interaction. Hence wall interference on these flow instability boundaries is

probably fairly small, despite the larqe blockage ratios of the models.

In addition the present instability range for the long chord aerofoil with t/c = 18%
and fixed transition are in ex-ellent agreement with the instability observed at the same
low Reyrnlis namber in a loswe  vwrking section with carefully contoured liners'". In
contrast, tt ﬁﬂvn} instabal + - ranae for t/c = 209 does 'not agree with the instability
ohserved ,)rc'vlous]‘,’l At oan 1t coated Mach number of 0,71,
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3.3 Frequency parameters for instability and dynamic interference

Fig 7 shows the frequency parameters, wc/U, measured on both groups of models with
transition free and transition fixed. These measurements were made in the slotted work-
ing section with hard slats, except where there is tunnel resonance and the results for
laminate slats are preferred as having less wall interference (section 3.1).

For the short chord aerofoils (Fig 7a) with free transition the frequency parameters
lie in the range from about 0.72 to 1.04. The two frequency parameters observed for
t/c = 10% with the hard and the laminate slats correspond with the measurements presented
in Fig 5. With the lamipate slats the frequency parameter is in better agreement with
Karashima's measurements’. With transition fixed the frequency parameters are a little
lower than with transition free, but no oscillation is observed for t/c = 10% and 12%.

For the long chord aerofoils (Fig 7b) the frequency parameters lie in the range from
0.85 to 1.15, significantly higher than for the short chord aerofoils. If we tentatively
assume that the frequency parameter is controlled primarily by the shock position, the
lower frequency parameter at the lower Reynolds number suggests that with thicker boundary
layers the mean shock position is further upstream. This hypothesis is consistent with
the observation that with fixed transition, and excessively thick turbulent boundary
layers, the frequency parameters are again a little lower than with free transition.

The measurements made with transition free on the long chord aerofoil make an
interesting comparison with other measurements made on thick biconver aerofoils. Thus for
t/c = 18%, the frequency parameter in the present tests is about 1.07, compared to the
somewhat lower value of 0.98 observed over a wide range of Reynolds number by McDevitt~,
McDevitt's measurements may be subject to some dynamic interference from the hard walls of
the closed working section which lowers the frequency of the instability, even in the
absence of a tunnel resonance.

Special tests with the present 18% thick aerofoils in alternative closed working
sections made with hard and laminate top and bottom walls were made to confirm this
hypothesis. These walls were uncontoured (in contrast with McDevitt's experiment) so that
the flow choked at comparatively low Mach numbers. However, just before chokin- a range
of flow instability was observed, as in the slotted working sections at higher : :h
numbers. For the aerofoil with ¢ = 50 mm, the flow choked at about M = 0.71 ir th
closed working sections, and the range of instability was about

0.68 < M < 0.70 ,

(ef 0.76 < M < 0.79 for the hard slotted working section). However, withh the hard wails
the frequency of the instability (830 Hz) was appreciably lower than with laminate walls
(1000 Hz), although the level of fluctuation was almost unaltered. With ruese closed
laminate walls the frequency (1000 Hz) was thus a little higher than the frequency

(890 Hz) 1in the unchoked slotted working section at much higher speeds. Th® —hange in
frequency thus illu<=trates an interesting consequence of the approach to chox ng in
closed working section.

Similarly, for the 18% thick aerofoil with ¢ = 32 mm the flow choked ir tne closcd
working sections at about M = 0.77, and the range of instabilicy was from abouc

0.73 < M < 0.74 ,

{ecf 0.78 < M < 0.81 in the hard slotted working section). However with the hard closed
walls the frequency (1030 Hz) was appreciably lower than with the laminate walls

(1130 Hz). Again with the closed laminate walls the frequency was almost the same as in
the hard slotted working section (1100 Hz) at much higher speeds.

Now in McDevitt's experiments the ratio, H/c, of the tunnel height to the aerofoil
chord, was 1.9, compared to 2.0 and 3.1 in the present tests for the aerofoils with
¢ = 50 mm and 32 mm. Hence the frequency observed with the hard contoured walls is
probably about 10 to 20% lower than would be obtained in an unconstrained flow, or with
contoured walls made of sound-absorbing laminate.

An investigation of the instability on the 12% thick aerofoil with ¢ = 50 mm and
free transition gave similar results. The range of instability from both closed working
sections was from

0.7 < M < 0.76 ,

{ef 0.85 < M < 0.86 in the hard slotted section), but the frequency was only 690 Hz with
the closed hard walls compared to 870 Hz with the closed laminate walls. The correspond-
ing frequency in the hard slotted section was 820 Hz. Even with slotted walls we have
seen in section 3.1 that the frequency parameter on this aerofoil increased significantly
when the hard slats were replaced by sound-absorbing slats.

Of course, if closed walls are used much further away from the models dynamic
interference can be reduced. Thus Finke!! measured a frequency parameter of 1.13 for an
aerofoil with t/c = 20% in a closed section with hard walls and H/¢ = 8, in good agree-
ment with the present measurements for H/c = 2.4 in the slotted working sections.




3.4 Level of excitation

The small size of these models prevented the general installation of pressure
transducers to measure the excitation directly. However, the rms pressure fluctuations,
5 , on the sidewall adjacent to the centre line of the models (at x/H = 2.5 in Fig 2) were
used initially to indicate the variation of the excitation of the model with thickness/
chord ratio and boundary layer thickness.

Fig 8 shows as functions of the thickness/chord ratio three typical sets of measure-
ments of the maximum sidewall pressure fluctuations over the range of Mach number. This
maximum generally occurs close to the middle, or just below the middle, of the unstable
flow regions shown in Fig 6. Fig B8a shows that for the short chord aerofoils the maximum
pressure fluctuations are significantly higher with free transition than with fixed
transition. Now a laminar boundary layer/shock wave interaction would generally be of
much greater extent than a turbulent interaction. Hence in an unsteady flow wider shock
excursions, giving larger pressure fluctuations, would be expected with a laminar boundary
layer than with a turbulent boundary layer. A similar difference between the surface
pressure fluctuations observed with laminar and turbulent boundary layer/shock wave inter-
actions was previously noticed for nominally steady, attached flow on a swept wing at
M = 0.90. (See discussion on Fig 11b in Ref 12.) The dotted curves in Fig 8a indicate
the approximate level of pressure fluctuations which might have been expected for
t/c = 18% and 10% in the absence of the resonances discussed in Figs 3 and 5.

The measurements shown in Fig 8a relate to hard slats. With laminate slats (Fig 8b)
the maximum pressure fluctuations on the sidewall are a little lower, but the general
character is unaltered. Upstream of the model (at x/H = 2.0) the pressure fluctuations
are appreciably lower with the laminate slats than with the hard slats. This is because
the laminate slats weaken the forward propagation of the pressure fluctuations, rather
than alter the excitation at source.

