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NOTATION

A Incident wave amplitude

B Ship beam

F Froude number, F nU/(gL)nn

AF Non-dimensionalized added-resistance coefficient
x

AF Non-dimensionalized lateral drift-force coefficient

<F> Time average of a function F, <F >- l/TITF(t)dt
0

<AF> The second-order steady force

<AFI> Added resistance

<AF Lateral drift force

<AFBB> The second-order force due to the ship-generated waves

<AFl e Added resistance due to the ship-generated waves

S2BLateral drift force due to the ship-generated waves

<AF I? The second-order force due to interactions between the

incoming wave and the ship-generated waves

<AF Added resistance due to interaction between the
incoming wave and the ship-generated waves

<A F21 ? Lateral drift force due to interaction between the

incoming wave and the ship-generated waves

g Gravitational acceleration

G(P,Q) Green's function

H(uoX) Kochin function

H (u,A) Kochin function due to the J-th mode of ship motion

H (uA) Kochin function due to the diffraction potential

k 0  Wave number of the progressive wave, k0- o2/g

L Ship length

(nl, n2 , n ) Components of unit normal vector

v
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NOTATION (CONTINUED)

(N2 ,N3) Two-dimensional components of unit normal vector in
y-z plane

Oxyz Coordinate system translating with speed U in the
Ox direction

P=(x,y,z)- X Field point

q(x,y,z,t) Absolute velocity, q W

Q=(xOY 0,z 0) Singular point, or point on a body surface

r Distance between P and Q

SBO Mean surface of ship

U Mean forward speed of ship

Y(x,y,z) Absolute perturbation velocity, v = = (u,v,w)

Wave heading:a = 0 - following seas,
=ff/2 - beam seas,
= n - head seas.

A Wave length of incoming wave

2
v 2/g

P Fluid density

o Incoming wave frequency

T UW/g

Total velocity potential, a real function

Perturbation velocity potential, a real function

0 = OS + OT = OS + 0I + OB = OS +01 +OD +4M

OB Body-generated velocity potential

OD Diffraction potential due to presence of ship

0I Incident wave potential

OM Forced-oscillatory wave potential
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NOTATION (CONTINUED)

S Steady-state portion of 0

OT Time-dependent portion of

Perturbation potential, a complex function

*B Body-generated velocity potentail

Diffraction potential

Incoming wave potential

The ith mode oscillatory potential

SD Two-dimensional diffraction potential, a complex function

W Frequency of encounter, w - a - k UcosE
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ABSTRACT

The numerical procedure of calculating the second-

order steady forces is presented. The computer program

is developed on the basis of Lin and Reed's theory(1976).

Ship motion and diffraction potentials are required as

input data for Kochin-function calculation. In order to

avoid the irregular frequencies which are associated with

Frank's close-fit method(1967), a modification which

extends the source distribution onto the calm waterline

inside of a body is made. For the diffraction problem,

instead of a Helmholtz equation, a two-dimensional Laplace's

equation is used. Numerical computation for the head-sea

case shows the same trend of experimental data throughout the

frequency ranges, but its magnitude is much larger than that

of the experiment.

ADMINISTRATIVE INFORMATION

This projert was authorized by the Naval Sea System Command with

funding under Element 61153N Project SR0230101 and identified as Work

Unit Number 1524-680.
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INTRODUCTION

It is a w2ll known fact that when a ship is navigating in a seaway,

the engine power must be increased by a considerable amount in order to

keep the same speed of advance as in calm water. Especially for a high-

speed vessel or a ship on a tight schedule, it is important to predict the

additional power needed in advance not only for navigational safety but

also for economical reasons. The steady force induced by waves in the

beamwise direction is the lateral drift force. One may state that added

resistance is important from the standpoint of powering and design, and

drift force from the standpoint of seakeeping and control. Both the lateral

drift force and the added resistance arise from the ship motion and

diffraction of waves.

These two forces are not seemingly related to each other, but from a

mathematical point of view, they can be analyzed by identical method.

In what follows we shall call both added resistance and lateral drift force

as the second-order steady forces. Because of the complexity of the

problem, there have been only a few efforts to study the second-order

steady forces analytically or experimentally in the past. The traditional

practice accepted by naval architects has been that power increase in a

seaway is between 15-30% of the power required for calm-water resistance.

Fortunately, the advent of large computer facilities and the rapid

growth of new computational technique for predicting ship motion make it

possible to calculate the second-order steady forces analytically. In the

last decade much work has been devoted to solving this problem, nevertheless

all the studies have remained limited in scope and achievement. In 1976

Lin and Reed presented a new approach for evaluating the second-order

steady forces in oblique waves. The forces are derived from linear

momentum consideration. The second-order steady forces are obtained in

terms of the Kochin function H(u,X) by taking a time-average of the

periodic forces and invoking the method of stationary phase evaluation of

the potentials at a large distance from the ship. The computation of

second-order steady forces will be based on the formulae derived by Lin

and Reed, for their approach is not only mathematically sound but also

much more versatile than any other method.
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The validity of the omputed results is confirmed by Thecking with

avai2av!> model-experimental and other theoretical values, and, also, the

effectiveinss of the computer program as an inexpensive way of obtaining

useful information is ascertained. The computer program developed here

may be utilized for such practical application as establishing data base

for the design of a ship for a given route and sea state. The work will

be presented in the order of a brief outline of the mathematical problem,

description of the procedure of numerical calculation, presentation of

the numerical results, and finally a sununarization of the findings of the

study.

