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SECTION 1

INTRODUCTION

The benefits and shortcomings of micromechanical analyses of uni-
directional composites have now been weighed for over a decade. A
major restriction has been the problem of relating microanalyses to
the overall behavior of a laminate. To gain insight into this prob-
lem, it is instructive to consider the well-known process of design-
ing with metals as opposed to the task of employing advanced compo-
sites in structures.

For centuries metals have been the materials considered almost
universallv for countless applications. Metals with the desired stiff-
ness, strength, toughness, etc., can be chosen from information at
arm's reacn, for each specific application. This vast amount of in-
formation has greatlv simplified design using metals. But because
metals are in nost cases isotropic and ultimate strengths pertain to
all material directions, there is often unneeded strength in certain
material directions. A truss member to be loaded axially in tension,
for example, requires high strength in the axial direction, but trans-
versely only minimal strength is needed. Thus, the high degree of ani-
sotropy typically exhibited by a composite material is not necessarily
a handicap in manv high-performance structures. Composite materisls
can be chosen for weight savings, and designed to specific strength

requirements in specific material directions. Because of the vast

nossibilities created through material design for specific




applications, the use of composite materials has initiated a new era of
materials technology, and the result is that a much more complete ap-
proach to structural mechanics has become necessary.

The transition from the use of simple isotropic metals to ortho-
tropic composite plies and anisotropic laminates for structural sys-
tems necessitates much more involved analysis methods. While design
with metals nas been practical for centuries, composite materials are
just emerging from their cun "Iron Age." A large amount of analysis
and tecnnology must Lo developed before the full potential of compo-
site materials can ve realiczed.

While overall propertizs ¢f a material are needed for the design
of any part, an additicnal dimension of composite materials behavior
is the unique problem of the complex stress state present on the micro-
scople scale. Wwhen a {iber of high strength and modulus is imbedded
: in a matrix material orf relativelv low strength and modulus, local
stress concentrations are induced that are significant tc the overall
behavior of the sompoesite. The mathematical characterization of this
situation is known is micrumechanics analvsis while a larger scale an-
analysis, i.e., lamination theocv, is known as macromeciianics.

Macromecitanics is concerned with the overall properties of a
composite laminate, or can be concerned with the contrivution of each '
plv to the overali effect. In contrast, micromechanics attempts to .
predict such phenomena as matrix vielding, crack initiation, and uni-
directional compesite plv behavior, using an analvsis concerned with

the ilocal scale. This is important for understanding particular

failure tnitiation modes and oredicting properties of unidirectional




composites. Most existing micromechanics analyses employ a finite
element numerical scheme, using the material properties of fiber and
matrix to predict the microstress distributions, assuming a state of
generalized plane strain. This type of analysis could also be performed
using a three-dimensional finite element analysis, although much move
computer time and memorv would be necessary. Ideally, a three-dimen-
sional micromechanics analysis should eventually be developed as a
check of the generalized plane strain formulation. While previously
existing analvses allow onlyv a longitudinal normal load in the out-of-
plane direction, the present analysis permits a longitudinal shear
loading capability. Miller and Adams [l ]predicted in 1977, "more
attempts will be forthcoming to marry micromechanical analyses . . .

T

\ with various lamination analyses,” and this is one of the primarv
reasons for the addition of a longitudinal shear loading capabilitv.
Results of a laminate point stress analvsis can be analyzed further

by using such a micromechanics formulation. The laminate analvsis
will reveal the stress state in each ply, from which the microanalvsis
can predict local inelastic behavior and reveal the complex stress

state within the matrix material. This type of analvsis can be con-

sidered to be an important first step in bridging the gap between

micromechanics uand macromechanics.
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SECTION 2

HISTORICAL REVIEW

The importance of longitudinal shear stress in a composite material
is evidenced by the fact that load is transferred to a fiber predomi-
nantly through longitudinal shear loading. This stress also happens to
act in a weak direction of the composite, making it a critical load.
Even though longitudinal shear loading is an important consideration,
there have been few studies of it pertaining to micromechanics of a
composite.

Early in 1967, Adams and Doner [2] revealed a numerical formulation
involving the theory of elasticity. They modeled one quadrant of a
repeating fundamental region of a rectangular array of fibers by employ-
ing a finite Jifference representation, and subsequently solved the
srcblem hy un >sver-relaxation procedure. Stress concentration factors
and composite shear moduli were calculated for various fiber volumes
for a number of cross-sectional shapes of fibers in an epoxy matrix.
This first step was soon multiplied as numerical analyses developed
and computers became more advanced.

A few vears later. a closed form series solution was developed by
Sendeckvj (3] for longitudinal shear loading. Admittedly, the solu-
tion was tedious due to the solution technique employed, and fell
short of being exact due to the required truncation of the infinite

series. Nonuniform fiber spacing, various filament radii and




variation of the shear modulus from tiber to fiber were some of the
impressive capabilities.

Another elastic solution was achieved by Foye [4] in 1968. The
finite element numerical metiiod was employed in this sweeping genera-
lized plane strain studyv, which included two fiber arrangements, sepa-
rate and combined loading of five of the six components of stress, con~
tours of stresses in thc¢ matrix around a fiber, unidirectional ply
composite properties, and an evaluation of the accuracy of various
finite element models. In addition, an incremental inelastic analvsis
was proposed, which was eventuallyv employed by Baker and Fove {5] in
1969, This extendes work revealed a more legitimate stress distribu-
tion because inelastic behavior was considered. Foye continued to
publish results of this analvsis in 1970 [6] and 1973 [7]. The work
documented in 1973 essentiallv clarified the aforementioned work of
1969 [5].

Although this analvsis was a significant achievement, there were
still some limitations to be overcome. The iterative scheme inherently
accumulated error during inelastic increments which would grow to
significant size as the number of inelastic increments increased. The
iterative inelastic ianalvsis, termed the method of initial strains,
had been chosen, even tiough it degenerates for highlv inelastic beha-
vior, because the alternative method (the tangent modulus method)
would have required an unavailable amount of computer memory for the
additional longitudinal shear loading capability. Even though the

method of initial strains had the advantage of requiring only one

—_——— ey




initial inversion of the stiffness matrix, the tangent modulus method was
found to be slightly faster, with equal accuracy and the ability to model
highly inelastic materials [8].

In the past 15 years, computers have been developed considerably,
and the disadvantages attributed to the tangent modulus method have been
blunted by the increased size of computer memory. Advantages of the tan-~
gent modulus approach began to clearly emerge in the analysis presented
bv Adams [9, 10} in 1970. This was further developed in his subsequent
work reported in References [11, 12, 13, 14]. This analysis method was
subsequently adapted by Miller and Adams [1, 15, 16], incorporating work
by Crossman {17] and Branca [18]. It was a generalized plane strain
formulation, including longitudinal normal loading, but not longitudinal
shear. The work of Miller and Adams was particularly valuable due to
the addition of a hygrothermal loading capability along with hygrother-
mally-dependent material properties, and J3ranca's [18) efficient loading
scheme. This generalized plane strain approach is readily expanded to

include a longitudinal shear loading capability.




SECTION 3

ANALYSIS METHOD

The changes in theory that arise due to the incorporation of an
out~of-plane shear capability in a generalized plane strain formula-
tion, which includes only a ncrmal stress in the out-of-plane direc-
tion, are significant. In addition, there are far reaching conse-
quences in the finite element solution technique. The added stress
and strain components require revisions in the elastoplastic consti-
tutive equations. In addition, the special treatment of the compati-
bility of additional boundarv conditions results in a special strain-
displacement relation. Implementing these changes into a finite
clement analvsis, although following classical developments, is
difficult. Use of the existing computer program [l] required its
thorougn revision. In many cases, where before a plane stress state
was the onlv consideration, a stress tensor was involved in developing
suitable failure criteria, principal stress calculations, etc.

A complete description of each aforementioned consideration is

presented in the following subsections.

Generalized Plane Strain

Leknitskii {19] defines generalized plane strain in a very general
manner, ~hicn has been simplified for purposes of the present analysis.
This treatment allows displacements to occur in all three coordinate

lirections, vet retains the advantages of the plane strain assumption.
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Specifically, each displacement is dependent upon the x- and y-coor-
dinate directions, and the displa.ement in the z-direction has an
added linear dependence on the z~coordinate, which is considered the

axial coordinate of a composite in the present analysis (Figure 1).

/ —

~

Figure 1. Fiber packing arrangement of a unidirectional composite.

z

The displacement functionals in equation form are:

u{x,v)

<
1]

v{x,v) (1)

<
[]

wix,v) + Ciz

E
i

whure
u represents the x-displacement
v represents the v-displacement
w represents the z-displacement

and €C; is a vet unspecified constant.




Previous investigators (1] making use of the generalized plane strain
assumption simplified the expression for the z-displacement by assuming
it was dependent only on the axial coordinate position. Eliminating the
functional dependence on the x- and y-coordinates essentially eliminated
axial shear deformations, while allowing only constant axial normal dis-
placements.
Including the x and v dependence of the z-displacement allows a

special form of axial shear deformation corresponding to the generalized
plane strain treatment. Expressions for strain can now be calculated

for the continuum, and simplified according to Eqs. (1):

¢ = U = Ju 3V
X X ny 3y X
R 0
v SW 3
= ——— = 4+
Ey 39 sz IX z (2)
0

y_
ay

m
[&4
n
QrlQr
[SRE
-
4
~N
1]
+
[¥5]
N

where e represents normal strain and y represents engineering shear
strain. These expressions govern the displacement of the continuum in

question.

Constitutive Equations

The kev element of the relationship between load and displacement
of a continuum is the consititutive equation. Each constituent material
of a composite has unique properties represented in its own constitu-
tive equation. 1In the present analysis, the fiber material is consid-
ared to be isotropic and transversely isotropic in order to model

fibers such as graphite, but can be reduced to a simple elastic,
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isctropic material for the purpose of characterizing fibers such as
boron and glass. The matrix material is considered to be isotropic
and elastoplastic, the plastic response being modeled by the Prandtl- '
Reuss flow rule.
A constitutive equation involving onlv four stress and strain
components nas been derived in detail [l], but the two additional
longitudinal shear components require additional consideration. As
discussed bv Baker and Fove [5], the two additional shear stress-—

shear strain equations are

ixz = 5' Yxz
(3
‘vz = G' vz
where G' is the longitudinal sihear modulus and T represents shear

stress. When Egs. (3) are included in the complete set of constitutive
equations for transverselv isotropic elastic behavior, a material

properties matrix [D] is generated as

By - £~ : ' .
1 - £ +—__‘j'~ U 0 a (‘1+ ’)\’
E\"»V . »
l~ —— D 0 0 (I1+v)v
D} = E N 0 0 4)
! O 2(1 + V) 0 (4
£°Q
)
2E(L+ V) ¢ 0
END
2ECTI+ ) 0
E\;‘z
Symmetric L- kg*
L o
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wnere
Qo= (L+ V(- - Zngz)
v = in-plane Poisson's ratio
v’ = major Poisson's ratio
E = transverse elastic modules
E” = longitudinal elastic modulus

In obtaining Ea. (4), the relation G = E/2(1 + v) has been utilized.
The constitutive equation for isotropic material behavior is well-known
and is merelv a simplification of Eq. (4), where the longitudinal and

transverse moduli, and the Poisson's ratios, are equal:

T v v ]
ii 1 -v O O O 1_\)
j 1 0 0 0 l\j\n
|

r- = E(l - 'v"' ‘. 1~ 2v

o} (14 9)(1 -2 2(1- W 0 0 0 (5)
} 1-2v
i 51-w O 0
‘ 1-2v
i e
i Symmetric )

B -

This Eq. (5) pertains to elastic, isotropic materials whether they are
fiber or matrix.