Fig 8c shows corresponding measurements for the longer chord aeroioils tested with
hard slats. Again the pressure fluctuations are significantly higher for the thin
boundary layer obtained transition free than for the thick turbulent boundary layer
obtained transition fixed, and may give the better indication of the level of pressure
fluctuations at high Reynolds numbers. These sidewall pressure fluctuation measurements
with transition free and fixed are both a little lower than the corresponding measurements
on the shorter chord aerofoils shown in Fig 8a. At first sight this is an anomalous
result, because for the longer chord model the sidewall static pressiire fluctuation
measurements (at the fixed point x = 2.0H, y = - 0.25H) are relatively closer to the aero-
foil (y/c = - 0.50 for ¢ = 50 mm compared to y/c = - 0.78 for ¢ = 32 mm). However,
because of the form of the unsteady boundary layer/shock wave interaction (see the shadow-
graph in Fig 14 of Ref 10), the sidewall pressure fluctuations probably do not decay uni-
formly with distance from the aerofoil. 1In the attached flow at y/c = - 0.50 the terminal
shock is oblique and weak, so that the flow downstream is still supersonic. Thus the
pressure change across the shock would be comparatively small, giving relatively small
pressure fluctuations in the unsteady flow. Further away from the aerofoil at y/c=~ 0.78
the shock wave becomes normal and the downstream flow is subsonic. Hence the nressure
change across the shock is comparatively large, giving relatively large pressure fluctua-
tions in the unsteady flow. Even further away from the aerofoil the shock wave disappears
and the pressure is continuous, giving small pressure fluctuations in the unsteady flow.

In an attempt to aet a better indication of the level of the excitation closer to
the aerofoils, the pressure transducer in the sidewall adjacent to the centre of the aero-

foils was moved from x = 2.5H, y = - 0,25H to x = 2.64H, y = - 0.05H (Fig 2}. Thus for
the aerofoils with ¢ = 50 mm, this transducer was located at 78% of the local chiord, and
at y/c = - 0.10. Comparing Fiqg 9a with Fiag B¢, we see that the pressure fluctuations are
si'mificantly higher closer to the madel, as we wor'la expect, but they may be influenced
by local flow separations in the aerofoil’/sid_wall junction.

We have seen that the sidewall pressure fluctuation measurements increase as the

boundary layer thickness decreases (Fia 8). [In McDevitt's experiments on the 18% thick
aerofoil (Ref 10, Fig 13) the rms surface pressure fluctuations are at the remarkably hiah
level of pB/q = 40% and increase monotonically as the Reynolds number increases from
R=1+-10%tor =7 10° (Fig 9b). McDevitt is confident that tunnel resonance did not
oceur (see discussion of Fig 11 in Ref 3}). Similarly, no strong resonances were excited
in the low Reynolds number (0.7 - 107) tests 1n the closed working sections briefly

described in section 3.3 above.

In order to bridae the gap between the present sidewall pressure fluctuation measure-
ments at low Reynolds number and the surface pressure fluctuation measurements of Ref 10,

two special tests were made. The results «f these special tests are included in Fig 9b.
For the first test a pressure transduccer was mounted on the top surface of the 18 thick
aerofoil with ¢ = 50 mm, qgiving pressure fluctuatinns at 78" chord (y = 0) in the centiral
plane. The back of the transducer projected from the bottom surface of the aerofceil, but
was covered by a small fairing. The surface pressure fluctuations with both free and
fixed transition were about g - 167 and appreximately twice the corresponding sidewall
measurements. For the sccond test an 18+ thick Liconvex wine with a chord of 200 mm and
an aspect ratio of 2 was briefly tested in the top and bottom slotted (H - 640 rm) workinag
section of the RAE 3 ft tunnel. With free transition the pressure fluctuations at nad-
semispan (where an oll flow phoetoaraph indicated that the local flow was almest twe-
dimensional) increased steadily from [ - 16 at B - 0,4 - 108 e Poaos 259 at

R = 0.7 « 107, With fixed transition the levels were appreciably lower (from 3y 4o fie)
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omitted from Fig 9b for clarity. Tests at higher Reynolds numbers were not possible
because of the large amplitude motion of the model on the sting.

Surface pressure fluctuation levels of p/q above 10% would generally be accompanied
by severe buffeting on aircraft components, even with the usual broadband spectrum.

In addition it is easy to show that this type of instability, with anti-phase shock
oscillations on the upper and lower surfaces, can produce significant oscillatory pitching
moments. Let us assume that the rms level of the pressure fluctuations between x/c = 0.80
and 1.00 is about 20%q (a conservative assumption in view of Fig 9b), and that these
fluctuations are perfectly correlated spanwise and chordwise. Then the rms lift over this
area/unit span is (0.40q x 0.2c) and acts at x/c = 0.90. Hence the rms moment about
x/c = 0,25 is (0,40q x 0.20) (0.65c) so that the rms moment coefficient is about

CM = 0.05
and the amplitude about Cy = 0.1 (because of the nearly triangular wave form). This
torsion moment is concentrated at a discrete frequency in the flutter range. It could be
potentially serious if it coincided with a structural mode such as the first wing torsion
mode, which is normally in the range from wc/U from 0.5 to 1.0.

4 ORIGIN OF THE INSTABILITY

We have established that over a narrow range of transonic Mach numbers there is an
unusual form of periodic flow on thick biconvex aerofoils, but we have not identified
what criteria control the oscillation.

}?inke]I gives a comprehensive review of possible theoretical models which might
explain oscilla?%ons of this type. Finke's suggested analogy between wake oscillation and
Eckhaus' theory of transonic rudder flutter is interesting, but invokes an inviscid flow
model. The theory predicts a wide range of frequencies and Mach numbers over which flow
instability is possible (Ref 11, Fig 51), but manifestly this prediction is incompatible
both with the experiments cited there and with the narrow range of frequencies and Mach
numbers observed in the present tests. Finke showed that with laminar boundary layer/
shock wave interactions the theories of Karishima”? and Dvorak correctly predict the fre-
quency, hut that the theories are restricted to small-amplitude shock oscillations and are
inapplicable to turbulent boundary layers.

Recently McDevitth has clearly established that on a biconvex aerofoil with
t/c = 18% and a turbulent boundary layer/shock wave interaction, the shock does not
generally oscillate about a mean position. 1Instead, for most of the region of unsteady
flow, successive shock waves move upstream from the trailing edge, alternating between the
top and bottom surfaces. McDevitt suggests that this is a special form of oscillatory
flow, classified as a type C motion by Tijdeman‘ . Within a narrow range of Mach nimber a
shock wave motion of this type has been predicted from a numerical solution of the full
Navier-Stokes equations 3. However the computations took 7.5 hours on a CDC 7600
computer and even with more powerful computers it is unlikely that this method could be
applied for routine calculations on more realistic aerofoil sections.

An alternative approach is to ask whether the present measurements suggest well-
defined conditions for the onset and termination of the instability, which might be
applicable to other aerofoils, and also provide a clue as to the physical cause of the
oscillation. This question is prompted by the observation that the narrow region of flow
instability shown in Fig 6 is displaced roughly 0.1 in Mach number above the curve for
critical Mach number as a function of F?ickness/ehord ratio, derived from the transonic
similarity solutions given by Spreiter and confirmed by recent measurements (., Fig 11
of Ref 17).

As a first attempt to explain the phenomenon, the flow instability boundaries given
in Fig 6 are replotted in Fig 10 in terms of the transonic similarity parameter:

2

K = (M° - 1)/IM 2/3

4/3'( (1}

Yy +1) 2/3

(t/c)
The critical Mach number now occurs along the straight line K = -~ 1,42, corresponding with
the curve of Mg j¢ in Fig 6. Fig 10 shows that the values of K for the onset and termina-
tion of the instability vary appreciably with thickness/chord ratio. The instability is
unlikely to be inherent in the transonic inviscid flow, for such an instability would
always start and stop at particular values of the transonic similarity parameter. Hence
the instability probably results from a critical phenomenon in the viscous transonic flow.
This conclusion is supported by numerical solutions cf the full Navier-Stokes equations
already available for t/c = i2% (Ref 17) and for t/c = 18% (Refs 4 and 5). The steady
solutions (marked by triangles in Fig 10 and joined by dotted lines) roughly enclose the
unstable flow reqgqion found with fixed transition, and thus indicate that there are
unlikely to be fixed values of K controlling the instability. 1In addition, the oscilla-
tory solution found for t/c = 18% disappeared when the viscosity was eliminated.