REVIEW OF MATHEMATICAL FORMULATION

A brief outline of the most important aspects of the theory will be

presented here. More detailed derivations can be found in the report by

Lin -nd Reed (1976).

The problem to be considered here is that of a ship moving at constant

forward speed U with arbitrary heading in a plane of progressive waves, as

illustrated in Figure 1. Main assumptions and restrictions in the theory

are listed below:

(1) The usualy ideal-fluid assumption is made, permitting the use

of potential-flcw theory;

(2) The ship has small displacement from theequilibrium position and

both the incoming waves and those created by the ship are small;

(3) The ship is sufficiently "slender" so that each section can be

treated as a two-dimensional "strip" with no interaction between them;

(4) The response of the ship to the incident wave is linear.

Let Oxyz be a right-handed rectangular coordinate system translating

with the mean position of the ship. The origin is lncated on the calm

water surface. The x-axis points forward and the z-axis points vertically

upward.

Let T be the velocity potential given by:

D(xyz,t) =-Ux + (x,y,z,t) (2.1)

References are listed on page 23
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and the absolute velocity of the fluid is described by:

q(x,y,z,t) = VP = -Ue1 + VP, (2.2)

where V = v = ue1 + ve 2 + weI represents the perturbation fluid velocity,

and e, e2 and e3 the three unit vectors in Oxyz frame. For convenience,

the perturbation potential is decomposed into a steady part 0S and a

time-dependent part 1T' i.e.,

(X= vbs(X,y,z) + T(X,y,z,t) (2.3)

where 0S describes the disturbance due to the steady forward motion of

the ship in calm water and 0T can be further decomposed as:

T = I +  D +  $M =  I + 0B (2.4)

where is the potential of the incoming plane progressive wave, D the

diffraction potential due to the presence of the ship, and M the forced-

oscillation potential. The incoming wave potential CI is given by:

= Re{ I(x,y,z)exp(iwt) } , (2.5)

where

I= - A exp(k - ik 0 (xcos + ysin)} (2.6)

in which A is the wave amplitude, u the wave frequency, k0 = 0 2/g the wave

number, S the wave heading angle counted from the positive x-axis in the

counterclockwise direction, g the gravitational acceleration and w the

frequency of encounter. Note that a ship advancing through regular

sinusoidal wave will not respond at the frequency of incoming wave, instead

at the frequency of encounter which is defined as:

- - koUcosS . (2.7)
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Under the assumption of linear response, we have

B = Re{ B(x,y,z)exp(iwt) }. (2.8)

From the linear momentum consideration we can derive the force, and

by taking the time average of the force, the second-order steady forces

<AF> are obtained in terms of PB IPI and IPB B where "*" indicates the

complex conjugate. By repeated application of the method of stationary

phase at a large distance from the ship and after lengthy algebraic

manipulation, the following results are obtained:

<AF > =<AFIB > + <AFBB > (2.9)

where

1 >OSpgA(s)Im{ H(3,ko) }, (210)<AFIB > 0

7/2 r-u O 27 2 (u) cosuBB -du -sinu)IH(r+u, X)12RB fI -f )su 1/2 2
-7T/2 7T/2 7T+uo  (+Tou

(7T-,+ du 2 (u) cosu

d u 2( _ _ _d u ( ) I H ( 7 + u , X 2 I

0 u(l+I4tcosu) 1i 2  sinuII(

(2.11)

in which

0 ,T< 1/4
0 (cos -(1/4r), T> 1/4

cos u and cos F correspond to the added resistance and sin u and sin

correspond to the lateral drift force. The Kochin function, H(u,X),

and X1 A2 will be explained in the next section in detail.

As shown in Equations (2.10) and (2.11) the forces are the second-order

quantities, because according to the usual formulation of the ship motion
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problem the velocity potentials are considered as the first order of the

wave amplitude and so is the Kochin function (see Equation (3.1)).

KOCHIN FUNCTION

The function H(u,X) known as the Kochin function is defined as

follows:

B ( O exptXPzo+iXp(xocosu+yosinu)
H ,)=f B (XO0) T)xnl- ipXO°U+o l)ds

SBO (3.1)

Here the integration is over the mean position of the hull surface SBO ,

and

A 2 + 2Tcosu (1+4 Tcosu)i}, p=l, 2  (3.2)
Cos U

where v = 2/g, T = Uw/g, and the plus and minus signs are for p=l and

p=2 , respectively. Figure 2 shows the behavior of A and A as a function
1 2

of u.

Let us first consider the ship-generated potential B in detail.

Using the principle of linear superposition we can expand B' and hence

the Kochin function as follows:

6
z i i +  (3.3)

where a i is the displacement of the body due to the motion in the ith mode,

and i=1,2,3,4,5,6 represent surge, sway, heave, roll, pitch and yaw,

respectively and

6
H(u,X) = E iHi + H (3.4)

i=l

The potential i when multiplied by the complex amplitude ci represents

the fluid disturbance due to the body oscillation in the ith mode, and so

does the Kochin function. We can easily note from Equations (2.10),(2.11)

and (3.1) that it is very important to predict the ship motion and diffrac-

tion potential accurately, because the second-order forces are expressed

6
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in terms of the Kochin function, and the Kochin function itself could be

obtained by the integration of i and YD over the mean body surface SBO'

Therefore, small errors in the prediction of ship motion and the potentials

i and D could result in large errors in the forces.