The constitutive equation must also represent elastoplastic materi-
al behavior in the matrix after vielding occurs. An octahedral shear
stress vield criterion is emploved, and plastic strain is assumed to be

proportional to the deviatoric stress tensor, using the Prandtl-Reuss
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litcle loss of modeling accuracy due to this assumption. Considering
the behavior of a unidirectional composite with a relatively long axial
dimension, certain load symmetry and geometric symmetrv assumptions can
be made, as described in Reference [4]. While there are four axes of
geometric symmetryv for the unit cell (Figure 2a), only two can be used
due to load svmmetrv considerations. When considering that each load
is assumed to defcorm the unit cell in a uniform manner, load svmmetry
about the x and v axes for all five stress components can be easily
seen., Only one quadrant of the unit cell (Figure 2b) need be con-
sidered to describe the behavior of the unit cell and of an entire
continuum of unit cells.

A detailed description of the boundary conditions is necessary,
beginning with tlie normal displacements. Due to the previously
mentioned counstraints of the system, normal displacements of the
boundaries of tno quadrant (Figure 2b) are restricted to those which

cause the boundarv to displace only parallel to the original boundary.

. ihis being explained in great detail elsewhere [l], attention will be

focused on the shear displacements. In the absence of longitudinal

shear loading, deformation in the z-direction is simply a constant,

nniform deformation of the entire frontal cross-section <f the quadrant.

Shear deformatiouns constrain onlv the loaded boundary to displace uni-
formly in the z-direction, while the opposite face remains stationary

in the z-direction. A T shear stress, for example, causes the face

vz
at v = b f{see Figure 3) to move uniformly in the z-direction while the
face at v = 0 is fixed in the z-direction. Meanwhile, the faces at
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Fioure 3. Shear deformation of the finite element model due to

shear loading.
x = 0 and x = a are free to move in the z-direction as strains are
induced. Similar treatment of the other longitudinal shear stress
follows. It will be noted that these restrictions are not compatible,
i.e., while the face at x = 0 is required to be fixed in ome case, it
is required to be free in the other case. To solve this anomaly, the
analysis must be considered for the representative elements of the
entire quadrant.

Constrai~ts following those of Reference [2] are imposed on the
special generaiized plane strain deformation of the finite element
continuum due to a tyy shear stress:

w=C along y=5b0

w=0 along y =0 (7

dw
ax

=0 along x =0, x = a




Likewise for Txz loading:

w = along x = a

w =0 along x = 0 (8)
3w -

3y " 0 alongy=90,v=>H

where C represents a constant displacement. It will again be noted
that the two shear boundary conditions cannot be applied to the same
node simultaneouslv. A method of considering the two shear loads in
separate problems while permitting combined shear loading is desired
in the finite element formulation.

It is possible to apply the two shear boundarv conditions separ-
ately by adjusting the elemental strain-displacement relation. The
derivation of this relatiom for a regular treatment of generalized
plane strain is outlined in Appeundix B. The resulting Eq. (B~17) must
be adapted to manage the shear boundary conditioné separatelv. Since
the boundary conditions are concerned with displacements, the shear
displacements must be considered to be separate and unique entities at
each node point rather than combined into a general z-displacement as
in Eq. (B-17). Thusg, a Tz shear stress induces a z-displacement Wiy
and a Tyz shear stress induces a z-displacement wyz' These separate
displacements can be arbitrarily specified without affecting other
boundary conditions if the strain-displacement matrix equation is

expanded slightlyv as follows:

A
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£x b5 0 0 0 b5y 0 0 0 b0 0 0 O Wxzi
Sy 0 ¢ 0 0 0 ¢540 0 0 cxO0 0 O wyz{
'xyy L |cibi 0 O c5bj0 O cebgk0 0 O uj (9)
Yxz 24 0 0 bi 0 0 0 bj 0O 0 O by O 0 vj
fyz 0 0 0 ci0 0 0 ¢c50 0 0 ckx© WXZj
iz LO 0 0 0 0 00 0 0 0 0 0 2a]jwyzj
4 Jugp
Vk
wX2zk
wyzk
w
\""
where i, j, and k represent the three respective nodes of an ele-
ment, and W, Tepresents the constant normal axial displacement.
It will be noted that the three extra columns in the matrix and the
added zeros effectively prevent the longitudinal shear strains from
influencing each other and the remainder of the strains. The added
terms in the displacement vector will also be noted. Observing the
expression for elemental shear strain vy, above, provides a check of
the last boundarv condition in Eq. (7) which is now inherent in the
strain-displacement equation. The shear strain Yyz» equal to %% , 1is
seen to depend only on the variables Cys Cy and Cyeo which are merely
differences in the x-coordinates of the nodes of an element. Because

the wwz displacement is treated separately from the w - displacement,
Iw
the expression for y__ does not include a Y (—~) shear strain, and
vz xz | ox
this is inherent in the expression. Therefore, this special boundary

condition has been incorporated into the strain~displacement equation.
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The remaining finite element formnlation fullows a tnree-
dimensional formulation by Zienkiewicz [2l], as shown in abbreviated

form in the following equaticns:

[x1e =fvol[sf[ol[s] d(vol) (10)

()= [KITHES (11)

1re; = [B] {&: (12)

{s; = [DI[B] {3; (13)
where

{&; = nodal displacements

1e} = elemental strains

(B] = straian-displacement matrix

{D] = constitutive equaticn

<g; = elemental stresses

[Kl€ = elemental stiffness matrix
{F; = nodal force vector

[K] = inverse of the global stiffness matrix.

Elemental stiffness matrices are developed in Eq. (10), which combined
together for the entire model form a global stiffness matrix. This

is inverted for use in Eq., (ll), to solve for nodal displacements.
Clement strains and stresses are calculated from the displacement
vector in Egs. (12) and (13), respectively. Two differences from
Zienkiewicz's formulation are the nodal force vector and, of course,
the nodal displacement vector. The displacement vector was previously
defined; the nodal force vector proves to be very similar, due to the

fact that there are five force components and displacement components

- | - _ . I l I . § I
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possible at each node of the finite element grid. Because the solution
technique involves the force vector to a large extent, it will be

described in more detail uext.

Solution Technique

A finite element analysis computer program developed by Miller
and Adams [l] has been adapted for the modified form of generalized
plane strain. The additional components of stress and strain result
in the necessity of a thorough revision of the basic solution technique.
The Branca technique (18] for applying loads and boundary conditions,
and the specialized Gaussian elimination solution of the stiffness
matrix, are the major burdens in the revision. Developing these new
techniques revealed a more efficient procedure for storing the stiff-
ness matrix. The solution technique involves the application of loads
and boundary ccnditions, which is a logical starting point for the
following description.

To describe the Branca technique [18], a small two-element model

shown in Figure 4 will be considered. The applied loads shown are

b

c

| - "
AT LA
1

g

Z z

Figure 4. Simplified model for example solution technique.
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actually applied as nodal forces, resulting in five separate loading
components possible at each node. As explained in detall by Miller
and Adams {1], the axial normal load is assumed tuv cause a constant
displacement in the z-direction at every node. The solution technique
for that z-displacement combines all the axial stiffuess terms and
axial load terms into one, and one displacement term is solved for,
which represents the z-displacement of ail node pointa. Therefore,
with the remaining four loads at each node, the resulting load vector
for the entire model is (7 terms lung, as is the displacement vector

(see Eq, 14), (where FTi7 and ‘)7 represent the z-direction “orce and

/
disclacement, respectivelv).

The glcbal stiiiness matrix is created irom the elemental stiff-
ness matrices bv means of classical techniques [21, 22], but the
application of boundavry conditions to the global stifiness matrix is
necessarv. Assume the model in Figure 4 to be loaded and constrained
in a manner similar to the total finite element 2rid. Betore boundary
conditions are applied, the diagonalized stiffness matrix appears as
in Eq. (l4)., Each row of cthe original matrix governs the behavior of
a node due to a particular load. There are four rows Ior every node
in the finite element zrid. 1In addition, the last row and column
represent behavior due to normal axial loads. It will be noted that
terms in a square stiffness matrix are arranged in regular rows and
columns, but upon diagonalization the columns are skewed upward to
the right. A row in a square stiffness matrix is represented differ-

ently in a diagonalized stiffness matrix; terms that were to the left
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of the diagonal are now in the skewed column, while the remainder of
the row now begins in Column 1. A typical diagonalized row is
underlined in Eq. (l34).

Table 1 shows the nodal constraints upon the model in Figure 4
necessaryv to mimic the behavior of a composite in a micromechanics
analvsis. Effects upon the stiffness matrix due te a fixed node are
simple; the row of the stiffness matrix pertaining to the direction
of fixitv of the node is zeroed excent for the diapgonal rerm, which
is given a value of one. It will! be noted that nart or 1 reroved row
is skewed as described previouslv and is shown bv the underlined terms
in Eq. (13). Upon solution, this causes a zero displacement to be
caleculated at this node. When all the fixed constraints are invoked,

the stiffness matrix appears as in Eq. (i5).

NODAL CUNSTRAINTS

Respective Direction

!
constralned hNodes |
)

i
: Load Nf Constraint | Fixed | constant
‘. 1 s :
: " ; X : 1,2 3w ]l
T R R
; ‘X ’ - , ’ |
ez ‘ z I l 2,4 i
o S

e e,
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five boundary condition columns enlarged, that were initially shown

in Eq. (15). The new terms were created by columnizing, for example;
Rows 9 and 13 of Eq. (13), representing the x-direction stiffnesses
of Node 3, are now stored in the X Column of Eq. (16). The previous
pusitions of the terms that were just relocated must be eliminated
since theilr ertfects have been taken into account in the boundarw
condition columns: setting diagonal terms equal to one and the
remaining terms in cuestion equal to zero, eliminates their contri-
bution. Because boundarv conditions were involved in each direction
on each nede, in this case, the regular stiffness matrix is totally
eliminated when its terms are combined into the boundary condition
columns, as seen to the right of the vertical dashed line (Eq. 16).
The second step is shown by arrows in Eq. (16), representing the
combination of boundarw condition rows, located within the special
boundary condition oo wumn area, into the final effective stiffness
area (Eq. 7). These manipulations to include the two additional
shear boundary conditions being considered follow closely the tech-
nique used in Refer-nces [18] and [l]. For example, each term of
Row 6 in Eq. (16), (representing y-direction stiffness) is added to
its respective column in Row 14 (as shown by the respective arrow).
Eq. (17) shows the resulting terms of the summation due to the combin-
ing operation. Final manipulations of the effective stiffness area
are emploved o simplify the Gaussian elimination. Since Eq. (17) is
svmmetric, the redundant terms can be eliminated (see Eq. 18). Also,

the new Jdiagrnal terms are positioned in Column 1, consistent with

the srevious diagonalized form.
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The size vt the stiffness matrix evident in Eq. (l4) becomes
enormous when dealing with large finite element models. This stiff-
ness matrix uses bv far the majority of computer memory necessary,
and decreasing its size 1lso reduces-the computer time needed to solve
it. One wav to Jdecrease the size of the stiffness matrix is evident
in Eq. (18), where the lurge stiffness matrix was reduced to a svstem
oL five equativns. This method eliminates the rows and columns of the
stifrness matrix where boundary conditicns are involved. These elimina-
tions take place as the stiffness matrix is being assembled. The amount
ot the reducti o possible- depends entirelvy on the number of boundary
conditicus invowed, out the adv.ntage is significant for the types of
Yinite element or:is cmploved in this investigation, and doesn't
reduce accuracy. LU sheuld be noted that this methoed of eliminating
vows and columns was also utilized by Branca [18].

Next, gzenerai applied loads are input to Eq. (18) and overall
displacements are »oived for, The resulting displacements are those
of the boundary aoces, which are then substituted back into the eoriginal
dlsplacement vecot v tshewn in Eq. 145. The elemental strains and
stresses can then ne calculated.