A simple explanation of the phenomenon might be that the boundaries of Fig 6 corres-
pond to local Mach numbers for the start and stop of the instability, which might be
almost independent of the thickness/chord ratio. These constant Mach numbers would be
determined by some as yet unidentified feature of the buundary layer/shock wave inter-
action. Now *he local Mach numbers upstream »f the shock wave could not be easily meas-
ured on these small models, but approximate Mach numbers upstream of the shock can be

_
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obtained from the measu-~ed shock position and Ref 16, as we shall indicate. This approach
is reatnonable, because the shock position must be a crucial factor in determining the
instability, and we have already suggested in section 3.3 that the shock position controls
the oscillation frequency.

Fig 1la shows the s eady shock position previously measured? '8 1% in qifferent wind
tunnels on a number of thin biconvex aerofoils with attached flow, plotted against the
transonic similarity parameter. Even for these thin aerofoils the shock position is up-
stream of that according to Spreiter's theory for a given value of K. This discrepancy
must be attributed to the fact that Spreiter had to use the inviscid shock jump relation-
ship, whereas in the real viscous flow the local thickening of the boundary layer at the
foot of the shock produces an appreciably smaller increase in pressure. O0il flow studies
on the present, generally thicker, models show in Fig 1lb that both close to the onset and
completion of the instability the shock positions straddle the mean line for the thin
aerofoils taken from Fig lla.

The method devised to predict the approximate local Mach number immediately upstream
of the shock utilizes the mean line of Fig 11. For a particular aerofoil at transonic
speeds the pair of free stream Mach numbers for the onset and completion of the instabil-
ity define a pair of values of K, and hence particular values of xg/c from the mean line.
For the same shock positions, Spreiter's theory determines a pair of equivalent values, K ,
and hence equivalent free stream Mach numbers, Mg. From these values of K,, Mg and the 1
results of Spreiter's theory in Table lc of Ref 16, approximate local Mach numbers
upstream of the shock may be calculated for a particular thickness/chord ratio.

Concerning first the predictions for a turbulent boundary layer/shock wave inter-
action, Fig 12 shows that the local Mach number for the onset of the instability varies
from 1.24 for t/c = 12% to 1.15 for t/c = 20%. 1In contrast, the constant local Mach
number for the suppression of the separation is 1.24. Karashima's measurements for
t/c = 10% with a laminar boundary layer clearly show an instability for the Mach number
range from M1 = 1.20 to 1.24, in fair agreement with the present predictions.

These approxinate predictions are well supported by McDevitt'sIU recent measurements
of the flow instability on an 18% thick biconvex aerofoil at R = 11 x 106, Thus Fig 13
(after Ref 10, Fig 25) shows the regions of type C flow instability]’, and the correspond-
ing trequency parameter, as a function of free stream Mach number and angle of incidence. '
(In a type C flow instability a shock wave moves upstream along the aerofoil. The shock
wave then leaves the aerofoil at the leading edge and propagates upstream against the
incoming flow.) Fig 13 also includes values of local Mach number, M;, upstream of the
shock derived from Ref 11, Figs 27 and 28. When the free stream Mach number increases
above the critical value (M = 0.71), M; increases until at about M = 0.75, with M; = 1,20,
separation starts, together with the oscillatory flow. The mean shock position tﬁen moves
forward until at a free stream Mach number cf 0.76, M; falls to about 1.14 on the top sur-
face (Fiq 13a) and 1.10 on the lower surface (Fig 13b). With further increase in free
stream Mach number, the mean shock moves downstream again, until when M = 0.78 steady flow
is re-established with M} a little greater than 1.22 on the upper surface. A 'steady'
separated flow then extends from the shock to the trailing edge. This fgqion of steady

separated flow is preceded by a small region of type A flow instability 7. (In a typce A
flow instability a shock wave performs small oscillations about a mean position on an
aerofoil.) Thus in this high Reynolds number experiments, with a natural turbulent

boundary layer, the aerofoil provides the condition
1.13 M - .24,

over the observed regime of instability. This condition is consistent with that infoerred
in Fig 12 from the present tests at low Reynclds numbers. The onset ot the unsteady flow
corresponds to the sudden forward movemenr of the mean shock position, which would tradr-
tionally be asscciated with severe flow separations. (See the discussion by Pearcey of .
Figs 32 and 38 ir Ref 20.) Tentatively we may conclude that with a turbulent bLoundary
layer a necessary (but certainly not a sufficient) condition for the anstability to
develop on biconvex aerofoils is that tne local Mach number just upstream of the shack
lies within the range from about

1.14 - Ml - 1.24 . (A}
This unstable range corresponds roughi, with the range tor the onsct of spanifreant
separation on a wide range of acrofoils (Ref 20, scection 3.2.1). However Firgs 26 amd 2w
of Ref 10 give values of My of 1,23 and 1. 34 respectively, jqust below and gust above the
unsteady flow region. Hence the values of Mp for the very unsteady flows ropresented o
Figs 27 and 28 of Ref 10 (and used in Fig 13) could be a little misleading. Recent unpalbes
lished measurements’! on o large 1d- biconvex wing previde the condition: i
1.23  « Ml . 1,34
The frequency of the shock oscillation is probably relate 1 to the time taken feor ’
disturbances to travel upstream over a lenath, ., from the trailing edge to the mean shock
position which will generally be 1n 0 rearen of fully separated flows.  Fig 1440 shows that ;
the frequency measurements for the different t/c¢ ratios with fixed transition are rooeiliy i
correlated by this length and the free stream velocity, in terms of the transonic sirajar -
ity parameter, K. The present measurements are an fair agreement with previoons me s -
ments coverina t/c ratios from 10 too 29, andd o 1 anferred from those tests,

Many years aqo Erickson and Stophiensoa s aaggested a osimple emparical fornaly
the aerodynamic frequency parameter, jnversely proportional to the time taken o
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disturbances to travel from the trailing edge to the shock position:
wt/U = A = n(l - M)/2M . (3)

Fig 14b shows that the measured frequency parameters are only about 70% of those predicted
according to equation (3). However, despite the scatter, referencing these measurements
to the predictions of equation (3) does reduce the wide variation which occurs with the
transonic similarity parameter in Fig 13a. Hence the mechanism of the shock oscillation
must be related with the wake oscillation, which starts at the trailing edge.

