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SECTION I

INTRODUCTION

The benefits and shortcomings of micromechanical analyses of uni-

directional composites have now been weighed for over a decade. A

major restriction has been the problem of relating microanalyses to

the overall behavior of a laminate. To gain insight into this prob-

lem, it is instructive to consider the well-known process of design-

ing with metals as opposed to the task of employing advanced compo-

sites in structures.

For centuries metals have been the materials considered almost

universally for countless applications. Metals with the desired stiff-

ness, strength, toughness, etc., can be chosen from information at

arm's reach, For each specific application. This vast amount of in-

formation has greatlv simplified design using metals. But because

metals are in most cases isotropic and ultimate strengths pertain to

all material directions, there is often unneeded strength in certain

material directions. A truss member to be loaded axially in tension,

for example, requires high strength in the axial direction, but trans-

versely only minimal strength is needed. Thus, the high degree of ani-

sotropy typically exhibited by a composite material is not necessarily

a handicap in many high-performance structures. Composite materials

can be chosen for weight savings, and designed to specific strength

requirements in specific material directions. Because of the vast

possibilities creatod through material design for specific



2

applications, the u.,e of composite materials ias initiated a new era of

materials technology, and the result is that a much more complete ap-

proach to structural mechanics has become necessary.

The transition from the use of simple isotropic metals to ortho-

tropic composite plies and anisotropic laminates for structural sys-

tems necessitates much more involved analysis methods. While design

with metals has been practical for centuries, composite materials are

just emerging from their cwn "Iron Age." A large amount of analysis

and technology must Lc developed before the full potential of compo-

site rm.aterials can 6e reaLized.

While overal1 o4ro:or Les of a material are needed for the design

of any part, an diticni iimension of composite materials behavior

is the unique prohi,-m or the complex stress state present on the micro-

scipic scale. When a fiber of high strength and modulus is imbedded

in a matrix material of rulatively low strength and modulus, local

stress concentrations are induced that are significant to the overall

behavior of the _ompo.,si',. :2e mathematical characterization of this

situation is knotn us micromechanics analysis while a larger scale an-

analysis, i.e., lamination thooryv, is known as macromechanics.

>acromecihanics js -oncerned with the overall properties of a

composite laminate, or can 1e concerned with the contribution of each

ply to the overall effect. In contrast, micromechanics attempts to

predict such ihenomena as matrix yielding, crack initiation, and uni-

directional composite pl. behavior, using an analvsis concerned with

the local scale. This is important for understanding particular

failure initiation modes and predicting properties of unidirectional

hasfMMW



3

composites. Most existing micromechanics analyses employ a finite

element numerical scheme, using the material properties of fiber and

matrix to predict the microstress distributions, assuming a state of

generalized plane strain. This type of analysis could also be performed

using a three-dimensional finite element analysis, although much more

computer time and memory would be necessary. ideally, a three-dimen-

sional micromechanics analysis should eventually be developed as a

check of the generalized plane strain formulation. While previously

existing analyses allow only a longitudinal normal load in the out-of-

plane direction, the present analysis permits a longitudinal shear

loading capability. Miller and Adams [fpredicted in 1977, "more

attempts will be forthcoming to marry micromechanical analyses .

with various lamination analyses," and this is one of the primary

reasons for the addition of a longitudinal shear loading capability.

Results of a laminate point stress analysis can be analyzed further

by using such a micromechanics formulation. The laminate analysis

will reveal the stress state in each ply, from which the microanalysis

can predict local inelastic behavior and reveal the complex stress

state within the matrix material. This type of analysis can be con-

sidered to be an important first step in bridging the gap between

micromechanic'- and maoromechanics.



SECTION 2

HISTORICAL REVIEW

The importance of longitudinal shear stress in a composite material

is evidenced by the fact that load is transferred to a fiber predomi-

nantly through longitudinal shear loading. This stress also happens to

act in a weak direction of the composite, making it a critical load.

Even though longitudinal shear loading is an important consideration,

there have been few studies of it pertaining to micromechanics of a

composite.

Early in 1967, Adams and Doner [2] revealed a numerical formulation

involving the theory of elasticity. They modeled one quadrant of a

repeating fundamental region of a rectangular array of fibers by employ-

ing a finite difference representation, and subsequently solved the

r,.blen by in wver-relaxation procedure. Stress concentratio'i factors

and composite ;hear moduli were calculated for various fiber volumes

for a number of cross-sectional shapes of fibers in an epoxy matrix.

This first step was soon multiplied as numerical analyses developed

and computers became more advanced.

A few years later. a closed form series solution was developed by

Sendeckyj [3] for longitudinal shear loading. Admittedly, the solu-

tion was tedious due to the solution technique employed, and fell

short of being exact due to the required truncation of the infinite

series. Nonuniform fiber spacing, various filament radii and
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variation of the shear modulus from tiber to fiber were some of the

impressive capabilities.

Another elastic solution was achieved by Foye [4] in 1968. The

finite element numerical method was employed in this sweeping genera-

lized plane strain study, which included two fiber arrangements, sepa-

rate and combined loading of five of the six components of stress, con-

tours of stresses in thii matrix around a fiber, unidirectional ply

composite properties, and an evaluation of the accuracy of various

finite element models. In addition, an incremental inelastic analysis

was proposed, which .as eventually employed by Baker and Foye [51 in

1969. This extenue,, work revealed a more legitimate stress distribu-

tion because inelastic behavior was considered. Foye continued to

publish results of this analysis in 1970 [6] and 1973 [7]. The work

documented in 1973 essentially clarified the aforementioned work of

L969 [5].

Although this analv. i3 was a significant achievement, there were

still some limitations to be overcome. The iterative scheme inherently

accumulated error during inelastic increments which would grow to

significant size as the number of inelastic increments increased. The

iterative inelastic naP: is, termed the method of initial strains,

had been chosen, even though it degenerates for highly inelastic beha-

vior, becaus.? the alternative method (the tangent modulus method)

would have required an unavailable amount of computer memory for the

additional longitudinal shear loading capability. Even though the

method of initial strains had the advantage of requiring only one
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initial inversion of the stiffness matrix, the tangent modulus method was

found to be slightly faster, with equal accuracy and the ability to model

highly inelastic materials [8].

In the past 15 years, computers have been developed considerably,

and the disadvantages attributed to the tangent modulus method have been

blunted by the increased size of computer memory. Advantages of the tan-

gent modulus approach began to clearly emerge in the analysis presented

by Adams [9, 10] in 1970. This was further developed in his subsequent

work reported in References [11, 12, 13, 14]. This analysis method was

subsequently adapted by Miller and Adams [l, 15, 16], incorporating work

by Crossman [17] and Branca [18]. It was a generalized plane strain

formulation, including longitudinal normal loading, but not longitudinal

shear. The work of Miller and Adams was particularly valuable due to

the addition of a hygrothermal loading capability along with hygrother-

mally-dependent material properties, and 3ranca's [18] efficient loading

scheme. This generalized plane strain approach is readily expanded to

include a longitudinal shear loading capability.



SECTION 3

ANALYSIS METHOD

The changes in theory that arise due to the incorporation of an

out-of-plane shear capability in a generalized plane strain formula-

tion, which includes only a nc-mal stress in the out-of-plane direc-

tion, are significant. In addition, there are far reaching conse-

quences in the finite element solution technique. The added stress

and strain components require revisions in the elastoplastic consti-

tutive equations. In addition, the special treatment of the compati-

bility of additional boundary conditions results in a special strain-

displacement reLation. Implementing these changes into a finite

element analysis, although following classical developments, is

difficult. Use of the existing computer program [1) required its

thorough revision. In many cases, where before a plane stress state

was the only consideration, a stress tensor was involved in developing

suitable failure criteria, principal stress calculations, etc.

A complete description of each aforementioned consideration is

presented in the following subsections.

Generalized Plane Strain

Leknitskii [19] defines generalized plane strain in a very general

manner, 4hicn hias been simplified for purposes of the present analysis.

This treatment allow3 displacements to occur in all three coordinate

Lirections, yet retains the advantages of the plane strain assumption.
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Specifically, each displacement is dependent upon the x- and y-coor-

dinate directions, and the displauement in the z-direction has an

added linear dependence on the z-coordinate, which is considered the

axial coordinate of a composite in the present analysis (Figure 1).

zX

Figure 1. Fiber packing arrangement of a unidirectional composite.

The displacement functionals in equation forra are:

u (x,:.)
= v~x~y)(1)

W w kx,y) + Ciz

u represents the x-displacement

v represents the v-displacement

w represents the z-displacement

and CY is a :et unspecified constant.
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Previous investigators [l] making use of the generalized plane strain

assumption simplified the expression for the z-displacement by assuming

it was dependent only on the axial coordinate position. Eliminating the

functional dependence on the x- and y-coordinates essentially eliminated

axial shear deformations, while allowing only constant axial normal dis-

placements.

Including the x and y dependence of the z-displacement allows a

special form of axial shear deformation corresponding to the generalized

plane strain treatment. Expressions for strain can now be calculated

for the continuum, and simplified according to Eqs. (1):

Du u +v

x 3x xy y ax

'xz + (2)

03w d+ o

whdre c represents normal strain and y represents engineering shear

strain. These expressions govern the displacement of the continuum in

question.

Constitutive Equations

The key element of the relationship between load and displacement

of a continuum is the consititutive equation. Each constituent material

of a composite has unique properties represented in its own constitu-

tive equation. In the present analysis, the fiber material is consid-

ered to be isotropic and transversely isotropic in order to model

fibers such as graphite, but can be reduced to a simple elastic,
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isotropic material for the purpose of characterizing fibers such as

boron and glass. The matrix material is considered to be isotropic

and eiastoplastic, the plastic response being modeled by the Prandtl-

Reuss flow rule.

A constitutive equation involving only four stress and strain

components has been derived in detail [1], but the two additional

longitudinal shear components require additional consideration. As

discussed by Baker and Fore [5], the two additional shear stress-

shear strain equations are

Xz = G, XZ
(3)

:-;z = G' "%Vz

where G' is the lingicudiual shear modulus and - represents shear

stress. When Eq.s. (3) are included in the complete set of constitutive

equations for transversely isotropic elastic behavior, a material

properties matrix (Dj is generated as

I -+I+ 0 0

EE0
2E(I± ) 0 0)

2E( I '- 7)

Symmetric



where
2EW" 2)

Q (1 )(- - E"

'J in-plane Poisson's ratio

v' major Poisson's ratio

E transverse elastic modulus

E' = longitudinal elastic modulus

In obtaining Eq. (4), the relation G = E/2(l + v) has been utilized.

The constitutive equation for isotropic material behavior is well-known

and is merely a simplification of Eq. (4), where the longitudinal and

transverse moduli, and the Poisson's ratios, are equal:

1 i- 0 0 0 1-V

1 0 0 0 i

E(I1- 4i 1-2 2
I'D] =(1+ 4 (1 - :')2(1 - v) 00 0 (5)

1-2v

2(1- v)

l-2v 0
2(1- v)

Symmetric 1

This Eq. (5) pertains to elastic, isotropic materials whether they are

fiber or matrix.

