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ABSTRACT

4
The stability of pseudospectral-Chebyshev methods is demonstrated

for parabolic and hyperbolic problems with variable coefficients. The

choice of collocation points is discussed. Numerical examples are given

for the case of variablg—coefficient hyperbolic equations.
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1. Introduction

The purpose of this paper is to analyze spectral Chebyshev collocation
(otherwise known as pseudospectral) methods for hyperbolic and parabolic .
problems. We shall show that these methods converge at a rate that is
faster than that of finite differences. The analysis is based upon results
presented in [1]. This reference outlines the general theory of convergence
of spectral methods and proves that if a spectrai method is algebraically
stable in some norm, then the method is strongly stable in an algebraically
equivalent new norm. If in addition the method is consistent by virtue of
its truncation error tending to zero in this new norm, then convergence is implied.

The application of this theory to hyperbolic and parabolic problems
had been discussed in [1] mainly for constant coefficient hyperbolic and
parabolic problems and, in the case of Chebyshev methods, mainly for the
Galerkin and Tau methods: In this paper we discuss the collocation
methods and prove stability for the variable coefficient case. The new
idea that enables us to establish stability for collocation methods is a
new quadrature formula for Gauss-type integration. We use the positive weights
given by this formula as the new norm and prove energy comservation in this
norm. Using the same technique a new proof is presented for variable
coefficient hyperbolic and parabolic problems when solved by spectral-
Chebyshev methods using Tau methods. These proofs are more general than

those in [1] in the sense that they include the variable coefficient case.

Section 1

A numerical solution of the problem

u_ = Lu (1.1




A o

where u € H, H is an Hilbert space and L is an infinite dimensional operator;
consists of two steps. The first is to choose a fiﬁite dimensional sub-

space of H, say By, and the second is to choose a projection operation

PN t H O+ BN. The approximation to (l.1) becomeés

9 - .
— s
sz = By L By u ug € By '1.2)

which may be solved on a computer. Spectral Chebyshev mathods are

defined by choosing By as the N-dimensional space spanned by polymomials
of degree N+k-1 that satisfy boundary conditioms.

There are three ways which have been used to choose the 6peracor PN ’
namely Galerkin, Tau and collocation.

In the Galerkin method for homogenecus boundary conditions we choose

¢ n=1,...,N as the basis of BN and solve

n
Fr e L Uy ¢n = n=1,...,N
(1.3)
N
W= 2 3 0y -

a=1
For the Tau method we choose {¢n} to be a set of orthogonal functions
such that (¢u,qn) = Gnm and expand

N+k

u = 2 4, 4

n=]1

where k is the number of boundary conditions. Then set

LN ® g e srge




E )
F'-LUN, ¢n = 0 n=1,...,N . (1.4)

The condition u_€ B provides the other k equations.

N N

In the collocation method we set

N
we L1oagty
n=1
and require
auN
I - L uy = 0 for xj j=1,...,N . (1.5)

It had been observed by Orszag [ 1] and Kreiss and Oliger [ 2] that the
collocation method can be carried out efficiently in the physical space in
contrast to the Galerki; and Tau methods which must be solved in the
transform space. This fact enables one to use the collocation method
efficiently for nonlinear equations. We refer the reader to [1] for further
discussion of this fact.

In the next sections we will illustrate the above procedure applied to

parabolic and hyperbolic equations.

Section 2
Consider the equation

u, = S(x) u, -l<x<1

0 <8 < S(x)

X

(2.1)




In the Galerkin-Chebyshev method we choose

¢n"1‘n-‘1'o n even ,
. (2.2)
| ¢n-’1‘n-’1'1 nodd -
| rere T (x) = -os(ncos 1.
N
"o axnand = a ¢ (x) so that (¢1,t) = 0 and set
N 2%t N
} 1 2
au“ 3 uy ] )
| == - S(x) 2 dx = 0 n=2,...,N . (2.3)
1 [3t ax2 /- x2 :
It is readily seen that for nonconstant S(x), it is difficult to solve the

equations for (2.3). Orszag has found some efficient transform methods to

evaluate

1
BZUN L
/ S(X)—E ——

In general, however, solving (2.3) for the coefficients {an} is time consuming.