This hypothesis was confirmed by a special test made with the 14% thick aerofoil
(with ¢ = 50 mm) modified to incorporate a small trailing-edge flap, which could be freely
hinged at 75% chord (Fig 15). A pair of heavy and light flaps of the same external
geometry were provided to briefly investigate possible effects of the inertia of the flap.
With the flap locked the instability was much the same as that measured previously,
despite the rather severe three-dimensional disturbances provided by the flap 'stops'.
With the flap unlocked there was a small mean flap deflection (determined by the aero-
dynamic hinge moment and the static moment of the flap) and small flap oscillations were
allowed. These oscillations were not measured, but they must have significantly altered
the boundary condition on the wake at the trailing edge, because the excitation in the
Mach number range from M = 0.82 to 0.84 was severely reduced, with either flap. At some-
what higher Mach numbers, transonic 'buzz' was observed, with either flap oscillating, as
indicated in the following table:

Flap Range of instability Amplitude of buzz
(M) (©)

Heavy 0.88 to 0.90 at least t10 (to stops)

Light 0.89 to 0.90 roughly %5

The larger amplitude mgsion of the heavy flap during buzz may be readily explained.
According to Lambourne the buzz frequency at constant Mach number is given by:

w = /(CA+CH)/I . (4)

where Cp = aerodynamic hinge stiffness (identical for both flaps),
Cy = elastic hinge stiffness (in this test = 0),

and I = moment of inertia of flap.

Hence the buzz frequency must be lower for the heavy flap. Now, in general, changes which
lower the buzz frequency would be expected to increase the buzz _ amplitude, as in the
present tests. This has been confirmed by experiments of Saito“™.

In contrast to the strong influence of the trailing-edge boundary condition on the
aerodynamic instability, the leading-edge geometry has a comparatively weak influence.
This was demonstrated with a 10 mm lonag x 100 mm wide piece of 30 grade carborundum paper
was wrapped round the leading edge of the 18% thick aerofoil with ¢ = 50 mm. The Mach
number range for the instability and the frequency were essentially the same as with
transition fixed with ballotini. However, the amplitude of the pressure fluctuations was
reduced, conf}stent with an excessively thick turbulent boundary layer. Finke has also
demonstrated that the shock oscillation is relatively insensitive to changes in the
leading edge geometry.

Finally it should be emphasised again that the instability boundaries (Fig 6) are
not significantly influenced by tunnel interference, despite the high blockage ratio of
the models (9% maximum for t/c = 18%, ¢ = 50 mm). However, the frequency parameter
measurements (Fig 7) may be subject to some interference, as discussed in section 3.3.
Tunnel resonance frequencies were measured with the aerodynamic excitation provided by
biconvex aerofoils over the Mach number range from M = 0.78 to 0.90 (Fig 16). These
measurements at the first resonance mode are in good agreement with theoretical predic-
tions and previous tests made with acoustic excitation. 1In particular, for this range of
Mach number the resonance frequencies measured were unaffected by an increase in the
depth of the plenum chamber from d = 0.67 to d = 4.00, as required by the theory for Mach
numbers greater than about 0.6.

5 POSSIBLE INSTABILITIES ON SUPERCRITICAL AFROFOILS

Additional tests are needed to establish if instabilities in the structural fre-
quency range occur on supercritical aerofoils within the flight envelopes of interest.

The narrow range of Mach number given by equation (2) is alio associated with
excitation on the 11% thick supercritical aerofoil tested by Ross® at Cp = 0.55,
R = 2 » 10°, over a wide range of free stream Mach number. Hence the local Mach number
criterion given by equation (2) may be also valid on supercritical aerofoils, although
this single result is certainly not conclusive. For this aerofoil the mean pressure
distributions and schlieren photographs suggest that any separations must be small. This
is consistent with the low amplitude of the excitation and the monotonic downstream shift
of the terminal shock wave as Mach number increases. The frequency parameter, of?/U,
varies from about 0.32 at M = 0.75 to 0.10 at M = 0.87. This is only about 50% of that
predicted according to equation (3). However, the pressure distribution on this aerofoil
is completely different from that on the conventional aerofoils used to derive equation
(3), or on the biconvex aerofoils.
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6 CONCLUSIONS
Tests on a series of small biconvex aerofeoil models suggest six main conclusions:

(1) A flow instability can develop at zero incidence at transonic speeds for thickness/
chord ratios varying from 12 to 20% with both laminar and turbulent boundary layers. For
a given aerofoil, the region of flow instability is restricted to a narrow range of Mach

number (Fig 6) and is influenced by the state of the boundary layer.

(2) The origin of the flow instability is not yet fully explained. However, it is
essentially a viscous phenomenon (Fig 10). A necessary (but not sufficient) condition for
the onset of the instability is a local Mach number, Mx' just upstream of the terminal
shock in the range from about:

1.14 < M1 < 1.24
(3) The frequency parameter of the instability is displayed in Fig 7 and is probably
determined primarily by the time taken for wake disturbances to pass upstream from the
trailing edge to the shock (Fig 13).

(4) The unusual and sharply-defined (Figs 6 and 7) nature of this instability makes 1t a
useful test for the methods of predicting unsteady viscous transonic flows now being
developed, with particular reference to the Navier-Stokes equations.

(5) For instabilities at frequencies close to tunnel rescnance the tunnel walls signifi-
cantly alter the instabilities. This dynamic interference may be reduced by replacing the
hard walls of the conventional working section with sound-absorbing walls (Figs 3 and 5).

(6) Tunnel resonance frequencies measured with the aerodynamic excitation provided by
the flow instability are in good agreement with previous tests made with acoustic
excitation, and also with theoretical predictions (Fig 16).
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Experiments on a Turbulent Unsteady Boundary Layer with Separation.
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Abstract

Turbulent separatior is an unsteady phenomerior in itself,cvern v steads external
ream" of a

rt

conditions. In this experiment a cyclic variaticn is produced in the "oite
tyoeital bourndary layer wind tunnel with variable pressuroe radient, Do
ariatiorn, the point of separation in quasi~steady conditiong is <hifte!
wise direction approximately one third of the hou. "ars laver 1o i,
A hot-=wire analysis of the velocity profiles, made 1 o amnlis s te Poae, shows
no significant change in profile behaviour, except a la: in separatic. ol reattachemont,

This result seems to be important in explainincs some {eatures of oo ctall,

The experimental conditions ( roduced Freguenc: nd Deroloo Mgl er) are close,in
crder of magnitude, both to blade stall and ctall Tlutter, o0 the Qreegue: 1o slout 4
Hz, the streamwise lenc th is_ 1.5 m and the oxtstrew veloo i ot e Dot oy of the
deceleratior is about 40 ms

The obsarved time lag  in separaticr !l pee:s . 1.1 Sorie oele,
wnicn artreeds with some oscillatir: 2irioil v -

Symbols

o3 prossurae coeflicienrt

o phase anale ( Jdegrees)

X streanwise coordinate ()

Y normal to wall coordinatoe (120

Y velocit, (m/s)

1) Introduction

Crolic separation of a lanirar or turbnlent e Lo Lo ewvernin T onnner v ate -
JUoaorodinamic ohenomena, such ac stoll Tlngtor, rots 5t11 ¢ conpressers,rotor tlo-
Jde stall.This d of nhenomoid DA oo Tnary St Uer s 1ow UTe endies, whore nolthor o=

tinl flew unsteadymess nor nsusl boundar: layer cuwsteadiness are oxnected, Tt mears that
out—of phase forces and moments are possible and may encite vitrations,

The experinent here described, which is rot vet completeld, is 2n attemnt to inves-
tigate on a separating btourdary laver, nerturtoed irn a cvelic wav and in which the att -
ched part shows no sirmificant unsteady effoct, vhile the separativa part has a lar e
time la7t with respect to the corresponding steadr condition,

The experiment started with some oreliminary tests in order to defire the {roquenc
range in which a consistant time laa could be observed, Tt nroceadnd with an attempt to

define what had to be measurod to obtai sinificant Jdata, This staze of the research
is the scope of the present »aper,