SHIP MOTION PROBLEM

Our ship motion computation has been developed on the basis of the

method of Salvesen et al.(1970). A brief review of the ty2ical

assumptions which are required for the theoretical justification of the

strip theory, will be given first.

The hull is assumed to be long and slender such that if B is a typical

transverse dimension and L is the length, then

B/L = O(c), (3.5)

and

n I = O(c), n 2 = O(1) and n3 = O(i) (3.6)

where nl, n?, and n3 are components of unit normal vector on the immersed

ship surface. It follows that in the neighborhood of the hull

O(t) - = O(i) and = O(i). (3.7)ax 3" ay

In addition we shall make a crucial assumption that the frequency of

encounter is high, w >>U which means that the wave length is approxi-

mately of the same order of B. All these assumptions could only be

justified by comparing solutions with experimental data. We will summarize

the above assumptions in the following manner.
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original With Assuption

Field equation

32 + 2 2 2 2
L (3.8)

x2 Y2 y z 2  y 2 z 2

Free surface condition

(Wu_ -i- U i °  -g2 - S = 0 (3.9)

Body boundary condition
aspi

i n= um +Um - iwN +Umi (3.10)
' - i i 3Ni I

Radiation condit ion

LiaR/2( yi
Lim Rl /( - - ikol'i) = 0 Lim ( -- - iko0i) 0 (3.11)

where R = (x + y2)1/2 and ni is defined by

(nl,n 2,n 3) n and N4,n 5,n 6) = r ! n

with n the unit normal vector which is directed into the body and r the

position vector with respect to the origin of the coordinate system and

where mi - 0 for i = 1,2,3,4 while m5 = n3 and m6 = -n2. Ni is the

2-dimensional generalized normal in the y-z plane. We note that with the

above assumptions, i does not depend on the x-coordinate explicitly.

Introducing the assumptions into Equation (3.1) and setting ds-dxdl, we

can also show that
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Hi(u,X)= x exp(iXxcosu)f dl { U U 

L C(x)

x exp{ X(z + iysin u) 1, (3,12)

in which C(x) is the immersed contour of the cross section of the ship at

station x, and using body boundary condition(3.10), we may obtain

H (u,A) dx exp(iXxcosu)f dl{(iwn.+Um) - UL U)
C(x)

x X (N3+iN 2sinu) }exp X(z+iysjnu) (3.13)

where --0for i=1,2,3,4, 5= 5q 3 and 6 -2"

Naturally in order to calculat.e the Kochin function the velocity

potential i which satisfies Equations (3.8) to (3.11) must be obtained

beforehand. There are several methods in use for finding solutions for

this boundary-value problem such as separation of variables and the Fourier

method, the method of reduction and reflection, the method of Green's

functions, the method of multipole expansion, and so on. Among them the

method of Green's functions is certainly the most flexible one. The

solution by this method involves an integral equation, i,e.,

= J P) " (Q)G(P,Q) - (Q)G (P,Q)} ds(Q), (3.14)

C(x)

where P - (y,z), Q = (y0 ,z0 ), v the normal derivative in terms of (yO,zo),

C(x) a contour bounding a two-dimensional region, ds the arc length and

Green's function which we denote G(P,Q) satisfies the following equations:

2 2 *
+ ) G(P,Q) = 6(y-y0) 6(z-z O ), (3.15)y2 z2

ay 2. z2

9



U2G(y'0z0) - gz G = 0 (3,16)

Lim I aG(yO;Y0,Z0 ) ± ik G } f 0. (3.17)

and the solution is as follow (see Wehausen and Laitone,1960):

G(P,Q) = log(r) - log (r')

2PV0 exp k0 (z+z0) cos ko(y-y0 ) dk

k-k
0

+ 2rri x exp{k 0 (z+z0)cos(k 0 (y-y0 ))}

(3.18)

in which r - {(y-y0 ) 2 + (z-z0) 2 { (y-y) 2  (z+z0) 2 k 0=W 2/g
Inwihr={+ - 0  , r'-+z)} , 2

and PV indicates the Cauchy principal-value integral.

Although one can show in many cases that a solution to the integral

equation exists, a closed form solution is usually not obtainable, and

the only possible way to solve it is by numerical solution. With the

advent of high-speed computers, a numerical solution of integral equations

has become almost a routine procedure. However, one major drawback in

solving an integral equation of the second kind is the non-uniqueness

of the solution when the homogeneous part of the equation has nontrivial

eigen values. For a body floating in a free surface, John (1950) pointed

out that the integral equation involved admits non-unique solutions at

the eigen-frequencies. He called these eigen-frequencies irregular

frequencies. The problem of irregular frequencies has received extensive

investigations. Paul Wood has demonstrated by numerical computation

(ref. Paulling, 1970) that the irregular frequencies can be removed by

extending the source distribution onto the waterline inside the cylinder

and imposing a rigid wall condition on it (see Figure 3). Frank (1967)
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studied these irregular frequencies numerically for two-dimensional

cylinders and found that the matrix becomes ill-conditioned at and within

a narrow band near irregular frequencies. The problem is important because

these irregular frequencies are not known a priori for a complicated

geometry. Ohmatsu (1975) has shown how to avoid this difficulty by

modifying the interior problem and proved Paul Wood's justification by

using Green's theorem. Ogilvie and Shin (1978) have presented a rather

simple procedure that could eliminate irregular frequencies by making

a minor change in the Green's functions based on a procedure suggested

by Ursell (1953).