In the Tau method we set

N+2
ULt T ™

n=0

and raquire

1 3 2
1 N N - -
f l—,_.z-— (3: - S(x) sz ) Tn dx = 0 n=20,...,N




g YT

together with

N+2 N+2
nz=: an Tn(l) = nZ-:O an =0 -
and (2.4)
N+2 N+2

n —
z;b a T (-1) = n§=:0 -n%a =0.

We face the same complications for getting the coefficients as we had for the
Galerkin method.

In the collocation method we set

N
uy = > a ¢ (x)
n=0
where the ¢n's are defined in (2.2). Then we demand

BuN 32
3 - s(x)

]
o
(Y]
T
"

]
]

(=1

[}

; j 0,...N (2.5)
ax2 J

for some points xj. If the xj are chosen to be cos lTﬁl so that the

boundary values are included, there is an efficient way to solve (2.5), by

taking advantage of the orthogonality of the trigonometric functioms. Set

N N .
ug(x) = > a T (x), uN(xj) = Z anTn(xj) , 0<j<N
n=0 n=0
-5~
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e T

Then
N
2 1 Tnk
a=-—z—u(x)cos—— c, = ¢, =2 (2.5a)-
n Ncn k=0 Sk ¥ 7k N 0 N
¢ = 1 1<k<N~-1

where the coefficients bn may be found from

p(PZ-nz)ap

Then we go back to the physical space and solve

2,

L Uy
SE—(xj) = S(Kj) ;;3- (xj) j=1,...,8-1

uy(xg) = () =0

This procedure is very efficient and may be generalized without any
problem to nonlinear equations. In practice we would use the Chebyshev
polynomials to interpolate u spatially and then to evaluate the spatial
derivative at the desired points xj. Finally the solution would be

advanced in time using the original nonlinear equation to find the time

derivative at the points xj in the physical space.

In order to prove convergence we need the following two results.




Lemma 1.
Let u satisfy u(zl) = 0 and have a continuous first derivative, then

1 -

au
/ —— dx <0 . (2.6)
-1 /&-xz

For the proof we refer the reader to [1l, p. 82].

Lemma 2.
Let xj = cos %ﬁ j=20,...,N. Then there exist wj > 0, j=0,...N such that
1 N
f(X) dx = Z f(X.)W. (2.7)
o2 o
_l V;—x
N
w, =T
j=0 7

for any f(x) which is a polynomial of degree at most 2N-1.

Remark: The formula (2.7) is a generalization of the well kﬁown integra-
tion rule of Gauss type. Note that wj depends on N. There are two major
diffrrences between (2.7) and the usual Gauss integration formula for the
weight function w(x) = (l-xz)_%. The first difference is that the Gauss
formulas are of open type, that is the boundary points are not included,
whereas in (2.7) they are included. The second is that the interior points
are not the zeroces of the orthogonal polynomials with respect to

w(x) = (l-xz)-% namely the Chebyshev polynomial of the first kind, but
rather that they are the zeroes of the Chebyshev polynomial of the second
kind (which are orthogonal with respect to the weight functiom

wix) = (l—xz)%). It is interesting to note that Lemma 2 implies the Gauss

3 %

integration formula for the weight function w(x) = (1-x2) , i.e., that 4

the formula




1 —  N-l

(T2
g(x)V1-x" = 2: g(x.) Gj (2.8)
j=1 J

{ Z1
is correct for any 2N-3 degree polynomial. In fact if (2.7) is correct

' set f(x) = (l-xz)g(x) in (2.7) to get

. . //—2 N 2 N-1 2
! g(x)/1-x° = };% (1-x{)g (x) W= ;gi (1-x)g(xy) W,
-1

i- since Xy = 1, xg = -1, and the fact that if g(x) is a 2N-3rd degree
polynomial then the degree of f 1is 2N=-1. Equation (2.8) is now

b established with Gj = (l—x?) AT

Proof:

Wa first note that (2.7) can be made exact for any Nth degree polymomial
by putting f(x) = xn, a'=-0,...,N and solv‘-g for the N+ 1 unknowns,
wj since the Vandermonde matrix is nonsingular.