0f course, the usual unsteatmess of turbulent senaratior was found upon the crelic
separatior which was introduced in the flow, 1w ths nresent enperinmentael conditions,
this perturbation was not too larse ot e’ the Jdata scsttor annearint in the reosalts,
Tt siuouvld be noticed that this ~covscy 711 2 e Ty synas L0 a1 X0 o0 e ek
ouly Do te the inccceraes of

2)Experimental Facility

Tho cxperimental facility ia 0 weri ool roos e raciont Doviaddars Laver wind twnel,
Its test section is showi ir Fig, 1

station 1 2 1est wall
1Y

5
LY ¥ 1
e 11

e e T

flow ,

Fig, 1 Sleotch of the test section of the wind tunnel,




The inlet cross-=section is .1 » .3 m and the useful lerqgth is 1.7 1, ™Mo anner side of
the tunnel is the test wall, while the lower side is a porous wall nade by 229 adinstahl~
vanes, Below this wall there is the suction duct, leading to a certrifagal Llewver (37
Four boundary layer suction slots are provided on cach of the side w2lls, in order o nla
tain accurate two-dimensional conditions., In the presont exderinert side wall booriar
layer control was not vet used. Four of the adiustalle waioen
(rmeaker 12;13:22 and 29)are cor-—
raected 1o a rod svetem to A rme-
chanisn driven tr on electries
riotor, to nroduce o cwelic nros—
sure qradiernt variatior, The ran-
ge of pressures obtainable irn

the present cxperiment is showm
in fig, 2, The nressure is con
start D to & certain point,wh
re a vedlr or strong deceleration
beTins, cavsiny cventuallr sepa-
ratiorn,The four vanes are novod
i nairs in opposite directiors
ard their lever arms are adiasted
500 7b0 900 *’ to obtain rather steady irlet
f1ow conditions(1),

For simplicity of use, the
test wall is divided irto three
soctions .5 1 .3 m.)and ten of
these sections are available,
cach one cquipped with different instrimiontation, n the aresont exderiment three typen of
sections were used,one with streamvsise roscare tans,orne witl. oressurs thns tomial o the
flow direction (for two-dimersionalit' chechs) mnd one with 2 transversis: pechanisn Jor
displacement of probes:iG5 rum was the maxirum <isnlocenert,™ifts wore Hrovided on thae
le test wall in prelimirary tests, in order to ohserve senaration,

Although the centrifugal blower is drivern by a coustant specd notor, the twiiel “low
could be requlated bt choking the blower ontlet.This rerulation was not used in the pre-
sent experiment as it was not necessary and to have a better renecatibility of tests,

Fig, 2 Range of tested pressure coefliciorts,

3)Instrumentation

The instrumentation may be divided in two sections: the set for pressure neasurencrt
and the one for velocity profiles determination. Both are moritored by .« data acquisition
system,

The basic data acquisition system, originally intended only for strain—qauqge neasuroe-
ments,is composed by a digital computer (HP 2114 B), its peripheral devices(Telet pe,tape

reader and puncher), a six di-

={Scon ress git voltmeteor( inteqratira),a
= »>— t »— P scanner digital reed scanner ~td & reed rel v
I > » voltm card, the latter beina the ore
1v availab e output device for
{ ) data ccquisition,The veltroter
can be used alse as frocuenc:
J tty mneter or a tinme bhase of 1 so-
CTAL o S/H > t cond, The instrimentation is
computer . .
2 ) v showm in fiq. 3.
> d The hasic instruments are
s T ) __.. a pressure transducer and o
rens| rele - .
NI Y constant temperature hot=wire
hwp | anerionater., For Hrossurs nec-
- surcment the interface is o
ey Scanivalve with its control de-
1ynd oscil oscilloscope vice, Tt 2llows also a cheo!
lstor that the Searivalve is in the

riaght positior at the ond of

a scouence,the compuater enal-—
1irag the data only Lf the chee!
is positive.

The hot=wire anemometer siqnal has to be sampled at the proper phese el also 1vn too
dy state neasuroment the same measuring chain is used, in order to have the same caliirae
tiors and response, The hot=wire signal is sent to a sauplo=a =nodd nmplitier cnd !
the scanner aid dilgitel voltmeter, The saoling pelse, prooorls tined asl o
rmultivibrator, is supplied Ly a photoenlectrical Jdevice placed voar the prlleos of the vae

Fig., 3 TInstrumentation




| control nechanisn, the pulley 1s painted blacl, and the prooer ohese ig detocted Lo thee
photoclectric device by means of a strin of reflectin s tino,althorh it ig fow ploraeed

to vse a counter ard a fixed origin.FPor this suppouse, il to naere frenicres, o gecond
photoclectric device is »laced in front of the tonth of the "1 0, v ¢ s short time

base of the froquency motor (1 s5ocoid), tho arsgtom Tos 1 r b T e s e n 1 e 1 et
of thn »l1lay rovolvtion D th old of o stavsate 0 T ey v : o T T
A colog,

ERATANR AN AL A S O Dooinn T 1 . v : , -
cTollad e ghio wadoe ool S e T O R AR " t .

A tvo=tracn oscillogeony et e et OESSI N R K S SR : v conto,
ns5ually to voad the orici- sl a0 aonmlod hotewriee ai 1 ' ' t oY i
nulse. 8omotines also oricinal o nero tion cimal ol irs A orel 0 e v s s hearund,
This nllowed to monitor the whole tost, ir narticular "ot oensis 1o Cilnre (8 ths mpo
he wire, and to chocl tho Flow, v this coran it sae yers ugelid L o es i stine of
the end of the intermittort  poavt of the Plew, b the ooter ol ¢F thn 5 v Sare 1Tvor

4)Preliminary Tests

Prelininary teosts wore moade i order to ovaluate vhere unsteady ~ffects vere sinifl
~ant. Por this purpouse, the hot=wvire mrobe was placed close to the will, while a second
probe was nlaced in the same statior , tut ir. the outstroim.As first, tie simal was ob-
served on ar oscillosaope, in order to  detect Lisshious fLmres.furndalonce vas wvidely
disturbing trls detection and lov-pass filterin~ c.ousad some problem, Jue to the low fro
quencies, \ ood solution was to redlace bhoth oscilloscope and filters b an 1=Y plottcr?
[t was possible to obsorve in tnis way that tioe desired flow redinme, in which only sopa-—
ration was strongli unsteads; could he in the rance from 2 to 5 I for the tw.ool omolls
Dnmbers.In the present paper results at 3,66 Hz, correspondiyg to 220 rpn, are iver,

I order to Rave a larre ctou'h oclic shift for seoparation woint,co.maraed to the
radon fluctuatiorn due to tiriuloncn, the vesas slaced obweon the tre oscolllatiz oeiye
core adiugted to obtain o rather stror' pressure s radienis, closs to tho naxibin:
for nnoattached flow, observin: tulfis o the tost wall ol oressnres on o amlti-o .
rometer, T unsteady conditiors, of course, onlv tufts were observed, In this war it wag
nossible to define a linited rumber of streanwisoe stations in which the overall behaviour
of the flow could be obsorved, a larser mmber of stations beinag the scope of further Je-
velopments of the research.