The special stilrness jormulatior discussed above caused com-
plexities in the taussian elimination procedure. Branca [18] who
first developed the special Gaussian elimination scheme, also testified
thar it requir-d intricate bookkeeping. Bookkeeping complexities are
compounded iuotne present analvsis due te the added boundary conditions,

[N

but the theors apon waich Gaussian élimination is based remains




unchanged. Thus the Gaussian elimination procedure degenerates into

an involved exercise in bookkeeping and programming.

Computer Implementation

Implementing the preceding theory into the FORTRAN computer
program of Reference (1] results in the new generalized plane strain,
finite element micromechanics analvsis described in the flowchart in
Appendix C. The incremental procedure utilized by Miller and Adams
{1] remains intact in the present analvsis except fcr the calculation
of cctahedral shear stress, which now includes the two added shear
stress terms. This tangent modulus method enables highly inelastic
materials to be managed easily.

In developing the analysis, another consideration was found to
be essential for an efficient computer program. Designing the finite
element mesh efficiently has a profound effect on the size of the
stiffness matrix. The highest difference in node numbers in anv ovne
element determines the bandwidth of the stiffness marrix, i.e.,

By = (R+ 1)4 + 5 (19)
where

bandwidth of stiffness matrix

Bl
K = highest node number difference
The addition of 5 is due to the special boundary condition columns.
The finite element mesh, besides the requirement to have a fine mesh
in areas of high stress gradients, is also required to have a minimum
R value. Additionally, due to the lvading technique, the highest node

number is also required to be located at the upper right-hand ccrner

p——— T S N Chnaminlh s ‘nk.‘._
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of the mesh., A model was developed as shown in Figure 5 that fulfilled
these requirements, by arranging node points in rows and columns
(although cbscure), and numbering the nodes one row at a time in
successive columns. There -“re 13 rows and 13 columns resulting in

169 nodes and 288 elements. The resulting R value is 14, making the

bandwidth 03, as calculated from Eq. (19). X

In a tvpical program run, utilizing the finite element model of
Figure 5, the stiffness matrix alone requires 37,180 words (60 bits
per word) of central memory on the CDC Cyber 760 computer system. This
amount is over 40 percent of the entire central memory necessary, which
is approximately 90,000 words. An average time used by the central
processor to run the program for each increment is 5.57 seconds. This
value varies between 5 seconds and 8 seconds per increment, depending
on the number of increments, for the applications in this investigation
and most investigations.

increment sizes should be under 500 psi for in-plane normal
stresses and longitudinal shear stresses, while axial normal stresses
should be about 1000 psi or under for typical fibers of high stiffness
(glass or graphite). During highlyv inelastic behavior, increments

should be decreased accordingly to values on the order of 100 psi.

Failure Theories

There are three failure theories necessaryv for a comprehensive
prediction of failure in the present micromechanics analysis. An

octahedral shear stress criterion is used to define failure of the

matrix. This is a measure of the distortional energy stored in the
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matrix. The limitation of this criterion is that it is not suitable
for a hvdrostatic load, since there is no distortional component
present in hydrostatic loading. Therefore, a hydrostatic criterion
is also invoked by testing for a hvdrostatic stress state higher than
the ultimate value.

In prior analvses [1] the fiber was tested for failure by a
simple maximum stress criterion. Since only three normal stresses
existed, a more complicated criterion was not needed. Because shear
stresses also exist in the present analvsis, a new criterion must be
invoked. The fact that graphite is an orthotropic (transversely isc-
tropic) material increases the complexity of the problem. A criterion
specifically designed for orthotropic materials, and which considers
the entire stress tensor, is the Tsai-Wu [23] failure criterion.
Experimental results show that the Tsai-Wu criterion predicts failure
far better than a maximum stress or maximum strain criterion [24].

The Tsai-Wu tensor form is also of a more general character than the
Tsai-Hill criterion [24). The only awkward characteristic of the
Tsai-Wu criterion is the Pl2 term. This has been discussed widely in
the literature, but Narayanswami and Adelman [25] show that neglecting
this term rarely causes an error greater than 10 percent. This is the
so=called "Modified Tsai-Wu'" failure criterion. Assuming tensile and
compressive allowable stresses to be equal, the form of the equation

becomes:

191 ox+ Pog+ Boy + Pgog + Foog
F 14 D 24 P P P 2. P 2 (20)
+ oot xot Byyo32+ Bou2+ Fogot + Fogogl =1




whera ¢ represents the actual stress components, and the P terms

represent stress allowables as defined by Tsai and Wu [23].




SECTION 4

CONSTITUENT MATERIAL PROPERTIES

The matrix system used for experimental verification pur,...=s ia
the present investigation was Hercules 3501-6 epoxy resin [26]. .__cause
longitudinal shear loading is a major consideration in the present
studv, it is appropriate to employ matrix constituent material proper-
ties derived from longitudinal shear experimental data. Solid rod
torsion test shear data were available for this matrix material [27].
This test has been shown to be a viable means of determining shear
moduli and shear strengths [28]. Each test specimen was approximately
4 inches long, with a diameter of ! inch, fabricated in a mold similar
to those shown in Reference [28]. These tests were performed on dry
specimens and specimens sa*rated with moisture, at three temperature
conditions, viz., 21°C (room temperature) 100°C, and 160°C.

Data from either shear tests or tensile tests can be readily con-
verted to octahedral shear stress-octahedral shear strain expressions
for input to the analysis [29]. Previous investigators [30] had already
calculated the octahedral shear stress-octahedral shear strain behavior
of the epoxv matrix using uniaxial tensile test data, as indicated in
Figure 6. Similar results reduced from solid rod torsion test data by
the present investigator are shown in Figure 7. The tensile test speci~
mens were of a "dog-bone" configuration; approximite dimensions were

1/10 inch thick, Y% inch width, 2% inch gage length, and 5 inch overall
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length. To use either of these sets of data in the micromechanics

computer program, they must be expressed in equation form, with

temperature and moisture as independent variables. First, a curve- ¢
fitting method, developed bv Richard and Blacklock {31], was used to

fit each data curve (at each test condition). This method defines

each curve in terms of an initial slope, an asvmptotic stress value,

and a radius of curvature that connects these two values. The general

form of the Richard-Blacklock equation for stress is:

Ec
5 = 21
1/n b
[__ .Eg’n
l+| —
L %
i where
E = initial slope of stress-strain
2y = the asvmptotic stress value
n = inverse of the radius of curvature
¢ = strain

Each constant (E, ©_and a) from each test condition, and values for

J
ultimate stress, are then used in another curve-fit relation which ex-
nresses each value bv an equation dependent upon temperature and
moisture. It is a second-order, least-squares development resulting in
an equation with six constants. For example, the initial slope would

be expressed as:

E = CyT<+ CM< + C3MT + C,M + T + Cg (2:




‘ T ————————————————
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where

T = Temperature (C)

M = Percent moisture by weight

Resulting expressions for ~,, E, n and ultimate stress are defined by

the constants listed in Table 2.

TABLE 2

EXPERIMENTALLY-DETERMINED CONSTANTS FOR TEMPERATURE- AND
: MOISTURE-DEPENDENT OCTAHEDRAL SHEAK STRESS-OCTAHEDRAL
SHEAR STRAIN CURVES AS UBTAINED FROM SOLID ROD TORSION
TEST DATA FOR HERCULES 3501-o EPOXY RESIN

| Values CONSTANTS

I Dependent - . . - . . i N

1‘ on T and M G [ Ca ! Cu PE g .
& (1b/ind) ' ee.ebex 107714205 % 1077 6.098 -8.310% 10° -i.+34x 10°13.430x 10°) '
‘c) (lb/ta® ! 3.423x:07°! 5 1,299 %1070 1,847 x 10° -7.767x 10" 1.401 xxo‘! ,
m taTh) 1-1.190x 5070 N 0 1-1.899x 107 %=i.357x 10772, 348 : .

‘ R _ . 5 , i

0w 1ib/ind) | 6.515%10792.773x 107 18,478 %107 -1 7T x 107 -7.301 x 107 11,322 x 10°]

Incorporating these equations directlv into the computer program en-

ables the calculation of tangent modulus valves for each load incre-

e e i s e b T e

ment, as needed for the inelastic material properties matrix defined

in Section 3. The ultimate octahedral shear stress is also calculated

for use in the vctahedral shear stress failure criterion, also dis-

cussed in Section 1.
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Comparing the octahedral shear stress-octahedral shear strain
curves generatoed from tensile and from shear test data, Figures 6 and
7, respectivelv, the shear test data show modulus values slightly
higher, but close enough to attest to the general accuracy of the ex-
perimental!l data. Another observation is the significant extent of in-
elastic behavior of the epoxy resin when subjected to shear test con-
ditions, (Figure 7) in contrast to the limited plastic response ex-
hibited by the uniaxial tensile data. A possible reasen for this
ditrerence is the unique effect of Ulaws in each tvpe of specimen. The
thin, ''dog-bone’, tensile specimen is more susceptible to stress con-
centrattons due to {laws such as veids or microcracks than the shear
specimen. That 1is, the shear specimen is more stable in the presence
ot tlaws because onlvy the material on the surface of the rod is highlv
stressed. This surface is smeoth and has 1 low number of tlaws be-
cause the specimen is fabricared in a caretullv polished steel mold.
Internal flaws in the rad specimens have a reduced intfluence compared
to those 1n the tensile specimens, which are subiected to a uniformlvy
high stress throughout thelir volunme.

Another factor possibl o contributing to the difference 1s the
JCecuracs ot the test conditiens, f.o., the dccuracy and unztormity or
est temperiture ind molsture condilens which were maintained., In
hoth cases, molsture-conditivned specimens were actua v tegted in a
drv ocenvironment, which tended to drive sut the surtdce meisture, es-—
vectally at che hiegh test temperatarci.  The stress induced in the

tensiie Sper tmens Jue to this Tolsiare cradnoat crohaniy atrected the




i
|
f

modulus and strength much more than in the thicker shear specimens.

Also, the use of "clam-shell" heaters for elevated temperature tests

was a possible source of error in both test cases because of the po-
tential nonuniformity of temperature around the test specimen, and the

difficulty in accurately controlling the temperature in such a setup.

It is difficult to attribute the differences in behavior between
the tensile and shear specimens to experimental error alone, however,
and at this point it is impessible to use cne form of the data to refute
the other. Unfortunatelv, there are no other published shear data
available that could provide insight to the problem. However, there are
some temsile data available that .require a review.

The tensile data for the Hercules 3501-6 epoxy resin discussed by
Browning [32] show some importaunt similarities to the shear data shown
in Figure 7. His data show a transition temperature above which
material properties are degraded greatly; thie is particularly signifi-
cant at high moisture contents. This transition is a change from a
"glassv' solid behavior (nigh w@modulus), to a "rubber’ -aterial behavior
(low modulus), as temperature increases. The present shear data (Figure
7) also suggest a transition temperature over the entire range of
moistures. For example, the zero moisture results can be observed as a
function of increasing temperature. At 100°C, the ultimate octahedral
shear stress has decreased as has the ultimate octahedral shear strain.
But, as temperature is increased further, ultimate strain increases
dramaticallv, as ultimate stress continues to decrease. A similar re-

sponse is observed for the high condition as temperature increases.




Up to the transition temperature, a slight Jdecrease in ultimate
strain takes place as the ultimate stress drops to nearlv half the room
temperature value. Temperature has a scoltening effect (lowering the
mouulunY, while lowering the strength, put the material still has a
"siassv™" behavior, as seen in the decreasing ultimate strain.

when there is no moisture present, low temperature ultimate
stresses and ultimate strains from the shear data are much biguer than
from Srowning's data [37]. At the high temperacure of 160°C, the shear
data ultimate streoss prediction Jips »elow Brownino'- prediction, but

the ultimate strain prediction is nearlv Yive time, higzher than

3rowning's.