The reason we gave some detailed explanation for computation procedure

is that the prediction of the second-order steady forces requires the

ship motion response and the diffraction potential as input values, so

that the second-order steady forces predicted by a given method may vary

considerably depending on the method used for obtaining the motion and the

diffraction potential as also mentioned in Salvesen (1976). In our compu-

k tation we adopt Frank's close-fit method but wE! avoid irregular frequencies

by adding a horizontal rigid wall inside the body by following Paul Wood's

method. Figure 4 shows the heave added-mass coefficients of a circular

cylinder with and without a horizontal wall. Figure 5 displays the added-

mass, damping coefficients and heave, pitch magnitudes for a Mariner hull

form.

DIFFRACTION PROBLEM

For the diffraction part of Kochin function HD(u,X), we cannot

immediately follow the expression of Kochin function Hi(u,A) for the

forced motion in Equation (3.13). Before writing down the desired final

form, let us study the diffraction problem in some detail.

With the incident-wave potential given by Equation (2.6), the

diffraction potential D is subject to the condition that the total

potential V I+ D has zero normal velocity on the body surface. Since

the incident wave has the factor exp(-ikoxcoss), it seems reasonable

to expect that for a slender ship and short waves the diffraction waves

11



also have similarly oscillatory behavior along the x-axis. This assumption

is not valid near the ends, but then the assumptions we made, i.e., n

changes slowly in the x-direction is not valid there either. It is for

this reason that we may write

D= TD (yz)exp(-ik 0xcoS B). (3.20)

With this definition YD must satisfy the following equations:

YDyy + TDzz + (-ik0 cs6)2D =0, (3.21)

SD (YO) - Dz = 0, (3.22)

__D. -. A i(N -i n )exp{ k 0 (z-iysin )}, (3.23)
n -n 2si

3Y
Lim D -- k ) = 0. (3.24)
L ( -y- 0 D

Equation (J.21) is known as Helmholtz equation. Newman(1970)

showed that the determination of the sectional forces due to the incident

waves should deal with a Helmholtz equation in the cross plane instead

of Laplace's equation as the usual strip theory does. But it is not

an easy task to solve a Helmholtz equation with boundary conditions (3.22)

to (3.24). Choo (1975) solved the Helmholtz equation and obtained the

diffraction potential by using an asymptotic series expansion technique

for the case of zero speed and Troesch (1976) tried to extend to that

forward motion at moderate speeds without obtaining numerical

values. Troesch compared his numerical computation with not only experi-

mental data but also the solution of the same boundary value problem,

using two-dimensional Laplace's equation as the governing equation.

Figure 6 shows the pressure distribution for the midship section of an

12



ore carrier for L/X = 1.96 and 6=135°  450 .  The integrated pressure

forces are presented in Table 1. F and F are the amplitude of they z

sectional exciting forces in the horizontal and vertical directions

respectively and are nondimensionalized with respect to PgAB/2 where

B is the sectional beam.

Helmholtz Laplace

magnitude phase magnitude phase

_ _(Deg) (Deg)
F
y 1.11 120 0.95 115

pgAB/2

F
Z 0.49 -55 0.47 -57pgAB/2

TABLE 1 Seccional Exciting Force

In Figrp 7 total forces which are integrated over the hull for the

Series 60, CB = 0.70 are plotted for heading angle B=150 ° and w(B/2g)

ranging from 0.6 to 1.2.

In spite of the more elaborate numerical computation involved in the

solution of the Helmholtz equation compared to the solution of Laplace's

equation, the results do not seem to be so different from those of

Laplace's equation as to influence practical predictions. Thus, we shall

adopt Laplace's equation in our computation, but we have to keep in mind

that neglecting the(-ikocosa)2 term in Equation (3.21) violates the

crucial assumption we made for the justification of the strip theory in ship

motion, i.e., X/L = 0(t). Replacement of the Helmholtz equation by the

Laplace's equation saves considerable amount of computing time, because

once we solve the forced motion problem numerically, we can immediately

* In Troesch B=O(degree) for head seas.
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obtain the diffraction potentials by simply changing body boundary condition.

Numerical procedure for this simplification will be given in the following

section. In passing, the Kochin function for the diffraction part will be

expressed as:

HD(uX) =11 ds( D- )exp{X(z+ixcosu+iysinu)}
SBo
AWf dx exp{ix(Acosu-k cos3) If dl(N 3-iN2 sin)

L C(x)

x exp{(k 0+X)z + iy(Xsinu-kosin1)}

dx exp(iXxcosu)f dl X D(N3+iN2 sinu)

C(x)

x exp(Xz + iXysinu)

NUMERICAL PROCEDURE

As mentioned earlier, Frank (1967) solved the two-dimensional problem

where the logarithmic sources of Equation (3.18) were distributed over

the hull cross section. Using the method of linear superposition, one

can express the potential 4 by

VPe) f a(Q)G(PQ)dl(Q) (3.26)
C

with the unknown source strength c(Q).