Let £(x) be now a polynomial of degree 2N-1. Then there are g(x)

of degree N-2 and v(x) of degree N such that

3 (o) = (1) (0g(x) + v(x) (2.9)

where YV—l is the Chebyshev polynomial of the second kind, i.e.,

sin(Nccs-lx)

Y, = (2.10)

j=l,...N-1




we conclude that

f(xj) = v(xj) i=0,...,N . (2.11)
Now
1 1 1
£G0) gy =f M-x? 1, (80 dx +/ v gy (2 12)
/l—xz /&-xz
-1 -1 -1
The first term in the right hand side of (2.12) vanishes since is

IN-1

orthogonal to any polynomial of degree less than N-1 and the degree of
g(x) 1is N-2. Since v(x) 1is a polynomial of degree N (2.7) is exact

for it and therefore

1 N

. V() 4 = Y v(x.) w,
2 < it
-1 V1-x

and by (2.11) we conclude that

1 1 N N
f __.E(x) dx = f V(X) dx = Z V(xj) wj = Z f(xj) wj
-1

] /&—xz l—x2 3=0 3=0

This proves (2.7) except for the fact that wj > 0. To prove that we define
£ (x) = (1-x3)Y2 (O /1Y, - (x)(x-x,)]° 2 =1,...,81
2 N-1 N-1'% 2 ,

2
The degree of fi(x) is 2N-2: moreover, fg(xj) = 51j(l-x } and

£,(x) 20, -1 2x<1. Therefore (2.7) is exact and vields




Y

"E, () N )
/ = L) u = (1)) v (2.13)
21

v'l—x2 j=0

Equation (2.13) shows that v, > 0, 4 =1,...,N-1. Define now

Y;-I(X)
£q(x) = (1+x) —=3 20 (a)
and v2 2N (2.14)
£g(x) = (1-x) ==% > 0 (b)
2N
fo(xj) = 50j EN(xj) = ij
and therefore
1 fo(x)
Wy = dx > 0 (a)
.2
]_..
S Sx (2.15)
. 1fN(x)
vy dx > 0 (b)
. 2
1-x

and this concludes the proof.

We are now ready to prove the stability of the Chebyshev collocation method

for the heat equation.

Theorem: (Stability)

Let uy be the Chebyshev collocation a proximation (2.5) to the heat
equation (2.1). Then

i
&~

N oug(x.e) N W,
j;O S(xj) Y3 < J,‘ZO uN(xj’o) s(xj) . (2.16)




Proof:

|
Since i
\
oy oy |
(x,,t) = S(x,) —— (x,) ' j=1,...,N-1 and

! and |
| ug (%) = uy(xy) = 0. l
We get !
2 ]
N BuN W, N ] 1
' ) = . = . . . . 2.17 1
’ ;Z% uN(xJ) e (xJ) g%;;j- ;Z% uN(xJ) 2 (xJ) vy ( ) \
2 |
P uy \

By Lemma 2.2 and the fact that the degree of uy 3 is 2N-2 we get

ox

aZuN 1 2

N 3
\ _ 1 N
JZ:O (%) 2 (x;) wy = / dx < 0 .

) The last inequality follows from Lemma 2, since uN(tl,t) = (0. Therefore,

w,

N
4 2 i
de j§0 uy (%) 5(x;) =0

and (2.16) follows.