The constitutive equation must also represent elastoplastic materi-

al behaviot in the matrix after yielding occurs. An octahedral shear

stress yield criterion is employed, and plastic strain is assumed to be

proportional to the deviatoric stress tensor, using the Prandtl-Reuss
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i t ? et e ie i i f orm ulat ion is the

1s: cadl t'. -. :r ifl' comrination

tI'.iteous-:. ii s leidt to the s~eemingly

aind contracic tor': noundarv con-

i ro L Ile e :. so tors san b:t, cons idered i n

ll''SDO1SL Ammut rst DC- set u~p.

mi t 12 .s e 6~ >l~i tO t0 150 L3 iilvest iation is

A te iln , ! at tie fi;otr, are distributed in a square

Ij ti i1 t-n u5r tloi:;, j. rectangular array, is entire!-:

P ~ ~ ~ ~ ~ ~ ~~0 o'in :: str ,I.2 iave showen that there is
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little loss of modeling accuracy due to this assumption. Considering

the behavior of a unidirectional composite with a relatively long axial

dimension, certain load symmetry and geometric symmetry assumptions can

be made, as described in Reference [4). While there are four axes of

cometric symnetrv for the unit cell (Figure 2a), only two can be used

due to load svunct,,rv considerations. When considering that each load

is assumed to deform the unit cell in a uniform manner, load symmetry

about the x and v ixe; for all five stress components can be easily

;ieen. Only one quadrant of the unit cell (Figure 2b) need be con-

-idered to describe the behavior of the unit cell and of an entire

continuum of unit cells.

A detailed descrintion of the boundary conditions is necessary,

beginning with t!Le normal displacements. Due to the previously

mentioned constraints of the system, normal displacements of the

boundaries of toe juadrant (Figure 2b) are restricted to those which

cause the boundary to displace only parallel to the original boundary.

iis being explained in great detail elsewhere (1], attention will be

focused on the shear displacements. In the absence of longitudinal

shear loading, deformation in the z-direction is simply a constant,

,niform deformation of the entire frontal cross-section cf the quadrant.

Shear deformations constrain only the loaded boundary to displace uni-

formlv in the z-direction, while the opposite face remains stationary

in the z-direction. A 7.7 shear stress, for example, causes the face

at v = b (see Figure 3) to move uniformly in the z-direction while the

race at = 0 is fixed in the z-direction. Meanwhile, the faces at
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V
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a) Unit cell of the ifiber4
arrangement

b) Quadrant to be analyzed

Figure ?. Svetr- simplification of the fiber arrangement.
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Y/
y //

1/ x

a

Figure 5. Shear deformation of the finite element model due to
shear loading.

x = 0 and x = a are free to move in the z-direction as strains are

induced. Similar treatment of the other longitudinal shear stress

follows. It will be noted that these restrictions are not compatible,

i.e., while the face at x = 0 is required to be fixed in one case, it

is required to be free in the other case. To solve this anomaly, the

analysis must be considered for the representative elements of the

entire quadrant.

Constrai-ts following those of Reference [21 are imposed on the

special generaiized plane strain deformation of the finite element

continuum due to a T'/Z shear stress:

w- C along y - b

w = 0 along y - 0 (7)

w .x 0 along x - 0, x a

xIiam
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Likewise for TXZ loading:

w - C along x - a

w = 0 along x - 0 (8)

;- = 0 along y 0 0, y b

where C represents a constant displacement. It will again be noted

that the two shear boundary conditions cannot be applied to the same

node simultaneouslv. A method of considering the two shear loads in

separate problems while permitting combined shear loading is desired

in the finite element formulation.

It is possible to apply the two shear boundary conditions separ-

ately by adjusting the elemental strain-displacement relation. The

derivation of this relation for a regular treatment of generalized

plane strain is outlined in Appendix B. The resulting Eq. (B-17) must

he adapted to manage the shear boundary conditions separately. Since

the boundary conditions are concerned with displacements, the shear

displacemtnts must be considered to be separate and unique entities at

each node point rather than combined into a general z-displacement as

in Eq. (B-17). Thus, a x shear stress induces a z-displacement wz,

and a Tyz shear stress induces a z-displacement W VZ. These separate

disvlacements can be arbitrarily specified without affecting other

boundary conditions if the strain-displacement matrix equation is

expanded slightly as follows:
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(ui

b 1 0 0 0 bj0 0 0 bk0 00 0 xzj
y 0 c 0 i 0 0 0 cj 0 0 0 bk 0 0 0 Wyzi

CXz 0 2b 0 0 b i  b 0 0 0 bk 0 0 uj

0 0 0 cj 0 0 0 cj 0 0 0 Ck 0 Wxzj
0 0 0 0 0 0 0 0 0 0 0 0 2A WyzJ

Vk

wxzk

where i, j, and k represent the three respective nodes of an ele-

ment, and w represents the constant normal axial displacement.n

It will be noted that the three extra columns in the matrix and the

added zeros effectively prevent the longitudinal shear strains from

influencing each other and the remainder of the strains. The added

terms in the displacement vector will also be noted. Observing the

expression for elemental shear strain yyz above, provides a check of

the last boundary condition in Eq. (7) which is now inherent in the

b1w

strain-displacement equation. The shear strain Yyz, equal to dy , is

seen to depend only on the variables ci , c. and ck, which are merely

differences in the x-coordinates of the nodes of an element. Because

the w displacement is treated separately from the w displacement,xz yz

the expression for yvz does not include a yxz 2_ shear strain, and

this is inherent in the expression. Therefore, this special boundary

condition has been incorporated into the strain-displacement equation.
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The remaining finite element formulation follows a tnree-

dimensional formulation by Zienkiewicz (211, as shown in abbreviated

form in the following equations:

[KL e = (voI[B]T [D][B] d(vol) (10)

} = [K]-{ F} (11)

L B = [B] {6} (12)

= [DI[B] {Sj (13)

where

{61 = nodal displacements

= elemental strains

[B] = strain-displacement matrix

[D] = constitutive equation

= elemental stresses

[Kl e = elemental stiftness matrix

iF: = nodai force vector

[K] - I= inverse of the global stiffness matrix.

Elemental stiffness matrices are developed in Eq. J0), -'ich combined

together for the entire mode, form a global stiffness matrix. This

is inverted for usE in Eq. (11), to solve for nodal displacements.

Element strains and stresses are calculated from the displacement

vector in Eqs. (12) and (13), respectively. Two differences from

Zienkiewicz's formulation are the nodal force vector and, of course,

the nodal displacement vector. The displacement vector was previously

defined; the nodal force vector proves to be very similar, due to the

fact that there are five force components and displacement components
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possible at each node of the finite element grid. Because the solution

technique involves the force vector to a large extent, it will be

described in more detail next.

Solution Technique

A finite element analysis computer program developed by Miller

and Adams [I] has been adapted for the modified form of generalized

plane strain. The additional components of stress and strain result

in the necessity of a thorough revision of the basic solution technique.

The Branca technique (18] for applying loads and boundary conditions,

and the specialized Gaussian elimination solution of the stiffness

matrix, are the major burdens in the revision. Developing these new

techniques revealed a more efficient procedure for storing the stiff-

ness matrix. The solution technique involves the application of loads

and boundary conditions, which is a logical starting point for the

following description.

To describe the Branca technique [18], a small two-element model

shown in Figure i rill be considered. The applied loads shown are

y

./'/b

d Z

a 3
Z Z

Figure 4. Simplified model for example solution technique.

AL
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actually applied as nodal forces, resulting in five separate loading

components possible at each node. As explained in detail by" Miller

and Adams [1], the axial normal load is assumed to cause a constant

displacement in the z-direction at every node. The solution technique

for that z-displacement combines all the a:zial stiffness terms and

axial load terms into one, and one displacement term is solved for,

which represents the z-oisplacement of ail node points. Therefore,

with the remaining four loads at each node, the resulting load vector

for the entire model is 17 terms !lng, as is the displacement vector

(see Eq. 14), (where Fi7 and '17 represent the z-direction orce and

disnlacement, respectively).

The global stiffness matrix is created from the elemental stiff-

ness matrices by means of classical techniques o2l, 221, but the

application of boundary conditions to the global stiffness matrix is

necessary. Assume the model in Figure 4 to be loaded and constrained

in a manner similar to the total finite element grid. Before boundary

conditions are applied, the diagonalized stiffness matrix appears as

in Eq. (14). Each row of the original matrix governs the behavior of

a node due to a particular load. There are four rows for every node

in the finite element grid. In addition, the last row and column

represent behavior due to normal axial loads. It will be noted that

terms in a square stiffness matrix are arranged in regular rows and

columns, but upon diagonalization the columns are skewed upward to

the right. A row in a square stiffness matrix is represented differ-

ently in a diagonalized stiffness atrix; terms that were to the left
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of the diagonal are now in the skewed column, while the remainder of

the row now begins in Column I. A typical diagonalized row is

underlined in Eq. (14).

Table L shows the nodal constraints upon the model in Figure 4

necessary to mimic the behavior of a composite in a micromechanics

analysis. Effects upon the stiffness matrix Jut to a fixed node are

simple; the row of the stiffness matrix pertaining to the direction

of fixity of the node is zeroed except for the diagonaii erm, which

is given a value of one. It will be noLed that -art or i c-eroed row

is skewed as described previously and is shown by th,- uiiderlined terms

Eq. (15). Upon solution, this causes a zero disp.a cement to be

:alculated at this node. When all the fixed constraints are invoked,

the stiffness matrix appears as in Eq. (1 5 ).

A' B LE i

NODAL CONSTRAINTS

Respective Direction I Constrained Nodes
Load V)f Constraint Fixed Const ant

X 1,2 ,
:," 7.' L[ , 3 ' -

X z z 1,2 3,-.
z z 1,3 2,4
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five boundary condition columns enlarged, that were initially shown

in Eq. (15). The new terms were created by columnizing, for example;

Rows 9 and 13 of Eq. (15), representing the x-direction stiffnesses

of Node 3, are now stored in the X Column of Eq. (16). The previous

positions of tLe torms that were just relocated must be eliminated

since their effect, have been taken into account in the boundary

condition columns: setting diagonal terms equal to one and the

remaining terms in question equal to zero, eliminates their contri-

bution. Because boundary conditions were involved in each direction

on each node, in this case, the regular stiffness matrix is totally

eliminated when its terms are combined into the boundary condition

columns, as seen Lo the right of the vertical dashed line (Eq. 16).

The second step is shown by arrows in Eq. (16), representing the

combination of boundary- ,ondition rows, located within the special

boundary condition arm area, into the final effective stiffness

area (Eq. 1'). 7h, .i manipulations to include the two additional

shear boundary condi-ians being considered follow closely the tech-

nique used in Refer-nces [18] and [i]. For example, each term of

Row 6 in Eq. (16), (representing y-direction stiffness) is added to

its respective cclian in Row 14 (as shown by the respective arrow).