In order to solve Equation (3.26) two assumptions are introduced

in the numerical method. As shown in Figure 8 a hull cross section is

described by n offsets where dl is the arclength between the j and

J+l points.

14
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Figure 8 - Cross Section of Hull

The first assumption is that the source strength a(l) varies slowly

enough to be considered as constant a, over a given arclength dl TheJ

second assumption is that arc dl can be substituted by a straight line

ds such that the ship section could be approximated by a chain of

straight lines.

With these assumptions and body boundary condition (3.10), one

can obtain the following expression

n-1
N (P )  E ° (Q) G(Pi'Q)dlQ

DN i -laNdl~

n-i
E a. a G(PiQ)dl(Q)

j=l ""dl

n-I G f G(FiQ)ds(Q) (3.27)

j. 3N ds

15



where 0 is the constant source strength between points j and J+l,

Pi the midpoint of the i-th arc. Using matrix notation, we may have

n-i
fi = 7=I A , i=l,2,- ,n-1 (3.28)

whref _ '(-P and A.G(

3wee Na Aij "s iG(P Q)ds(Q). The advantage of

Equation (3.27) is that the term 'N !G dl can be evaluated in a closed

form. By increasing the number of offset points this approximation

approaches the exact solution. However numerical computations show

that a relatively small number of points, for example 15 points for

a half circle, gives fairly good agreement with the exact solution.

We also may increase the accuracy of solution either by assuming linearly

varying source strength over the line segments ds. for a fixed number1

of offset points, or by integrating along an arc dl. instead of ds.1 1

with constant or linear 0.. But the increased numerical complexity1

may offset its merit.

From Equations (3.27) and (3.28) we can note that for given frequency

w and contour C(x) tILe coefficient matrix A.. of the forced motion or
1.1

diffraction problem is the same. Therefore once we obtain the inverse

of matrix Aij, forced motion and diffraction can be solved simultaneously.

This is the consequence of replacing the Helmoltz equation by the two-

dimensional Laplace's equation.

THE SECOND-ORDER STEADY FORCES

Before calculating the forces, let us discuss the numerical procedure

for the Kochin function first. The general form of the Kochin function H

may be written as:

H('s) =fdx exp(iX 1x dl f(x;yz)exp(X2z+iA 3y), (3.29)

L 9C(x)

where L is the ship length and f(x;y,z) has x as a parameter. If we

assume that f (x;y,z) varies smoothly over C(x), then for the contour

integral we might adopt the same assumptions as Frank did. That is,

16
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f dl f(x;y,z)exp(X 2z+i 3Y)

C(x)
n-i

E f(x;yj,z )I ds exp(Xz+iXY). (3.30)

j=1 ~ds Xzj ~)

Given N stations along ship length, we may calculate the integral (3.30)s

at x=X and denote its value as F(X ;2 X ) and from Equation (3.29)
j j' 2P 3

we get,

H(A's) f dx exp(iix)S1 (x), for i=l,2,'',Ns. (3.31)

L

where Si(X) is the function to be obtained by curve fitting F(Xi;X\,X 2 )

Now it is plausible to find a method for obtaining a smooth representation

for the discrete data F(Xi;XIA 2) by the use of the spline function method

of curve fitting. By using this method we may define the interpolating

spline as

S.(x) = ai(x-Xi) 3+ b i(x-X)2 + ci(x-Xi) + di'  (3.32)

in the interval X -< x < Xi+I . The coefficients of the cubic polynomial

are expressed in terms of F(Xi;XIx2), F(X i+l;l, 2), and the second

derivatives S"(Xi),S"(X ) (see Appendix A). Consequently we may rewritederivtive SiX i" i+l )

the Equation(3.31) as follows:

N -i X i+l

H(X's) = d ix exp(iAX)Si(x). (3.33)
i=l 

XXi

This integration can be performed exactly.

Equation(2.9) shows that the second-order steady force consists of

two terms, <AF IB> and <AF BB> . The computation of <AF IB> is straight-

forward for a given u=& and X=k o . On the other hand, <AF BB> in Equation

(2.11) is rather complicated. The reason is that the Kochin function is a

function of u,Xl2; furthermore, XIX 2 themselves are function of u.1' 2
Figure 2 shows that the X1 goes to infinity as u approaches to /2.
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The evaluation of the Kochin function becomes more difficult as 1 becomes

large, for the integrand of the Kochin function oscillates very rapidly

along the x and y axes for large values of X1' In the computation we

first decide the angle u. which satisfies the following(see Appendix B):

(fr/ 2 4T-u ° 3/ 2

- }I uf D r/2u )duD,,
V 2-uc_-7 - u °0 3r2u du D(u, Xi

- I 2+u T/2+uE IT+u °

A (u) 2 scosu .
where D(u, I ) 

=  IH(TT+UXl) Isinu[
(l+4Tcosu)

1/2

By doing this we may partly eliminate the difficulty involved in

the force integral. The contribution of each mode of ship motion and the

diffraction part to the force is examined separately. The numerical

results comparing their relative magnitude (see Figure 13) shows that

the major source of the forces are from heave and pitch.

The computer program based on Lin and Reed's theory has been developed

by Reed and Hubble(1980) originally. Extensive debugging and modification

that includes the irregular frequency in ship motion problem, the diffrac-

tion problem and the force integral are made by author. All the methods

has been synthesized into single computer program by essentially combining

the ship motion program and the Kochin function evaluation. The ship motion

program consists of several links, and the Kochin function is the last link

to the ship motion program.