The next step for showing convergence is to show that the truncation
error tends to zero as N-.1 tends to infinity. In view of the discussion

in [1, p. 48] the truncation error is given by

' a2 a2
Py SCO ;;5 Py~ PyS(0) ;;5 u || (2.18)




anoa

N that interpolates the function f(x) at the points x; and

| N gz(x ) 3 i

gl = -1 X, = cds 3=0,...,N
J% S(xj) 3 bi N

Theorem: (Consistency)
let u, P, and || +|| be defined as above then’

N

r

2 2
I Py S(x) a—ZPN-S(x) a—zu | = oL
9% Ix N

for any positive r.

Proof:

From (2.5a) we can express PNu by

N an
PNu = Z . Tn(x)
n=0 n

where

On the other hand

a »
am) =2 T+ L 2T (0
n=1

where u € c” is the solution to (2.1), PNf(x) is a polynomial of degree

(2.19)

H
i
1
I
i
)



2

~

where

2 u(x)T (x)

/_

a
n

It is well known that a = 0[1

expressed in terms of the an's By the formula

_1l, i K s )T (xj)
¥ % &

J

+

ZN

N
2 a
k=1

= 2 + 2)N-n + AUN-n+ .....

and therefore

82 a2 N "
S(x) — Nu - S(x) Fu= S(x) Z (an-an)'l‘n
ax 9x n=0
define
g(x) = S(x) 2 aT!
n=N
then

2
2 " 1
s z s (x, >[n}_:N a <xj>] w - o[—] .

Moreover since |a_ - a | = O[J;] by (2.20) we get
n n Nt

-13-

p] for any p. Moreoever a, can be
n

ﬁE T (x.)T (xi)

4

(2.20)

- S(x) Z aT"  (2.21)

nn
n=N

Nl‘



2 2
' ] 3 ] 1
||S(x)—'Pu-S(x)—u - Q|===
3:2 N ax? " [Nr]

and since ”pN ] =1 (2.19) is proven.

Section 3

In this section we would like to treat the hyperbolic equation

u, = s(x)u S(x) >0 lx| <1
(3.1)
u(l,e) =0 .
We concentrate upon the collocation method. There are currently two
ways of performing the collocation method. The first one i#
to collocate at the point xk = cos %% , k=l,...,N and t; use the boundary

condition for Xy = 1. This means that we collocate at N-1 points in the

interior of the dorain and also at the outflow boundary; we do not colidcate

at x = 1 gsince a boundary condition £S'impos€d at this point. The other way
is to collocate at the points X, = cos %% , k=1,...,N~1 and to use the
boundary condition at X = 1. This amounts to using N-1 interior points
for collocation and to impose a boundary condition at the inflow. The out-
flow boundary is not treated at all. We would now like to show how to carry
out these two methods effectively.

In order to carry out the first one we expand

N n=0,...,N
uN(xn,t) = 2 a, Tk(xn) ™ . (3.2)
k=0 xn = cos sr ‘

and solve for a,




e v———-———-———-—_.—.—.-mm1

! 1 X 1 nik o = €p~ 2
i - E ‘c—'uN(xj,t) cos . (3.3)
: k j=0 j cp = 1 OfsN
[
Equation (3.3) is evaluated by using the Fast Fourier Transform (FFT) method._
Now
auN N
I Kpe® = L b T (x) (3.4)
k=0
where
1 N
by == X 2pa, . (3.5)
¢ k  k=p+l
k+p odd

The evaluation of the right hand side of equation (3.4) is carried out

using FFT. Then equation (3.5) 1is solved for the bk's with O(N)
operations,that is a simple recursive formula is used
1 bN =0 bN-l = ZNan
and |
brez = P = -~ 2(k+Da, |
k+2 !
Then we solve in the physical space.
: auN du
. N
. — = -~ ) = cs ey
at (xj’t) S(xj) ax (xj't- j 1) N
i (3.6)

uN(l,t) =0

A very efficient time marching techniqua which is explicit and uncondi-

) tionally stable had been developed in [3] and can be used for the solution

of (3.6).