Eq. (17) shows the resulting terms of the summation due to the combin-

ing operation. Final manipulations of the effective stiffness area

are employed to simplify the Gaussian elimination. Since Eq. (17) is

symmetric, the redundant terms can be eliminated (see Eq. 18). Also,

the new diagnnal terms are positioned in Column 1, consistent with

the arevious diagonalized form.
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The size of rne stiffness matrix evident in Eq. (14) becomes

enormous when dealing with large finite element models. This stiff-

ness matrix uses byv far the majority of computer memory necessary,

iflO decreasin4 its size< iiso reduce.s tnu computer time needed to solve

i.one wav,.- IJdcrease the size -)f the stiffness matrix is evident

in Eq. (i8), 'Th;iere t k !,irg4 stiffness matrix was reduced to a system

j ieequations. Thsetniod eliminates the rows and columns of the

stltffness matrix'o rt uundari conditions are involved. These elimina-

tilons take pLao, .3: ',he stiffness matrix is being assembled. The amount

ot the red,_!. ia ;)-situ< depends 2ntirely' on the number of boundary

:.3diio~~.trw~J, ut heauv_7,age is significant for the types of

:rnite elementi ci, f-,pLoveui in this invest iga tion, and joesn't

reduce accura<. ii sno-ulI bt2 noted that thi,, method of eliminating

rjws and cciuzm -l utilized by Branca [18].

Next, ioner.i, ied loads are input to Ea. (18) and overall

'ispiacemen-; ir, ,r. The resulting displacements are those

it ia Doeil;ir% %,icii ;Irt tnen substituted back into the original

I is pi ao_ 1e II ; ii,,wi n Eq. 14,. The elemental strains and

_trosses :an tiin a ~ iua ted.

Ine st-c usformulation discussed above caused comn-

pIexities in ena limination procedure. Branca [18] who

first deveLL),)t. Lht t&pTi C-aussian elimination scheme, also testified

,.hat it reqiiir d(, 'in~rllcate bockkeeping. Bookkeeping complexities are

npuund4ed no .'>Son-lut inal vsis due to the added boundary conditions,

)ut tue t _t< - r ' 1 1. 11ii~ ai elimination is based remains
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unchanged. Thus the Gaussian elimination procedure degenerates into

an involved exercise in bookkeeping and programming.

Computer Implementation

Implementing the preceding theory into the FORTRAN computer

program of Reference [I results in the new generalized plane strain,

finite element micromechanics analysis described in the flowchart in

Appendix C. The incremental procedure utilized by Miller and Adams

[1] remains intact in the present analysis except for the calculation

of octahedral shear stress, which now includes the two added shear

stress terms. This tangent modulus method enables highly inelastic

materials to be managed easily.

In developing the analysis, another consideration was found to

be essential for an efficient computer program. Designing the finite

element mesh efficiently has a profound effect on the size of the

stiffness matrix. The highest difference in node numbers in any one

element determines the bandwidth of the stiffness matrix, i.e.,

Bw = (R + i)4 + 5 (19)

where

BW = bandwidth of stiffness matrix

R = highest nour number difference

The addition of 5 is due to the special boundary condition columns.

The finite element mesh, besides the requirement to have a fine mesh

in areas of high stress gradients, is also required to have a minimum

R value. Additionally, due to the loading technique, the highest node

number is also required to be located at the upper righc-hand ccrner
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of the mesh. A model . developed as shown in Figure 5 that fulfilled

these requirements, by arranging node points in rows and columns

(although obscure), and numbering the nodes one row at a time in

successive columns. Ther -re 13 rows and 13 columns resulting in

lb9 nodes and 288 elements. The resulting R value is 14, making the

bandwidth o-5, as .alculatsd from Eq. (19).

In a typical program run, utilizing the finite element model of

Figure 5, the stiffness matrix alone requires 37,180 words (60 bits

per word) of central memory on tile CDC Cyber 760 computer system. This

amount is over 40 percent of the entire central memory necessary, which

is approximately 90,000 words. An average time used by the central

processor to run the program for each increment is 5.57 seconds. This

value varies between 5 seconds and 8 seconds per increment, depending

on the number of increments, for the applications in this investigation

and most investigations.

increment sizes should be under 500 psi for in-plane normal

stresses and longitudinal shear stresses, while axial normal stresses

should be about 1000 psi or under for typical fibers of high stiffness

(glass or graphite). During highly inelastic behavior, increments

should be decreased accordingly to values on the order of 100 psi.

Failure Theories

There are three failure theories necessary for a comprehensive

prediction of failure in the present micromechanics analysis. An

octahedral shear stress criterion is used to define failure of the

matrix. This is a measure of the distortional energy stored in the



30

try a m

"L is I N Ais- I t uJ
ON IN

FINITEELEMET MEN

INI



31

matrix. The limitation of this criterion is that it is not suitable

for a hydrostatic load, since there is no distortional component

present in hydrostatic loading. Therefore, a hydrostatic criterion

is also invoked by testing for a hydrostatic stress state higher than

the ultimate value.

In prior analyses [i] the fiber was tested for failure by a

simple maximum stress criterion. Since only three normal stresses

existed, a more complicated criterion was not needed. Because shear

stresses also exist in the present analysis, a new criterion must be

invoked. The fact that graphite is an orthotropic (transversely iso-

tropic) material increases the complexity of the problem. A criterion

specifically designed for orthotropic materials, and which considers

the entire stress tensor, is the Tsai-Wu [231 failure criterion.

Experimental results show that the Tsai-Wu criterion predicts failure

far better than a maximum stress or maximum strain criterion [241.

rlhe Ts.ii-Wu tensor form is also of a more general character than the

Qsai-Hill criterion [24]. The only awkward characteristic of the

Tsai-Wu criterion is the P1 2 term. This has been discussed widely in

the literature, but Narayanswami and Adelman [251 show that neglecting

this term rarely causes an error greater than 10 percent. This is the

so-called "Modified Tsai-Wu" failure criterion. Assuming tensile and

compressive allowable stresses to be equal, the form of the equation

becomes:

P1 I PO + P03+ P4 0 + P505 + P606
(20)

+F 1 l 1 + + 2 + + P5 5 0 5 2 + P 6 6 2

. ... .. 22 + P3 0 4 4 I 4 2 +/ 5 . ... .5. ....0



32

wherac represents the actual stress components, and the P terms

rep:esenL stress allowables as defined by Tsai and Wu [23I.



SECTION 4

CONSTITUENT MATERIAL PROPERTIES

The matrix system used for experimental verification purk., In

the present investigation was Hercules 3501-6 epoxy resin [261. --cause

longitudinal shear loading is a major consideration in the present

study, it is appropriate to employ matrix constituent material proper-

ties derived from longitudinal shear experimental data. Solid rod

torsion test shear data were available for this matrix material [271.

This test has been shown to be a viable means of determining shear

moduli and shear strengths [281. Each test specimen was approximately

4 inches long, with a diameter of inch, fabricated in a mold similar

to those shown in Reference [281. These tests were performed on dry

specimens and specimens sa-irated with moisture, at three temperature

conditions, viz., 210C (room temperature) 100°C, and 160 0 C.

Data from either shear tests or tensile tests can be readily con-

verted to octahedral shear stress-octahedral shear strain expressions

for input to the analysis [29]. Previous investigators [301 had already

calculated the octahedral shear stress-octahedral shear strain behavior

of the epoxy matrix using uniaxial tensile test data, as indicated in

Figure 6. Similar results reduced from solid rod torsion test data bv

the present investigator are shown in Figure 7. The tensile test speci-

mens were of a "dog-bone" configuration; approximate dimensions were

1/10 inch thick, inch width, 2 inch gage length, and 5 inch overall
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length. To use either of these sets of data in the micromechanics

computer program, they must be expressed in equation form, with

temperature and moisture as independent variables. First, a curve-

fitting method, developed by Richard and Blacklock [31], was used to

fit each data curve (at each test condition). This method defines

each curve in terms of an initial slope, an asymptotic stress value,

and a radius of curvature that connects these two values. The general

form of the Richard-Blacklock equation for stress is:

F1 + L 11 , nE /n (21)

L GO J

where

E = initial slope of stress-strain

o= the asymptotic stress value

n = inverse of the radius of curvature

E = strain

Each constant (E, and n) from each test condition, and values for

ultimate stress, are then used in another curve-fit relation which ex-

presses each value by an equation dependent upon temperature and

moisture. it is a second-order, least-squares development resulting in

an equation with six constants. For example, the initial slope would

be expressed as:

E = CIT_ + C' V + C3MT + C +M T + C 6 (22)



37

where

T - Temperature C"C)

M - Percent moisture by weight

Resulting expressions for , , n and ultimate stress are defined by

the constants listed in rable 2.

TABLE 2

EXPERIMENTALLY-DETERMI NED CONSTANTS FOR TEMP ERATURE- AND
MOISThRE-DEtPENDENT OCTAHEDRAL S HEAX STRESS-OCTAHEDRAL
SHE.R STRAIN CURVES AS OBTAINED FROM SOLID ROD TORSION

rEST 1)AA FOR HERCULES 350i-o EPOXY RESIN

Values CONSTANTS
Dependent C6
on T and M

i lbi lni - - . 4x 0 4205 x .J-  b.098 "-8.510x .0 -i 3.x i , 3.430 x 105'

) klb/i i 3.4,3x 0- i.299x O
-  

.347x 0 -7.67x 10' 1.401 x10*

.,i~c~O >73x 0 S-78 x 10- .-776x 10 1.0', x 10^ '1.32zI~in
-t
) !-1.190x LO

-  
0 0 i-3" 99~ .0 -I'57x * 0|2"3 '8

au b/in ) 1 6.315 K 0- Z.773x O- l.7 0- .6x 20 _.O x1 'z 10

Incorporating these equations directly into the computer program en-

ables the calculation of tangent modulus vales for each load incre-

ment, as needed for the inelastic material properties matrix defined

in Section 3. The ultimate octahedral shear stress is also calculated

for use in the octahedral shear stress failure criterion, also dis-

cussed in Section 3.
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Compairing the octahiedral shear stress-octahedral shear strain

Curves generatod from tensile and from shear test data, Figures 6 and

7respectivelv, the shear test data show modulus values slightly

higher-, hut~ Close enough to attest to the general accuracy, of the ex-

per-imenta! data. Another observation is the significant extent of in-

ejaist ic behavior ,f the epoxv resin when subjeLcted to shear test con-

ditionIS. Fiinire 7) in contrast to the limited plastic response ex-

hl hI.Led lv toe unIIxial! tenisile data. A possible reason for this

ditference is the unique effect of f'laws in each type of specimen. The

r'iin, "dog-bone", tensile speeinen is more susceptible to stress con-

cetra onls due to '*laws such is voids or nicroc racks than the shear

spec imen. Thiat is, the shear spec ixem is more stable in the presence

-t t. laws hm-:auso .nly the material on the, surface of the rod is highly

stressea. This surface is snoot't and hais ilow number of' flaws be-

c:ause ti-e s-,)ecimen is fahbri,-.It~d 11n acareful lv oolished steel mold.

,.It ernal L aws in the1, r~xi SnM C1,4nS :Ava redu1ced inflluenlce compared

to those 1: toeC t-ens1 lIe in~ mn ho re be Oto) a1 uniforinlv

h ich tress hrougheiit t!,i h ir :

At, her !)iotor ,oP .'ontrmit n to Lte dit trenocv is Ltie

I o, i o )I test , e)n d It -11, '1.. te onre lcand u rmi' of

o ,st t m,,oe.ratare ind me istti r, ,,n: is wii:-a..'erte maintained. IIn

Ietl a oases, t~utr-edtifl~ pora or, oa tested in a

ir,: ,muv:ronmcit. .,which tended' to !r %.o'ut rtoe sur!.ict, "cisture, es-

* i :at -:it- hich test imrtr- .ettsnduo,; 1n thle

t o,. s,:nou: " th i., T":oi~o:o : : it: ectedth
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modulus and strength much more than in the thicker shear specimens.