When moisture i oadded, the trend in ultimate srresses and strains
in the sitear test data and dBrownine's data are similar.  both sers of

data show the plasticizing vifect or high temperarure and moisture.

o
[

werall, the present solid rod shear data show much more pronounced
inelastic bdehavior it all conditions than the tensile dora of Browning.

This leads to higher ultimate stress and strain predistions,

“Men comparing the octaitwedral sfiear curves of Fleoure b, generated

Crom osonsiie te=t data 12 v the oresent investipator, to Brownine’s
roosttltas, mdulas vatues are -een to e oonly siirzhcly bigher, Again at

Sies, comneracare and moistare conditions, the present teasile data show

/
I

tower modni i walwe . oand lower altimate stress and strain vailves. The
aresence oA olase transitien is onlv biincted at in the present data,

Loopie Gillet o ineredss in altimate strain when temperature is o oincreased

Crem room femperatare to D Ooat the aturated moisture condition.
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Overall, the highly elastic and low ultimate strain behavior of the
tensile data follows Browning's tensile data more closely than the
shear data do. This is as ecpected since the data resulted from
similar tensile test methods.

Based upon the above comparisons, the shear data of Figure 7
appear to be reascnable, but they are enocugh unlike the tensile data
of Figure 6 and Browning's results [32] to require nore experimental
evidence. More precise and comprehensive shear Jjata f‘or temperature
and moisture variations need to be generated, while considering the
molecular structure and chemistry involved in the resin system.

Fiber properties were mainly obtained from Hercules [33] and
Owens-Corning {34] literature, for the AS~-graphite fiber and the $2-
glass fiber, respectivelv. Shear moduli and shear stress allowables
necessarv for stiffness calculations and the fiber failure criterion
were easily found for the S2-glass (assumed isotropic). For the graph-
ite fiber, in-plane and longitudinal shear tests required to determine
these properties are not commonly performed on a fiber, due to its
small diameter. Instead, a shear modulus value was calculated in the
transverse plane of svmmetry from the respective values of Young's
modulus and Poisson's ratio. It was necessary to estimate values of
longitudinal shear modulus and longitudinal shear ultimate stress from
data for other similar graphite fibers [35]. The values were 5,0 Msi
and 225 ksi respectivelv, as shown in Table 3. The transverse shear
stress being relatively unimportant because of the inability of the

analysis to directlv applv transverse shear loads, a value of 25 ksi
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transverse shear allowable was chosen. Microscopically the graphite
fiber is much like a compusite due to the longitudinallv arranged
graphite crystal structure. Thus, a low transverse allowable shear
stress 1s 4 viable approximation.

Properties of the constituent materials are presented in Table 3,
with estimated values denoted bv an asterisk (*). Two sets of epoxy
matrix material properties at room temperature, dry conditions are

also shown, generated from tensile and shear experimental data (Figures

h and 7).
TABLE 3
CONSTITUENT MATERIAL PROPERTIES FOR AS-GRAPHITE FIBER,
S2-GLASS FIBER, AND 3501-6 EPOXY RESIN
JTHarcuies A5~ ens-corning Hercules .501-4 Zpoxv 1
PROPERTY || rapnite 7idaert 3l-;lass Fider:Mstrix .loow Temperature. Jrv-
| 21 4 ifrom Tensile [!Tow l\aar Taec
[ Test dats Lata_ 7
{
ongitudinai | - N o N ,
| Yoausuy, 7. Ms1) 13 ced 22 -0l S .
[
Transveree i . ok 3 ps i
e - et o ] 2.8 1.62 1 da 1.
{
Loogitudinai Shear i o e 5.2 .23 ' !
Yoapive, w- Mai; . - - - . i
l
. 1
Transversa hesr . . R ) !
Wodulus, T M1} e s ’a e
| Major ?rimeon s . R \
iy, -~ ,l 3.0 )3 e e
i, :
. (n-?lane Potseon 3 ) N y am |
! wtie 1o H 123 S i jihals i
i )
ritudinal Tensile o g, 00.) 1.0 s |
wn, T xs1)
! 1
! ?rlm-rs- ??nn.ln ; 53 e 0. s 12.2 4.8 ].
screagen, o k81, ; '
)
| omgitudinal ?‘hn.t ! 25 159 ) 5.3 1. |
|_strengTh, 1o (219} 1
! “ransverse Shear '! ) kg e .3 Ay |
jepemgen T ksl ! i . o !
== ]
Lwngituainas :.utucunuf YRS 5 2 d {
53¢ Tharmali Ixpansian t ‘ Y .
! R 8 ;
Ttansverss oefficienc '
: 3 5.3 <30 )

oeffictene ¢
“oLsturs Lxpanison

F———- -
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SECTION 5

NUMERICAL RESULTS

Test cases analyzed using the longitudinal shear loading version
of the generalized plan strain micromechanics program indicate that
the new analysis performs all of the same operations as the old
version, with the addition of a shear loading capability. As theory
predicts, there is no coupling between shear and normal loads during
elastic load increments, but during increments bevond the elastic limit
the Prandtl-Reuss flow rule is in effect and coupling does occur. When
the deviatoric stress tensor is non-zero (during inelastic increments),
the Prandtl-Reuss flow rule causes each elemental stiffness matrix to
become fully populated. This in turn forces each stress term to be
dependent on each strain term. Thus, a shear stress can then induce a
small normal strain, which is impossible in elasticity theory, but
entirely possible in plasticity theorv. In fact, all stress components
have an effect on all strain components if the deviatoric stress
tensor is fully populated. Loocking back to Egq. (6), it can be seen
that the inelastic constitutive equation governs the coupling.
The additional strain induced during inelastic increments is
due to the two deviatoric stress terms within each term of that
constitutive equation. This effect is small, but significant enough
to warrant its inclusion. This inelastic strain contribution has been
observed to be up to 6 percent of the total strain. To demonstrate

that the longitudinal version of the micromechanics analvsis provides




accurate and useful results, two types of examples have been devised.

The first uses the constituent material properties to predict results
using longitudinal shear loading analvsis which are then compared to
actual solid rod torsional shear data, for two different composite
materials. The second example predicts laminate behavior using the
longitudinal shear loading analysis in conjunction with a laminate

point stress analysis.

Comparisons of Analvtical Predictions with Solid Rod rsion Test Data

Solid rod shear data had been generated [27] fo )mposite spec-
imens as well as for the previously discussed solid rod torsion tests
ot the epoxy matrix. Fibers used in the composite specimens were
the Hercules AS-gravrhite fiber [33] and the Owens-C . ning “-g'ass
fiber [34]. Hercules 3501-6 epoxv resin was used 2s the matrix system.
These composites will henceforth be referred to as GR/EP and GL/EP,
respectivelv, for the graphite and glass fiber composites.

Using the properties evaluated from the previouslv discussed
solid rod torsion tests of the matrix svstem alone (Section 4),
the micromechanics analvsis predicted the composite shear stress-
shear strain behavicr. Because composite tests of GR/EP and GL/EP
were performed in the same program as the matrix solid red torsion
tests, theyv provided the logical source of data comparision. These
comparisions are shown in Figures 8 through 12 for GR/EP, and Figures
13 through 17 for GL/EP. 7Tests were performed at room temperature,
IOOOC, I6OOC, at two moisture conditions, i.e., drv and fully saturated

(6.75 percent moisture by weight). Although data were also available
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for fully saturated composite specimens tested at 160YC for both the GR/EP
and the GL/EP, the analvsis showed failure initiation occuring before
preconditioning was completed. Thus, these cases were cmittred. This
signifies the occurrence of microcracking before the composite is ;
loaded mechanically, sotelv due te thermal and moisture loads. Thus,
not only do temperature and moisture increases lower the matrix
properties, thev induce stresses sufficientlv high to cause failure.
As Figures 8 throush [7 show. in most cases the predicted composite
stress-strain curves were in close agreement with experimental results.
At present, the lengitudinal shear micromechanics analysis is
only operatioral up to first element railure, which signifies crack

initiation or some other local failvre on the mi~ro scale.  The

present lack of a criack propagation capabilitv prevents the analysis
from predicting the Actual railure strenveh of a1 composite; but it
does predict ineiastic behavior and the initiation of railure. Thus,
each of the Figures 8 rhrouch 17 sihow only the initial portion of the
complete shear stress-shear strain ourve, but enouzh to reveal the
accuracy of the prediction technique.

The analvsis exhibired excellent agreement with experimental
values orf composite modulus for the GR/EP specimens, along with good
prediction: ~tf vield strength. This was a signitficant improvement
over the resulrs optained when usine tensile data to generate the
ovtanedral shear stress-octahedral shear strain curves for the matrix
material.  The tensile lata exhibited much less nenlinearity, as indi-

cated in Micure o, Althouph the use of data penerated from these
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tensile tests caused the micromechanics analysis to predict low values
for first element failure and low vield predictions, initrial modulus
predictions were quite accurate, as expected since the initial slopes
in ¥igures 6 and 7 are similar., Therefore, the tensicn data cannot be
refuted, but the results suggest that highly inelastic matrix material
behavior does occur when high shear loads are present. [hus,
subsequent data comparisions in this section will employ the solid rod
torsion test data. In future investigations, the phvsical signigicance
of this difference between the two test methods will deserve some
atcention.

The slight but consistent overprediction by the analysis of the
experiment's stress-strain curves for GR/EP will be wunted, while the
results for GL/EP are more scdttered. It is assumed that the large
modulus difference between fiber and matrix is _o blame for the slight
overpredictions. Considering Table 3 further, the contrast between

moduli of fibers and matrix are clearly cvident: the longitudinal nor-

mal and shear moduli of both fibers are much higher than that of the
epoxy. For future consideration it will also be ncted that the trans-
verse modulus differences from tiber to matrix are much higher for
GL/FY than GR/EP. A general statement can be made concerning these
dirrerences: the higher the modulus difference between fiber and ma-
trix, the higher the stress concentrations in a composite resulting
from an applied load (loading according to the particular direction of
those moduli). Large modulus difference also signifies that any flaw

in the composite will maguifv the already present stress concentrations,
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thus degrading the composite properties. The analvsis idealizes a
composite material by assuming perfectly homogeneous materials (neg-
lecting all flaws), and perfect bonding between {iber and matrix,.
Because actual composite materials have manv flaws in the form of
voids, extraneous inclusicns, and debondings, tc mention the most
common, the present analvsis is expected to overpredict slightly in
most cases.

Consider the drv GR/EP results in Figures 8, 10, and 12. The
overprediction error decreases as temperature increases; at 1600C the
predicted modulus and the experimentally measured modulus are essen-
tially equal. The increased temperature causes softening of the
matrix material, thus relieving high stress concentrations. Any flaws
and imperfect fiber-matrix bonds that occur In the composite affect the
total behavior of the composite less, thus the analvsis predicts more
accuratelv., This hvpothesis 1s reintorced hv a studv of the octahedral
shear stress conturs, as will be discussed later.

The larger orrors in the predictions for saturated moisture con-~
ditioned GR/EP specimens (Figures 9% and 11) can be attributed to the
stress intensitv caused bv high moisture dilation. While temperature
soltens the matrix greatlyv, moisture causes onlv small degradation of
material stiffness., as shown in the octahedral shear stress-octahedral
shear strain curves in Fipure 7. The hipgher stresses intensify the
detrimen: 11l ettects of flaws, causing a discrepancv between experiment
and theorv. Again, the trend toward lower errors .us the temperature (s

increased will he observed.
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Although trends ure predicted correct!y ror tiwe GL/EP composites,
there is a significant difference between the anaivsis and the actual

experimental data. Figures 13, l4 and 16 show comparisons at room

. Qo
temperature, dry, room temperature, saturated and 1000, saturated

conditions, respectivelv. These examples show reasonably close agree~

ment between theory and experiment. Laraze variations are observed for
both of the elevated temperature, dry test conditiens, however, as

shown in Figures 15 and 17. Because the matrix at ¢levated temperature

is highly nonlinear and verv low iIn strength, the prediction is made

more difficult than for the other test cases. Also, the probability

of experimental error increased at the highest fempecat:re condition

(lbOOC) due to the limitations in tamperature oonira! railable at the
time of the testinyg, as discussed in Section 4, recatding the
results in Figure 17 for the above reasorns, the e it tor GLJED
represent underpredictions. As temperature 1nove e, tue under-
predictions grow for eacl separate moilsture condico. . Ceocaune of
this error is unknown at this time; a stadv o0 Lo 2t ie, ntours

offered no explanation.