et gsa i ™ — ‘1

The second way of collocation is carried out as follows. Set

! N-1 a=20,...,N-1

| vy(x,,8) = 2, d T (x) ™ . (3.7)
{ k=0 X_ = cos —
| o N

It can be shown that dk can be expressed in terms of a, derived

in (3.3). In fact

k

e =3 + (-].)N.]'ZaN S—L-i'k . (3.8)
b Equation (3.8) is derived as follows
N=-1
uN(xn.t) = EO e Tk(xn) M aI‘ITN(xn)

k N-1
' .Z k1'k(x)+(1.) a.N[Z:;T(x)-(—)—T(x)]

k=0 “x
N=-1 N-1 k N-1
-1 (-1)
-Zar(xn-(n 2a, Y. = T (x) = 2 e T (x)
k=0 EE-SEE S - AL
for a=0,...,N-1.
Now
v\‘ §.
(x_,t) = Y T(X)
| n k=0 k 'k
{
where

"> X e (3.9)




and we solve

ov_(x,,t) v, (x.,t)
5—';“—-1—— = s(x) S,TN—J—_ j=1,...,N-1 (3.10)

uN(xO,t) =0 .

Observe that uy in the second way of collocation (3.7) - (3.10) 1is a

polynomial of degree N-1, whereas in (3.2) - (3.6) it is a polynomial of

degree N. The similarity between these two different methods can be seen
dJu Ju

in the case where S(x) = 1. Since §EE SEE is a polynomial of degree N

that vanishes at x = -1 and at the series of T&(x) we get

BuN BuN
gt_- = 3)—(— + Tl(l+X)TN(x) (a)
and by the same argument (3.11)
v av
_N__XN '
s sn T Ty Ty, ()

It is interesting to note that for the Tau method one gets the error equation

oR aR
N N
3t - 3x + T3 TN(x). (3.12)

where RN is the Tau approximation to u. It seems that the Tau method '

' can be viewed, in the case of the constant coefficient problem (3.12) as

a collocation method based on the collocation points ]

- - T 2k-1 - |
| zk cos [2 N ] k=1,...,N . (3.12a)

This observation suggests a convenient way of using the Tau method for the

variable coefficient case as well, namely set




ERV 3RV
F- S(x) 3;‘-'0 X = zk | k=1l,...,N . (3.13)
This method raduces in the constant coefficient case to the Tau method. °

In order to establish stability for the collocation method described in

(3.7) - (3.10) we need the following Lemma:

Lemma

Let x, = cos 15. k = 0,...,N=1 then the quadrature formula

N-1

f/“‘" Exdx = 3 £x) G (3.14)

k=0

where

1

_1(x)
k" 1 zf Nl (lx)/_x dx > 0

(1-x, ) (Yy ()17 4, (x-x.)

©

1

s el 2 Tox
Y Yz = f YN_I(x) /1% dx > 0
=1 -1

is correct for every polynomial of degree 2N-2 or less.

Proof.
Let £f(x) be a polynomial of degree 2N-2. Set g(x) = (l+x)f(x). Since

g(x) 1is a polynomial of degrse 2N-1, formula (2.7) is exaﬁt.

N N-1
f L0 4y 0 35 (14w, f(x,) = 3 (I+xdw, £(x). (3.15)
S TN T L T

/i-xt




v aw

Equation (3.15) implies (3.14) and w

argument.

Now let v,, be the collocation approximation to u gotten by (3.7) - (3.10).