Also, the use of "clam-shell" heaters for elevated temperature tests

was a possible source of error in both test cases because of the po-

tential nonuniformity of temperature around the test specimen, and the

difficulty in accurately controlling the temperature in such a setup.

It is difficult to attribute the differences in behavior between

the tensile and shear specimens to experimental error alone, however,

and at this point it is impossible to use one form of the data to refute

the other. Unfortunately. there are no other published shear data

available that could provide insight to the problem. However, there are

some tensile data available thatj-require a review.

The tensile data for the Hercules 3501-6 epoxy resin discussed by

Browning [321 show some important similarities to the shear data shown

in Figure 7. His data show a transition temperature above which

material properties are degraded greatly; this i, particularly signifi-

cant at high moisture contents. This transition is a change from a

"glassy" solid benavior ,nigh m:odulus), to a "rubber-" material behavior

(low modulus), as temperature increases. The present shear data (Figure

7) also suggest a transition temperature over the entire range of

moistures. For example, the zero moisture results can be observed as a

function of increasing temperature. At 100 0 C, the ultimate octahedral

shear stress has decreased as has the ultimate octahedral shear strain.

But, as temperature is increased .:rther, ultimate strain increases

dramatically, as ultimate stress continues to decrease. A similar re-

sponse is observed for the high condition as temperature increases.



40

Un to the tranisit ion temnperature, a slig:ht decrense in ultimate

s3train takes place as the ultimate stress drops to nearly half the room

temperature value. Temperature hias a softening effect (lowering the

noon;(1ic vhil lowering the strength, n)ut theu matcerial still has a

-Ias behavior, as seen in rueL dUCre!il, Inc ltimate strain.

.hnen th!tere is no m iio-ttrQ2 presecnt, low temporature ultimate

stress-es and uit-inate .-Lrains ron the shea,2r hats r much iiighier than

tornPan o' data 32.At ticl ll1on teninerato- , IC hd0 C, the slhear

diata ultim[ate str-_ss. predictionr 2;ips h-elow Brwicpredittion, bout

r ).e unLt imaite stra in -areA Lot ion is nearlv Five t ~e::n nthan

Lrownitn-'s

Thenno ; tus- ided , tuc rend in nit iat § e and Strains

the hceir test daaand rwn jatar, sinlar eth :;etS Of

6ata no teniatLin c,. tect of iig :r t3'ne.tuca mitue

,:e ral 1 the -rescut ;ol i rod,; sheiar Jnra~ -: Tc.i more pronounced

-nelas1:;tic neiaviolr :nLI tcu cn mn Ln ic <ioa of Browning.

1 ead:- to iuItr ni- iMat, st re~ anfd ; t! In 17o 11:ios

_en oniirn t i-icdr i sheair -trc: t i -urc bgnerated

ira tns L' to t 1at 31 the nr;u -wt ip r, to Brounino

an onm -ihx _!cer. Again at

~ r jir~u:-nm -,t c md~~on, te ir-oc tesil daa s11OW

noi. ii~ n(! l: 'Ltim-ate -tress xic t;rain vai~i'e-. Fhe

pr e on I~ I r Lrn i n is, )nPi ; intel at tun tue -tironnt data,

in ta> tu 'nte ;t rain when cn>ru sinc r esed

rim 7 r,01 or onrmire o at theC airtdmlsrocndzt ion.
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Overall, the highly elastic and low ultimate strain behavior of the

tensile data follows Browning's tensile data more closely than the

shear data do. This is as ecpected since the data resulted from

similar tenqile test methods.

Based upon the above comparisons, the shear data of Figure 7

appear to be reasonable, but they are enough unlike the tensile data

of Figure 6 and Browning's results [32] to require more experimental

evidence. More precise and comprehensive shear data for temperature

and moisture variations need to be generated, while considering the

molecular structure and chemistry involved in the resin system.

Fiber properties were mainly obtained from Hercules [33] and

Owens-Corning [34] literature, for the AS-graphite fiber and the S2-

glass fiber, respectively. Shear moduli and shear stress allowables

necessary for stiffness calculations and the fiber failure criterion

were easily found for the S2-glass (assumed isotropic). For the graph-

ite fiber, in-plane and longitudinal shear tests required to determine

these properties are not commonly performed on a fiber, due to its

small diameter. Instead, a shear modulus value was calculated in the

transverse plane of symmetry from the respective values of Young's

modulus and Poisson's ratio. It was necessary to estimate values of

longitudinal shear modulus and longitudinal shear ultimate stress from

data for other similar graphite fibers [35]. The values were 5.0 Msi

and 225 ksi respectively, as shown in Table 3. The transverse shear

stress being relatively unimportant because of the inability of the

analysis to directly apply transverse shear loads, a value of 25 ksi
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transverse shear allowable was chosen. Microscopically the graphite

fiber is much Like a composite due to the longitudinally arranged

graphite crystal structure. Thus, a low transverse allowable shear

stress is a viable approximation.

Properties of the constituent materials are presented in Table 3,

with estimated values denoted by an asterisk (*). Two sets of epoxy

matrix material properties at room temperature, dry conditions are

also shown, generated from tensile and shear experimental data (Figures

6 and 7).

TABLE 3

CONSTITUENT MATERIAL PROPERTIES FOR AS-GRAPHITE FIBER,

S2-GLASS FIBER, A.ND 3501-6 EPoXY RESIN

__________________________________________-______ *tfm,o.tr ,.1.: [Emrmo .ur... ",

aH-Cul :501-~ Soo-

5h I
311.r .. 0 31

't , ,+ .53[ $ .J "O .'4.02 .6

$ r . ( I .2 "2. ' 4.o

* itlCma ih -

"r - ?oih. ,--S ,CGfl -2 . *010.3 2.12.

1
3Crvtc,,. kh a rl,. , j +

'Ac ISA t w



SECTION 5

NUMERICAL RESULTS

Test cases analyzed using the longitudinal shear loading version

of the generalized plan strain micromechanics program indicate that

the new analysis performs all of the same operations as the old

version, with the addition of a shear loading capability. As theory

predicts, there is no coupling between shear and normal loads during

elastic load increments, but during increments beyond the elastic limit

the Prandtl-Reuss flow rule is in effect and coupling does occur. When

the deviatoric stress tensor is non-zero (during inelastic increments),

the Prandtl-Reuss flow rule causes each elemental stiffness matrix to

become fully populated. This in turn forces each stress term to be

dependent on each strain term. Thus, a shear stress can then induce a

small normal strain, which is impossible in elasticity theory, but

entirely possible in plasticity theory. In fact, all stress components

have an effect on all strain components if the deviatoric stress

tensor is fully populated. Looking back to Eq. (6), it can be seen

that the inelastic constitutive equation governs the coupling.

The additional strain induced during inelastic increments is

due to the two deviatoric stress terms within each term of that

constitutive equation. This effect is small, but significant enough

to warrant its inclusion. This inelastic strain contribution has been

observed to be up to 6 percent of the total strain. To demonstrate

that the longitudinal version of the micromechanics analysis provides
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accurate and useful results, two types of examples have been devised.

The first uses the constituent material properties to predict results

using longitudinal shear loading analysis which are then compared to

actual solid rod torsional shear data, for two different composite

materials. The second example predicts laminate behavior using the

longitudinal shear loading analysis in conjunction with a laminate

point stress analysis.

Comparisons of Analytical Predictions with Solid Rod rsion Test Data

Solid rod shear data had been generated [27] fo -mposite spec-

imens as well as for the previously discussed bolid rod torsion tests

of the epoxy matrix. Fibers used in the composite specimens were

the Hercules AS-graphite fiber [333 and the Owens-C -fing ' -glass

fiber [341. Hercules 3501-6 epoxy resin was used as the matrix system.

These composites will henceforth be referred to a: GR/EP and GL/EP,

respectivelv, for the graphite and glass fiber composites.

Using the properties evaluated from the previously discussed

solid rod torsion tests of the matrix system alone (Section 4),

the micromechanics analysis predicted the composite shear stress-

shear strain behavior. Because composite tests of GR/EP and GL/EP

were performed in the same program as the matrix solid red torsion

tests, they provided the logical source of data comparision. These

comparisions are shown in Figures 8 through 12 for GR/EP, and Figures

13 through 17 for GL/EP. Tests were performed at room temperature,

1000 C, 160 0C, at two moisture conditions, i.e., dry and fully saturated

(6.75 percent moisture by weight). Although data were also available
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for full ; saturated comnpositQ sp cimens te sted at 160'+ for hoth the G;R/EP

and tile GL/EP, the analysis showed failure initiation occuring before

preconditioninga was completed. Thus, these cases were Gmitted. This

signifies the occurrence of microcracking before thle composite is

loaded mechani-.allv', sle due to thermal and moisture loads. Thus,

not only do to.mperarture and moisture increases lower the matrix

properties, then ind uce stresses sufficiently high to cause failure.

As Figures 8 throughj i7 show, in must cases the predicted composite

stress-strain curves were in close agreemient with experimental results.

.\t presunt. rho iongitudi,,a shear micrmech-nics analy"sis is

only operational up to first element failure, wh-ch s ignifies crack

initiation or some other local Failtro on the mi,-ro -;cale. The

present lack or a crack prooagar ion capalility, prevents the analysis

f rom predict inc- the lc tual : ues tr,,n Eg -)f it :compos I e ; but it

ho)es predicot inelliO tik- bphtvi or and tiie in it ia t i ..f fallure. Thus,

each of rho Fig~ures- 8 throuchj, 17ho on lv the initial portion of tht

complete shear ress-shear stancurv;e, but e-noug,,h t,) reveal the

accuracy of the prediction technique.

T'he -tnIzJx'sis oxhihited excellent agreement -citlh experimental

ialues ot compos;tie modulus fo)r the (dR,'EP spec Liens, along with good

predict ! .-nt : "sd :orrengto. This was a qiwnificant improvement

over the rost;u ic ~t a ud ,,hen us in- tensile dat a to generate the

.-taiitlri: ;hk-ar :-t ress-crahedra I shear strain curves for the matrix

r hee ri 41: a t,, cxl lb 1) i .d much less nnI mnear ty, as mndi-

73Ited in toursr ti \1 inbugh thle use of data generated from these
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tensile tests caused the micromechanics analysis to predict low values

for first element failure and low yield predictions, initial modulus

predictions were quite accurate, as expected since thc initial slopes

in ?igures 6 and 7 are similar. Therefore, the tension data cannot be

refuted, but the results suggest that high'ly ineiastic matrix material

behavior does occur when high shear loads are present. 'hus,

subsequent data comparisions in this section will employ the solid rod

torsion test data. In future investigations, the physical signigicance

of this difference between the two test methods will deserve some

attention.

The slight but consistent overprediction by the analysis of the

experiment's stress-strain curves for GR/EP will be noted, while the

results for GL/EP are more scattered. It is assumed that the large

modulus difference between fiber and matrix is _o blame .or the slight

overpredictions. Considering Table 3 further, the contrast between

moduli of fibers and matrix are clearly evident; the lontitudinal nor-

mal and shear moduli of both fibers are much higher than that of the

C ,)oxy. For future consideration it will also be noted that the trans-

verse modulus differences from tiber to matrix are much higher for

(]LFP than GR/EP. A general statement can be made oncerning these

lfferences: the higher the modulus difference between fiber and ma-

trix, the higher the stress concentrations in a composite resulting

from an applied load (loading according to the particular direction of

those moduli). Large modulus difference also signifies that any flaw

in the composite will maguify the already present st:ress concentrations,
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thus degrading the coinpos--ite properties. The ;rnaivsis idealizes a

composite material by -,Lsumi ng perfectly homogent-ous materials (neg-

lecting all flaws), and perfect bonding between fiber and matrix.