Tvpical behavior of a shear specimen on the 2i.o: scale can be

seen clearly in the contour plots produced from tho micromechanics
results of drv GR/EP specimens tested it room tfemperature,

shear stresses due to curing ranged up to 75 percent o! the elastic

limic, as shown in Figure l8a.

ot distortional energy in the mater:al;

accur in regions of cluse fiber spacing, directlv between the fibers,

O¢tahedral

Octahoedral shear stress is an indicator

the highest values are seen to
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a) Octahedral shear stre:ss v et ahedral shear stress
after cooldown frem 177°C 4t prelicred first element
cure temperature to J1°C viela, = 2 ksi

X

# ¢) Octahedral shear stress d) Octahedral shear stress |
at experimentally deter- at predicted f{irst element
mined compusite vield tailure, T__ = 9.5 ksi
stress, = = 4.5 ksi X
XZ

Figure 18. Contour plots of octahedral shear (normalized with respect
to matrix vield stress, 4.18 ksi), maximum principal, min-
imum principal, interface normal, and interface shear stress
within a graphite/epoxy solid rod torsion specimen at room
temperature, dry conditions.
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with respect to matrix vield stress, 4.18 ksi), maximum
principal, minimum principal, interface normal, and inter-
face shear stress within a graphite/epoxv =0lid rod torsion
cpecimen at room temperature, drv conditions.

(continued) Contour plots of octahedral shear (normalized
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oI5 (o I .}
i) 1Intcrface shear stress j) Interface shear stress
(ksi) after cooldown (ksi) at first element
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k) Interface shear stress 1) Interface shear stress
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point, T = 4.5 ksi failure, ~ = 9.5 ksi
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Figure 18. (continued) Contour plots of octahedral shear (normalized
with respect to matrix vield stress, 4.13 ksi), maximum
principal, minimum principal, interface normal, and inter-
face shear stress within a graphite/epoxv solid rod torsion
specimen at room temperature, drv conditions,
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St e le Vvieod  risire [8by and eventually rirsc failure (Figure
Dou o osoctr . The Zont contour value corresponding to iirst element

calltre represcouts an octahearal shear stress ot 1.9 xsi.  In Figure

S e data o incicate viela gt <L) ksi, although the octahedral shear

AT

Sotour ot U Irare (30 shows nearls Peroent of the matrix

Coocave oready vieddeo, vevealing the Jact that locdl macrix vielding
o ono e Ore the Comrosiie as 3 whole bewins to show anv sign of
wnlirear response. Hven the predicred shear stress-ahear striin

response cshewn by otre triangles in Figure 8) remains nearlv linear

vl Do Tunt the point o0 rlrst Lement vielding.

While the oSorabedray Shear stress faliure orite

lon predicts

Tallure direct! s Gerwoen tihers, g maxinum stress criterlion would dis-

arrees alvh tensle s are seen tooactur near the fiher in

Figure 18e. High o arresoive Srresses are seen to ooy ur at the
inter:sace along the =i Toovtmietry CMigure et Lt the riber-matrix

ntertace, indicatineg « cotenrial Tailure ot the nter:ice tond.  The

cctahears? snear wrree s coitorion tadicates 1 opr oo Loanter:iber
microcrack callarve, whion comad propagate to o the oo rihee, or merely

cause a split Jdirectlyr herteeen adjacent fiber-. Hoth oriteria predict
railure in the same waemeral region ot cloase fiber spacing, but when
deating with an actual composite, the actual failure mode will also be
influenced by the particular flaws in that region. Yor exampie, a

fueal revcion of poor “iber/matrix bonding would be opened by the high

tonsile stress: shown in Fioare (8e.
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Cooldown from the cure temperature induces high compressive
normal stresses at the interface, due to the contraction of matrix
material around the fiber (Figure 18g). The contraction of the matrix
material in conjunction with the constant displacement boundary con-
ditions moves the boundaries together slightly, enough to compress the
small volume of material near the axes of symmetrv. This normal stress
is unaffected by subsequently applied longitudinal shear loads, and
only slightly increased by contributions due to inelastic material
response at higher levels c¢f the applied shear stress, as shown in
Figure 18h. The reasons for this are that there is no coupling between
normal and shear stresses during elastic behavior, and that when
coupling does occur (when the matrix behavior is inelastic), the
deviatoric stress tensor is so sparselwv populated that the normal
stress is only increased by about three percent.

Due to the additional longitudinal shear stress components, the
present analysis must include both in-plane and out-~f-plane shear
stresses 1In the interface shear stress contour plots, in contrast to
previous treatments [15, 30, 38]. Now the shear stress contour repre-
sents only the magnitude; the direction of the interface shear stress
can vary from position to position along the fivber in anv direction on
the fiber surface.

Interface shear stresses developed during cooldown (Figure 18i)
are only 25 percent of the shearing stress at failure (Figure 181).

It will be noted that the curing stresses become purelv hvdrostatic on

. o
the horizontal and vertical axes of symmetry and at 45, due to

-t
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gevometric symmetryv. Viewine Figures 18i, j, k and 1 consecutivelw
shows that the initial curing residual shear stress is small relative
to the load-induced shear stress, which eventuallv initiates failure.
The GR/EP under a test condition of room temperature, when mois-
ture-saturated (6.75 percent moisture by weight), reveals veryv high
octahedral shear stresses and interface normal stresses due to mois-
ture dilatation, as seen in Figures 19a and 19b. Although thermal com
traction during cooldown counteracts the subsequent moisture dilatation,

the extent of moisture dilatation far overshadows the thermal contrac-

rn

tion. The majoritv of matrix material is already inelastic before
loads are applied, (Figure 19a) which reduces the subsequent load-
sarrying capability, while the moisture also softens the matrix,

thus reducing its ultimate strength. Figures 19¢ and 19d show the
increased inelastic behavior that entirelv envelopes the matrix at
failure. The moisture loading soverns the contours, i.e., they remain
more nearly syvmmetric than in the loading condition without moisture
(Fiwure 18d). Again a high ¥ rerface normal stress is present

Figure 19e), while a ' " u e face shear stress (Figure 19f) con-
tributes to the high cctabedral shear stress state shown in Figure 19d.
The maximum and minimum principal stress contours (¥Ficures 19g and i9h)
nave oppnsite results than in the room temperature, Jdrv specimens, due
te the opposite effects of moisture and curing stresses. The minimum
arincipal stress shows a highest absolute value at 459 ¢rom the x-axis
At svmmetrv at the interface. Because the absolute value of the

—aximum principal stress is nigher than tne minimum principal stress,
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Figure 19, Contour plots of octahedral shear (normalized with respect
to matrix vield stress, 2.88 ksi1), maximum principal, min-
imum principal, intertface normal, and interface shear stress
within a graphite/epoxy solid rod torsion specimen at room

o

temperatnre, satarated conditions (H.755M by weight).

ettt e LY " "




-
f
}
t
=
«L—L\—X-‘
¢ 2 0
o) Interface normal stress
(ksi) at predicted firsr
element failure, < - 5.1

ksi

015
f) Interface shear stress
ksi) ar predicred first
element railure, = = 3.1

. pied
ks i

\\\‘ ‘
. B ‘ ,
‘ ‘\/ 87 \// j
Vo .
Y : 10 |
\\ !
' \ 16! ©8)
‘ hg! l )
\ P W U —_— . S |
»Y  Maximum principal stress 1Y Minimum principal stress
(ksi) at predicted firse (ksi) ar »redicted first
element failure., ~ = 3.1 element failure, © = 8.1
) X ) Xz
ksi ks

Fisure l4. ({continued) <ontour plots of octahedral shear (normaliced
with respect to matrix vield stress, .38 k&i), maximum
orincipal, minimum principal, interface normal, and inter-~
face shenr stress within a graphite/epoxv =olid rod torsio
specimen it room temperature, saturated conditions (6.757M

bv weight).




67

failure would be predicted to occur at the fiber-matrix interface near-
est the x-axis if the maximum stress criterion were used. A different
result is again shown bv the octahedral shear stress criterion (Figure
19d), which predicts an interfiber failure, although it is near the
same area.

The elevated temperature (1OOOC) GR/EP specimen under drv condi-
tions shows a relativelyv less intense octahedral shear stress state
due to curing (Figure 20a) than the room temperature, drv specimen.
This occurs not only because of the smaller temperature excursion,
but also because of the lower stiffness properties at the elevated
temperature. As noted earlier, this results in lower stress concen-
trations when flaws are present in real specimens. Thus the assump-
tion of no rlaws and perfect bonds becomes less severe, and the anal-
vsis predicts more accuratelyv. 1Interface normal stresses are negli-
gible comparced to the magnitude of the octahedral shear stresses
occurring at farlure (Figure 20b), while maximum and minimum principal
stress contours predict maximum absolute values at the same point as
the octahedral shear stress contours: between the fibers on the x-axis
of svmmetrv (Figures 20c¢, d). Therefore, an elevated temperature
GR/FP specimen would tend to fail within the matrix, where a crack
would intiate and subsequentlv begin to propagace.

Because the GL/EP at room temperature and 6.75 percent moisture
has a smaller fiber volume (30.5 percent) than the GR/EP at similar
conditions, ind because the fiher properties are different than

granphite, slightlv Jifferent results can he expected from the
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microanaivsis. But after cooldown from the caring temperature and
moisture conditioning, <R/EP and SL/EP <how verv similar octahedral
shear stress contours (see Vigures 1Y9a and 2la). Coefficients of
tnermal expansion varv markedly between the glass fiber and the graph-
ite fiber (see Table V). The wraphite fiber expands axially when
temperature is lowered, and contracts in the fransver-o direction. The
glass fiber, beiny isotropic, contracts in all material directions
when temperature {s lowered.  However, the matris thermal contraction
is much higher chan thar of either fiber. These large diftferences
between coerricients 1 thernal expansion from fiber to matrix cause
stresses to o oindnced. These Jitferences are alghest in the axial
tie o P apd lowest in the transverse direction of
GR/EP, whi.e the /7P is in between, althoush quite high (cee Table 3).
comsidering chis and the fact a0 more morrix is present in the GL/EP
Deciause of ta Lower Ciner volume, the overall thernal and moisture

cfre ts tend Toohe egqual for ot compesites. Theretore, similar
coptours are see.o for o hoth GROEP and GL/EP in Figures 1Y9a and 2la.
Aecause oo end constraints applied in this analvsis, hvgrothermal
Toads will net induce lonmpitos ingd shear stresses.  Jousidering the
Cransverse plane onlr, the overwnelming moisture dilatation tends to
push ou warce on the houndaries.  Since the houndaries are constrained
to have 1 constant displacement, the area of highest matrix volume
toward tnee wpper right corner of the quadrant will be sligatlvy in
compression, while the area of small matrix volume will be in large

tension, as shown in Figure 21b. Because the fiber is not affected bv
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this moisture, it tends to hold the matrix in place while the matrix
tends to dilate out from the center. Thus, shear stress is induced
along the interface. Because matrix dilatation occurs in all direc-
tions, and because of geometric symmetry, only a hydrostatic stress is
present at the center of the fiber/matrix interface, as shown in

Figure 2lc. Constant displacement boundary conditions at the edge of
the quadrant plot restrict shear strains there, and again only a hydro-
static stress is present. This is shown in Figure 2lc¢ by the absence
of shear stress.