NUMERICAL RESULTS

It is obvious that computational accuracy increases with the number

of elements used to approximate the body surface, and, in the meanwhile,that

the cost for a solution depends very strongly on the number of points usee.

The source points should be distributed in such a way that the best results

will be obtained with the fewest possible points. Naturally, points

should be concentrated in regions where the flow is expected to change

rapidly. In order to decrease the computing cost within the tolerable
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limit of accuracy we took the following steps; first, we tried to bbtain

the optimal minimal number of offset points on the body. Second, within

the range of frequency of practical interest appropriate intervals of

frequencies are taken at which the potential, added-mass coefficient,

damping coefficient, and etc. are evaluated, and the linear interpolation

method is used to get those values at the frequencies between the initially

chosen frequencies. Lastly, the integral of equation (2.10) was also

approximated by a finite sum of discretized integrals.

The computations were mostly carried out on the CDC 6600, 6700

computer at DTNSRDC. The evaluation of the influence coefficient

matrix for the singularity strength and the evaluation of the Kochin

function were the most time consuming parts of these computations.

Numerical Examples

To facilitate the comparison, the added resistance and the lateral

drift force were non-dimensionalized as follows:

AF = added resistance (4.1)
x pgA2 B 2/L

AF = lateral drift force (4.2)
Y pgA2L

Figure 9 shows the added-resistance prediction for a Mariner hull form

at a speed of F = 0.194 with three different headings,'a-1200 , 1500 and

1800 (Note that = 1800 for head seas). A striking faet to note is that

the extreme sensitivity of the added resistance to the heading angles.

For instance, at X/L = 0.6 which corresponds to approximately 300 feet

wave length, the added resistance can increase about 6 times when the

wave heading angle is changed from the 300 bow to 600 bow. The results

in Figure 9 reveal that the usual notion that the added resistance is

greater in head seas is not necessarily true. In Figure 10 comparisons were

made between Salvesen's calculation and <F lIB> at F n0.194. The major
n
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differences between Salvesen (1978) and the present theory is that Slavesen

ignored <AF BB> in Equation(2.9) by assuming B<< I" Relatively good

agreement in magnitude is observed, but there still exists discrepancy

between them. There might be two reasons for this; first, in developing

the ship motion program some modifications were made on the Frank's close-

fit method as mentioned earlier. Secondly, the computation of the diffrac-

tion part is quite different. In Figure 11 we note that <AFIBB> compared

with <AF IB> is not small enough to be neglected. Figure 12 displays the

contribution of the forced motion and the diffraction part to the force
<AF IB> separately for the three different headings at F = 0.194.

hR n

As would be expected, it is seen that the effects of the forced motion

decrease as X/L becomes large, and the maximum occurs at shorter wavelength

for decreasing heading angles. Meanwhile, the diffraction part seems to

act differently to that of the forced motion.

Figure 13 shows relative magnitudes of each mode of ship motion for

<AF IB> separately. Pitch and heave are dominant over the others. It

is interesting to note that the peak values of pitch and heave for

1500 are slightly greater than those for $
= 180 . These effects are

reflected in Figure 12 where the peak value of the added resistance for

1500 is slightly greater than those for = 1800. <AF BB> is presented

in Figures 14 and 15. Basically <AF BB> consists of two integrals, i.e.,

All A2 and the corresponding Kochin functions H(UXl) , H(u,X 2 ) respectively.

As expected, Figure 14 shows that we might neglect the highly oscillatory

X1 integral in the computation. In Figure 15, <AF B> is expressed in

terms of each ship-motion mode, diffraction and their interactions.

The usefulness of any theory cannot be judged until its prediction

have been compared with empirical data. Unfortunately, it is difficult

to find experimental data, especially in an oblique seaway. We selected

one of the available experimental data; Series 60, CB =0.60 at F =0.283n

in head seas. In Figure 16 the theoretical predictions of three different

methods are presented together w1  -wo sets of experimental data obtained

by Sibul (1971) and Strom-Tejsen et al. (1973) for this particular case.

2

20



In the lower frequency ranges not only do all three numerical predictions

agree well with each other, but also they show fairly good agreement

with the experimental values. All the numerical values overpredict the

maximum added resistances, however. Gerritsma and Beukelman(1972) overpre-

dict it by about a factor of two, the present theory by nearly 70% and

Salvesen's method by approximately 35%. In the higher frequency ranges

the present theory gives a little better prediction when compared to the

others. It is probably because our computation of the diffraction poten-

tial, which is the major contribution to the added resistance in the higher

frequency ranges, is better than others. Two interesting things are obser-

ved for <AF IIB>; first, <AF IB> for this case show good agreement with

experimental data. Secondly <AF IB> is slightly higher than the added-

resistance of Salvesen for a Mariner but much less than that of Salvesen

for Series 60. We cannot give any specific reasons for the descrepancies.

Only by comparing both methods term by term, we may find out the differen-

ces.