)

5)Experimental Procedure

For pressurc measnroements, only in steady cowditions, a measuring wall, eauinped
with pressure tans ecach 20 mm was placed in avs of the three possible posigions and the
nulley controlling the oscillating vares was sct by hand at the required anagle., Pressures
were red by the pressure transducer, via the Scarivalve. At cach position the average va-
luey the root mean square error o@ 20 samples wyere caleuwlated, printed and punched, aAnv
data reduction was ( or will be )} nade bv succestive profdrams

For volocity profile neasurcoments, both the mmber of samples at cach measuring point
and the steps in the ¥ ( normal to the wall) direction could he changed at any time durins
the tests, in order try the correct way of perforning the experiments, At the first two
neasuring stations, for example, it wos possible to extend measuroments up te the corad of
intermittent turbulence for a jood definition of tua bovedary laver odie. Furthermore
steps were adijusted to the local boundar; layer thiciress and it was possible to have clo
sor measurencrtsrear the wall. For each measuriig point  the ¥V coordiinate, the averase
hot=wire signal and the root nean square error v ro printed and porched,Lincariza
the siqmal was made by Curther proarans. In tiis wrve the averae procoss ig male oo U

hot—wire siomal and not oo thy tien velocity valve,This rivae oo @l ovrrey ¢cless to e
Wall, whore the raspotan enrve 1as UG naimur ensvoters arl the e e e s Tar e,

Anotho Not=wire il "o suled ot o clven ohvveeg, iy Tl voalsnd s eas the v -
s process rives the trvo coaenble aoracie,

T the stealr comditions the pullev is nlaced Trr hatll dn the richt position mad o0
s reronisation oy sten oot cive the saaplice oulase, vhich ia anpolico D oo evtorr o
cseill wtor, T order to avoid to read twice the swe sainle,the conputor orablea the walt
neter to measare ot a Froononc a Lt 1over than the ampling Troaenes, -

6)Analysis Of Results

If we Llool at the shape of the volocit opaliles unstream of !

for oy mnle in statior 2 (fic 2) o notice that there is5 no Aifference hotweon steads oLl

N menarat oy edipnt,




)

124

unsteady velocity profiles,cven
in the conditions of maximum
flow changes,as at the phasc
F=270°,Als0 the velocity at the
outer edge of the boundary la-—
yer is the same. It means that
the boundary layer itself and
the external potential flow do ‘
\

‘ Y(mm)

station 2
40} *.522700 not contain unsteady effects.
Integral quantities will there
a steady fore coincide. Only the wall
4 unsteady shear stress is not determined,
as the bourdary laver thickness
A is small and the dimensions ol
a thn wire, cven whor ir contact
a to the wall, e not ~llow to 7o
Ivto the laminoy cublayer, Ap—
proachina the wvall, no signifi
a cant reduction in turbulence
was noticed on the oscillosco-
a pa.

20 Wvhen both flows, steady
and unsteady, are attached, it
a is possible again to observe

similar agreement between stea
a dy and unsteady velocity profi
a les, also in the region of cy
clic separation, as in station
4 5, confirming that unsteadymess
is not in the boundary layer ‘
) behaviour (Fig. 5).
a Before discussing separated
A flov results,we should observe
thatwhen a turbulent fluctuation
has a negative value, the ave=-
rage value of hot-wire signal
V(m/s) 15 no more equal to the mean
- y velocity,duc to the non linear
0 20 40 X
respeonse of the instrument (e~
ven when the signal is lineari
zed by analogical or numerical
means).
At the zero velocity value, for example, at the outer edge of the reversed flow, the ave
rage hot=wire sigqnal is cqual to the sum of its zero velocity value plus the root mean
square error.This is a way to detect the upper edge of the reversed flow with hot-wires.
In reversed flov the data presented are affected by this error and should be interpreted
in this wavy.
Tho observation of the behaviour of the velocity profile at station 5 approaching se-
paration, in the range between 27€° and 330°, qgives an example of what happens in the flow,
At 270°( attached flow) and 330°( scparated flow) both profiles are close toqgether despi-
te of the lar+ge data scatter. At 300°, on contrary,the flow is separated in steady condi
tions, while it is attached in the ursteady condition. The outer parts of the velocity
oroliln, up to external [low, secm.to colneide ( Fig. 6)
The sane  happens in reattaching conditions, for example between 60° and 150°, at the
same station (Fi 5). Reattaclment retards with respect to the steady flow even in a lar
qer way. Again, in attached (150°) and separated (60°) conditions, velocity profiles are
close together.

Fig, 5 Velocity profile upstream separation

7)Conclusions

Secparation and reattacheonent siwow a time laq which is much more larger than the one
appearicg in attached boundary layers(2). The only way to explain this 1aj in separation
and recttachement, when no other unsteady phenonena are present, is the time required to
build up and destroy the reversed flow recion, As in roversed flows velocities are small,
comparad to outstream velocities, time scales are larger,Furthermore, wakes will be moro
diffiemlt to <destroy than to build up, (due to the different intensity of shearing stresses,
This is o130 confirmed by the fact that the time lag seems to he larcer in reattachoment
tiar ir. seoparation, In this sonse, this 1a7 is mainly natter of bowdary layer-outstrean
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DISCUSSION SUMMARY

hy
W.J Mykytow, Consubtam
Dayton, Ohio, US

The subject meeting consisted of three sessions and a round table discussion. Comments on each
of the sessions were made by a session recorder and are repeated below., A resume' of the round table
discussions then follows. The papers presented are listed in the meeting's proceedings report and in
the following attachment.

1. SESSION I. PREDICTION METHODS AND COMPARISONS WITH EXPERIMENT, PART 1.

Recorder: Mr D G Mabey, U.K.

The paper presented by Prof Dowell gave a fine review of the problems of predicting attached,
separated and transonic two-dimensional flows. One of his conclusions deserves to be quoted in full.
"No transonic method can be expected to give useful information to the aeroelastician unless the mean
steady flow it predicis and uses Is accurate., Hence it is highly desirable to be able to input directly
the best steady flow information which is available including that from experiment. The latter would
include implicitly viscosity effects on the mean steady flow; in particular it would place the mean
shock in the correct position."

The paper presented by Dr Yoshihara considered attached, transonic two-dimensional flows, using a
viscous ramp method combined with a transonic small perturbation code.

The paper presented by M Javelle described a method of calculating three-dimensional time dependent
turbulent boundary layers, The turbulence model used was similar to that in use at NASA Ames. The
method looks promising, but needs to be combined with inviscid flow solutions tor the prediction of loads,

Dr Geissler’s paper covered a wide range of three-dimensional unsteady viscous flow problems, with
considerabIe success. However, all the comparisons relate to subsonic flows.

(Additional comments were made by Mr Mabey in a letter to Dr J J Olsen as follows. "I think the
most obvious common factor of the theoretical papers is that at transonic speeds the frequency parameter
rapidly becomes comparatively unimportant (é.g. phase angle vs frequency paramcter). Similarly the
effect of non-linearities is confined to low frequency parameters.")

2. SESSION I1. PREDICTION METHODS AND COMPARISONS WITH EXPERIMENTS, PART 2.

Recorder: Mr J Giesing, USA
The following comments are made on Houwink's paper on boundary layer effects on unsteady airloads,
——— k

Non Separated (Attached) Flow

A combination of experiments and theoretical calculations (NLR-LTRANZ2+Boundary Laver Analysis) were
done at NLR, on a NACA 64A006 airfoil with flap. The following points are made in the paper.,

Viscous boundary layver effects produce a "de-cambering' of the airtofl with tlap. The displacemen
thickness on the upper surface is greater than that on the lower surface resulting in a lower oftootive
tlap deflection. The viscous cffects may be thought ot as a sort of flap acting in vpposition to the
physical flap. Such a correction to the theoretical calculation greatly improves correlations with
experimental data.