Because actual composite materials have mani flaws in tile form of

voids, extraneous inclusicrms. and debondings, to' mention the most

common, the present analysis is expected to overpredict slightly in

most cases.

Consider the dry, GR/EF' results fi Figures; 8, 10, and 12. Thlie

overprediction error decreases as temperature increases; at 160 0C the

predicted modulus and the cxperimen ally measured modlulus are essen-

tiallv equal. "lhe inc!Peased temperature causesz sot tening, of the

matrix material, thus relieving high stress concent rat ions. Any flaws

and imperfect fiber-matrix bonds that occur in the ,,,mpos ite affect the

total behavior of the composite less , thus~ the analvs is predicts more

accuratel-y. This; hypothesis is reintorced ')v a study of the octahedral

shear stress cont uirs , a:, will b)e dlscu,sed later.

The larger crrors in the nredict ions for atredmoisture con-

ditioned C/Pspeciriens (Figures ') andI 11) cazn hc aittributed to the

stress intensity caused by hiob,. moisture dIllation. Thile temperature

softens the matrix g;reatly, moisture causes only small degradation of

materiail stiffness, as shown in the octahedral rhear stress-octahedral

snear straiin curves in Figure 7. The higher stresses intensify the

detrime'-! il eotects of flawsi, causing a discrepancy bet-ween experiment

and thkeer,... Again, the trend toward lower errors . s the temperature is

increasedi wiii be *h _ervvd.
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Although trends are predicted correctly iEr tLw (;L/ElP composites,

there is a significant difference between the a-nailvs~s and the actual

experimental data. Figures 13, 14 and 16 show comparisons at room

temperature, dry, room temperature, satuirated nici iOU>, saturated

conditions, respectively. These exampi-_, slic rea.IScItIab clos e agree-

ment between theory and experiment. La-w.:ariaILinS are observed for

both of the elevated temperature, dryv test co)nditions, however, as

shown in Figures 15 and 17. Bt-cause the matrix at t levated temperature

is highly nonlinear and ver-y low in strengtLh, the prediction is made

more difficult than for the other test -'ases. .A- , !Ait probability

of experimental error Lncrcas~id at the 11i , J L :rcJndition

(1600C) due to the limitations in tme ur > 1 v.iilable at the

time of the testing4, as discussed in ,I~ M4 Lilngthe

results in Figure 17 for the above reason>, , : 11: ~r

represent underpredictions. As temperituiro :,, , ii nder-

- redictions grow for each: separate monc'us s c - o:c Ot

this error is unknown at this time; a stcdvi L:,,tur

offered no explanation.

Typical behavior of a shear specimen on t .i ,aI an he

seen clearly in the contour plots produced Irom U:.: O o!hai,

result:s (if dry GR/Ei' specimens tested it roomir~ r Ocre 0 tahedral

hear stresses due to curing ranged tip to 75 percent o! the elastic

limit, as shown in Figure 18a. Octahodral shear stress is an indicator

ot distortional energy in the material ; the highest values are seen to

occur in regions of close fiber spacing, directly between thev fibers,

MbW _ A1
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Figure 18. Contour plots of octahedral shear (normalized with respect

to matrix yield stress, 4.18 ksi), maximum principal, min-

imum principal, interface normal, and interface shear stress

within a graphite/epoxy solid rod torsion specimen at room

temperature, dry conditions.
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Fizcure 18. (continued) Contour plots of octahedral shear (normalized

with respect to matrix yield stress, 4. 18 ksi) , maximum

principal, minimum principal, interface normal, and inter-

face shear stress within a graphite/enoxv solid rod torsion

,-pecimen at room temperature, drv conditions.
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0 15 0 15
i) Interface shear stressj) Interface shear stress

(ksi) after cooldown (ksi) at first element

from 177 0C cure temper- yield, - = 2.5 ksiature to 210C xz

0 15 0 15

k) Interface shear stress 1) lnterfa,-e shear stress
(ksi) at data yield (ksi) at first element
point, Tx  = 4.5 ksi failure, = .5 ksi

Figure 18. (continued) Contour plots of octahedral shear (normalized
with respect to matrix yield stress, 4.l ksi), maximum
principal, minimum principal, interface normal, and inter-
face shear stress within a graphite/epox, solid rod torsion
specimen at room temperature, dry conditions.
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Cooldown from the cure temperature induces high compressive

normal stresses at the interface, due to the contraction of matrix

material around the fiber (Figure 18g). The contraction of the matrix

material in conjunction with the constant displacement boundary con-

ditions moves the boundaries together slightly, enough to compress the

small volume of material near the axes of symmetry. This normal stress

is unaffected bv subsequently applied longitudinal shear loads, and

only slightly increased by contributions due to inelastic material

response at higher levels cf the applied shear stress, as shown in

Figure 18h. The reasons for this are that there is no coupling between

normal and shear stresses during elastic behavior, and that when

coupling does occur (when the matrix behavior is inelastic), the

deviatoric stress tensor is so sparsely populated that the normal

stress is only increased by about three percent.

Due to the additLonal longitudinal shear stress components, the

present analysis must include both in-plane and out-f-plane shear

stresses in the interface shear stress contour plots, in contrast to

previous treatments U15, 30, 381. Now the shear stress contour repre-

sents only the magnitude; the direction of the interface shear stress

can vary from position to position along the fiber in anv direction on

the fiber surface.

Interface shear stresses developed during cooldown (Figure 18i)

are only 25 percent of the shearing stress at failtre (Figure 181).

It will be noted that the curing stresses become purely hydrostatic on

the horizontal and vertical axes of symmetry and at 450 , due to



geometric svimetry. Viewini. Figures 18i, j, k and I consecutiveL%

shows that the initial curing residual shear stress i= small relative

to the load-induced shear stress, which eventually initiates failure.

i'he GR/EP under a test condition of room temperaturu, hen mois-

ture-saturated (6.75 percent moisture by weight), reveals very high

octahedral shear stresses and interface normal stresses due to mois-

ture dilatation, as seen in Figures 19a and 19b. Althoueh thermal con-

traction during cooldown counteracts the subsequent moisture dilatation,

the extent of moisture dilatation far overshadows the thermal contrac-

,ion. The majority or matrix material is already inelastic before

loads are applied, (Figure [9a) which reduces the subsequent load-

-Arrvin" capability, while the moisture also softens the matrix,

thus reducing its ultimate strength. Figures 19c and 19d show the

increased inelastic behavior that entirely envelopes the matrix at

failure. The moisture loading governs tile contours, i.e., they remain

:7ore nearly svrmetric than in the loading condition without moisture

(Figure [8d). Again . high terface normal stress is present

Figure 19e) , while a i -.:face shear stress tFigure 19f) con-

tributes to the high octaihedral shear stress state shown in Figure 19d.

-he maximum and minimum principal stress contours IFigures 19g and 19h)

nave oponsite results than in the room temrAt. iure, .r,- specimens, due

to the opposite effects of moisture and curing stresses. The minimum

princ~pal stress shows a highest absolute value at 4 0 from the x-axis

,r svmrnetry at the interface. Because the absolute value of the

miximum principal stress is higher than tie -iinirmum principal stress,
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failure would be predicted to occur at the fiber-matrix interface near-

est the x-axis if the maximum stress criterion were used. A different

result is again shown by the octahedral shear stress criterion (Figure

19d), which predicts an interfiber failure, although it is near the

same area.

The elevated temperature (1OO0 C) GR/EP specimen under dry condi-

tions shows a relatively less intense octahedral shear stress state

due to curing (Figure 20a) than the room temperature, dry specimen.

This occurs not only because of the smaller temperature excursion,

but also be :ause of the lower stiffness properties at the elevated

temperature. As noted earlier, this results in lower stress concen-

trations when tlaws are present in real. specimens. Thus the assump-

tion o no rIaws and perfect bonds becomes less severe, and the anal-

ysis predicts more accurately. Interface normal stresses are negli-

gible comparcd to tihe magnitude of the octahedral shear stresses

occurring at failure (Figure 20b), while maximum ano minimum principal

stress contoiirs :redict maximum absolute values -t the same point as

the octahedral shear stress contours: between the fibers on the x-axis

of symmetr: (Fic-ures 20c, d). Therefore, an elevated temperature

GR,/EP specimen would tend to fail within the matrix, where a crack

would intiate and suOsequentlv begin to propagate.

Because the TIi' at room temperature and 6.75 percent moisture

;as a sller fier volume (50.3 percent) than the GR/EP at similar

conditions, ind becaust the fiber properties are different than

grahite, lichtlv different results can be expected from the
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microana ivs is. )lut if ter coo idewn fi-A th< (tir ing temnperature and

niistUre 'Onudit im nnz, MJPn~ ;I,,'IP sn!ow vein -ii ar octahedral

shear stress contours (see i ipires 114a and 21 a) . C.luef ftcients of

'IermT~al exp:.nsion vir,' -marked i': between tie olass f iner and the graph-

it ' fiber (see Tible I). ThIie c r, i'ji t fiber xans axiall1" when

temperature islowered , anaJ coint trts, in the t rans-vtu< - airLeCtion. Trhe

glass f:iber, enaisotropic, cnrtsin allI material directions

'te"Werattnrr wr Ai. 'Hosever . to- matri : tht rmnal Lcontraction

is much higher Lhan Lhar ie torfiber. 'These large differences

betweten ceir r eant )f L:etacil t esoansion from fiber to matrix cause

stresss t < ob>et I)e L -fernes ire :ii -st in the axial

J'ireC t iol ot t ;e :ii'P, and 4cst in ! le tranSverse a irection of

t, K, P i j t~e77 is- in iewe l though quitc iih (Fee Table 3).

)nsdcigtis nd Li ot r "''': psre's,:it: in the (;LjE-P

~eci~*.'a::r w r mat'.'bune,:1 'Vr~ I he'r:iLand moisture

a ma's o'c'pil fr 't mmostra.Theretore, similar

ontoli i:. ;,~' r oth I and ",1_EP' in, Figures 19a and 21a.

-i,- encon-traisita app] ~ed in rlii snlsihvgrothermal

oa'L Wi I nmt insan'ni a shear stresses. ''ousidering the

t I I Ve r Se 'L an i , ' 1 t;Ie? o V r ti i i ig 'mcti s t u re di l ta tion tends to

is I rn tar in , toe -iiri rie S Si rcerI te !ounda t es are constrained

to ia~2 i ~i;tiir(IiSp)IAC'mett, the trea of hioghest matrix volume

ovari o' ss. rr icht COrnler of the quadrant wil! be sliit l' in
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tesin s's~ nt)ir . Because t he f i her is; not af fecteid 1by
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this moisture, it tends to hold the matrix in place while the matrix

tends to dilate out from the center. Thus, shear stress is induced

along the interface. Because matrix dilatation occurs in all direc-

tions, and because of geometric symmetry, only a hydrostatic stress is

present at the center of the fiber/matrix interface, as shown in

Figure 21c. Constant displacement boundary conditions at the edge of

the quadrant plot restrict shear strains there, and again only a hydro-

static stress is present. This is shown in Figure 21c by the absence

of shear stress.