The lateral drift forces for a Mariner are also presented in Figures

17 and 18. Figure 17 shows the lateral drift force, <AF2>, with three
0 0 0

different headings S= 900, 1200, 150 . As would be expected, the coeffi-

cient approaches 0.5 as the frequency becomes higher for the beam-sea

case, but the predictions give small negative values for oblique seas in

the higher frequency ranges. <AF21B > and -AF2B B

in Figure 18. The relative magnitude of <AF 2BB> compared with <AF 21B >

is much smaller than that of <AFB B > with <AF > Comparisons of added

resistance and lateral drift force with experimental values will be given

in the future.

CONCLUDING REMARKS

The second-order steady forces have been considered for a ship in

regular waves of arbitrary headings. The accurate prediction of these

forces is of considerable importance for estimating the powering require-

ment in waves, assessment of seakeeping qualities, and the position

control of ships. Based on Lin and Reed (1976) a new numerical scheme

has been developed for predicting the added resistance and drift force.
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The summary of the findings in this study is as follows:

(1) It is not so easy to verify the computed second-order steady

forces satisfactorily because of the lack of reliable experimental data.

(2) The effect of wave heading on added resistance is significant.

The maximum added resistance does not necessarily occur in the head seas

only.

(3) For decreasing heading angle or X/L, the contribution of the

motion to the added resistance decreases while that of the diffraction

part increases;

(4) There exists a contradiction between the assumptions made in

ship motion and the diffraction problem. In the ship motion problem the

justification of the strip theory is made by assuming A=O(B), i.e., the

wavelength is approximately of the order of B, while in diffraction

problems the term (k2cos 2  ) is dropped in order to replace the Helmholtz

equation by Laplace's equation. That means that in the diffraction

problem the assumption of X>>B is made.

It is fair to say that the theory of Lin and Reed is mathematically

sound, but there still exists a gap between the theory and its practical

applicability. In concluding this work we like to make some suggestions

for future study. First of all, to develop a numerical prediction

method of the second-order steady forces it is desired to use the

most accurate method for predicting ship motion. For the diffraction

problem we have to solve either three-dimensional Laplace's equation

or Helmholtz equation in high frequero ranges.
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APPENDIX A

Spline Curve Fitting

Suppose we wish to approximate a continuous and differentiable function

F(x) on the interval {O,L} in a piecewise fashion, using low-degree

interpolating polynomials over nonoverlapping subintervals of {0,L}.

Let the base points be 0 = x < x 1<.. Xnl < xn = L, the corresponding

functional vaules be yi=F(xi), i=0,1,2,...,n, and interpolating function

for JO,L} be S .(x). We shall require that Si(x) be continuous on {0,L}1
and possess continuous first and second derivatives for all x in {0,L0.

Let S.(x) coincide with a third-degree polynomial on each tnterval,i.e.,

3 2Si(x) = ai(x-Xi)3 + bi(x-Xi)2 + c i(x-X i) + d i , (A.1)

( Xi x< Xi+1

then

SiW = 3ai(x-Xi)2 + 2bi(x-X i) + ci (A.2)

and

Si(x) = 6ai(x-Xi) + 2b. (A.3)

Now, by setting Si(X i) = Y and S i(Xi) = Y i+l Equation(A.l) yields

Yi di (A.4)

Yi+i = a.h3 + b.hi + c.h. + dip (A.5)

where hi=X i+- X i .

At each of the interior points, we set

Si(Xi+ I) = S'+l (xi+l),

or 3aih2 + 2bih +c = i+l, (A.6)

and

Si(Xi+I) = Soi+l (Xi+)

or

6aih i + 2b. = 2b i+l for i=1,2,...,n-2. (A.7)

Since the second derivative is a piecewise linear function of x,
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S11(x) A + i (x-Xi) (A.8)
Xi+1 - Xi

where Xi = S'j(X i ) and X 1 = Si(X = .(X Thus, comparing

Equations (A.3) and (A.8) there results

2b i = Ai s (A.9)

6a i = ( A i+l-A i)/h i  (A. 10)

From Equations (A.4),(A.5),(A.9) and (A.10) the coefficients of the cubic
polynomial in the interval {XiX i+I can be expressed in terms of Yi. Yi+l

and Xi. A,+, as follows:

ai = (X i+- i)/6hi,

bi = Xi/2,

c i = (Yi+l-Yi)/h i - (2 1 i+Ai+1 )/6, (A.11)

di = Yi"

Substituting Equation(A.ll) into Equation(A.6) and after some algebric

manipulation, we obtain the basic equation of Spline technique as follows:

1 ] i+ 1] xh . + X1+ +[ hA. 4
2(h i+h ) .I Ai +1 2(hi+h,1]X2

3 [Yi+2-y:+i Yi+i(Ahi +-Yi (A. 12)
hi+h +1 hi+1  h i  '

for i=i,2,... ,n-l,n-2.
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APPENDIX B

1 Integral of <AF BB>

Let us denote

u(u) cos u 2-(l~ ) k I H(+u,x 1)  ,(B.1)
(1 + 4TCos U)

and

and - }G(X1,u)du, (B.2)

-7/2 7T/2 1-+u o0

where T=WU/g, H(7+t4u, 1 ) and Xl(u) are defined in Equations (3.1) and (3.2),

respectively. As shown in Figure 2, A becomes infinite as u approaches
1

to i/2, and if X becomes large, the integrand of Equation(3.1) oscillates
1

so rapidly that it is difficult to evaluate the integral properly.