As the applied shear stress is increased until the first element
failure occurs, the contours propagate in a manner similar to previous
cases. But comparine Figures 21d and 19d, the average stress in the
matrix for GL/EP is higher (9.1 ksi) than that for GR/EP (8.1 ksi).
The matrix in GL/EP has vielded to a greater extent than in GR/EP,
signifving mcre damage has taken place, and more energy absorbed.
Thus, lower fiher volume makes a more uniform stress distribution pos-
sible in the matrix, i.e., the stress concentration due to the fiber
decreases.

The brief results presented here show good correlation with
experimental data, suggesting that the micromechanics analysis is
valid. These results cannot be considered conclusive, of course. A
much more comprehensive study should be undertaken in the future, to

reinforce the present results.
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Laminate Analvsis

If laminate behavior can be predicted bv the microanalysis used
in conjunction with a laminate analysis, further value and accuracy
of the micromechanics analysis can be demonstrated. Longitudinal shear
stresses are indeed a necessaryv consideration in laminate analysis,
and are capable of being considered in the present micromechanics
analvsis. The use of micromechanics anilvses was restricted to uni-
directional laminates in prior works, when no longitudinal shear con-
siderations were taken into account. The laminate analysis used must
te compatible with the restrictions of the micromechanics analysis,
and certain assumptions must be made. Bec:ause appl!ication of in-
plane shear stress (:xy) is not a capabilitv of the present micro-—-
mechanics analvsis, a two-dimensional classical laminated plate
point stress analvsis was chosen over a three-dimensional finite
element laminate anaivsis. The AC-3 laminate point stress analvsis
computer program is operational at the Universitv of Wvoming [v,.
Basically, it describes elastic stresses and strains induced in each
ply due to loads applied to the laminate. These can be temperature
and moisture loads as well as mechanical loads.

Compatibility of the two analyses and the scheme of arriving at an
inelastic stress-strain curve for a particular laminate is described
bv the following four steps:

1. Calculate plv properties from the micromechanics analvsis.
2. Applvy the laminate point stress analvsis to the prescribed

lamirite, loaded in the prescribed manner, to obtain the stress
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state induced in each ply.

3. Use the micromechanics analysis to analyze each unique ply

of the laminate, holding loads in the same ratios as the laminate

analysis predicted. This will result in inelastic stresses and

strains in each ply when loaded to high levels.

4. Transform the stress and strain states back to laminate coor-

dinates to obtain a laminate stress-strain curve. This curve can

be used for comparisions with laminate experimental data.

Experimental data were available for a 57.5 percent fiber volume,
[tAS]AS GR/EP laminate at four combinations of temperature and moils~
ture conditions [30], viz, room :cemperature, dry (RTD); room tempera-
ture, one percent moisture by weight (RTW); elevated temperature (103
°C), dry (gTp): and elevated temperature ('03°C), one percent moisture
(ETW). The conditions will hence be referred to using the abbrevia-
tions in parentheses; i.e., RTD, RTW, ETD, ETW, similar to the notation
of Reference [30]}. Summarizing, Reference [30} was an investigation of
compression fatigue properties of composites. Static compression and
compression fatigue tests were performed on materials at various hy-
grothermal conditions. Theoretical predictions of failure mechanisms
were studied through a micromechanics analysis [1]. The static com-
pression experimental data for the [t45]43 laminate were chosen for the
purpose of comparing them with theoretical predictions. Both constit-
uent materials were the same as the graphite and epoxy proviously de-
scribed in Section 3.

To begin the analvsis, unidirectional ply properties are
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calculated using the micromechanics analysis, to be consistent with the
properties utilized later when inelastic strains are to be calculated.
Constituent properties for the AS-graphite fiber and the epoxy matrix
are the same as those shown in Section 3. Composite properties are
shown in Table 4; the stiffness values correspond closely to properties
found by Northrop Corporation and the University of Wyoming [30]. How-
ever, thermal and moisture coefficients of expansion differ consider-~
ably. It is important to be mutually consistent in the present devel-~
opment from one analysis to the other, i.e., properties used initially
in the laminate analysis must correspond to values (see Table 4) used
later in the micromechanical analysis. Overall, temperature and mois~
ture lower all the properties recorded. Also, note the small value for
longitudinal thermal expansion coefficient at the elevated temperature,
due to the negative coefficient of thermal expansion of the graphite
constituent.

The ply properties as calculated using the micromechanics analysis
are used in the laminate point stress analysis, where ply stress
states due to temperature, moisture and/or applied loads are obtained.
In applving a thermal or moisture load to the laminate, the laminate
analvsis assumes the input elastic properties to remain constant
throughout the temperature or moisture change. Because the matrix mod-
ulus is actually not counstant, but decreases significantly with in-
creasing temperatures, the predicted curing stresses will be higher
than thev actually are. To more accurately estimate the curing stres-

ses, an effective temperature change can be used which is smaller than

i A bt USRS O N
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TABLE 4

PROPERTIES CALCULATED FROM MICROMECHANICS ANALYSIS
FOR USE IN LAMINATE ANALYSIS

Properties
at
Predicted
Predicted Elastic Properties at First
Environmental Conditions Indicated Failure
ROPERTY RTD RTW ETD ETW RTD
Ep (Msi) 18.700 18.690 18.563 18.554 18.409
Ep (Msi) 1.467 1.450 1.172 1.147 1.559
G T(Ms1i) 5.918 0.897 0.611 0.589 0.441
VLT 0.2573 0.2571 0.2544 0.2542 0.2805
ap (x107%9C)|  0.477 0.455 0.166 0.144 0.531
aT 32.40 32.35 31.70 31.70 33.86
3L ()(10_%ZM) 0.042 0.041 0.026 0.025 0.046
8T 1.082 1.078 1.031 1.027 ! 1.184
the actual temperature change. For curing from 177°C to 21°C, an

effective temperature change of 111°¢ was used rather than the actual

156°C. In curing from 177°C to 103°C, only a 42°¢C effective temper-

ature change was used. These assumed effective temperature change
values were taken from Reference [30]. Actual loads to be applied to
model stresses induced in the individual plies during each case of
curing and conditioning are shown in Table 5, along with actual load
ratio increments due to the subsequently applied axial compressive load.
To arrive at these values, the laminate analysis uses the cowposite ply
properties that were calculated bv the micromechanics analysis. The
resulting stress state 1s calculated in both ply coordinates and lamin-
ate coordinates by the laminate analysis, thus eliminating the neces-

sity of transforming the stress state by hand for subsequent input to

the micromechanics analysis.

¥ L
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TABLE 5 b
LOAD RATIOS CALCULATED FROM LAMINATE
ANALYSIS FOR USE IN MICROMECHANTCS
ANALYSIS FOR [245],  LAMINATE

HYGROTHERMAL LOADS

STRESSES (ksi) [RTD (~111C) RTW (1% M,-1117C) {ETD 42°C) |ETW (12 M-42"0)

t

3, “hes | -3.23 S S R RIS
e ! 4.05 3.23 1 0.33
‘ez [ 0.0 0.0 0 0.0

APPLIED LOAD RATIOS FOR -1000 psi AXTAL COMPRESSIVE STRESS
T T

STRESSES (psi){r RTD E RTW 3 ETD | ETW
4
T T 1 1
-, i -912 ; -912 -928 | -930 ;
. I -8 | - 38 -7 -7
Tz ! 500 ! 500 boos00 | 500

The micromechanics analvsis is now assumed to model a single uni-

directional ply of the laminate in ply coordinates by modeling one

quadrant of the repeating unit cell, as depicted in Figure 22. The

assumption that boundaries displace uniformlv, was described earlier in

Section 3. The laminate analvsis intrinsicallv makes this assumption,

since classical point stres., analvses do not include interlaminar

shear stresses. In an actual composite, certain interlaminar shear !
stresses cause shear deformation in the plane transverse to the fiber

direction. This is in-plane deformation for the micromechanics model.

which i3 inadmissible in this analvsis due to the constant displacement

poundary conditions. Therefore, interlaminar shear stresses cre as-

sumed to ne negligible in the present example. Another assumption is
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Figure 22. Development of micromechanical model from a 45° ply.
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that the load ratics will hange onlv negliyg v odue to inelastic ma-

terial behavior. One way ‘o check this asswpiion Ls by calculating

the composite material properties ¢ a plv wiilce it is loaded into the

inelastic range. These revised material proverties (see last column of
Table 4) were found o varv onlv siightly, wizent for the shear modulus

s ‘ - . ) o
which decreased to a valiue of abour half. Do =0 the 45

ply orienta-
tion of the laminate, '“e major leading stress is lougitudinal shear

loading. At thds high inelastic range of loading, the slope of the

snear stress-shear s:irain curve is much less than the elastic shear

modulus, 2xplaining riwe low composite shoar madulus.  These values can

he used In tie laminace analvsis to find new toad ratios, which when
compared to the ovisinal ‘ovad ratios show onlv small crrors (Tatle 6).

fated Toom o aac: roaren afcer the ply was

The new load razio.- rere

FOLUADY RATY 0 s
ENTIRE LoAD EXCURS.ON

TRGUR AL L s OF

1700 psi Applied :ial Compressive Stress
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0 UROPERTIESIINELASTIC PROPERTIES|PERCENT ERROR
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axiallv loaaed to -0 ksi to assure maximum accunulated error in load
ratios. Notice in Table o the high axial load and longitudinal shear
load while tie transverse normal load is small. The 9.1 percent error
accumuliated in the small transverse load is negligible compared to the
large axia! aovmal lead accumulation of less than one percent error.
The longitucinal stear load experienced no change, which is expected
1 thi1s case where both load direction and fiber direction occur in a
minner sach that tne material can be considered speciallv orthotropic.
Recause thers 1s no coupling between normal and shear effects in the
specially orchetrer: case, no change should occur in shear stress,
even 1n the elsstic region. Therefore, it is possible to conclude
that no s14nirficant error in theoretical predictions can be attributed
to variation in load ratios due to inelastic behavior.

With the above assumptions in effect, the entire curing and con-
ditioning history o! each plv is approximated, as well as the effect of
the applied load increments. The resulting inelastic strains at each
incremental applied load are in plv coordinates and must be transformed
back to laminate coordinates. This done, longitudinal stress and strain
at various increments for eacn condition are the final results needed to
compare with experimental data. Figures 23 cthrough 26 show the predic-
ted incremental stress-strain points compared to the experimental data
curves. The complete experimental data curves to failure are not shown
here, although thev are available in Reference [ 30].