As the applied shear stress is increased until the first element

failure occurs, the contours propagate in a manner similar to previous

cases. But comparino Figures 21d and 19d, the average stress in the

matrix for CL/EP is hiher (Q.1 ksi) than that for GR/EP (8.1 ksi).

The matrix in GL/EP has vielded to a greater extent tnan in GR/EP,

sinifying mcre iamaze has taken place, and more energy absorbed.

Thus, lower fiher volume makes a more uniform stress distribution pos-

sible in the matrix, i.e., the stress concentration due to the fiber

decreases.

The brief results presented here show good correlation with

experimental data, suogesting that the micromechanics analysis is

valid. These results cannot be considered conclusive, of course. A

much more comprehensive study should be undertaken in the future, to

reinforce the present results.
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Laminate Analysis

If laminate behavior can be predicted by the microanalysis used

in conjunction with a laminate analysis, further value and accuracy

of the micromechanics analysis can be demonstrated. Longitudinal shear

stresses are indeed a necessary consideration in laminate analysis,

and are capable of being considered in the presenL micromechanics

analysis. The use of micromechanics an;i1lvsy; was restricted to uni-

directional laminates in prior works, when no longitudinal shear con-

siderations were taken into account. The laminate analysis used must

be compatible with the restrictions of the micromechanics analysis,

and certain assumptions must be made. Bec.ise apK ,.-inm of in-

plane shear stress (7,V) is not a capability of the present micro-

mechanics analysis, a two-dimensional classical lminated plate

point stress analysis was chosen over a three-dimensional finite

element laminate analysis. The AC-3 laminate point stress analysis

computer program is operational at the University of voming .

Basically, it describes elastic stresses and strains induced in each

ply due to loads applied to the laminate. These can be temperature

and moisture loads as well as mechanical loads.

Compatibility of the two analyses and the scheme of arriving at an

inelastic stress-strain curve for a particular laminate is described

by the following four -teps:

1. Calculate ply properties from the micromechanics analysis.

2. .:pplv the laminate point stress an1l'.:,ic to the prescribed

lamir'tc, loaded in the prescribed manner, to obtain the stress

I!
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state induced in each ply.

3. Use the micromechanics analysis to analyze each unique ply

of the laminate, holding loads in the same ratios as the laminate

analysis predicted. This will result in inelastic stresses and

strains in each ply when loaded to high levels.

4. Transform the stress and strain states back to lamiiate coor-

dinates to obtain a laminate stress-strain curve. This curve can

be used for comparisions with laminate experimental data.

Experimental data were available for a 57.5 percent fiber volume,

(-4514 s GR/EP laminate at four combinations of temperature and mois-

ture conditions [301, viz, room temperature, dry (RTD); room tempera-

ture, one percent moisture by weight (RTW); elevated temperature (103

'C), dry (ETD)- and elevated temperature 103'C), one percent moisture

(ETW). The conditions will hence be referred to using the abbrevia-

tions in parentheses; i.e., RTD, RTW, ETD, ETW, similar to the notation

of Reference [30]. Summarizing, Reference [30] was an investigation of

compression fatigue properties of composites. Static compression and

compression fatigue tests were performed on materials at various hy-

grothermal conditions. Theoretical predictions of failure mechanisms

were studied through a micromechanics analysis [1]. The static com-

pression experimental data for the ['4 5 14s laminate were chosen for the

purpose of comparing them with theoretical predictions. Both constit-

uent materials were the same as the graphite and epoxy proviously de-

scribed in Section 3.

To begin the analysis, unidirectional ply properties are
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calculated using the micromechanics analysis, to be consistent with the

properties utilized later when inelastic strains are to be calculated.

Constituent properties for the AS-graphite fiber and the epoxy matrix

are the same as those shown in Section 3. Composite properties are

shown in Table 4; the stiffness values correspond closely to properties

found by Northrop Corporation and the University of Wyoming [30]. How-

ever, thermal and moisture coefficients of expansion differ consider-

ably. It is important to be mutually consistent in the present devel-

opment from one analysis to the other, i.e., properties used initially

in the laminate analysis must correspond to values (see Table 4) used

later in the micromechanical analysis. Overall, temperature and mois-

ture lower all the properties recorded. Also, note the small value for

longitudinal thermal expansion coefficient at the elevated temperature,

due to the negative coefficient of thermal expansion of the graphite

constituent.

The ply properties as calculated using the micromechanics analysis

are used in the laminate point stress analysis, where ply stress

states due to temperature, moisture and/or applied loads are obtained.

In applying a thermal or moisture load to the laminate, the laminate

analysis assumes the input elastic properties to remain constant

throughout the temperature or moisture change. Because the matrix mod-

ulus is actually not constant, but decreases significantly with in-

creasing temperatures, the predicted curing stresses will be higher

than they actually are. To more accurately estimate the curing stres-

ses, an effective temperature change can be used which is smaller than
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TABLE 4

PROPERTIES CALCULATED FROM MICROMECHANICS ANALYSIS
FOR USE IN LAMINATE ANALYSIS

Properties
at

Predicted
Predicted Elastic Properties at First

Environmental Conditions Indicated Failure

PROPERTY RTD RTW ETD FTW RTD

EL (Msi) 18.700 18.690 18.563 18.554 18.409

ET (Msi) 1.467 1.450 1.172 1.147 1.559
GLT(Msi) 0.918 0.897 0.611 0.589 0.441VLT 0.2573 0.2571 0.2544 0.2542 0.2805

aL (x lO-oC) 0.477 0.455 0.166 0.144 0.531
cLT 32.40 32.35 31.70 31.70 33.86

'L (x 10-%M) 0.042 0.041 0.026 0.025 0.046
6T 1.082 1.078 1.031 1.027 1.184

thc actual temperature change. For curing from 177°C to 21'C, an

effective temperature change of ll°C was used rather than the actual

1560 C. In curing from 177 0 C to 1030 C, only a 420 C effective temper-

ature change was used. These assumed effective temperature change

values were taken from Reference [30]. Actual loads to be applied to

model stresses induced in the individual plies during each case of

curing and conditioning are shown in Table 5, along with actual load

ratio increments due to the subsequently applied axial compressive load.

To arrive at these values, the laminate analysis uses the composite ply

properties that were calculated by the micromechanics analysis. The

resulting stress state is calculated in both ply coordinates and lamin-

ate coordinates by the laminate analysis, thus eliminating the neces-

sity of transforming the stress state by hand for subsequent input to

the micromechanics analysis.
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TABLE 5

LOAD RATIOS CALCULATED FROM LlINATE
ANALYSIS FOR USE IN MICROMECHANVCS

ANALYSIS FOR [±415] s  IXINATE

;iY, ROTHER."-AL LOADS

SIRESSES (ksi) RTD (-IllC) RTW l4 ,- 111 "C) ETD (- 42'C) ETW (1, M,-42"CJ

-4.63 -3.23 -1.41 .
4.o5 3.23 1.41 033
0.0 0.00.00

kPPLLED LOAD RATIOS FOR -1000 psi AXLAL COMPRESSIVT STRESS

STRESSES (psi) RTD RTW TD EnW
}b

-912 -912 -92 -930
-88 - 88 -72 - 70

500 500 500 500

ihe micromechanics analysis is now assumed to model a single uni-

directional ply of the laminate in ply coordinates b, modeling one

quadrant of the repeating unit cell, as depicted in Figure 22. The

assumption that boundaries displace uniformlv, was described earlier in

Section 3. The laminate analysis intrinsically makes this assumption,

since classical point stres, analyses do not include interlaminar

shear stresses. In an actual composite, certain interlaminar shear

stresses cause shear deformation in the plane transverse to the fiber

direction. This is in-plane deformation for t:ie micromechanics model,

.chich is; inadmissible in this analysis due to the constant displacement

loundary: conditions. Therefore, interlaminar shear stresses ,re as-

sumed to :ne negligible in the present example. Another assumption is
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V

- x

Figure 22. Developmfenlt of micromechaflical model from a 
450 ply.
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that the load ratios 1iA .ihnge only: n1.0 LgO' u nelastic ma-

terial behavior. One way '0 chock :its assu. T)! io!: Ls, '3y ciulating

the composite material properties j:- a -,ly wh L7c it is -lo)aded into the

inelastic range. Tht~se revised matterial rrttt~(e la t column of

Tahle 4) were founid '-. virv onlr sligti-, foccttr thI-e shear modulus

whichi Jecreasco to a va~ite of about 'hilf 9 _t- to:' 5 0 plv orienta-

t ion of7 the laminate, he t -.ijor loadinr; tre.;o is longitudinal shear

ioairi. A thn; 11 fl no~sti rigsof loading , the slope of the

sciear stress-slhear F-tra O curve is miuch Iles,; toan'I the elastic shear

modulus, x'~laining i- lov -cc)iposut 0e. :r'uu. ihese values can

r)e used in t ie Limiiv:ite orxo-jsiS CO i-i row 112WL01 r,? t to- ;, which whien

compared to tole or~c a.ratios s rirv stmail errr (Tal le 6).

The new , load r :'o_ il a..........--2r th ,e ply was

psi Applied :1.t:roinresve Stres

0. 0
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axially loaud to - ' ksi to assire maximum accumulated Qrror in load

ratios. Notlcu in Faule o the high axial load and longitudinal shear

load while tie transverse normal load is small. The 9.1 percent error

accumcl, ted in the small transverse load is negligible compared to the

: L , ct-ia load accumulation of less than one percent error.

" OU4 I~tI:K!,i sr-ear load experienced no change, which is expected

in t s .as, .'!ere both load direction and fiber direction occur in a

mi:c-~ -,h t!:. t t:e material can be considered specially orthotropic.

,a,,s tn-: ~ i no coupli ig between normal and shear effects in the

Sr C ,: : r - . case, no change should occur in shear stress,

eve: in z t, i i f- region. Therefore, it is possible to conclude

toiat no siniri.'nt error in theoretical predictions can be attributed

to variition in load ratios due to inelastic behavior.

With the above assumptions in effect, the entire curing and con-

ditioninv hisrorv of eac1 pi" is approximated, as well as the effect of

the applicd load' increments. The resulting inelastic strains at each

incremental applied toati are in ply coordinates and must be transformed

back to laminato coordinates. This done, longitudinal stress and strain

at various incrementts for eac:) condition are the final results needed to

compare with experimental data. Figures 23 through 26 show the predic-

t.ed incremental stress-strain points compared to the experimental data

curves. The complete experimental data curves to failure are not shown

aere, although they are available in Reference [ 30] .

A very -light overprediction error is seen for both of the room

temperature conditions, while the elevated temperature condition
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predictions are in excellent agreement with experiment. Although the

differences between theory and experiment are perhaps not significant,

the most likely explanation for slight differences is based on flaws in

the matrix or flaws in the fiber-matrix bond, as hypothesized previously

for the case of pure shear loading. Again, the stress concentrations

caused by these flaws reduce the strength of the material. The RTD

test case (Figure 23) does show this discrepancy. Any softening of

the matrix should reduce the stress concentrating effect of flaws.