N
Then
Ju ov
Yl C(X)E(_ X = x n=1,...,N-1,
vN(xn)wn
Multiplying by we get from (3.16)
c(x )
Nil aVN Qn Nil - BVN
vo(x ) =— (x) = vl ) 7= (x ) @
o N'‘"n’ Ot n c(xn) ! N'"n’ 3x n n
and by (3.14)
1 2
du — 1 v
Tx |, N 1 /x 2 L N
f/ nax S 2|//1-va 172 _/ zdx‘
-1 (l-X)/&-x

The boundary term in the right hand side of (3.17) vanishes since

vN(l) =0 and v, is a polynomial and therefore

N
Q
<
dt N x) - 0
*n
or

N-1 w N-1 &

2 n -

vi(x_,t) —/—~ < 2: vy (x ,0) .

;;% N'"n c(xn) Bper c(x c(x)

=19~

K can be derived by a standard

(3.16)

(3.17)

(3.18)




s W A A

From the dgfinition of Yo it follows that the norm described by the

weights is algebraically equivalent to the norm in which we have

a
c(xn)
consisrency, therefore algebraic stability is proved. The same idea can

be utilized in showing the stability of the Tau method. In fact from (3.12)

it is evident that

N y R N R (z,)
1 . —j— —— = _YL &ll z
J_‘_;l( ) TR ® G j;l e B R ) (.19)

where yj are the weights in the Gauss-Chebyshev integration. From (3.17)

it follows that

1
g &y, R

1 g2 Ry By 14x bR
de ,21 I-z, F\*‘(zj'c) .f 1-x 9x dx = - - L ax <0 (3.20)
J J -1 /l-xz 21 (1-x) V&-xz

which proves algebraic stability.
The stability of the collocation method described by (3.3) - (3.6) follows
immediately from that described in (3.7) - (3.10). It can be seen from

the relation (3.8). In fact, setting

iuﬂ-—a-—'a(lﬂ)ﬂ_—aiﬂ
at ax =79t 3Ix

one gets (3.11)(a) from (3.11)(b). This completes the discussion of
collocation method for scalar equations. We refer the reader to [4] in

which proper ways of implementing spectral methods for systems is discussed.

Section 4

The proofs presented in the last section were confined to the case in

whi~h c(x) does not change sign. This might be a weakness of the theory rather




1

than that of the collocation method. Numerical experiments using the pseudo-
spectral methods have indicated that there is no instability, that is they
show the solution does not grow with N even when S(x) changes sign. .
There might be problems owing to growth in time of the solution or to the
existence of a stationmary characteristic i# the neighborhood of either the
boundary or some interior point. But these problems seem to occur because

of lack of spatial resolution and not because of stability. In order to

illustrate this fact let us consider two equations:

u = -xu Ix] <1
t x (4.1)
u(x,0) = £(x)
and
u, = xu x| <1
u(x,0) = f(x) (4.2)
u(1,t) = 0

We attempt to solve (4.1) and (4.2) by the Chebyshev collocation method.
According to the popular belief, there should be instabilities in the solu-
tion since x changes sign in the domain. However, as indicated in Table

I below no such instabilities were found. As a matter of fact we can prove

Theorem:

The Chebyshev collocation method for (4.1) is stable.

Proof:

Let uyg be the Chebyshev approximétion to u gotten by the collocation

method. Then

3du ou
- + x = . 0 X = cos o
at 9%
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as in (3.2). Or

+ — o= = T_Tl jm -
It X 32 0 X = cos j=l,...,8~1 (b) (4.3)

as in (3.7). Since uy is Nth degree polynomial and vy is N-1 degree

polynomial, we get
s S
t

3

Q) 2
%) ¢
Z
i
'—l
In
E
[
.—-A

(4.4

where w 1is either . uN or VN'

We now refer the reader to ([l], p. 85-87) for the proof that (4.4)

implies stability.

Theorem:

The Chebyshev collocation approximation for (4.2) is stable.

Proof:
Now u satisfies
N
BuN Ju .
— —P-I- = D i N~ 4.5
T X == X = cos j=1,...,N-1 (4.5)

uN(tl,t) = 0
Note that (4.5) has boundary conditioms in comtrast to (4.4).