A verv slight overprediction error is seen for both of the room

temperature conditions, while the elevated temperature condition
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predictions are in excellent agreement with experiment. Although the
differences between theory and experiment are perhaps not significant,
the most likely explanation for slight differences is based on flaws in
the matrix or flaws in the fiber-matrix bond, as hypothesized previously
for the case of pure shear loading. Again, the stress concentrations
caused by these flaws reduce the strength of the material. The RTD
test case (Figure 23) does show this discrepancy. Any softening of
the matrix should reduce the stress concentrating effect of flaws.
When moisture is added in the RTW case, (Figure 24) it serves as a plas-
ticizer that tends to negate the thermal curing stresses. Now the
actual composite behavior is slightly closer to the predicted curve for
a composite with no material flaws. This theory is further supported
in the elevated temperature test cases (Figures 25 and 26), where the
predicted incremental values are in very close agreement with the ex-
perimental data. The elevated temperature and moisture in the ETW test
case (Figure 26) again softens the matrix, reducing the effect of stress
concentrators, and narrowing the gap between experiment and theory.
Neglecting interlaminar shear stresses, calculating load ratios
using an elastic analvsis, and assuming an effective temperature change
were other possible sources of error. All of chese effects could de-
finitely increase the stresses in the matrix, which would effectively
increase the matrix '"damage" consequently lowering the overall stiffness

and strength of the actual specimen below the predicted theoretical

values.
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The reason for the excellent accuracy of the analysis can be investi-
gated by observing the loading history recorded in the stress contour
plots. Also, insight into other possible sources of error may be
attained. Normalized octahedral shear stress contours for the RTD test
case are shewn in Figure 27, ranging from curing stresses to the failure
stress state. Referring back to the original step-by-step description
of the laminate analysis presented earlier in this subsection, it will
be noted that hygrothermal effects are considered in separate steps.
First there are stresses induced by hygrothermally-influenced consis-
tuent material properties, (see Figure 27a). Second, other plies are
influenced bv hygrothermal effects, which influence the stresses in the
representative ply now being considered (see Figure 27b). These will
be termed 'ply curing effects" and "laminate curing effects'", respec-
tively. Because Flgure 27a is also representative of stresses in a
unidirectional composite, contrasting Figures 27a and b shows curing
stress differences between a unidirectional laminate and a [+45] lam~

inate. But, for the present purposes, it is important to note the

additional curing effects of the ply configuration in Figure 27b and
the magnitude of them. Any material defect which might exist in a
local region of high stress will cause a severe stress concentration,
which in turn can cause premature matrix vielding and failure. This is
a possible reason for the lower stiffness exhibited by the experimental
data at room temperature conditions. Figure 27c shows the amount of
matrix that has already yielded locally when the overall composite re-

sponse first indicates a vield point experimentally. While the tangent
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a) Octahedral shear stress b) Octahedral shear stress
of ply alone after cool- after laminate cooldown
down from 177°C cure tem- effects

perature to 21°C

N0 —
8-
2.0
2.5
2.81
¢) Octahedral shear stress at d) Octahedral shear stress at
experimentally determined predicted first element
composite vield stress, failure, applied axial
applied axial load; Tx = load; d, = 21.0 ksi

x
-11.5 ksi

Figure 27. Contour plots of octahedral shear (normalized with respect
to matrix vield stress, 4.18 ksi), interface normal and in-
terface shear stress within a graphite/epoxy [t&S]As lam-
inate ply at room temperature, dry conditions (RTD).
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e) Interface normal stress f) 1Interface shear stress
(ksi) after laminate cure, (ksi) after laminate cure,
cooldown, and moisture cooldown, and moisture
absorption effects absorption effects
i
-5 (o] $ 0 15
g) Interface normal stress h) Interface shear stress
(ksi) at predicted first (ksi) at predicted first
element failure element failure
(applied axial 1load, E; = 21.0 ksi)
E
Contour plots of octahedral shear (normalized

Figure 27.

(Continued)
with respect to matrix yield stress, 4.18 ksi), interface

normal and interface shear stress within a graphite/epoxy

[+45] laminate ply at room temperature, dry conditions

(RTD)*®
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modulus of the yielded matrix is still close to the initial modulus,
the nonlinearity is not apparent in the composite response. Only after
the yielded region has propagated upward a distance equal to half the
width of the quadrant, do the experimental data begin to suggest an
elastic limit. When the micromechanics analysis predicts first element
{ailure, this implies the initiation of a crack. To prevent this dam—
age initiation, the composite should thus not be loaded past the stress
represented by the final predicted point in Figure 23. A more compre-
hensive study would reveal just how much load could safely be added be-
yond yield, while preventing major microcracking. After curing, the com-
posite experiences large normal stresses along the interface, as shown in
Figure 27e, suggesting a high probability of debonding behavior. There
cre also fairly high shear stresses along the interface in this as-~cured
condition, which grow enormously as load is applied and increased to
predicted firet failure (Figure 27f and 27h. This shear stress is
the combined effect of the applied longitudinal shear stress and the
transverse normal stress, which are acting in weak directions of the
material, and which eventually lead to failure. It will also be noted
in Figure 27g that the normal interface stress has been reduced by the
applied loads. This is further evidence of how applied loads can re-
lieve some of the stresses induced during conldown; it is an inelastic
coupling effect.

The ETW test case involves two separate forms of curing and con-
titioning stress. First, stresses are induced independently in each

ply by thermal and moisture changes due to the difference in properties
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between the fiber and matrix. Secondly, since the individual plies,
exhibiting the aforementioned hygrothermal strains, are bonded to each
other, they mutually affect each other because of their differing ply
orientations. The combination of thermal and moisture loads has far-
reaching consequences because of the opposing effects in cooldown

and moisture absorption. The temperature drop during cooldown causes
the matrix to contract by a relatively large amount, the fiber to con-
tract transversely by 4 lesser amount, and the fiber to actually expand
slightly in its axial direction, (see Table 3). The composite axial
strain is predicted to be negative, as can be seen by the positive com-
posite thermal coefficient of expansion in Table 4. Figure 28a, when
compared to Figure 28b and 28c, indicates that the octahedral shear
stresses induced by curing are almost fully negated by the absorption of
one weight percent moisture by the composite. The small hygrothermal
stresses which result are the reason for the low average laminate hiygro-
thermal stresses shown in the last column of Table 5. However, the
shifting of the octahedral shear stress contours in Figure 28c due to
the application of the induced loads will be noted. This is depicted
more clearly at first failure, as represented by Figure 284. The detri-
mental effect of unfavorable temperature and moisture combinations is 4
clearly shown in comparing the octahedral shear stress contours at first

failure of the ETW test case compared to the RTD case. An octahedral

first element failure stress of approximately 11.6 ksi (shown normal-

ized in Figure 27d for the RTD case as the 2.8 contour) is reduced to

b

5.2 ksi in the ETW case (shown normalized in Figure 28d as the 2.2 L,
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a)

Octahedral shear stress of b) Octahedral shear stress
ply alone after cooldown of ply alonc after 1%
from 177°C cure temperature moisture absorption (nor-
to 103°C (normalized with malized with respect to
respect to matrix yield matrix vield stress, 2.58
stress, 2.74 ksi) ksi)

— .80

c)

Figure 28.

Octahedral shear stress
after laminate hygrothermal
effects

d)

Octahedral shear stress at
predicted first element
failure, applied axial load;

T = -9.6 ksi
X

{normalized with respect to matrix yield stress, 2.58 ksi)

Contour plots of octahedral shear, interface normal and

interface shear stress within a graphite/epoxy [+45]44
laminate ply at 103°C, 1% moisture by weight (ETW).
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e) Interface normal stress f) 1Interface shear stress
(ksi) after laminate cure, (ksi) after laminate cure,
cooldown, and moisture cooldown, and moisture
absorption effects absorption effects

1
-1 o} ] 0 10

g) Interface normal stress h) Interface shear stress
(ksi) at predicted first (ksi) at predicted first
element failure element failure

(applied axial load, E* = 9,6 ksi)

Figure 28. (continued) Contour plots of octahedral shear, interface
normal and interface shear stress within a graphite/epoxy
[t&S]AS laminate ply at 103°C, 1% moisture by weight (ETW).




——— e o L

92

contour). This is a significant change, considering that it is due to
a relatively modest temperature change.

Interface normal stresses induced during cooldown and one percent
moisture absorption are relatively small tensile stresses (see Figure
28e), but subsequent mechanical loading of the laminate counteracts the
induced tensile stresses, so that near the x-axis of symmetry a small
negative value exists at first element failure (Figure 28g). Small
tensile stresses are induced near the v-axis of s mmetry at first ele-
ment failure, but are small enough that thev have no noticeable effect

on subsequent laminate behavior. Although the interface shear stress

small (4 per-

n

after curing and neisture conditioning (Figure 28f) i
cent of the ultimace stvess), the subsequently applied mechanical

loads result in shear stresses along the interface which are very high
at first element “ailure (Figure 28h). Although the interface shear
stress is high, the octahedral shear stress is shown to be highest at
the outer edge of the nodel, along the x-axis of symmetry (Figure 28d).
Failure in this elevated temperature, one percentmoisture condition would
probably occur bhetwoon the fibers in the region of hizhest octahedral
shear stress. But a: room temperature, dry conditions, higher stresses
would be induced along the interface (see Figure 27d), increasing the
probability of failure of the fiber/matrix bond. A resulting hypothe-
sis is that because this failure is likely to occur more often in the
RTD laminate, an actual laminate at these conditions nas a higher
probability of failure initiation due to inherent flaws in the mater-

ial, especiallyv along the fiber/matrix interface. Thus, experimental

e e e




data show a lower initial modulus and a lower overall stiffness than

theory predicts, as in Figure 23.
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SECTION 6

DISCUSSION

The establishment of a generalized plane strain finite element
formulation that includes a longitudinal shear loading capability has
further advanced composite materials technology, by making detailed in-
formstion concerning the micromechanical shear loading response of
composite materials avallable. Such a quasi-three-~dimensional
formulation approaches the capability of a true three-dimensional
analysis, while retaining the conciseness of a two-diwensional analysis.
Although the present generalized plane strain analysis only approximates
a true three-dimensional analysis, the present results show that it {is
quite accurate, and therefore valuable in many potentia’ applications.

The capabilities of the new analysis developed in the present study
will first be summarized. TFollowing a previous formulation [1], an.ine-
lastic capability is realized through the use of the tangent modulus
approach, with revisions due to the addition of longitudinal shear
loading. This capability enables the analysis to accommodate
highly inelastic matrix materials such as annealed aluminum. The finite
element formulation was adapted by making extensive revisions of the
stiffness formulation and Gaussian elimination solution procedures. A
special loading technique was developed, to make possible a decrease in
the size of the stiffness matrix storage, increasing the efficiency of
the program considerably. This, combined with a new, more efficient

finite element model, results in a stiffness matrix which has the least




95

possible amount of wasted space., Even with this improved efficiency,
however, the added longitudinal shear loading capability quadruples the
size of the stiffness matrix, leading to the conclusion that if acertain
problem does not necessitate longitudinal shear considerations, the
previous formulation {1] which does not include a longitudinal shear
capability, should be employed. Although the two analyses could be
combined into one, and a selection process built into the resulting com-
puter program, it would essentially be just that, i.e., two separate
programs linked together, with no special advantage being gained.

Consistent with the previous analysis [1), another capability of
the new version is combined loadings; that is, increments of tempera-
ture, moisture, and five separate applied mechanical stresses can be
applied in any order, simultaneously, or in any combination. The in~
clusion of temperature- and moisture-dependent matrix material proper-
ties provides an added dimension in modeling real physical behavior.
The program is thus a highly versatile analytical tool, with many
applications vet to be explored, suggesting that future work should
tollow the directions discussed below.

Further verification of this new analysis is not requisite or
urgent, the existing verifications being reasonably conclusive, but
such work is suggested while additional developments are being under-
taken. A comprehensive three-dimensional study of micromechanics
shiould be performed to establish the amounts of error incurred by the
special assumptions of generalized plane strain. Such a three-dimen-

sional program is now operational (36]. Usefulness of the present
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analysis can thus be shown, as well as those cases where it is most
accurate.

With the longitudinal shear loading capability, interfacing with a
laminate point stress analysis is made possible, enabling the investiga-
tion of complicated laminates. The results of the comparisons between
theory and experiment for the [145]48 laminate presented here are en-
couraging, although limited to one simple laminate. However, because
this particular laminate is dominated by a longitudinal shear loading
mechanism, it is assumed that further investigation of various other
laminates will again show good agreement with experiment.

The combined micromechanics/laminate analysis predicts only a
slightlv nonlinear stress-strain curve up to the point where first
element failure is predicted to occur. In the present formulation, this
is the termination point of the analysis. If a crack initiated at the
firs’. element failure is allowed to grow, perhaps an entire stress--
strain curve could be modeled, and ultimate stresses predicted. This
crack propagation capability has been developed in another micromechan-
ical analysis program [37], which could be closely followed in incorpor-~
ating a similar capability in the present program. This would provide
a capability to more completely model the behavior of laminates over
their entire loading range.