We will examine the second integral of Equation(B.2) first. Let us assume

that there exist a small positive angle uE such that as u.- 0, we have

T -UL 7-U 0
G(,u)du -f C( u)du, (B.3)

r/2 7T/2+u

where the subscript "1" of A is omitted for the brevity sake. Let us

define the difference between the exact and the approximate value by

T/2+u
Error =f E G( A ,u) du, (B.4)

T/2

and determine the angle u such that the Error is within an acceptable

limit. In order to do this, let us examine the magnitude of the Kochin

functiont

27



H(Tr+u,X) -f dx exp(i~xcos u)f dI(n3+in 2sin u)
C x)

x exp{X(z + iysin u)} , for IT/2<u <T/2+u . (B.5)

Here we neglect the term (iwn) in Equation(3.1) under the assumption that

X is very large. Using Equation(3.30) we can approximate the Kochin

function for a large value of A as followst

In-l

H(T+u,X) J dx exp(i~xcos u) Z f (x;Iyjpju)
-I j.l

× f ds Xexp{X(z+iysin u)}
-d

where f (x;yj,zju)= 4).(n3j +in jsin u) and ( j zj) is the magnitude of

the ith segment, and furthermore, considering the fact that lexp(ixxcosu)l ,

Iexp(iXysinu)j.<_ 1.0, we may have

n-l +l
jH(iT+u,X)ji< I dx f (x;&j ,oju f dz Aexp(Azal

-1 j=l Jz.
J

< exp(-AIZ min JD(u)j (B.6)

I  n-i
where D(u) -f dx j Z fj (x;yj iju) (B.7)

and IZimin is the minimum value of Iz J+l-z of all the cross sections.

Combining Equations (B.4) and (B.6), and using the mean-value theorem,

we have

Error <_ f du ucos u exp{-2Xlzm i}Ir)(u) 12

-/2 ( + 4Tcosu) 
mi
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U /2+2A z21(u(B.s
-- [D(u)IJ' /2 du -x 2 ------- ;I exp{-2XIZlmin (B.9)

(1 + 4Tcosu)

where D(u) defined in Equation(B.7) is a smooth function of u and u is the

value between 7/2 and 7/2+u,, By change of variable the integral in

Equation(B.8) will become

E x2 (u)(-sin u)
du _ - . exp{-2XzJ min}  (B.9)

(1 - 4Tsinu)2

Assuming u. is small and keeping the leading term only, we obtain the

followingi

fu2 2\)

du V2  exp(-/ _zmin) .(B.10)I 0 74u u'

We will denote Equation(B.10) as A and again apply the change of variable,
2u 2= v, the result will be

2

A fUE exp(-/v) 2) exp(-B/u2

fovdv = ct/ (2 ) x( Iu , (B.l1)2- 2
v0 v

2/4

where - /T 4 and P = 2vJzli /T 2.

Let us put

2 -Px/(2P,) exp(-P/u2L) .-- 10 - P  (B.12)|

where the arbitrary positive value P will decide the accuracy of compu-

tation and the angle u simultaneously. Equation(B.12) can be rewritten

as
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lo p  < expCO/u 2),28

or

In( -l0 P ) < 6

and if 2 10 > 1.0 , then we will have

u <Z{/ln(clO I/(2 ))} 2 (B.13)

This value u gives the absolute magnitude of the integral of Equation

(B.4), not a relative size of error, i.e., the ratio of the magnitude of

Equation(B.4) to that of Equation(B.3). Because of the difficulty of

integration of Equation(B.3), we cannot confirm the validity of Equation

(B.13) but, in the following example, we show the numerical vlaues of

Equation(B.3) for several different P's. In stead of a actual ship, a
rectangular barge is considered for an example with the following condi-

tions,

L/B = 7.5,

B/T = 2.0, L_ Y

F = 0.2, T
n 4.

= 135 (dugree),

A/L = 2.0, L

zmin /B - 0.1.

In addition to these the velocity potential in Equation(B.5) is assumed

to be constant. The Kochin function H(7+u,X) is obtained in the close

form, i.e.,

H(Tr+u,A) = 4sin(Xlsin O e sin(Xs~n u) - isinucos(Xcos u)(e -1)}
X Cos u sin u

where 1=L/2, and the integral of Equation(B.3) may be summarized as follows:
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7T - 0

P U X(U ) Ip= G(Xu)du I p/14

(degree) T' /2+uF

3 25.68 4.87 -9043.66 1.0000

4 22.51 6.98 -9073.47 1.0033

5 20.28 9.11 -9114.01 1.0078

6 18.61 11.26 -9144.22 1.0111

7 17.29 13.43 -9169.18 1.0]39

8 16.22 16.62 -9187.22 1.0159

9 15.32 17.83 -9211.14 1.0185

10 14.56 20.05 -9225.95 1 .0202

-1i

where uo=cos (1/4T)=71.39'. Though P increases from 3 to 10, the total

increment of Equation(B.3) for P=10 is about 2% of the integration for P=3.

The integral does not converge as fast as P grows, but it does approach

to finite value as P becomes large.

The third integral of Fquation(B.2) is identical to the second one, and

because X(7/2-u ) > X(1/2+u ), the angle u determined in Equation(B.13)

can also be used for the first integral of Equation(B.2). Consequently,

we harp

f /2-u- -+ut udu. (B.14)
-T/ 2+u -/+u -+Uo
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