The viscous corrections diminish as trequency increases,

wind tunnel wall corrections are fmportant it accurate correlations of theorv and experiment are to
he obtained.

'sing scephisticated thick body transonic theories can be less accurate than thin body theerices it
viscous effects are not accounted for. Viscous elfects and thivkness citects act in opposition to vach
other and in many cases {f both are dgnored cerrors will cancel. It fust one ot these etfeots i acoountaed
tor a loss in correlation may result.

Separated Flow

Separated flow can completely change the character and mechanism ot shock wave motion.  In the caarg b
presented the shock wave moved in the opposite dirvetion to that tor attached tlow tor tlap motionn.,

Resonance appeared (n <ome data which was not tully anderstood,  The cttecte seen could beoa wand
tunnel resonance or a Buzz mechanism,

The paper bv Messrs Couston, Angelint, Balleur and cdrodreux-Lavigne consorned the ettents o thy
unsteady boundary Taver In a two-dimensfonal transonie calculatfon,  This transonic caloalation s done
model ing viscous ettects by "hlowing” at the atrtofl surtace fnstead of phvafcally adding the bonndany
laver displacement thickness, Saehoa method may have dimproved convergence chatacteristioe over ottog

met hods,

The method fncludes a tall unsteady Futta condition tor invicid flow bat applices the conditjon ar
the afrtofl surtace and wake line, Some higher vrdey visions eftects on the Fatta condit fon are ne
considered snch as: 1) applving the Futta condftion at the boundary laver odpe and ©0) acoount ing to
a pressure ditterential across the trafling edge due to streamline carvatare ot tects, These Yapber order
ettecta conlt explafn the over estimate dn the Tttt ohtained,

Pime tep size governs whether dteration procedore will converse,

Inclnding wake visncou, ettects seem to reduie crrelat fon with test data,




Only nonseparated flows have been considered so far. Authors believe that the method will converge
for separated flows due to the special properties of such flows.

These authors also concluded that wind tunnel wall corrections are important for accurate correlation
of experiment and theory.

The paper by Garner, Payne and Baldock describes an experimental and theoretical approach to the
understanding of E;EEEG:TE-ﬁgz-TT;EEEE-ETTects on the flutter of a conventional (non-supercritical) wing
in three-dimensional flow.

An approximate theory which uses a two~dimensional steady transonic small perturbation method, with
and without viscous effects, along with the linear threve-dimensional method of Davis, is presented.

The experimental data for the simple swept and tapered wing tflutter model shows a dip in flutter
speed below that predicted by linear theory at M = ,865 and a subsequent risc above it at M = .88, The
dip in flutter speed is caused by an increase in 1ift curve slope due to transonic effects. The sub-
sequent rise in flutter speed above that predicted by linear methods 1s caused by an aft shitt in center
of pressure due to transonic effects.

Viscous effects on flutter tended to reduce the transonic increase in 11ft curve slope and reduce
the aft shift in center of pressure. Viscous effects, then, oftset the transonic effects of thickness,

The paper showed that as the mean incident {s increased, the flutter speed {s increased.

Finally, wind tunnel wall effects were considered important in accurate correlation of theory and
experiment.

In the paper by § roth and Gibeling the gencral Navier-Stokes equations are solved. The total
temperature is held constant for two-dimensional unsteady separated flow. The method also considers
compressible flow and has a turbulance Tlow model. (ontoured coordinates are used for a noniterative,
coupled, stahle and consistently split method of computation.

The method is efficient requiring 15 seconds per time step on the CDC 7600 (using 3000 grid points).
The author says this time will be cut in half in the future. The method requires 60-150 time steps for
moderate incidence and about 250 time steps for high incidence.

The method was applied to airfoils with starting, time dependent, leading vdge vortices. Good
qualitative correlation with experimental data was observed at high angles of attack and at low Mach
numbers. Major fratures were clearly shown such as starting vortex and secondary leading edge vortex
and secondary leading edge vortex of negative sign,

In the future transonic calculations, including shock wave calculation, will be undertaken,

General (-nsensus
————————————

The following consensus seems to wmerge from the papers ot this Session 11,

Thickness (and incidence) etffects in transonic flow can not be vonsidered without including viscous
effects, Results of including only one effect may be more in error than including neither ottect,

Wind tunnel wall e¢ftects are very important in transonic tests and calculations,

Quasi steady bounddary layer effects are adequate for attached tlov but not tor separated tlow,

General Comments
b

Linear theory along with "correction factors' will continue to be the backbone of the production
methods {n industry for some time to come., Correction factors are usually bascd on steady wind tunnel
experiments or steady tlow calculations using finlte element transonic theorv, Theretore, vltorts in
the arcas ot steady three-dimensional transonic flow calculation with viscous ettects are needed to
develop accurate correction tactors. Also efforts should be extended to tind out the ellects of Proecuer s
on these correction tactors,

. SESSION [1l.  EXPFRIMENTAL STUDIES

Recorder:  Ir R T Zwadn, Netherlands

All papers fn this Sesston 111 retlected clearly the findings ot a caretul examination o caperinectal
results,  The papers contributed to the understanding ot varions real tlow ottects and ancladed impulses
to reljable tlow model ing.

Davis discusse b Reynolds number eltects fn unsteady transonic flow which have been dealt wit? o ratnao
poorly till now. o Ithough not surprisinegly, he concluded on the hasis ot results tor convent fonal and
supercri{tical airtouls with natural boundarv laver transition that Kevoolds number eftects Looore s trony
in separated tlow, Tois contains the warning that a straipht -torward use of wind tunnel data mav b
dangerous and emphestses the need ot using properly chosen transition strips.  The extensian and cvateratd
data hase will he made avallable tor long and will provide tine opportunitics to comparisons with other
data.

Forsching presented in his paper experimental pressure distribotions for an osciliating wing-tlap
avatem at Tow spreds, which showed almost unexplained large ditterenies with tlat plate thoory vor darn
mean tlap angles and wing angles ot attack., He discussed the role of the gap and the slot geometry,

In the light of future active contyols applications Férsching's data possibly mark the beginning of morve
extensive studies covering theoretical work and higher speeds as well,

Mabey presented a very clear physieal explanation ot his work on unsteady separvated {low - out
biconvex alrtoils, concluded by a fascinating movie, He pointed to chavactervistics in t' 0 oscillating
shock~{nduced weparations (Mach number upstream of the shock, treguency parameter), which should also
emerge in any modeling of the tlow, The oscillationd seem most pronounced in svmmetric mean flow condd
tions., 1t wonld he worth investigating bow the instabitity develops tor practical airtoils. Possibly
the data of [avis are able tao provide tarther understanding,

ey




de Ponte described an exjerimental study, the development of a boundary layer under a cyclically
varying pressure gradient, of which the results show a remarkable lag in separation and reattachment.
Also these results appear suitable as test data for theoretical verification and may be very useful in
helicopter blade flow studies. Continuation of de Ponte's work deserves to be pursued with great Interest.
4. ROUND TABLE DISCUSSION

Chalrman: Dr J J Olsen, USA

The tollowing paragraphs prepared by Mr W J Mykytow attempt 10 reconstruct and assemble some of the
comments made during the round table discussion,

Airload Predictions

Very good progress has been made in the prediction of transonic unsteady airleoads tor unseparated
tlows and weaker shocks (some alrtoils with ¢xtensive regions of supercritiecal tlow are excepted) becausc
ot possible Reynolds number eftects,

Inviscid Flow

Iransonic small Jdisturbance theory overpredicts airloads since shock movements are too large. The
range of acvrodynamic parameter linearity versus angle of attack increases with higher reduced frequency.,
However, tlutter is critical at lower reduced trequencies, Inviscid three-dimensional methods should
soon be available. Transonic small disturbance theory is likely to vield in time to the full potential
method.