The trend toward adhesive bonding of composites rather than using
mechanical fasteners suggests further analysis of bonding behavior.
Longitudinal shear loading and viscoelastic considerations would be

desirable in a study of bonds in conjunction with laminates. Because

ey
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a nonlinear viscoelastic capability is already operational in an exist-
ing micromechanics formulation [38], the present analvsis could be
revised to incorporate this time-dependent response, and thus handle
special cases of generally orthotropic laminates bonded together with
adhesives, all exhibiting viscoelastic response.

Implications of the assumption of a perfect fiber/matrix bond have
been recognized by previous authors {1]. This is now especially impor-
tant when high longitudinal shear loads are applied. Results presented
hhere for shear test comparisons and laminate comparisons with actual
experimental data both show an overprediction, thought to be caused, at
least in part, by this assumption of a perfecr fiber/matrix interface
bond. The differences are seen to decrease rapidly with increasing
temperature and moisture conditions, at which the plasticized matrix is
more readilv able to accommodate the local stress disturbances caused
bv the debonding in the actual material. Statistical models of flaw
Jdistributions mayv also be developed in the future, so that material
properties can be adjusted to account for such damaging conditions.
This would possibly improve the already good predictions of the present
analvsis.

Such further developments of the analysis presented here should
lead to the continued advancement of the design of high performance
composite structures. As such analyses develop, design parameters for
composites will become more useful and well-known. Composites will in
turn become the logical material choice for manv applications, present-

ing an important alternative to the age old use of homogeneous metals.
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APPENDIX A
ISOTROPIC CONSTITUTIVE EQUATION
FOR ELASTOPLASTIC BEHAVIOR
The Prandtl-Reuss flow rule is employed to characterize elasto-
plastic behavior by relating the plastic strain tensor to the devi-
atoric stress as depicted in Eq. (A-1):

eij(p) = 184 (a-1)

where %j(P) is the plastic strain tensor, A is a positive scalar, and
i3 is the deviatoric stress tensor. From this, a constitutive
equation expressing stress in terms of strain is developed. Index
notation closely following the form by Fung [39] is used in this
derivation. This analvsis was developed in terms of incremental
stress and strain for a generalized plane strain formulation bv

Adams [ll], based upon work by Swedlow [40]. The term % in Eq.

(A-1) is thus develuped as implied in Ly. (A-2):

) _,_SK19k] B _
cij(p) = ( oo My ) sij (A-2)

where the dots indicate increments of stress and strain, as distin-
guished from the total stress or strain of the material, 7, =
C% sijsij)% is the octahedral shear stress, 2Mr is the tangent modulus
of the octahedral shear stress -—octahedral plastic shear strain curve,
and &kl represents the incremental stress tensor. Adding elastic

incremental strains to the p.astic component above vields the overall

expression fur incremental strain [11],
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ol v. v 5i3Sk19k1 _
i3 TTE i3 T E %k %3 T Ter owg (a=3)

' obtain an equation for stress in terms of strain, Eq. (A-3) must be in-
verted. Inverting this three-dimensional form follows closely the procedure
‘or the case of plane strain [11]. The first step is to express the second and

third termson the right-hand sideof Eq. (A-3) in terms of strains by

ruitiplving Eq. (A-3) by the Kronecker delta (6ij)’ and simplifying,

0
1 Y. s 4 Sk1°k1
S T (A=4)
ii E ii E “kk 61 “ Mp
/
cL will be neted that sy is the first invariant »f the deviatoric
iiress tensor, wnich is identically zero. Thus, Eq. (A-4) becomes
P- 2
L= e (A=5)
it E ii

wnlvn is easilvy Inverted te obtain an expression for the second term:

—l—: (A-6)

Por othe third term, Ba. (A-3) is multiplied bv the deviatoric stress

Tomsor sy -t and simpliried,
. L+ v v Skl kL
N e . =5 L. ——— - =3 5./ + —— -
g 1y 43 ( E ) £ “kk i My (A-7)
(IR 111 Do e ressed ds
- .
AMT(L + 0 +
5o, = s, L ~ ) ) (A=-8)
L, 1i; hodg IMTE
raale, sodving for $€]=ij results in
. IMTE .
S : - D A=-9)
v Mol + )+ E i ¢

. A
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which when substituted into Eq. (A-3) along with Eq. (A-~6) results
in the desired constitutive equation:
E . v . 81 s1fig
= = (A-10)

°i13 ST+ v i YT -2y €1184; B

where

2
B=~3—EQ—— Mr(l + W) + E .

Expanding Eq. (A-10) in matrix form results in the more useful form

represented by Eq. (6).

N
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APPENDIX B

TWO-DIMENSIONAL GENERALIZED PLANE STRAIN FORMULATION

The displacement components must be in the following form for

generalized plane strain, as previously described:

u = U(X,Y)
v = v(x,y) (B-1)
w=w(x,y) +C.2

1

The changes involved in converting from plane strain to generalized
plane strain will affect the strain-displacement relation and sub-
sequently the entire stiffness formulation. Following the derivation
by Zienkiewicz [21], and including the new generalized features of
plane strain, the strain-displacement behavior of a triangular element
is derived below.

The form for the desired elemental strain-displacement relation-
ship will oe:

{F} = [N]{S} (B-2)
where (T} represents displacements at any point within the element,
{8} represents nodal displacements of the element, and the [N] are
shape functions, the general functions of position. Considering Egs.
(B-1), the expression in Eq. (B-2) can be specified in terms of

generalized plane strain:
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o U(X,)’)
{F} =¢ v(x,y) (B-3)
W(X,Y, 2)
Yy
51 =4 Vi (B-4)
W,
i

where the displacement subseript represents a certain node.
To solve for the shape tfunctions, a linear polynomial is chosen for
each displacement equation. Thus, the ''constant strain' element is
created, as defined by
u = a)] tax + azy
v o= ay + agx + agy (B-5)

w = a7 + agX + agqy + 2592

Applying nodal conditions to the expressions for u and v follows the
work of Zienkiewicz [21] exactly, resulting in representations of
displacements in terms of shape functions and nodal displacements:
N, = (a, +b,x +c,y)/2 B-6
i = (ay i (y)/2A (B-6)

where

i “xj
= - Y
bl Yj K
c, = X. - X
i K j

Shape functions Nj and N, follow the same pattern. It will be noted

k

that the shape functions are functions of nodal coordinates and ele-

ment area. Expressions for u and v tecome:
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c
|

= ..+
Viu + NJuJ Nkuk

i
(B-7)

<
L}

+
Nivi + vaj Nk vk

The nodal conditions for w displacements require that a normal load
in the z-direction induce a constant displacement, LA regardless of
x and y coordinate positions. Assuming the model to have a thickness

of unity,

w=w, @z=20

: (B-8)
w=w +w, @z=1
n i
Applying these conditions to the third of Egs. (B-53):
w, = a7 + agx + agy
t (B-9)
wn + Wl = a7 + agx + aqy +0.10(l)
Subtracting the first of Eqs. (B-9) from the second results in
w“ = ayg (B-10)
Substituting back into the third of Eqs. (B-5):
w = a7 + agx + agy + w2z (B-11)
Rearranging,
W= Wz =0y + agx + agy (B-12)

Solving (B-12) for the shape functions is exactly like that used to ob~-
tain the solutions for u and v, resulting in the same form of expressions
for the shape functions
- = + N + B-
w -z Niwi Njwj Nkwk (B-13)
Rearranging gives the final expression for w in terms of the element

shapes and nodal displacements,

= N + -
1 hiwi + Njwj + Nkwk wnz (B-14)




strain-displacement

equations:
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To express the element strains in terms of nodal displac2ments, the

relations of a continuum must be followed,

Ju _ 3u v
B Yoo = 30 T T
X Xy 3y 3X
3V Ju W .
= — 4+ — B-1
oV YKZ jz 3 ( 3)
W L= N, v
3z vz jz v

Using Eqs. (B-7) and (B-14) in Egqs. (B-15) results in the fcllowing

Ju 1 . i
= — 4 v ,
X 28 Py By By g
Y
dy 1 (Vl
5voo2a 1%y Sk 73
Vk
oW
— = W
12 n
Lt
v
u v 1 1
=+ L= A -t - . -16)
3 ~ A ‘ci bx LJ Dj Cy b,r uj (B-16)
Vi
¢ Yk
| Ve
. . g W
W i 1 1
== + = — H O} .
= T A T an 1y by bt gy
Wk
AP [ A
v Az oA Y1 % STV Y
Wk
JOr P D OO, ¥ " .
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Combined into matrix form, the strain-displacement relations for
generalized plane strain are defined by
b, 0 0 b, 0 0 b, 0 0 07 u, )
€ i ] k Vl
€ 0 ¢c., 0 0 ¢, 0 0 ¢ 0 0 i
y j k wy
v s ¢y b, O Cj bj 0 Ck bk 0 0 Ej > (B-17)
' 2A 0 0 b,0 0 bb,0 0 b, O j
. i i , k wj
0 0 ¢ 0 0 Cj 0 0 5% 0 u
0 00 00 0 O0 0 0 24 Yk
L ] W
wk
n




APPENDIX C

COMPUTER PROGRAM
FLOW CHART




MAIN

An administrative program which calls the working

subroutines in the proper order. Reads administra-
tive data, i.e., titles, fiber volume, scale factors
for plotting, number of loads, output flags, initial
temperature, and moisture content. Loop on load in-

crements.

GDATA

Reads mesh data for the finite element model,
establishes node point coordinates and connectivity,
boundary conditions and expected bandwidth of the
glcbal stiffness matrix. Builds the boundary

condition vector and indicating vector for special

elimination operations in forming the stiffness matrix.

MESH

Plots the finite element grid.

111




:
l
[
L
|
i
\

J N TN R T T T o T s, R e e T T T R T T R

LOAD

Reads applied loads including hygrothermal loads
and output flags. Writes out applied loads,
accumulated loads, and material properties. This
subroutine administrates the formation of the load
vector for the specialized Branca {10] solution

technique.

RESL

Determines the residual nodal loads due to

material dilitation.

FORMK

Administrates the formation of the global stiffness
matrix by calling respective subroutines that form
elemental stiffness matrices. Forms global stiff-
ners matrix in upper triangular form and simul-
taneously eliminates rows and columns where

boundarv conditions are involved.

- — — — — p— — — ——
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Inelastic

behavior 1

FORMK

Forms ¢he o .ementa.

stiffnes: matrix ror

i elastic heaavior

T
!

caleculates material pro--
pertivs a- 4 unction of
{
motsture and temperaturei
Octahedral values are ‘I
available “or inelastic

behavior and 7a lure

{
t
|
L
-
Trpuon L——-{
' 1

PLASTC(N)

Forms elemental
stiffness matrix for

irelastic behavior

PLPROP

i

L

Calculates plasticitw

constant-.

form are expanded to the original size for all

nodes for subroutine STRESS.

¥ )
analvsis. B
—
——— e SOLVE
| \
' solves <imunitaneous equations using specialized
1 - . . . . .
Gaussian ol imonation for a triangularized matrix
i : r
2 i with s»necial 3ranca {101 boundarv condition
E
| columns. The resulting displacements in condensed
[
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STRESS

Administrates calculations of stress and failure
criteria. Calculates and outputs incremental
and total stresses and strains. Checks for
unloading elements. Administrates calculations
of principal stresses and interface stresses.
Checks for hvdrostatic failure. Return t> MAIN

for next load increment.

CMSTR

Calculates elemental stresses and adis hvgro-

thermal stresses,

OCTA

Checks for octahedral failure or fiber failure
and sets failure flags for STRESS. Calculates
failure ratio if applied stresses are higher

than failure stresses.

0CSTN

Calculates element octahedral shear strains.

PRINCE

Calculates principal values for stress or strain

tensor.
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