When moisture is added in the RTW case, (Figure 24) it serves as a plas-

ticizer that tends to negate the thermal curing stresses. Now the

actual composite behavior is slightly closer to the predicted curve for

a composite with no material flaws. This theory is further supported

in the elevated temperature test cases (Figures 25 and 26), where the

predicted incremental values are in very close agreement with the ex-

perimental data. The elevated temperature and moisture in the ETW test

case (Figure 26) again softens the matrix, reducing the effect of stress

concentrators, and narrowing the gap between experiment and theory.

Neglecting interlaminar shear stresses, calculating load ratios

using an elastic analysis, and assuming an effective temperature change

were other possible sources of error. All of these effects could de-

finitely increase the stresses in the matrix, which would effectively

increase the matrix "damage" consequently lowering the overall stiffness

and strength of the actual specimen below the predicted theoretical

values.
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The reason for the excellent accuracy of the analysis can be investi-

gated by observing the loading history recorded in the stress contour

plots. Also, insight into other possible sources of error may be

attained. Normalized octahedral shear stress contours for the RTD test

case are shown in Figure 27, ranging from curing stresses to the failure

stress state. Referring back to the original step-by-step description

of the laminate analysis presented earlier in this subsection, it will

be noted that hygrothermal effects are considered in separate steps.

First there are stresses induced by hygrothermally-influenced consis-

tuent material properties, (see Figure 27a). Second, other plies are

influenced by hygrothermal effects, which influence the stresses in the

representative ply now being considered (see Figure 27b). These will

be termed "ply curing effects" and "laminate curing effects", respec-

tively. Because Figure 27a is also representative of stresses in a

unidirectional composite, contrasting Figures 27a and b shows curing

stress differences between a unidirectional laminate and a [t451 lam-

inate. But, for the present purposes, it is important to note the

additional curing effects of the ply configuration in Figure 27b and

the magnitude of them. Any material defect which might exist in a

local region of high stress will cause a severe stress concentration,

which in turn can cause premature matrix yielding and failure. This is

a possible reason for the lower stiffness exhibited by the experimental

data at room temperature conditions. Figure 27c shows the amount of

matrix that has already yielded locally when the overall composite re-

sponse first indicates a yield point experimentally. While the tangent

i.

b
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.55-
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a) Octahedral shear stress b) Octahedral shear stress

of ply alone after cool- after laminate cooldown

down from 177*C cure tem- effects

perature to 21°C

1.0 "'0.6 1.5 -

0.8-..

1.0F 2.0

1.4- 2.5-

1.6-

c) Octahedral shear stress at d) Octahedral shear stress at
experimentally determined predicted first element
composite yield stress, failure, applied axial
applied axial load; ax -load; Tx = 21.0 ksi
-11.5 ksi

Figure 27. Contour plots of octahedral shear (normalized with respect
to macrix yield stress, 4.18 ksi), interface normal and in-

terface shear stress within a graphite/epoxy [±4514, lam-

inate ply at room temperature, dry conditions (RTD).
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-5 0 5 0 15

e) Interface normal stress f) Interface shear stress
(ksi) after laminate cure, (ksi) after laminate cure,
cooldown, and moisture cooldown, and moisture
absorption effects absorption effects

-5 0 5 0 15

g) Interface normal stress h) Interface shear stress
(ksi) at predicted first (ksi) at predicted first
element failure element failure

(applied axial load, a = 21.0 ksi)x

Figure 27. (Continued) Contour plots of octahedral shear (normalized

with respect to matrix yield stress, 4.18 ksi), interface

normal and interface shear stress within a graphite/epoxy

[±4514 laminate ply at room temperature, dry conditions

(RTD) s
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modulus of the yielded matrix is still close to the initial modulus,

the nonlinearity is not apparent in the composite response. Only after

the yielded region has propagated upward a distance equal to half the

width of the quadrant, do the experimental data begin to suggest an

elastic limit. When the micromechanics analysis predicts first element

failure, this implies the initiation of a crack. To prevent this dam-

age initiation, the composite should thus not be loaded past the stress

represented by the final predicted point in Figure 23. A more compre-

hensive study would reveal just how much load could safely be added be-

yond yield, while preventing major microcracking. After curing, the com-

posite experiences large normal stresses along the interface, as shown in

Figure 27e, suggesting a high probability of debonding behavior. There

rre also fairly high shear stresses along the interface in this as-cured

condition, which grow enormously as load is applied and increased to

predicted £irst failure (Figure 27f and 27h). This shear stress is

the combined effect of the applied longitudinal shear stress and the

transverse normal stress, which are acting in weak directions of the

material, and which eventually lead to failure. It will also be noted

in Figure 27g that the normal interface stress has been reduced by the

applied loads. This is further evidence of how applied loads can re-

lieve some of the stresses induced during cooldown; it is an inelastic

coupling effect.

The ETW test case involves two separate forms of curing and con-

titioning stress. First, stresses are induced independently in each

ply by thermal and moisture changes due to the difference in properties
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between the fiber and matrix. Secondly, since the individual plies,

exhibiting the aforementioned hygrothermal strains, are bonded to each

other, they mutually affect each other because of their differing ply

orientations. The combination of thermal and moisture loads has far-

reaching consequences because of the opposing effects in cooldown

and moisture absorption. The temperature drop during cooldown causes

the matrix to contract by a relatively large amount, the fiber to con-

tract transversely by a lesser amount, and the fiber to actually expand

slightly in its axial direction, (see Table 3). The composite axial

strain is predicted to be negative, as can be seen by the positive com-

posite thermal coefficient of expansion in Table 4. Figure 28a, when

compared to Figure 28b and 2 8c, indicates that the octahedral shear

stresses induced by curing are almost fully negated by the absorption of

one weight percent moisture by the composite. The small hygrothermal

stresses which result are the reason for the low average laminate hygro-

thermal stresses shown in the last column of Table 5. However, the

shifting of the octahedral shear stress contours in Figure 28c due to

the application of the induced loads will be noted. This is depicted

more clearly at first failure, as represented by Figure 28d. The detri-

mental effect of unfavorable temperature and moisture combinations is

clearly shown in comparing the octahedral shear stress contours at first

failure of the ETW test case compared to the RTD case. An octahedral

first element failure stress of approximately 11.6 ksi (shown normal-

ized in Figure 27d for the RTD case as the 2.8 contour) is reduced to

5.2 ksi in the ETW case (shown normalized in Figure 28d as the 2.2
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Figure 28. Contour plots of octahedral shear, interface normal and

interface shear stress within a graphite/epoxy [±4514 s

laminate ply at 103*C, 1% moisture by weight (ETW).
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e) Interface normal stress f) Interface shear stress
(ksi) after laminate cure, (ksi) after laminate cure,
cooldown, and moisture cooldown, and moisture
absorption effects absorption effects

-1 0 1 0 tO

g) Interface normal stress h) Interface shear stress
(ksi) at predicted first (ksi) at predicted first
element failure element failure

(applied axial load, 3 = 9.6 ksi)x

Figure 28. (continued) Contour plots of octahedral shear, interface
normal and interface shear stress within a graphite/epoxy
[±4514s laminate ply at 103*C, 11 moisture by weight (ETW).
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contour). This is a significant change, considering that it is due to

a relatively modest temperature change.

Interface normal stresses induced during cooldown and one percent

moisture absorption are relatively small tensile stresses (see Figure

28e), but subsequent mochanical loading of the laminate counteracts the

induced tensile stresses, so that near the x-axis of symmetry a small

negative value exists at first element failure (Figure 28g). Small

tensile stresses are induced near the v-axis of smmmetry at first ele-

ment failure, but ire small enough that they have no noticeable effect

on subsequent laminate behavior. Although the interface shear stress

after curing and misture conditioning (Figure 28f) is small (4 per-

cent of the uimfj , st:sss), the subsequently applied mechanical

loads result in shear stresses along the interface which are very high

at first element '-iiure (Figure 28h). Although the interface shear

stress is high, tie octahedral shear stress is shown to be highest at

the outer edge of the model, along the x-axis of swmmetry (Figure 28d).

Failure in this elevated temperature, one percent moisture condition would

probably occur betEron 'he fibers in the region of hi.0hest octahedral

shear stress. But a: room temperature, dry conditions, higher stresses

would be induced i'lon4 the interface (see Figure 27d), increasing the

probability of failure of the fiber/matrix bond. A resulting hypothe-

sis is that because this failure is likely to occur more often in the

RTD laminat2, an actaal laminate at these conditions has a higher

probability of failure initiation due to inherent flaws in the mater-

ial, especially along the fiber/matrix interface. Thus, experimental
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data show a lower initial modulus and a lower overall stiffness than

theory predicts, as in Figure 23.



SECTION 6

DISCUSSION

The establishment of a generalized plane strain finite element

formulation that includes a longitudinal shear loading capability has

further advanced composite materials technology, by making detailed in-

formetion concerning the micromechanical shear loading response of

composite materials available. Such a quasi-three-dimensional

formulation approaches the capability of a true three-dimensional

analysis, while retaining the conciseness of a two-diaensional analysis.

Although the present generalized plane strain analysis only approximates

a true three-dimensional analysis, the present results show that it is

quite accurate, and therefore valuable in many potentia' applications.

The capabilities of the new analysis developed in the present study

will first be summarized. Following a previous formulation [1], an ine-

lastic capability is realized through the use of the tangent modulus

approach, with revisions due to the addition of longitudinal shear

loading. This capability enables the analysis to accommodate

highly inelastic matrix materials such as annealed aluminum. The finite

element formulation was adapted by making extensive revisions of the

stiffness formulation and Gaussian elimination solution procedures. A

special loading technique was developed, to make possible a decrease in

the size of the stiffness matrix storage, increasing the efficiency of

the program considerably. This, combined with a new, more efficient

finite element model, results in a stiffness matrix which has the least
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possible amount of wasted space. Even with this improved efficiency,

however, the added longitudinal shear loading capability quadruples the

size of the stiffness matrix, leading to the conclusion that if acertain

problem does not necessitate longitudinal shear considerations, the

previous formulation [11] which does not include a longitudinal shear

capability, should be employed. Although the two analyses could be

combined into one, and a selection process built into the resulting com-

puter program, it would essentially be just that, i.e., two separate

programs linked together, with no special advantage being gained.

Consistent with the previous analysis [I], another capability of

the new version is combined loadings; that is, increments of tempera-

ture, moisture, and five separate applied mechanical stresses can be

applied in any order, simultaneously, or in any combination. The in-

clusion of temperature- and moisture-dependent matrix material proper-

ties provides an added dimension in modeling real physical behavior.

The program is thus a highly versatile analytical tool, with many

applications yet to be explored, suggesting that future work should

follow the directions discussed below.

Further verification of this new analysis is not requisite or

urgent, the existing verifications being reasonably conclusive, but

such work is suggested while additional developments are being under-

taken. A comprehensive three-dimensional study of micromechanics

should be performed to establish the amounts of error incurred by the

special assumptions of generalized plane strain. Such a three-dimen-

sional program is now operational [36]. Usefulness of the present
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analysis can thus be shown, as well as those cases where it is most

accurate.

With the longitudinal shear loading capability, interfacing with a

laminate point stress analysis is made possible, enabling the investiga-

tion of complicated laminates. The results of the comparisons between

theory and experiment for the [±45]4 s laminate presented here are en-

couraging, although limited to one simple laminate. However, because

this particular laminate is dominated by a longitudinal shear loading

mechanism, it is assumed that further investigation of various other

laminates will again show good agreement with experiment.