Viscous Flow
e ————

Viscous etfects reduce airloads and are opposite to those tfrom airfoil thickness. These effects
decrease with increasing reduced frequency.,

Predictions ot the correct locations and strengths of the shock in thiee-dimensional flow are an
essential prevequisite for accurate transonic unsteady airload estimates.,

Calculations tor two-dimensional flow with strong coupling between the outer inviscid tlow and the
inner viscous tlow show that the shock strength and shock movements are reduced. These results produce
better accord with experimental data, The viscous analyses for 2D require four times the computer eftfort
tor inviscid methods. The procedures appear to be extendable to 3D flow.

Several comments were made concerning strong shock-wave and boundary layer interactions, angle of
attack ettects and separated flow. The practical applicability of available mathematical-physical models
was quest ioned as well as their likely high costs.

Ihe general conclusion seemed to be that no reliable methods exist and, theretore, need to be developed
based on tundamental theoretical and experimental research. This research is requited since cruise
speeds ot future afreraft may be closer ‘o separatica loundaries. Also, transonic mancuveriry for
tighter aircraft will require operations at higher fixed and movable surface angles of attack.

Experimental data show that severe shock-boundary layer interactions produce shock motions opposite
to those expected (i.¢. forward shock motions for further increases {n incidence at lower trequencies),
Pavis' paper discusses the balance between chordwise positive and negative pressure "lobes" tor detached
boundary layers and warns of the potential effect of Revnolds number on this balance of unsteady airloads.

Determination and simulation of the time dependent transition point are important factors.

KReattachment time scales since back flow veloclities are lower.

Wavs of adding viscous effects to Euler equation approaches should be investigated and could prove
truittul,

Both tinfte difterence and integral methods for including boundary laver ctfects should be turther
investigated,

Navier-Stokes approaches will be usetul but costly. They will not be employed tor tlutter calcula-
tions i{n the foreseeahle future. Some broad qualitive agreements were shown tor applications to high
angle, lower speed separated flow, Other comments made about the utility of N-S approaches include:

a., Yvaluate more vconomic methods.

b. Identity physical phenomena,

¢. Understand factors atfecting separation under adverse pressure gradients.

d. TIdentity methods to minimi{ze shock induced separations and dvpamic instabilities,

v, Define and guide experiments and equipment developments.

Control Surtaces
e —————

Design ot transonic maneuvering tightera and active controls reguires accurate methods tor predict ing
unsteady aerodynamic atrloads on LE and TE controls at high angles ot attack ot with gaps, slots, special
devices, ete, These are lacking and require development, Experimental data at higher Reyvnolds numbers
and Mach numbers I~ also a high priority research task.

An evaluation ot sophisticated methods (including Reynolds number averaging in Navicer-Stokes cquation
approaches) would be valuable to detine potential prediction methods and to delineate applicability ot
less sophisticated methods,

Research is reguired tor higher reduced trequencies where phenomena may not be guasi-steady.

Fxperimental Measurements

Transonic unsteady measurements have provided an extremelv valuabl toundat fon 1tor analvtical

fnvest igat ions and have revealed several {mpoartant pehnomenologleal behaviors tneluding Yazz-like conditions,
Rewonant wind tunnel eofteots were notfced during (unsteady) acrodvnamic meanutements on o a righd moedel

and were reduced with acoustic linings.
Retervnce was made to calculat fons which show that the presence of viccons olfects is necessary toy

the uconrrenee of severe oscillating shock-wake interactions,  (See comments by Mr Zwaan on Mabey's
paper ahovey,
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Wall effects at transonic speeds are not well known even for transonic steady flow. Even more
severe difficulties exist in defining wall conditions and impedances for transonic unsteady flow. lests,
if practical, under conditions where wall effects are measurable, calculable, or minimized could be
useful.

Additional experimental information is required for:

a. Higher Reynolds numbers,

b. Control surfaces.

¢. Strong shock-boundary layer interactions and detached flows.

d. Practical 3D planiorms.

e, Plunge motions,

f. Fundamental measurements via laser techniques on unsteady boundary lavers, transition points,
wakes, etc.

General

Further aircraft flutter applications are required to define the full stability boundary versus Mach
number. Methods should be extended to cover the supersonic side ot the boundary (including subsonic
edges).

Design time limitations and costs of parameter variations will require development ot dependable but
economic transonic unsteady airload prediction methods for Industrial use by the tlutter engineer,
Simpler phenomenclogical modeling of the viscous flow such as decambering and moving wedge-nosed ramps,
etc should be valuable., Guideline recommendations from unsteady aerodynamic research scientists are
welcome,

More extensive applications of unsteady aerodynamic methods in transonic flutter satety cvaluoations

would also be most welcome. Results showing the effects from parameter variations which «ausc noticcable
nonlinearities would provide useful guidance. Garner's paper was well received and shows a small ctie.t
from Reynolds number but a large effect from angle of attack variations,

Comparison of calculated results with measured model data (and/or flight data) are rare to gute and
much more are needed. Such comparisons should include frequencies, amplitude ratios and phascs as well
as velocity (Mach number, dynamic pressure). Discussion of causes ot discrepancics would be usetyl].

Measurement of oscillating pressures on flutter models was recommended sceveral times,

Pending accomplishment of some of the above developments, it was thought that 1lutter enginecers
would use the simplest analysis model (such as transonic small disturbance theory with simple boundars
layer corrections, strip methods modified by 2D or 3D theory and measured data) in immediate tutune
applications. Again, good definition of the steady flow field and shock characteristics was
reemphasized,

5. SUMMARY COMMENTS

The AGARD SHI standard configurat.ons should be employed in experimental @ng analytical investipations
in so far as 1is practical. This will provide a valuable exchange of information and will accelerate the
state-of-the-art.

The subject matter presented at this Specialist's meeting at first glance seems quite varied and
even diverse. However, further evaluations will reveal many common threads and concerns, as well as
different approaches and limitations.

The ensemble of papers certainly demonstrates the tremendous progress in the last few vears made
possible by more powerful computers, numerical analysis methods, special algorithms, individual inter-
pretations of physical phenomena and the computer graphics display of physical flow characteristics.

Transonic unsteady pressure measurements in free flight may be economically teasible as pick-a-back
measurements during extensive steady flow measurements on aircratt. Valuable intormation on Reynolds
number and (lack of) wall etfects could be revealed.

A brief resume or updated listing of wind tunnel and tlight observed bending, torsional, control
surface, and aerodynamic (rigid airfoil) buzz couid be 1 useful scientitic and industrial reterence,

Flutter characteristics must be predicted withi all fraction ot specitication tlight satety
margins. The challenge to: evelopment of an econor *d rapid met'od tor accurate prediction o
transonic unsteady airloads {n industrial app) . ¢ voorelore still oexists, However, much progress
has been accomplished {n the last tew years. Lakly s abjective will be achfeved {n the nea

future.
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