Let wj be defined in (2.7). From (4.5) it is clear that

)y w.,

3773

N-1 (x,) 2 N-1 «x, 3u
b i M - i _N
jz’:o l+xj T (x.,) w Z n (x.) % (x

2
X uV N

,
= dx = = | —————7 (l-x#x") < 0
(1+x) v 1-x° N (L)< (1=




and that proves stability.

It goes without saying that the proofs of the last two theorems can

c(x)
X

be extended to all the functions c(x) such that is of constant
sign. We conjecture that it is true for any c(x).
In Table I we show the results of applying the Chebyshev-pseudospectral

method to four equations.

The first equation is

u, = (I+x)a Ix] <1 (a) (4.6)
u(x,0) = sin mx
u(l,t) = sin(2et-1)ﬂ

The solution to this .problem is

u(x,t) = sin T [(1+x)e -1] . (b) (4.6)

This problem has a characteristic boundary at x = -1, moreover for
large t the solution has a large variation in the neighborhood of
x = -1,

The second problem is

[=
[}

(l—x)ux (a) 4.7)

u(x,0) sin 7x

The solution is given by

u(x,t) = sin W[l—(l—x)e“t

I (b) (4.7)
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.

The line x = 1 1is a characteristic boundary but in contrast to the equa-
tion (4.6) the neighboring characteristics point from the boundary towards

the domain. The third is

u, =X U (a) (4.8)

u(x,0) = sin mx

u(l,t) sin(vec)

u(~1l,t) = -sin(ﬂet)

The solution is

ulx,t) = sin(mxe®) : (b) (4.8)

And the fourth is

u, = -xu (a) (4.9)

u(x,0) = sinmx
where

ulx,t) = sin(vxe-t) (b)
All these problems were solved by Chebyshev pseudospectral methods with
the modified Euler time marching techniques. With the time step At = l/Axmi

we advance from the time O to the time ¢ = 2. Note that since

1 (1
- = it N, s
Xy = Xygo1 O(NZ} then Axmin O{Nzl
In Table I we show the L2 Chebvshev errors of the solution of the
problems (4.6) ~ (4.9). It is clear that the Chebvshev collocation method

was stable for 3ll these problems and has the same rate of convergence.

Db

80}




However, the errors for problems (4.6) and (4.8) were much larger than
those of (4.7) and (4.9). In fact taking 64 modes in the solution of (4.6)
and (4.8) produce the same error that 17 modes produce for (4.6) and (4.8).
This is a problem of accuracy and not of stability. The question now is do
we retain spectral accuracy? To answer this question we ran the problem
(4.8) with smaller and smaller time steps until the results were not

changed which means that we get the space accuracy. For 17 modes we got

5

an L2 error of 1.16.10—1, whereas for 33 modes we got an error of 6.10

This indicates the fact that the order of accuracy in space is indeed better

than any algebraic order.

Conclusion

It has been sho@n.in this paper that the pseudospectral-Chebyshev
methods are convergent in variable coefficient parabolic problems and in
some cases to hyperbolic problems. The analysis shows that the rate of
convergence is greater for finite difference methods or the finite element
method. It seems that for a single first order hyperbelic equation the
method remains stable even when the coefficient changes sign, though in
this case care must be taken to have adequate spatial resolution. This
fact, combined with the fact that collocation methods are easy to apply
in the nonlinear case, shows that pseudospectral method is in general

preferable to Galerkin or Tau methods.
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TABLE I.

L

Chebyshev errors for the solution of (4.6) - (4.9).

2

N u, = (1+x)ux u, = (l-x)ux u = xux u, = -xu
Co17 0 1013 - 107t 9.4 « 1070 1.16 » 10°F | 2.05 * 107
33 1.79 « 1073 4.7 - 1077 2.59 - 1074 1.05 * 10~/
65 | 8.5 - 107° 2.2 - 1078 1.22 102 | 5 %1072