The combined micromechanics/laminate analysis predicts only a

slightly nonlinear stress-strain curve up to the point where first

element failure is predicted to occur. In the present formulation, this

is the termination point of the analysis. If a crack initiated at the

firs' element failure is allowed to grow, perhaps an entire stress-

strain curve could be modeled, and ultimate stresses predicted. This

crack propagation capability has been developed in another micromechan-

ical analysis program [37], which could be closely followed in incorpor-

ating a similar capability in the present program. This would provide

a capability to more completely model the behavior of laminates over

their entire loading range.

The trend toward adhesive bonding of composites rather than using

mechanical fasteners suggests further analysis of bonding behavior.

Longitudinal shear loading and viscoelastic considerations would be

desirable in a study of bonds in conjunction with laminates. Because
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a nonlinear viscoelastic capability is already operational in an exist-

ing micromechanics formulation [38], the present analysis could be

revised to incorporate this time-dependent response, and thus handle

special cases of generally orthotropic laminates bonded together with

adhesives, all exhibiting viscoelastic response.

Implications of the assumption of a perfect fiber/matrix bond have

been recognized by previous authors [1]. This is now especially impor-

tant when high longitudinal shear loads are applied. Results presented

here for shear test comparisons and laminate comparisons with actual

experimental data both show an overprediction, thought to be caused, at

least in part, by this assumption of a perfect fiber/matrix interface

bond. The differences are seen to decrease rapidly with increasing

temperature and moisture conditions, at which the plasticized matrix is

more readily able to acuommodate the local stre.ss distrbances caused

by the debonding in the actual material. Statistical models of flaw

distributions may also be developed in the future, so that material

properties can be adjusted to account for such danaging conditions.

This would possibly improve the already good predictions of the present

analysis.

Such further developments of the analysis presented here should

Lead to the continuedi advancement of the design of high performance

composite structures. As such analyses develop, design parameters for

composites will becomo more useful and well-known. Composites will in

turn become the logical material choice for many applications, present-

ing an important alternative to the age old use of homogeneous metals.
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APPENDIX A

ISOTROPIC CONSTITUTIVE EQUATION
FOR ELASTOPLASTIC BEHAVIOR

The Prandtl-Reuss flow rule is employed to characterize elasto-

plastic behavior by relating the plastic strain tensor to the devi-

atoric stress as depicted in Eq. (A-1):

Eij (P) = ksij (A-I)

where zj(P) is the plastic strain tensor, is a positive scalar, and

sij is the deviatoric stress tensor. From this, a constitutive

equation expressing stress in terms of strain is developed. Index

notation closely following the form by Fung [39] is used in this

derivation. This analysis was developed in terms of incremental

stress and strain for a generalized plane strain formulation by

Adams [11], based upon work by Swedlow [401. The term \ in Eq.

(A-I) is thus developed as implied in E .. (A-2):

eio=pT s sij (A-2)

where the dots indicate increments of stress and strain, as distin-

guished from the total stress or strain of the material, ro =

(j sijsij) is the octahedral shear stress, 2MT is the tangent modulus

of the octahedral shear stress -octahedral plastic shear strain curve,

and Jkl represents the incremental stress tensor. Adding elastic

incremental strains to the plastic component ab,)ve yields the overall

expression for incremental strain [111,
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1 + +i.sijSklOkl
E ij - E 1kk 8ij +  6To2M T  (A-3)

1 ibtain an equation for stress in terms of strain, Eq. (A-3) must be in-

verted. Inverting this three-dimensional form follows closely the procedure

.or t ui case of plane strain [li1. The first step is to express the second and

third terms on the right-hand side of Eq. (A-3) in terms of strains by

"kii .ipi,:ing Eq. (A-3) by the Kronecker delta (6..), and simplifying,

0

I 3 + siskl"kl (A-4)
-ii E ii E kk /6, LMT

-il be ncLt'd that sj, is the first invariant f thie deviatoric

tens, r, which is identically zero. Thus, Eq. (A-4) becomes

- '" "(A-5)

ii E ii

;,icri "s asilv inverted t, obtain an expression for the second term:

( _(A-6)

r t'c t.1ir, tcr, c. (A-3) is multiplied by Lhe deviatoric stress

, ,.r : i _rid ; lmt;iir id,

( 1 ) - °kk + 2M T k
c i j =  . kk (A-7)

:ill , J!j Jl C'~ ,: iS

' .. s ( MI  i + J + £
= .9l + ) f I (A-8)

Si, -ci ,,,n- r i results in

+ 2ME + s.. S (A-9)
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which when substituted into Eq. (A-3) along with Eq. (A-6) results

in the desired constitutive equation:

E V si6 Skl(A-10
ij I + 12- 2-----I£iiij B (A-)

where

B= 3T 2 MT( 1 + v) + E
E

Expanding Eq. (A-10) in matrix form results in the more useful form

represented by Eq. (6).



APPENDIX B

TWO-DIMENSIONAL GENERALIZED PLANE STRAIN FORMULATION

The displacement components must be in the following form for

generalized plane strain, as previously described:

u = u(x,y)

v = v(x,y) (B-1)

w = w(x,y) + C1Z

The changes involved in converting from plane strain to generalized

plane strain will affect the strain-displacement relation and sub-

sequently the entire stiffness formulation. Following the derivation

by Zienkiewicz [211, and including the new generalized features of

plane strain, the strain-displacement behavior of a triangular element

is derived below.

The form for the desired elemental strain-displacement relation-

ship will be:

{F} = [N]{} (B-2)

where iF} represents displacements at any point within the element,

{5} represents nodal displacements of the element, and the [N] are

shape functions, the general functions of position. Considering Eqs.

(B-1), the expression in Eq. (B-2) can be specified in terms of

generalized plane strain:

I! JL
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'F} = v(x,y) (B-3)

i = v (B-4)

where the displacement subscript represents a certain node.

To solve for the shape functions, a linear polynomial is chosen for

each displacement equation. Thus, the "constant strain" element is

created, as defined by

u = a I + QL2x + a3y

v = ) + Cx + a y (B-5)

w = a7 + CL sX + U9Y + a10Z

Applying nodal conditions to the expressions for u and v follows the

work of Zienkiewicz [21] exactly, resulting in representations of

displacements in terms of shape functions and nodal displacements.

a= a + b.x + ciY)/2A (B-6)

where

a= X Yk - Xk Y1i j 'k

bi = Y - Yk

c.X. -X.
1 K j

Shape functins Nj and Nk follow the same pattern. It will be noted

that the shape functions are functions of nodal coordinates and ele-

ment area. Expressions for u and v become:
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u = Nu i + Nju + Nk k

(B-7)
v N Nv i + N vj + Nk v

.i j j k Vk

The nodal conditions for w displacements require that a normal load

in the z-direction induce a constant displacement, wn, regardless of

x and y coordinate positions. Assuming the model to have a thickness

of unity,

w=w. @z=0
1(B-8)

w =w + w. @z= 
n 2.

Applying these conditions to the third of Eqs. (B-5):

w. = a7 + 8x  + 9Y1 (B-9)

w n + w. = C7 + (1X + a9Y + tI(i)n i

Subtracting the first of Eqs. (B-9) from the second results in

w = C0L (B-10)

Substituting back into the third of Eqs. (B-5):

w = a7 + A 8 x 
+ a9Y + wnz (B-li)

Rearranging,

w - w nz = a7 + a8X + a9Y (B-12)

Solving (B-12) for the shape functions is exactly like that used to ob-

tain the solutions for u and v, resulting in the same form of expressions

for the shape functions

w - wnz = Niw i + N .w. + NkWk (B-13)

Rearranging gives the final expression for w in terms of the element

shapes and nodal displacements,

w = Niw i + Njw + NkWk + wnz (B-14)
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To express the element strains in terms of nodal displacements, the

strain-displacement relations of a continuum must be followed,

=U )u=U + v
£x x Yxy @y 3x

31v 3u +w

y Jv xz ,z 3x

3w 3v 3w
z 3z . 3z ,y

Using Eqs. (B-7) and (B-14) in Eqs. (B-15) results in the following

equati,.ns:

= _b (b b. u

2A~ k:ui}x "x 2A i k U

v =  2A ic c. k Vk

E = W
z z n

7 x v v ) x 2- A c . b . c . b . c b , . u j ( B -1 6 )

SUkC. bk  w:' i wA 1 '

vxz . + {b bi  b k {w

{W1= -+ i 2 ( c c wvZ v z 2
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Combined into matrix form, the strain-displacement relations for

generalized plane strain are defined by

b. 0 0 b. 0 0 b 0 0 0 u.

E 0 c. 0 0 c. 0 0 c 0 0 v

xv c.b. 0 c. . 0 ck b 0 0 u.
x 1 ii (B-17)
y 2A 0 0 b 0 0 b. 0 0 bk 0 wi

z0 0 c. 0 0 c. 0 0 C 0

0 0 0 0 0 0 0 0 0 2A k
w k
w
n



APPENDIX C

COMPUTER PROGRAM.
FLOW CHART



MAIN

An administrative program which calls the working

subroutines in the proper order. Reads administra-

tive data, i.e., titles, fiber volume, scale factors

for plotting, number of loads, output flags, initial

temperature, and moisture content. Loop on load in-

crements.

GDATA

Reads mesh data for the finite element model,

establishes node point coordinates and connectivity,

boundary conditions and expected bandwidth of the

global stiffness matrix. Builds the boundary

condition vector and indicating vector for special

elimination operations in forming the stiffness matrix.

PMESH

Plots the finite element grid.
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LOAD

Reads applied loads including hygrothermal loads

and output flags. Writes out applied loads,

accumulated loads, and material properties. This

subroutine administrates the formation of the load

vector for the specialized Branca [10] solution

technique.I-I
RESL

Determines the residual nodal loads due to

material dilitation.

FORMK

Administrates the formation of the global stiffness

matrix by calling respective subroutines that form

elemental stiffness matrices. Forms global stiff-

ners matrix in upper triangular form and simul-

taneously eliminates rows and columns where

boundary conditions are involved.

I
I I

. . . . . .I . . ., . . . . . - - 'l- l : 1 I
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FOR

S1! I PLATC'R(N

Forrt ,; i tIie ntion ofrm constants

st ifnecra gatrie1< aresifesmti o

ava ilt 1,V r inelastic bhvo

(,olcle,- Pnia-tirLu eqton u alng lapes plasicid

i.a n-t ion f a onstlarndtrix

wicth n'cla ,aesareO onar odt~

Soluvs. ;inteires equnation splimnt spi oneed

form are uxnanded to the original size 'or all

nodes for subroutine STRESS.
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STRESS

Administrates calculations of stress and failure

criteria. Calculates and outputs incremental

and total stresses and strains. Checks for

unloading elements. Administrates calculations

of principal stresses and interface stresses.

Checks for hydrostatic failure. Return t- MAIN

tor next load increment.

~C',STR

Calculates elemental stresses and adis hygro-

I thermal stresses.

OCTA

Checks for octahedral failure or fiber failure

and sets failure flags for STRESS. Calculates

tailure ratio if applied stresses are higher

than failure stresses.

OCSTN

Calculates element octahedral shear strains.

PRINCE

Calculates principal values for stress or strain

tensor.
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